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ABSTRACT

Experimental observations of Taylor instability have been made on

interfaces of fluids under uniform and under impulsive accelerations. The

theoretical results of Pennington and Bellman and of Birkhoff and Ingraham

concerning the effects of surface tension and viscosity on the growth of

Taylor instability were investigated. Inhibition of growth by surface tension

is found to be in essential agreement with the theory. The growth coefficients,

a (q = To cosh at), were measured to be less than those predicted by the linear

theory in cases where growth of a wave was observed. The discrepancy is per-

haps due to effects connected with the necessarily finite amplitude of the wave

when measurements can be made. .

A new mechanism leading to the restraint of growth is proposed, that of

the existence of a density gradient of finite width at an interface, as opposed

to a true discontinuity of density. The importance of Helmholtz instability in the

development of the shape of the interface is demonstrated. Turbulent mixing of

the fluids at sufficiently great Reynolds number is observed. The mixing, pro-

ducing a region of density gradient, provides a final inhibitory effect on the

growth.

The wavelength of most rapid growth at an interface has been observed

in experiments with impulsive acceleration, again in agreement with theory.

Some experimental refinements for future observations of impulsive accelerations

are suggested.
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Chapter 1

THE THEORY OF TAYLOR

1.1 Potential Theory as Applied to Hydrodynamics

The equation of motion of a perfect fluid isl

p$+pv” Vv=pF-Vp+l/3pVV”

INSTABILITY

1? + pv. vv (1.1)

where p is the density, v the velocity, F the body force (per unit mass), and ~ the coefficient

of viscosity. The equation of continuity is

It can also be shown that the vorticity, w,

1
~ Vxv~=—

A very powerful method in hydrodynamics

is

is

given by

that of potential

the motion is assumed to be irrotational and incompressible. For

#= Oand

V“v=o

(1.2)

(1.3)

theory, which enters when

then

(1.4)

(1.5)

Further, since V x v = O, v is derivable from a scalar potential $, owing to the vector identity

Vxvl#l = o.

Hence

v = -Vfp (1.6)

where the negative sign is conventional and $ is called the velocity potential. $ satisfies

Laplace’s equation

V2$ = o (1.7)

Under the conditions of incompressible, irrotational flow the equation of motion ( 1.1 ) I
becomes

‘v + pv”vv = pF -Vp + ~V.Vv
p at (1.8)

If we neglect viscosity and assume F to be derivable from a potential Q ( usually the

gravitational potential ), we can integrate the equation of motion to obtain Bernoulli’s equation

-7-



p_a(p—.
‘-at !2 - 1/2 V2 + f(t)
P

( 1.9)

We note that if the motion is steady, f(t) is a constant.

Hence the solution for the velocity potential in irrotational, incompressible flow is that

solution of Laplace’s equation which satisfies ( 1.9) together with the physical boundary condi-

tions.

Sir Geoffrey Taylor2 hds used the potential theory to discuss the motion of the interface

between two

cosity. His

grows as

incompressible fluids in a gravitational field, neglecting surface tension and vis -

result is that an infinitesimal sinusoidal displacement of initial amplitude To

q = ~ocosh at

[1
P~ -Pl

1/2

where a = kg
P2-+P1

, provided P2>P ~ and the gravitational field is directed from p
2

toward pi.*
pv2

Taylor’s solution neglects the term ~ in Bernoulli’s equdtion in order to linearize the

theory. This term has likewise been neglected by subsequent workers, although its effect is

perhaps important in the development of asymmetries in the interface, as we shall presently

suggest.

1.2 Derivation of Instability Criteria

Rigorous mathematical discussions of the Taylor instability y are to be found in the litera-

ture and will not be repeated here. It is possible, however, to give approximate derivations

which lead to the same results and possibly give more physical insight into the effects of

various quantities than do the more elegant presentations.

To this end, let us consider the equation of motion of an interface in tin acceleration

PI field of magnitude g, as indicated in the sketch. If ~ is the dis -

~__ _ ~ 9 placement of the interfdce, the restoring force will be of the order
~ of

P2
f = -@@(P2 - PI)

2
and the mass which must be moved is, approximately, (p2 + p ~) ~ , since the circulation in

wave is of depth of order $.

*We may here observe that the effect of a gravitational field is completely equivalent to the
acceleration of a system in a direction opposite to that of the gravitation.d force. Hence

a

we may say that th-e interface is unstable- ‘if the acceleration is directed from the lighter to
the denser medium or, equivalently, when the gravit ati?mai field is directed from the denser
to the lighter medium.

-8-



Equating

ma=f

(P2+P1)i2+j=-V%(P2 -Pl)

-1
and since 4 = k

i’j= -kgp2‘PI ~
P2 + PI

P2 - PI
If we set Q2 = -kg the solutions are

P2 + PI

q’ cleat + c2e-~t

Hence if the acceleration field is directed upward, a is imaginary and the solutions are

oscillatory. But if the direction of g is reversed, a is real and the solutions are exponential

functions.

Since we wish to describe an interface with finite initial displacement and initial velocity

zero, we arrive at C
1

= C2 = ‘q 0/2, and ~ = ~ocosh at, as in Taylor’s theory.

We have now to consider the effects of surface tension and viscosity on the stability of

the interface. We may again calculate by an approximate method the effect of surface tension

and arrive at the same result as that attained independently by Pennington
3

and by Birkhoff
4

and Ingraham, all of whom used more rigorous methods.

