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NEUTRON PRODUCTIONBY ALPHA PARTICLES IN THIN URANIUM HEXAFLUORIDE

by

J. E. Stewart

ABSTRACT

Alpha-particle-inducedneutrons from UF6 serve as an in-

dicator of 235U enrichmentand may be exploited for safe-

guards purposes. If the lJF6density is low enough, neutron

production is reduced as a result of alpha-particleescape

before (ti,n) reactions with ‘9F. Calculational methods

and results are presented that enable prediction of neutron
productioniri low-density (“thin”) UF6 as encountered in

the gas centrifugationmethod of uranium enrichment. Neu-

tron production is shown to be strongly dependent on average

UF6 density and weakly dependent on rotational speed in an

operatingcentrifuge.



1. INTRODUCTION

Neutron production by uranium (predominantly234U) decay alpha particles
235UF enrichment

reactingwith 19F atoms in UF6 is correlated with 6 ● As the

fraction of 23’UF6 is increased by the centrifuge enrichment process,the
234UF6 fraction is increasedeven more. The elevated neutron productionfrom
234UF6 allows detectionof highly enriched uranium (HEU) by neutron detectors

1-4
monitoringcascades of operatinggas centrifuges.

Energies of the primary 234U decay alpha particles are 4.721 (28%) and

4.773 (72%)MeV (Ref. 5). The threshold energy for the (ti,n)reaction in

19F is 2.36 MeV (Ref. 6). A “thick target” for neutron production in ‘F6

exists if the target depth (productof the UF6 atom density and the character-
istic dimensionof the UF6 volume in qllestion) is sufficientto allow a 234U

decay alpha particle to slow to an energy below the (~,n) threshold value
while still in the UF6 VOIUKK?. A comparison of measured7 and calculated

UF6 thick-targetneutronyields is given in Ref. 5.

A thick-target neutron production model is not directly applicable to

low-density UF6 gas, where alpha particles may escape the gas volume at en-

ergies above the 19F(ci,n) cross-section threshold. Such “thin-target”

situationsare encounteredin the gas centrifugation process for UF6 enrich-

ment. A method used for thick-targetneutron productioncalculationswas modi-

fied and used to compute the probability of neutron production by an alpha
Particle of initial energy E. before escape at final energy Ef (Ref. 8)● For

a giVen initial energy EO, the escape energy Ef can be directly related to the

total path length L(EO + Ef) and projected range R(EO + Ef) traversedby ‘he

particle from birth to escape. Hence, by using a Monte Carlo code for ray

tracing, the effective alpha-induced

of UF6 gas in an operatingC(YItrifUCJe

neutron production from the distribution

may be computed.

II. THIN-TARGETNEUTRONPRODUCTIONTHEORY

P

The probabi1ity that an alpha particle of initial energy E. wil1 produce a

neutron by an (a,n) reaction within a material with macroscopicc (a,n) cross-

section X(E) and stoppingpower dE/dx(E) before escaping at energy Ef is given

by
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(1)

Note that setting Ef to zero in Eq. (1) yields the thick-target neutron

duction value. A plot showing computed values of P(EO + Ef) for the three

tial alpha-particleenergies of 234U is given in Ref. 8 and reproduced

pro-

ini-

here

as Fig. 1. Figure 1 shows that maximum neutron productionis reached after the

alpha particle slows to approximately 2.5 MeV. No additional neutrons are

produced after the alpha-particleenergy falls below the threshold value for.-
“F (2.36 MeV). The total path length traversed

slowing from initial energy EO to final energy Ef is

% dE

L(EO + Ef) = N J Wd(E)(-+
atoms

x s
cm

‘o

by the alpha particle in

given by

(2)

where N is the atomic density of the slowing-downmaterial.

Energetic alpha particles dissipate energy in inelastic collisions that

result in ionizationand excitation of the surrounding atoms. The alpha-

particle trajectory is affected only slightly in small momentum transfers with

electrons; that is, the paths of energetic alpha particles tend to be

straight.“1° Figure 2 displays L(EO + Ef) vs Ef computed by numericallyeval-

uating the integral in Eq. (2) for an initial alpha-particleenergy of 4.773

MeV with UF6 as the slowing-downmaterial. Along with the total path length,

the projectedrange R(EO + Ef) is also shown in Fig. 2. As the names imply,

projected range refers to the straight-linedistance from point-of-originof

the alpha particle and total path length refers to the total distance traveled.

As defined here, total path length and projected range have units of length

times atomic density. The relationships between total path length and pro=

jected range for alpha particles slowing in uranium and fluorine were taken

from Ref. 11.

