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ABSTRACT

The general problem of determining inelastic cross sections from sphere transmission
measurements is considered. Experimental problems encountered in this type of investigation
are discussed. Analytical methods of correcting for multiple scattering and other important
effects in spherical shells are presented. These methods are applied to the determination of
average inelastic cross sections of many materials for fission spectrum neutrons. Experi-
mental work with U2S8,Np2S7, and A127(n,p)M~7 threshold detectors is evaluated.
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DEFINITIONS*

Roman Alphabet

Symbol Definition

Atomic weight

Defined by Eq. 5.5
n + 1 coefficient in cosine series expansion of elastic scatter-

ing angular distribution function. Eq. 4.6
Distance between center of source and center of detector in a

sphere transmission experiment
Defined by Eq. 5.5
Total number of second or higher order neutron collisions in

the shell. Eq. 3.40
Total number of second or higher order inelastic collisions in

the shell. Eq. 3.41
Total number of second collisions preceded by first elastic

collisions. Eq. 4.2
Effective cross section for transferring neutrons from group

j to group i, considering all processes. Section 8.2 and
Eq. 8.15

Defined by Eq. 5.5
Distance from the surface of a spherical shell at which the

normal mode flux may be considered zero (extrapolated end
point) . Eq. 3.24

Number of neutrons that have at least one elastic collision.
Eq. 3.1

Number of neutrons that have n elastic collisions. Equation
3.11, for example

Denotes the neutron energy after 10SS of energy on either
elastic or inelastic collisions

Average energy after an elastic collision. Eq. 6.43
Probability of elastic scattering at angle @into solid angle dw.

Eq. 6.39
The fraction of neutrons making n collisions which make their

nth collision between r and r + dr. Eqs. 3.1, 3.9, 5.4, and 5.13
Neutron flux at point r, Eq. 4.7

G(e,r,rj,rj+l) Probability of a-second collision in subshell rj to rj+l if a
neutron scatters on its first collision at position r into
angle 8. Section 5.2

g Neutrons emitted per collision or 1 + f in neutron diffusion
theory. Eq. 3.20

* To assist the reader, equation and section numbers have been added to definitions in
some cases.
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H
In

Ji

J2

K

k

L

ltr
m

N(E) dE

‘k(r?e) du

P(r,O)

P(r)

Pn

1P180 2p180,p180,pn , pA

P(E’; dE’

p(z) dz

Qo

qi

R

Distance between points (~,yo) and (x,y,z) fn Fig. 6.’7
Number of events in which the collisions through n – 1 are

elastic and the nth collision is inelastic. Eqs. 2.4, 3.7, and
3.14

Defined in the same way as In except that total cross section
instead of transport cross section is used on the first col-
lisions. Eq. 4.4

Correction for finite source-to-detector distance to be sub-
tracted from observed transmission. Eqs. 6.9 and 6.10

Correction term for finite detector size inside the sphere to
be added to observed transmission. Eqs. 6.27 and 6.28

Ratio of the inside radius of sphere to the outside radiua,
rt/r2

One of the unknowns in the normal mode flux expression (Eq.
3.19) which is fixed by the choice of sphere size and trans-
port cross section

Defined by Eq. 2.16
Transport mean free path. Eq. 4.9
Distance traversed by a neutron that starts off-center in the

sphere in Fig. 6.7
Flux of neutrons between energy E and energy E + dE in the

fission spectrum
Number of neutrons per cubic centimeter that have their kth

collision at position r before escaping from the sphere and
whose direction of motion after this kth collision is tn solid
angle dw at angle 0

Probability that a neutron which starts at position r at an
angle 0 with the radius will escape from the sphere without
making any further collisions. Eq. 3.4

Average escape probability of a neutron starting at position r,
assuming isotropic scattering. Eq. 3.5

Average escape probability for neutrons emerging from the
nth elastic collision. Eqs. 3.8 and 3.12

Defined by Eq. 6.6
Defined by Eq. 6.7
Escape probabilities after the nth elastic collision, considering

an absorbing detector in the middle of the sphere. Section
6.3

Deffned in Section 6.3
Probability of neutrons escaping from the shell after only

elastic collisions and having an energy between E’ and
E’ + dE’. Section 6.5

Probabilities of emission of the neutron source and detection
of the neutron counter in energy group i per unit volume of
source and detector, respectively. For example, P~T is the
detector probability in group i for Np2S7counter.