Consider now the increase in gravitational energy resulting from the displacement of a

flat interface to the form ~ = ~. sin kx. If we take the thickness of the interface as unity,

the displaced volume of a half-wave is

and the mean displacement is

Hence the change in gravitational energy is

-9-



AEg = (P2

The surface area of

the area becomes

the interface is, for unit thickness, initially A. With the distortion

JJA= ds= (1 +~02k2cos2kx)1’2dx

o 0

Expanding and neglecting higher order terms ( since ~ok <<1), we obtain

r702k
AA= z

and the change in energy at the surface due to surface tension is

AET = TAA

It is clear that the surface will be stable if a displacement

energ~ that is, if the increased energy due to surface tension is

of energy in the gravitational

AET > AE
g

tends to increase its total

greater than the decrease

field. We may then write the condition for stability

(P2 - P1)qo2&f

(P2 - Pl)g
k2> ~

We see that there exists a wave number beyond which instability ceases. We might expect

that at all wave numbers the effect of surface tension would be to decrease a. Pennington3

has shown rigorously that this is the case.

The effect of viscosity in the linear theory is a degree more subtle. To understand the

effect of viscosity we need only observe that the presence of viscosity in a liquid gives rise

-1o-



to dissipation of energy as the Laminae of fluid move in shear. If the wave number is infinite

we will have infinite dissipation of energy as the interface begins its growth. Hence we may

expect that at all wave numbers the effective a will be reduced by viscous effects and that

for infinite wave number a becomes zero and no growth occurs.

Pennington3 has shown that in the linear theory

[

2
dP~ - @ + Tk3 + (Pl + P2)@ 1

r 1

f2 is a root of

x

i 1
1.

I I + I .-i l+4ak=0

where W’s are the coefficients of viscosity and other quantities are as previously defined. He

has likewise” shown that there is one or no positive root according as k is less or greater

than

[

(-g) (P2 - PI) 1
1/2

T

1.3 Effects Initiating De~arture from the Linear Theorv

A case of considerable interest arises when we consider the insertion of a layer of fluid

of intermediate density at the interface between our two initial fluids. Intuitively one would

expect that a would be reduced at the two interfaces which now result, due to the lessening

of the density differences at the interfaces. Of even greater interest is the case in which

one has a gradually varying density across the interface, as opposed to a true discontinuity.

In his Lagrangian treatment of the linear theory of Taylor instability, neglecting surface ten-

sion and viscosity, Carter5 has described the variation of a with thickness of the gradient

region, both for a uniform intermediate layer and for a region in which the density variation

is exponential in form. In both cases o! decreases as the thickness increases. The explicit

results for interfaces with which this work is concerned are given in Chapter 4.

It was observed in the experiments of Lewis6 that the initial sinusoidal disturbance on

an air-water interface became asymmetric in its final stages. The form is that of spikes of

heavy fluid extending into the light fluid, and rounded regions which may be thought of as

bubbles consisting of the lighter fluid rising into the heavier fluid.

%me previous experiments of Davies and Taylor7 may be invoked to give an a priori

estimate of the rate of growth which is to be expected in the asymptotic form. The work of

Davies and Taylor showed that large bubbles of air in a liquid have a spherical upper surface

and rise at constant velocity V where

-11-



I

V.:(rg)’j’

( see Chapter 3). r is the radius of the surface, and g is the acceleration

Pennington has shown that for a two-dimensional bubble the rate of rise is

the constant 2/3 becomes more nearly unity, about 1.1.

of gravity.

also constant, but

The spike of heavy fluid, on the other hand, can be thought of as being in free fall in

the acceleration field. The spike will be essentially isolated from the bubbles around it. It

will experience a force due to the buoyancy of the lighter fluid and may be acted upon by

other hydrodynamic forces. However, in no case will we expect the acceleration of the spike

to be larger than g times an Atwood factor, i.e.,

P’ - PI
a.g

P’

where p2 is the density of the heavier fluid.

We see then that the amplitude, A, of the spike should increase as

A= Ao+Vt+~at2

.
and that after sufficient time has elapsed the growth may be proportional to t~, provided we

ignore the effect of viscosity of the fluids.

Another effect which, it appears, assumes importance in the growth of the Taylor in-

stability is the so-called Helmholtz instability. 8 This instability arises at an interface when

there is relative motion of two fluids in a direction parallel to the interface. It is responsible

for the form ation of ocean waves, for example.

The condition for Helmholtz instability may be written as

v’> P+p’
[

dP - P’j+K’T

PP’ 1
If the only forces tending to stabilize the interface

we have, for instability,

V2>P+P’ kT
PP’

are those of surface tension, i.e., g = (),

Finally, it is expected that in a viscous fluid turbulence will arise when the Reynolds number

~ . PV-4
P

-12-



becomes of the order of 2000.9 p is the density, v the velocity, and v the viscosity of the

fluid. ~ is a characteristic length associated with a form moving through the fluid, i.e., the

thickness of the boundary layer. We will show later that this effect enters into the experi-

mental observations.
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Chapter 2

GENERAL EXPERIMENTAL TECHNIQUES

In order not to interrupt the description of the principal experimental work, it seems prop-

er here to describe briefly the photographic methods used in observing the various phases of

the Taylor instability and the means of analysis of the data.

2.1 Photographic Method

The nature of the phenomena being observed usually necessitated the use of photographic

equipment capable of time resolution of the order of milliseconds. We used a Kodak high-speed

camera, made by Eastman Kodak Co. of Rochester. This camkra is a 16 mm framing camera,

in which the film runs continuously while the image is tracked on the film by means of a ro-

tating flat-sided prism. The msximum framing rate is nominally 3,000 frames/second, and

this framing rate was used for all of our observations. A synchronizing cam is provided on

the camera by which arrangement action is begun when a suitable framing rate has been reached.