To use the “thin-target” neutron production data efficiently in Monte

Carlo ray-tracingcalculations,a data set was formed with projected range as

3
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Fig. 1. Neutron production probability for the 4.603-,
4.721-, and 4.773-MeV alpha particles of 234U in UF6
before escape at energy E&.
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the independent variable. These data are plotted in Fig. 3, showing neutron

production by a 4.773-MeV alpha particle vs projected ran9e in UF60 This

plot was fitted (with a maximum deviationof 22%) using the formula

P(R) = 0.95+0.53 Ln R . (3)

Once neutron production could be associatedwith projected range, it was

possible to apply an existing Monte Carlo code to solve the geometry-dependent

part of the problem. That is, the effective average neutron production was

determinedfor geometriesof interestby using the code to compute the alpha-

particle projected ranges, associatingthese with neutron productionby the use

of Eq. (3), and accumulatingthe appropriateaverages.

A calculationalmodel of the distributionof UF6 density within the spin-

ning rotor of an operating gas centrifugewas constructedfor use in the Monte

Carlo simulations of the alpha-particletransportprocess, including neutron
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Fig. 3. Neutron productionby a 4.773-MeValpha particle
vs projected range in UF6.
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production. Figure 4 shows a schematic of the centrifuge rotor and indicates

the operationalUF6 distribution. Integrating the radial componentof themo-
mentum equation,using the ideal gas law,12 and rearrangingyields an approxi-
mate expressionfor the radial UF6 density distribution. The UF6 mass density
P at radius r is given as a function of the wall mass density p(a) by the

expression

p(r) = P(a) exp[-A2(l- r2/a2)] ,

where

A2 =MQ2 a2
2R

‘o “

“’”/

.

.

d

<c’’’’’’’”

‘L RADIAL DISTRIBUTION
OF UF6 DENSITY

(4)

(5)

Fig. 4. The centrifuge rotor, indicating
operationalUF6 distribution.



M is the UF6 molar mass, Siais the rotational velocity of the rotor wal1,

R is the ideal gas constant, and TO is temperature in Eq. (5). The differen-

tial mass element for UF6 gas between the rotor center post (r = rO) and

the rotor wall (r = a) for a rotor of height h is given by

v dm = Znh p(r)rdr . (6)

Integratingthe mass element between r and a and normalizingyields an expres-

sion for the fraction of UF6 lying between r and a. The fraction F is given

by

-Y
F=l-e

-Yo ‘
1 -e

(7)

where

Y = -Az(l - r2/a2) , (8)

and

Yo = -A*(I - r~/a2) .

Manipulationof Eq. (7) yields the formula

[

!?m(lr/a = 1 +
.#ll/*

A*I

(9)

(lo)
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where

-Yo
F’ = F(I - e ) . (11)

For

prepared

ticles.

starting

Monte Carlo transport simulations, a special source subroutine was

for the MCNP code13 to specify the initial conditions of alpha par-

Equation (10) was used in the source subroutine to sample for the

position. Particles were transported in a geometry similar to that

of Fig. 4. The UF6 gas volume inside the centrifuge rotor was divided into

10 radial zones. For each case considered, zone boundaries were adjusted so

that 10% of the UF6 gas was contained in each zone. In the transport simu-

lation, straight-linealpha-particlepaths were tracked through the zones of
varying UF6 density. As particles crossed zone boundaries, projected range

was accumulated. At the point of escape from the geometry,the neutron produc-

tion associatedwith the accumulatedprojectedrange was recordedusing Eq. (3)

and a special tally subroutine. Enough particle histories were simulated to

satisfy a preset statisticalprecision.

III. CALCULATIONALRESULTS AND CONCLUSIONS

The data and methods described above were used to calculate neutron pro-

duction for a gas centrifuge rotor model representativeof United States tech-

nology. Neutron production relative to the thick-target value was computed

over a range of operating parameters. Figure 5 shows relative thin-target

neutron productionvs average UF6 density for a fixed rotor speed. The figure

shows relative neutron production to be a fairly strong function of average

UF6 density over a dynamic range of densitiestypical of centrifugeoperating

conditions. Figure 6 shows, for fixed average UF6 density, the relative

neutron production vs rotor speed. Over a large dynamic range, Fig. 6 indi-
cates that relative neutron production is only weakly dependent on the speed

of the rotor and thus on the internal UF6 densitydistribution.This eases

computationsconsiderably.

Source term data, such as those shown in Figs. 5 and 6, are essential to

predictingeffectivenessof neutronmonitor arrays for detectingHEU production
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in centrifugecascades characteristicof domestic and foreign technology. The

calculationalmethods can be applied in other areas, such as acceleratortarget

design and radiationprotection.
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