Probabili@ that the total path through the shell of a neutron
originating at the sphere center is between z and z + dz,
considering only elastic collisions. Section 4.4 and Eq. 4.28

Number of neutrons escaping from the sphere with no col-
lisions. Eq. 6.19

Total number of neutrons escaping from the shell in group i.
Section 8.2 and Eq. 8.22

Perpendicular distance from detector center to line joining
points (q,YO) and (x,y,z). Fig. 6.7
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Tn

v~
v~
w, w’
w*

x
Y

Y(r,e)

< y(r) >
<y>

Y1

z

< a2(r) >

Ao

UD(E)

Inside radius of sphere
Outside radius of sphere
Defined by Eq. 6.40
Distance between dVi and dVz in Fig. 8.1
Ratio of elaatic transport cross section to total elastic cross

section, vet /uel. Eq. 3.38
Number of group i neutrona produced on the n + 1 collision in

a shell. Eq. 8.19
Number of neutrons escaping from a sphere after n elastic

transport collisions. Eqs. 2.9, 9.2, 3.42, and 3.43
Same as Tn but describing the firat collision with the total

cross section, not the transport cross section
Detector volume, used especially in Section 6.2
Source volume
Finite detector size correction factora. Eqa. 6.22 and 6,25
Probability of a second inelaatic collision in thin shell ap-

proximation. Eq. 2.6
Shell thickneaa, rz – rl
Effective shell thickness for case of very sharply peaked

elaatic scattering angular distribution. Eq. 4.27
Distance traveled through the shell material to the edge of the

shell by a neutron scattered at point r through angle 19.
Eq. 2.9

Average of y(r,tl) over angle 0. Eq. 2.10
Average of y(r,e) over angle 0 and r. Eq. 2.16
One half the cylindrical detector height in the finite detector

size correction
(r – ri) = X2. Eq. 2.13

Greek Alphabet

Statistical average of @zover all possible neutron patha taken
at position r. Eq. 4.34

Phaae shtft. Eq. 3.19
Reduced efficiency for counter aaymmetry correction. Sec-

tion 6.4
Error in inelaatic croaa section becauae of effect of energy

Ioaa on elaatic collisions. Eqs. 6.37, 6.41, and 6.42
Average aquared deflection of a neutron on an elaatic collision
Mean free path for neutron detection in counter
Cosine @
Average number of neutrona per fission produced by a neutron

in energy group i
The escape probability after the firat elaatic collision if total

cross aectiona are used to specify the number of first col-
lisions. Eqs. 4.5 and 5.15

One group total, inelaatic collision (capture plus inelastic
scattering), elaatic, tranaport, and elaatic tranaport cross
aectiona

Tranaport, inelaatic scattering, capture, and elaatic tranaport
cross aectiona for energy group i. For this multi-group
notation, inelastic scattering and capture are separated

Neutron detector aenaitivity for energy E I
-15-



Uy

d%&

Average effective elastic cross section for a continuous
spectrum counttng in a threshold detector. Eq. 7.8

Average total, inelastic collision, and elastic cross sections
for continuous spectrum neutrons counting in a given threshold
detector. Eqs, 7.7, 7.5, and 6.38, respectively.

Inelastic scattering cross section from energy group j to group i
Flux at arbitrary point in space. Section 6.2
Fraction of neutrons from central source in sphere in energy

group i, in our case f i. Section 8.2
Normal mode flux tn sphere. Eq. 3.19
Integrated ‘one group flux over the volume of the sphere. Neutrons

in this flux must have made at least one elastic collision.
Section 3.6 and Eq. 3.48

Integrated flux of energy group i over the volume of the sphere.
Neutrons in this flux have made from zero to an infinite
number of collisions
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Chapter 1

INTRODUCTION

1.1 Purposes of the Investigation

A great need exists for information on the inelastic scattering of fast neutrons, both for the
theory of the compound nucleus and for the calculation of the degradation of fission neutrons in
a material. The present investigation was undertaken primarily to supply information of an in-
tegral nature on the inelastic scattering of fission spectrum neutrons. At the same time, re-
sults are obtained on the energy dependence of inelastic cross sections in various regions of
the periodic table.