The actual exposure time of the camera is about one-fifth the framing time. Hence at a

framing rate of 3,000 frames/second, the exposure time is 1/15, 000 second.

To establish an absolute time scale by means of which the velocities and accelerations

can be measured, a small argon lamp is provided in the camera near the film gate. This lamp

is mounted so as to produce timing marks on the edge of the film. To provide accurate timing

marks, a circuit was devised which consisted of a 100 kc crystal oscillator. The frequency of

this oscillator was sub-divided by three blocking oscillators to 1 kc. The 1 kc pulses thus pro-

duced were used to drive a univibrator which produced output pulses approximately 100 micro-

seconds long, and spaced at 1 millisecond intervals. This circuit was developed by P. W.

Byington and is available from the Electronics Group, P-1, of the Los Alamos Scientific Lab-

oratory as Model 110, 1 kc timing pulser.

2.2 Data Analysis

The analysis of the data was necessarily accomplished in several ways. For example,

observation of the various pictures as slow motion movies proved useful in aiding qualitative

notions of the behavior of the interracial instability. Enlargement of the photographic negatives

to 8-1/2” x 11” size was also of interest in that it permitted detailed study of various phases

of the formation of the growth. However, the great bulk of data analysis was done with Leitz

Ortholux microscopes at low magnifications (of the order of 20 diameters). By means of the

precision stages developed for use in the analysis of nuclear emulsions, measurements could

be made of the positions and amplitudes of the various interfaces with reference to certain

-14-



fiducial points on the apparatus. The radii of large bubbles and their velocities were simi-

larly measured on the Vicliers projection microscope.

In view of the extremely short exposure times of the camera, bright lightin% is required

to give adequate image density on the film. We used Super-X:< film, which has a Weston

tungsten rating of 100. Illumination was most satisfactory when the objects being photographed

were lighted from the back. Ordinarily, six reflector flood lamps (RFL 2) were used to il-

luminate a diffusing screen immediately behind the object being photographed. The lens aperture

WaS USUa.lly f/5.6. Development of the film in D-76 developer for 12 minutes in a tank or at

the rate of 9 feet/rein in a developing machine gave adequate image densities.

-15-



Chapter 3

TAYLOR INSTABILITY (3N THE SURFACES OF LARGE BUBBLES

At the beginning of this work, it was suggested
10

that the upper surface of a bubble of air

in water provided the necessary conditions for the Taylor instability. In this system there

exists an interface between the light and the heavy fluid. in which the equivalent acceleration is

directed upward, that is, from the light to the heavy fluid. Under these conditions, and in the

absence of appreciable surface tension effects, we should expect to see

Taylor instability on the upper surface of the bubble.

3.1 Apparatus

To observe this phenomenon and to gain experience in high-speed

the development of the

photography, we con-

strutted a tank with Lucite walls. The base of the tank was square, 18 inches on a side, and

the height of the tank was 3 feet. As indicated in Fig. 3.1 a rod was mounted horizontally

near the bottom of the tank. At the center of the rod was mounted a spun copper hemisphere.

A centrally located nozzle at the bottom of the tank enabled the hemisphere to be filled with

air. A small motor was attached to the rod so that the hemisphere could be rotated rapidly.

In addition, a microswitch was mounted on the shaft of the motor in such a way that the power

to the motor was shut off at about the time of release of the bubble.

3.2 Experimental Results

It was our initial intention to produce a bubble by the means described above, and then to

perturb the upper air-water interface by means of rods extending across the tank. We found,

however, that as the bubble was released from the hemisphere a small spray broke off at the

point of contact of the lip of the hemisphere and flew upward inside the bubble, striking the

front and upper surfaces. The perturbations thus achieved proved sufficient both in size and

interest to cause us to abandon the original plan. The growth of the Taylor instability on a

typical bubble is shown in Fi&s. 3.2 through 3.10.

Subsequent to the initial growth of the instability on the upper surface of the bubble, we

observed that the protuberances thus generated tended to wash down and under the bubble, the

upper interface finally becoming stable. Apparently the flow pattern established on the upper

surface stabilizes that surface.

In their previous work Davies and Taylor7 had established that bubbles of air rising in
1/2nitrobenzene in steady state attained a velocity v = 2/3 (rg) . This relation is derivable on

the assumption of potential flow of the fluid about a sphere when one writes Bernoulli’s

equation for the fluid which is near the tip of the bubble. In the same paper Davies and Taylor

-16-



describe their measurements of the pressure distribution about a sphere in a wind tunnel. They

found that the pressure distribution was remarkably close to that predicted by the potential

theory.

We have been able to extend the measurements of Davies

radii in the present experiment. The radii were measured by

points on the silhouette of the pictures, the observations being

and Taylor to bubbles of larger

recording coordinates of 20

made by means of the Vickers

projection microscope. A least squares fit was made to two sets of ten points each and the

radius taken to be the mean radius derived from these two sets of measurements. The velocity

of the bubble was measured at its tip by use of fiducial marks in the picture (Figs. 3.2 through

3.10). ‘ Appropriate corrections were made for the parallax resulting from the fact that the

bubble and the fiducial marks were not at the same distance from the camera. The measured

velocities as a function of radius for several bubbles are shown in Fig. 3.11 along with the

previous results of Davies and Taylor. The rms deviation of our points from the line repre-

senting v = (2/3) (rg)l’2 is 3 percent. Our estimated experimental errors were as follows:

determination of bubble radius, + 2 percen~ determination of bubble position, + 2 percen~

timing measurements, * 1 percent. It may be noted that the timing measurements in this series

of photographs are considerably less accurate than those in the subsequent series. The reason

is that the timing extended over a considerable footage of film and that the crystal-controlled

timing marker generator was not available at the time these bubble pictures were made. The

timing was therefore based on the 60 cycle line frequency, which drove the argon bulb in the

camera. Hence the timing marks were more widely spaced by a factor of about 10 and their

beginnings were not as clearly evident as were those produced by the crystal generator.

-17”
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Chapter 4

THE INSTABILITY OF INTERFACES UNDER UNIFORM ACCELERATION

4.1 Apparatus

After the publication of Sir Geoffrey Taylor’s theoretical paper in which Taylor instability

was first described, D. L. Lewis6 observed by experimental means the growth of the instability

on interfaces of air- water, as well as on air-benzene and air-glycerin interfaces. We have

constructed a machine essentially identical to that of Lewis. Our machine is shown in sche-

matic form in Fig. 4.1.

The Lewis machine consists of a large air reservoir (A), beneath which is fixed a rec-

tangular tube (B) made of Lucite. At the center of the tube is a flange (C), in which is mounted

a thin diaphragm. Lewis found it convenient to use shellac diaphragms, but we have had suc-

cess with glass sheets having thicknesses of the order of 3 to 4 roils. At the bottom of the “

tube is a foil (D). This foil has sufficient strength to withstand moderate pressures in the

pressure vessel.

Air lines are provided both to the upper pressure vessel and to the lower half of the

rectangular acceleration tube. Supported on the thin glass diaphragm is a liquid, for example,

water; or, more frequently in our experiments, a pair of liquids.

In order to produce an initial disturbance on the surface of the liquid or on the liquid-

liquid interface, we have used a cylindrical bob driven by a solenoid. Electrical power to the

solenoid is furnished by means of two spark plugs which enter the top lid of the pressure ves-

sel. The driving circuit for the solenoid is described in detail in Appendix A.

In the operation of the Lewis apparatus, the upper and lower pressure chambers are

filled. The two pressure chambers are then isolated from each other by the closing of valves

on the air lines. When the foil at the bottom of the acceleration tube is ruptured, the un-

balanced pressure drives the liquid down the accelerating tube and the instability is observed

on the upper interface.

4.2 Experimental Procedure

With Lewis’ results as our starting point, we wished to investigate the effects of surface

tension and viscosity on the rate of growth of Taylor instability. TO be able to observe the

instability in more detail, we decided to make use of the density factor to reduce the rate of

growth. It was therefore decided to study interfaces of two liquids of densities much more

nearly the same than those of water and air. By this choice we were also able to study a

greater variation of surface tension than would be possible in the observation of a water-air

-18-



interface. Water, n-heptane, isoamyl alcohol, and n-octyl alcohol were the liquids chosen for

our observations. The physical properties of these liquids are given in Fig. 4.2. In addition,

we lowered the interracial tension at a water -n-heptane interface by adding a surface active

agent (aerosol) to the water. Thus a variation in surface tension of a factor of 20 was ob-

tained while the other properties of the fluids were essentially unchanged. The acceleration,

a, of the interface, expressed in units of g, is

a = 13.6P
—, where p is the pressure in centimeters of mercury

L

and h is the equivalent water height of the column in centimeters. The range of accelerations

which we studied with the Lewis apparatus was from 20 to 100 g. To cover the region of

interest, wavelengths of 2, 4, 7, and 10 mm were chosen. The frequencies necessary to give

these wavelengths were calculated from the equation

[[3 1}

1/2
~ X2 g(p-p’) + 47r2T

‘=27r
~ @+P’)

which is that for waves in a fluid with a depth that is large compared to the wavelengths. An

effort was made to measure the wavelengths as observed in the initial stages of growth, but

in all cases we have used the calculated wavelengths. These calculated wavelengths have been

found to be in agreement wtth the observed values and are considered to be somewhat better

values for the wavelengths because of the accurately known frequencies of the oscillator used

to drive the transducer.

The densities of the various liquids used in our experimental work were measured with a

Westphal balance. With the exception of the isoamyl alcohol, all liquids were Eastman Kodak

white label grade. The isoamyl alcohol was Eastman Kodak yellow label, hence of somewhat

lesser purity.

All interracial tensions of interest were measured with a duNoiiy tensiometer. This de-

vice measures surface tension by the ring method, the force associated with moving the ring

through the interface being furnished by a“ torsion wire. Some of the values for interracial

tensions obtained by this means were not in good agreement with those given in literature. A

notable example is that of a water-heptane interface, for which our measured value of the

interracial tension was 39 dynes/cm, whereas the accepted value is 50 dynes/cm. In all cases

we have accepted our measured values, acting on the assumption that the liquids used by us

probably had various degrees of impurity. It should be pointed out, however, that the ring

method for the measurement of interracial tension has never been proved entirely reliable 11 It

3may also be noted that, as Pennington has pointed out, the numerical value of the interracial

tension is felt only in the one-fourth power in the rate of growth equation. For this reason

discrepancies in our measurements with those of the literature may be discounted to some extent.
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4.3 Experimental Results

As discussed in Chapter 1, one of the most important theoretical results of Pennington3

and of Birkhoff4 was the prediction of the stabilization of an interface against Taylor instability

by the forces of surface tension. In Fig. 4.3 we have plotted the critical wavelength as a

function of acceleration for the various interfaces with which we were concerned. In this plot,

for a given interface, the region to the right of the curve represents the region of instability,

and that to the left represents the region which is stabilized by surface tension. On this same

graph we have shown the observed experimental results, differentiating between observations

in which the instability was seen and those in which it was not. We observe that in case of a

water -n-heptane interface the regions of stability and instability are in quite good agreement

with th~ theory. When the interracial tension is lowered, through the addition of aerosol to the

water, the region of instability y is extended to smaller wavelengths for a given acceleration.