The “sphere method” was used in these experiments because it appeared to be the method
most compatible with experimental conditions at the reactor. By detailed theoretical investiga-
tions, it was shown that this method permits a very accurate evaluation of the inelastic cross
section.

1.2 Reciprocity Theorem

The experimental work discussed in this report was performed with an external fission
source and a detector which was surrounded with a sphere of material for a transmission de-
termination. In the theoretical treatment, however, we will assume that the source is inside the
sphere and the detector outside. This is a considerable convenience for following the paths of
neutrons from the shell. It has been shown in LA-1428i that one can obtain the same sphere
transmission by surrounding either the source or the detector. Specifically, the reciprocity
theorem states: The number of neutrons coming from an isotropic source at tie center of a
spherical shell of matter and detected in an isotropic detector outside the sphere is equal to the
number detected if the positions of source and detector are interchanged.

It should be pointed out that if one performs experiments with a large anisotropic counter
inside a sphere and an anisotropic source outside the sphere, the transmission computed by as-
suming an internal source must be done as follows: The internal source must have the same
shape and absorption characteristics as the counter it replaces, and the external counter must
have the same shape and characteristic angular sensitivity as the source it replaces.

1.3 The Sphere Method

The method of spherical shells has been used by a large number of experimenters. Quali-
tatively the method works as follows:

If we place an isotropic threshold neutron dete$tor at a large distance from an isotropic
source and count with and without a sphere of material surrounding the source, the resulting
transmission

-17-



~ . counts (sphere on)
counts (sphere off)

is a measure of the amount of inelastic scattering.
We can think of this as follows: With only elastic scattering in a shell, a transmission of

unity will be obtained, because of spherical symmetry. Therefore, when both elastic and inelas-
tic collisions occur in the shell, one might tend to believe that the number of inelastic collisions
is more or less independent of the elastic cross section. If this were true, the elastic scatter-
ing would again give essentially no effect, and only the inelastic cross section would be impor-
tant in determining the sphere transmission.

On the basis of this argument, it has often been assumed that the transmission is given by
an exponential

(1.1)

where X is the shell thickness. In particular, this has been assumed by PhiUips et al. z at Los
Alamos in scattering experiments with 14 Mev neutrons. They justify the use of the exponential
by pointing out that the elastic scattering angular distribution has a very pronounced forward
peak at 14 Mev. This means that an elastic scattering does not lengthen the paths traveled by
neutrons in escaping from the sphere and, hence, does not act like a scattering at all. There-
fore, the inelastic cross section only is important in determining the transmission of a sphere.
Also, they have varied the sphere thickness over a limited range and have observed essentially
the same inelastic cross section at all thicknesses.

The argument of Phillips et al.2 may be reasonably well justified at 14 Mev (since the in-
elastic cross section is large and the elastic transport cross section small). However, it cer-
tainly is not sufficient at lower energies, around 1 Mev, where the elastic cross section, as
well as the average scattering angle, is much larger. Equation 1.1 will break down when the in-
elastic cross section becomes small compared to the elastic transport cross section, and this
is the rule, rather than the exception, at energies around 1 Mev.

Of course, in any case, the first term in the expansion of Eq. 1.1 in a power series will be
valid, viz.

T = l–uinX (1.2)

for very thin shells, regardless of the elastic scattering cross section. For this reason, some
experimenters have used very thin shells. The disadvantage of this is obvious; for the sake of
statistical accuracy, shells with a transmission of 30 to 70 percent are desirable. Moreover,
Eq. 1.2 does not indicate how thin the shells have to be for Eq. 1.2 to be valid. Our theory, in
Chapter 2, will show that~ shells need to be much thinner than might be expected.

It is clearly desirable to have a theory which is valid also for thicker shells. Several ap-
proaches to this problem have been advanced in the past. H. H. Barschalls has suggested the
use of an effective path length through the shell instead of the thickness X in Eq. 1.1. Amaldi
et al.’ have formulated a correction factor F(X) for multiple scattering. The shell transmis-
sion is written

T = F(X) e-ainx (1.3)

Szilard et al.s have used a method of interpreting sphere transmission data which is simi-
lar to the methods presented in Chapters 3 and 4. They conclude that the failure of their theory
to give the same cross sectiou for all shell thicknesses of the same element may be due to a
“hardening” of the spectrum.