One observes, however, that an interface of water-isoamyl alcohol appears to be practically

uniformly stable, in disagreement with the theory. Our efforts to resolve this andmaly have

led to the following explanation.

It is intuitively apparent that the existence of a density gradient at an interface, as op-

posed to a true density discontinuity, might well lead to inhibition of the Taylor instability. The

suggestion of this possibility led to theoretical work by D. S. Carter5 which showed that this

is indeed the case. The effect can be described as a diminution in the exponential coefficient,

a, as the region in which the density gradient exists becomes of greater and greater thickness.

Carter has calculated the variation in a for various systems of interest. The results of these

calculations are shown in Figs. 4.4, 4.5, and 4.6.

To determine whether or not a density gradient existed in the experimental interface of

water-isoamyl alcohol, we made use of a schlieren technique. A schematic diagram of the

equipment is shown in Fig. 4.7. In a schlieren system a line source of light is placed in the

focal plane of a paraboloidal mirror (the mirrors are shown as lenses for greater clarity).

The resulting beam of collimated light is directed at a second mirror which brings the beam

to a focus. A knife-edge is interposed at the focus of the second mirror, parallel to the

image of the line source. Adjacent to the knife-edge is a camera, the focal system of which,

together with that of the second mirror, is used to observe an object placed between the two

mirrors. The existence of an optical density gradient in the sample being studied will result

in the refraction of that portion of the beam passing through the region in which the density

gradient exists. Depending on the position of the knife-edge, more or less of the light passing

through the refracting region will be admitted to the camera; hence a region of density gradient

will appear to have a level of illumination differing from that of the surrounding field. In the

diagram an optical wedge which will produce this effect is indicated.
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For the purpose of determining the physical existence of a density gradient at a water-

isoamyl alcohol interface, we observed by the schlieren technique a cell containing water and

isoamyl alcohol. This cell was one of the halves of the acceleration tube used in our Lewis

apparatus. The schlieren photographs which resulted are shown as Figs. 4.8, 4.9, and 4. 10;

these show the progressive thickening in time of the region of optical density gradient. Simi-

lar observations on interfaces of water -n-heptane showed only a line at the interface, due to

the curvature of the meniscus. An effect similar to that observed with water-isoamyl alcohol

was seen to occur at a water -n-octyl alcohol interface. However, the effect was much less

pronounced.

According to the theory of the Taylor instability one expects that initially the amplitude

of a disturbance grows as cosh at, where a is a reproduction factor and t is the time. Cosh

at is approximately represented by eat/2, an approximation which becomes increasingly more

valid as at increases. In the later stages of the growth the theory predicts that the lighter

fluid will penetrate the heavy fluid at constant velocity, in analogy with the constant rate of

rise of bubbles, while the heavier fluid will be in free fall under an acceleration which is con-

stant, but may be diluted by an Atwood factor.
12

Hence one would expect the amplitude to in-

crease according to a form such as a . a. + vt + 1/2 at2. In very late stages the term t2

should ‘predominate and one would expect that the amplitude would be simply proportional to t2

To check these predictions, we have measured the amplitude of disturbances of various wave-

lengths as a function of the time. These measurements were made primarily from the 16-mm

negatives by means of Leitz Ortholux microscopes at low magnifications. At the same time the

estimated mean position of the interface was measured so that the acceleration could be deter-

mined. The results of a typical set of such measurements are shown in Figs. 4.11, 4.12, and

4.13. In Fig. 4.11 we have plotted the square root of the observed mean displacement of the

interface against the time. The result is a straight line, the slope of which measures the ac-

celeration. The intercept on the time axis indicates the time at which the acceleration began

on the arbitrary time scale. Taking the time zero thus obtained as the true zero in time, we

have plotted in Fig. 4.12 lnA vs true time. We observe that, while the scatter of the points

is considerable, a straight line can be drawn reasonably well through the first portion of the

curve. The slope of this line is a measure of the a which is observed experimentally.

In Fig. 4.13 A1/2vs t is plotted for a typical observation. It is seen that in the latter

stages of the growth a linear relation applies between these two variables. The slope of the

line in this region is a measure of the acceleration of the heavier fluid into the light. Table

4. 2b gives a comparison of the observed values of a with those predicted by the linear theory

of Taylor and that of Pennington, which has taken into account the effects of surface tension
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and viscosity. It is noteworthy that in all cases that a’s that are observed experimentally are

smaller than those predicted by either of the theories. The probable explanation of this fact lies

in the neglect of the mass motion in the theories , since the effect of the term in Bernoulli’s

equation containing V2 is assumed to be negligible. Figs. 4.14 through 4.19 show the pro-

gressive growth of a disturbance on a water-n-heptane interface.

4.4 Theoretical Implications

Qualitatively one can divide the growth of a disturbance in Taylor instability into four

categories. The first of these is to a considerable extent described by the theories of Taylor,

Pennington, and Birkhoff. The increase in amplitude is essentially exponential, though with a

somewhat smaller a value than that predicted by the theories. If the initial disturbance is

sinusoidal, the interface retains its symmetric character about the main displacement axis.

The second phase of the growth may be described as the development of an asymmetry

in the interface in which the heavy fluid begins to be constricted, tending toward the formation

of spikes, while the lighter fluid tends to bdge in the direction of bubble formation. It seems

reasonable that the development of the asymmetry is caused by the dynamic pressure change

resulting from the mass motion. For if the fluid particles were constrained to move as pre-

dicted by the theories which have so far been offered, the term in V2 in Bernoulli’s equation

would set up a pressure gradient across the interface in a direction to cause bulging of light

fluid into the heavy. It is clear also that the extent to which this asymmetry develops will

depend on the difference in density of the two fluids. If the difference is very great, as for

example in an air-water interface, one would expect the constriction of the heavy fluid to be

comparatively severe. For liquid-liquid interfaces such as those which have been studied

here, in which the density difference is comparatively slight, the degree of asymmetry should

be less, and this is experimentally observed to be the case.

In the third phase one observes a mushrooming of the interface. It seems reasonable to

ascribe this effect to the Helmholtz instability, in view of the fact that the necessary velocities

for the production of Helmholtz instability are present. Experimentally one also observes a

distinct variation in the mushrooming effect between interfaces of high and low interracial tens-

ion. The fourth and final phase of the growth may be described as turbulent mixing. &peri-

mental evidenceg is available to support the notion that turbulence will arise, in general, when

the Reynolds number is of the order of 2000. Once again the velocities required to give this

Reynolds number are of the proper order of magnitude to make this a reasonable conclusion.

After turbulent mixing has begun, the situation may be described roughly as

plies in the case of an extensive density gradient. Hence one might say t~t the

instability is in a sense self-limiting, since the normal course of events leads to

which a is reduced by the formation of a region of density gradient.
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Chapter 5

INSTABILITY OF INTERFACES UNDER IMPULSIVE ACCELERATION

5.1 Introduction

A third group of experiments was performed to investigate the effect of impulsive accel-

erations upon an interface. Three phenomena seem to be of interest: the total growth of an

initial interracial wave due to impulse, the generation of spontaneous waves from minute per-

turbations, and the change caused by altering the impulse time for a given total impulse.

Quantitative results have been obtained for the first two phenomena.

5.2 Apparatus

A sketch of the apparatus is shown in Fig. 5.1. The operational sequence is begun by

turning on the high speed viewing camera (not shown). When the camera reaches an appropri-

ate speed the upper mass is released from its solenoid support and then, guided by the vertical

guides, it falls freely. Just before the upper mass strikes the lower cell, which contains the

fluids under study, it shutters a photocell system which releases the lower frame. Impact of

the upper mass upon the lower provides the impulse. The surfaces of impact are made of

hardened steel for the purpose of obtaining a short impulse. Average accelerations of the order

of 200-300 g over a millisecond interval are obtained. I
During the experiments several limitations of the apparatus became apparent. The trans-

parent faces of the cell containing the fluids were made of Plexiglas and even with plates as

thick as 3/4 in., it was found that the hydrostatic pressure developed caused distortion of the

sides. This has the effect of making the acceleration and pressure oscillatory.

A second limitation is imposed by the camera. It would be desirable to have a time re-

solution from 5 to 10 times as fast as with our Eastman camera. The Eastman camera frames

about 3, 000 pictures per second, which means that 2 to 3 frames are obtained for each im-

pulse; hardly enough for detailed wave growth studies. A faster camera, besides allowing a

more detailed investigation, might reduce the significance of fluid oscillations. In spite of

these difficulties, it is possible to study the total change in the amplitude of an initial wave and

it is also possible to observe the appearance of spontaneous waves generated by the impulse. I

5.3 Initial Wave Studies

If the impulse were of the form of a constant acceleration over the impulse interval it

would be expected that the growth of initial waves would obey the cosh at law as long as

?<< i; that is, if

ular acceleration,

A t is the time interval and a the growth constant associated with the partic -

then
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Vqo = cosh aAt, where~

is wave amplitude and ~. is the initial amplitude.

The average acceleration can be obtained from the change in velocity of the cell and from

a knowledge of the impulse time. Measurement of change of velocity presents no particular dif-

ficulty. However, the impulse time is not easy to measure exactly.

The time was estimated by utilizing two different observations. First, the time of con-

tact of the two frames was determined by an electrical method. The electrical signal was dis-

played upon a dual beam oscilloscope along with a calibrating signal and was photographed. The

contact time was measured to be 1.1 millisecond, with a standard error of the order of 0.05

millisecond. Next, the position in laboratory

was determined for each film frame. It was

lative to our time resolution), but the change

milliseconds, when 3/4 in. plastic plates are

Both of these measurements give upper

probably not more than 20 percent smaller.

millisecond was somewhat arbitrarily taken as impulse time. The impulse time for cells with

1/4 in. plates used in some early experiments appears to be 1.7 + 0.15 milliseconds.

From a knowledge of the acceleration, a may be calculated according to the Pennington

theory, and the expected ratio of the wave amplitude after impulse to that before impulse can

be determined. These ratios, together with measured ratios, are given in Fig. 5.3. The

formula used for the calculation of a included surface tension but not viscosity. This method

of analysis assumes that it is permissible to average linearly over oscillatory effects. Because

of the nonlinear nature of the phenomenon, this assumption cannot be correct.