A tested theory to use in the evaluation of fairly thick spherical shells is clearly needed at
present. This will be developed in Chapters 3 and 4. A large amount of experimental work was
performed to test its validity under a wide variety of conditions.
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In addition, cross sections for inelastic scattering from a fission neutron spectrum to a
point below several detector energy thresholds have been measured and are discussed in Chap-
tere 11, 12, 13, and 14 of this report. These measurements were performed for about 15 ele-
ments.

The meaning of the average inelastic cross sections, which were measured with energy
threshold detectors and the fission neutron spectrum, is discussed in Chapter 7.
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Chapter 2

THIN-SHELL THEORY

A theoretical analysis of the thin shell is particularly instructive because it shows, by a
purely analytical argument, the large effect of elastic scattering on the transmission. To show
this effect, it is clearly necessary to calculate the transmission at least uptoorder X2, where
Xisthethicknees of theshell; for, in the first order, thetransmission isgivenby Eq. 1.2. It
has been assumed in Eq. 1.2, as it will be~he following, that inelastic scattering is the ~
process which renders neutrons undetectable (i.e., that neutron capture is negligibly small).
Otherwise, the capture cross section should be added to that for inelastic scattering.

To obtain Eq. 1.2, as well as equations in this chapter, we make use of the reciprocity
theorem; i.e., we assume the source to be in the center of the spherical shell. The shell
thickness is

X=r2–ri (2.1)

where rz is the outer radius, and ri the inner radius. The macroscopic cross section, meas-
ured in cm-i, is used for Oin in Eq. 1.2, as it is for all cross sections in this report, unless
otherwise indicated.

Elastic scattering has no influence on the transmission in the linear approximation Eq.
1.2 because in this approximation we have only one collision, which maybe either elastic or
inelastic, so that certainly T is of the form

T = 1 – (auel + buin) (2.2)

where a and b are constant coefficients. But in the absence of inelastic scattering, elastic
scattering does not change the number of neutrons transmitted, hence a = O.

Now let us proceed to a better approximation. We will assume throughout that one neutron
is emitted by the source. Then the number of neutrons which come out of the sphere without
any collision is exactly—

TO = e-%x (2.3)

where at is the total cross section. The number of first collisions is 1- TO, and the number
of inelastic first collisions is therefore

Ii = ()~ (1 - TO) (2.4)

Expanding up to order X2, we get

L = qn+inutX2 + . . . (2.5)
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Wenow wish to calculate, toorder X2, the number of neutrons which are elastically scat-
teredon their first collision mdtheninelastically on the second. Forthe sake of generality,
we assume that the elastic scattering is not isotropic, and define u(0) dw as the differential
cross section for elastic scattering into solid angle du at angle 0. The elastic scattering is
illustrated in Fig. 2.1.

Theprobability that a neutron, after its first elastic scattering at r, is subsequently scat-
teredinelasticall ydepend sonthedistance y(r,O) which it hasto travel after its first scat-
tering, before escaping from the sphere. In our approximation, it is sufficient to set this
probability equal to

W* = ‘in Y(r,e) (2.6)

Then the number of second inelastic scattering is

12 = Uin ~04r~~ ael(0) dw dr y(r,fl (2.7)

This expression is, of course, proportional to X2, and the transmission to order X2 is

T= I–I*– I* (2.8)

For an arbitrary angular distribution of elastic scattering, Iz would have to be found nu-
merically. However, to demonstrate the effect of elastic collisions, we shall calculate it with
isotropic elastic scattering. We shall show in Chapter 4 that even for very anisotropic scat-
tering it is a good approximation to replace the actual scattering by isotropic scattering, if at
the same time the total cross section is replaced by the transport cross section. This makes
the present calculation quite realistic. From geometry

y(r, f9)=–r cos 9 + ~r~–r= sin2 0–a dr~–rz sin2 0

where a=2 if coses —F l–~

(2.9)

and a=O if coso2– r 1–$

Geometrically, a = 2 if, and only if, the neutron path after scattering penetrates into the in-
terior cavity of the shell (see Fig. 2.2).