Measurements of the natural frequency of the main parts of the cell indicate that the actual

impulse resembles the peaked form shown in Fig. 5.4A. The effect of peaks is to lower the

growth below that expected from an equivalent rectangular impulse. Viscosity influences the

coordinates of both the cell and the liquid interface

found that the cell changes velocity abruptly (re-

in interface velocity takes place within about 1.1

used as cell walls.

limits on the impulse time, but the actual time is

Therefore, for cells with 3/4 in. plates, 1 + 0.1

growth in the same direction and it is therefore reasonable to expect smaller wave growths than

predicted from theory which is based on an average acceleration and which neglects viscosity.

That this does not appear to be the case in our experiments remains an unresolved, but not

surprising, problem. AS a whole, our results are consistent with expectations and the devia-

tions may well be due to spurious effects associated with the apparatus.

That a peaked impulse gives rise to smaller growth than an equivalent rectangular impulse

can be explained as follows:

Consider a peaked impulse of the form shown in Fig. 5. 4B as an approximation to the

actual case. It may be assumed that the integrated effect (momentum change or area in the

figure) and the outer limits of the impulse (A t2) are fairly accurately known, but that the
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relative heights of the two rectaxigular portions are not known. Therefore, it is desired to

discover the effect of altering the relative heights of the rectangular portions.

First, in a qualitative manner, consider the effect of the two rectangular portions sepa-

ratel y as indicated by the shading. If the two portions are considered as separable and the

larger portion is assumed fixed, then only the growth resulting from one

cussed, the other being entirely comparable. Now a-fi approximately,

tion. And for a given impulsive momentum change, i.e., a given shaded

portion need be dis-

where g is accelera-

area in the figure,

g- I/t.

Thus a~~ and at - ~

Using these last proportionalities,

portion, may be written as

72 = 70 Cosh al

the e~ression for ~ ~, the growth associated with the small

-qpj

where a ~ is the a required by the given momentum change when A t2 = At ~. Evidently for

a fixed alo Atl, 72 will contribute most when A t2 is as large as possible, that is, when

At2 =Atl. Thus there will be the greatest growth when the total impulse is in the form of

2. single rectangle.

The above argument must be accepted only in a loose qualitative way since it depends

implicitly upon the principle of superposition which is not at all valid for hyperbolic phenomena.

An appreciation of magnitudes may be obtained through use of a specific example.

Consider an impulse composed of three joining rectangular portions as shown in Fig.

5. ‘7C. Let the first and last portions have an a of 200 sec -1
and a duration of 3/8 milli-

second each. Let the central portion have an a of 600 sec
-1

and a duration of 1/4 millisecond.

These values are of the same order of magnitude as those in our experiments.

By successively applying the formulas

~ = ~ o cosh at + ( ~o/cY) sinh at

~=.qo a sinh at + ~ o coSh at

to the three sections, the final ~ may be obtained. It turns out to be (1. 057) ~ o. However,

if the a values are averaged and the average applied for the whole impulse time, ~av =(1.081)

70” Also if an RMS value of a is taken for the whole impulse, ~ ~MS = (1. 10) To. (Taking

an RMS value for Q corresponds to averaging the accelerations associated with the various a

values and closely resembles what was actually done in our experimental analysis. ) The dis-

crepancy from ~ of ~ av and q WS is about 2.3 and 4 percent, respectively.
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5.4 Spontaneous Waves

It is found that impulsive accelerations of the order of 200 g for 1 millisecond do indeed

give rise with our apparatus to waves or spikes regardless of the presence of an initial wave.

The spikes observed were of heavy liquid protruding into the ligh$ no definite wave crests of

the light fluid into the heavy were seen, though it is not certain that they could be resolved

with our system even if present. The spikes seem to be randomly placed on the two dimensional

interface. An effective “wavelength” could, however, be measured whenever a number of spikes

were grouped together. The results of these measurements are given in Fig. 5.3 together with

the wavelength of the “most dangerous frequency” of Pennington. This wavelength is that which

corresponds to the maximum of the a vs wave number curve. The wave number of the wave-

length is given by Pennington as (a A p /3T) where a is the acceleration,A p the difference in

the densities of the two liquids, and T the interracial tension.

Figure 5.5 shows a plot of the growth of these spikes for an experiment in impulsive ac-

celeration in which spontaneous spikes are observed.

The details of growth are hard to discover because of the poor time resolution of our

camera, but some idea of the maximum velocity attained can be acquired.

It was immediately apparent from the pictures of the interface that some sort of oscillation

took place, for after the initial impact and the spike formation, cavitation bubbles occurred

within the aqueous fluid and within the spikes themselves. To investigate the nature of these

vibrations the filled cell was caused to resonate by tapping it at various places, and the audible

vibration was recorded by means of a microphone and an oscilloscope. The cell has a dominant

vibration at about 1.1 kc/s which appears to be associated with a transverse vibration of the

side plates. A cycle of’ such a wave is shown in the spike growth curve. Evidently, if this

wave represents hydrostatic pressure, the observed cavitation would not be surprising.

In runs K-5 and K-6 the camera happened”to be so timed with the impact that growth be-

fore cavitation was observed. In run L-2 the timing of the camera was slightly different and

no growth before cavitation was recorde$ however, the initial part of the growth after cavita-

tion was recorded. The first measurable velocity following cavitation for L-2 is actually greater

than the cell velocity, but it soon drops off to a lower value. Pictures of an interface under

impulse are shown in Figs. 5.6 and 5.7.

It is possible to express the initial amplitude of a wave in terms of its velocity and

amplitude at a given time, beginning with the fundamental relations ~ = ~ o cosh at and~ = a ~.

sinh at. Thus, ~
2

0 =?12- ( ti2/CY2 ). It was thought an idea of the initial amplitude

could be obtained by using the o! calcfilated from the formula involving surface tension, but not

viscosity, and choosing the first value of ~ where ~ can be measured with reasonable cer-

tainty. However, in each of the cases where spikes possible of measurement are formed, this
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procedure gives an imaginary initial amplitude. This result indicates that either the initial

velocity is not zero--as indeed it might not be because of cavitation and oscillation effects--or

else that for the spikes the Taylor growth law is not valid over the whole of the impulse. Ir-

relevance of the Taylor theory is quite reasomble since the theory is derived on the assumption

that ‘q<< i . This assumption is no longer valid almost as soon as the spikes become per-

ceptible. It appears then, that Taylor instability is responsible for the initiation of the spike,

but in our experiments it is not in control of their subsequent development.

5.5 Effect of Impulse Time for a Constant Impulse

Although we have no quantitative experimental results, it seems worth while to point out

what is involved in variable impulse time. Consider again the basic growth equation, ~ = ~ o

cosh at. The quantity o! is presumably roughly proportional to the square root of acceleration.

On the other hand the acceleration for a given impulse (i. e., given momentum change) is pro-

portional to I/t, thus, at is approximately proportional to ~and for two different impulse

times (but the same momentum change),

: al l/t~ Thus, ~2 ~ ~. cosh a ~
a2t2 ~ = q o Cosh (Const q.

This gives an idea of what might be expected as the impulse time is shortene~ in the limit,

as t2 approaches zero, no growth would be expected of an initial wave and, consequently, spikes

arising from small perturbations should not appear.

In an attempt to shorten the impulse time through the use of explosives, a cell similar to

the one used in the previous apparatus was accelerated by a rocket jet obtained from high ex-

plosives. However, the cell was not sufficiently rigid and spread the duration of the impulse

to more than a millisecond. It might be possible to eliminate this difficulty through increased

cell rigidity and careful design.

5.6 Conclusions

Because of the complicated and unknown mixing of various phenomena (e. g., vibration,

cavitations, shock waves) and because of the limited extent of the experiments, our results for

impulsive accelerations should be taken only as indicative. The results of our observations

follow . During impulse, initial waves grow as predicted by the theories of Taylor, Pennington,

Birkho~ spikes which often arise correspond to the most dangerous wavelength of Penningto~

and the rate of growth of spontaneous spikes does not appear to correspond to the Taylor theory.

In future experiments in impulsive acceleration, particular care should be exercised in the

design of the cell to eliminate low-frequency, high-amplitude vibration. In addition, the camera

framing speed should be increased to about 30,000 frames per second for viewing millisecond

impulses.
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Fig. 3.1. Bubble tank.
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Figs. 3.2 through 3.10

Development of Taylor instability on the upper surface

of an air bubble in water. With an arbitrary time zero, the

pictures are taken at the foIlowing times (miI.liseconds): t .0,

16.’7, 25.0, 33.3, 50.0, 58.3, 66.’7, 83. ~ 125.0. The hori-

zontal grid in the background has a spacing of 2 inches.
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Fig. 3.6
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Fig. 3.7
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Fig. 3.8
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Fig. 3.9
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Fig. 3.10
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Fig. 4.10 Lewis machine.
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Fig. 4.8. Schlieren photograph showing water-isoamyl alcohol interface. Picture is taken
before addition of the alcohol to the water.
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Fig. 4.9. Schlieren photograph showing water-isoamyl alcohol interface. Picture is taken
just as alcohol is added to water.
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Fig. 4.10. Schlieren photograph showing water -isoamyl alcohol interface. Picture is taken
1 minute after addition of the alcohol to the water.
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Fig. 4.18. The progression of Taylor instability on a water-n-heptane interface, under an
acceleration of 67.4 g. The exposure is printed at frame number 30. One frame
corresponds to a time interval of 0.355 msec (see also Fig. 4. 2).
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Fig. 4.19. The progression of Taylor instability on a water-n-heptme interface, under an
acceleration of 67.4 g. The exposure is printed at frame number 40. one frame
corresponds to a time interval of 0.355 msec (see also Fig. 4.2).
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Fig. 5.6. Impulse L-2. A water .n-heptane interface under impulse. Number refer to film
frame numbers (1 frame = 3-10-4 see). Grid in background is standard millimeter
graph paper.

-68-



Fig. 5.7. Impulse K-6. A water-n-heptane interface photographed
the impulse. Grid in background is standard millimeter
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APPENDIX A

In the experiments in uniform acceleration (Lewis apparatus) and

impulsive acceleration, an initial wave was required on the interface being

observed. Because of the wide range of frequencies and amplitudes desired,

it seemed advisable to use electronic means to provide the driving force for

the vibrating bob.

A block diagram of the circuit used is shown in Fig. Al. The dif-

ficulty of amplification of the very low frequencies desired was overcome

by the use of a 2300 cps carrier, amplitude modulated at the desired low fre-

quency. The carrier frequency, supplied by a Hewlett-Packard Model 200D

oscillator, and the low frequency, supplied by a Hewlett-pmkard Model 202A

oscillator, were mixed in a nonlinear pentode circuit. The resulting signal

was filtered so that it contained only the high frequency components. After

amplification to a high power level, the signal was demodulated by a copper

sulphide rectifier, filtered, and use to drive the bob.

The mixer circuit is shown in Fig. A2.

The bob itself was a solenoid, modified by the insertion of a spring

into the solenoid core. This arrangement provided satisfactory action over

the frequency range from zero to about 40 cps, a resonance being observed

at 8 cps.
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