Fig. 2.2

If the scattering is isotropic, Eq. 2.9 can be averaged over solid angle and gives for any r

4K
<y(r)> = ~

J4?l ~
y(r,e) dw
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x ~z–rz
q(r)7 = ~ + 24r () ()in & +r>h r+rl (2.10)

r–rl

For simplicity, let us assume now that the shell is thin, not only compared to a mean free
path, but also compared to its radius, i.e.

(2.11)

(2.12)

(2.13)

(2.14)

The two last terms in the square bracket always give a positive contribution, which varies
from O at Z = O and 1, to in 2 at Z = ~z. Even the maximum value, in 2, is small compared with
in (2 r2/X) under the assumption of Eq. 2.11. Therefore we find The average length of the path
of a scattered neutron, ~(r)>, is almost independent of the location of the scattering, r. It is
largest if the scattering occurs in the middle of the shell, smallest if it occurs at the outer or
inner edge. As a consequence, the probability of making an inelastic collision after an elastic
one is almost independent of the point where the elastic collision occurs.

Some understanding of this result, and of the form of Eq. 2.14, may be obtained as follows:
Consider the neutrons starting from r in direction 9, and those in direction r -8. The sum of
their paths, for a thin shell, is approximately twice the path through a slab of thickness~at
angle f3to the normal, i.e.

2x
Cos e

(2.15)

This is independent of Z, the starting position within the shell (Eq. 2.13). Averaging Eq. 2.15
over the solid angle gives a logarithmic divergence which is cut off by the sphericity when
cos 0 N X/rz; hence the appearance of In (r2/X) in Eq. 2.14.

Averaging Eq. 2.14 over Z (i. e., over r) gives +1/, from each of the two last terms and
hence

‘y’=:[~++)l+ (2.16)

where the factor L is clearly quite large, usually between 3 and 4, and largest for the thinnest
shells. The number of second inelastic collisions (i.e., Iz, Eq. 2.7) is obtained using Eq. 2.16
for cy>, the average path length in the shell after a collision

AU a X2L12=2 inel (2.17)

The transmission (Eq. 2.8) is then, to order X2
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Then Eq. 2.10 simplifies to

Let us now set

r- rl = XZ

where Z runs from zero to one.

() 2r

()
~ --?Z2-- ++ln —

r2—r r—rl

/

Then Eq. 2.12 may be written as

cy(r)> = ~ [l+ln(~) -Zln Z-(l– Z)ln(l– Z)1
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T = 1 – UinX + ; uinX2(ut – uelL) + . . . (2.18)

For an ardsotropic scattering angular distribution, instead of an isotropic, one should use the
elastic transport cross section tset instead of Uel in Eq. 2.18.

The coefficient of X2 in this formula is very interesting indeed. If the scattering is almost
entirely inelastic, then

T=l–uinX+$#nX:+ . . . (2.19)

which is the well-known expansion of the exponential. In this case, the X2 term is positive,
i.e., the curve of T vs X has the familiar upward bend (Fig. 2.3). But if the

T
T

x x

Fig. 2.3 — Scattering almost entirely inelastic. Fig. 2.4—Scattering mostly elastic.

scattering is mostly elastic, then because of a large value of L, aelL is greater than sin, and
the X2 term in Eq. 2.18 is negative. Then the curve of transmission vs thickness bends down-
ward as illustrated in Fig. 2.4. Clearly, in this case, it must be entirely wrong to evaluate
transmission experiments by assuming

T = e-alnx

The choice of the exponential formula is particularly bad because the negative coefficient of
X2 in Eq. 2.18 is apt to be large, much larger than the positive factor in the “elementary”
formula (Eq. 2.19), both because L >1 and because uel > Uin.

Obviously, the curve of T vs X cannot bend downward indefinitely. There must be an
inflection point and finally a quasi-exponential behavior, caused by higher order terms as
shown schematically in Fig. 2.4. Of course, at no point (except for extremely thin shells) can
the inelastic cross section be derived from the transmission by the exponential formula,

The reason for the behavior of Eq. 2.18 is, of course, that the path of a neutron in the
shell is greatly increased by elastic scattering. Suppose a neutron makes a collision at some
point r in the shell: then, if it continued radially outward, it would still go a distance r2 - r,
and if we average this quantity over all scattering positions r, we get ‘/2 X. On the other hand,
if the neutron is scattered in a random direction at r, then its average path in the shell before
leaving is ‘/2 X L, according to Eq. 2.16, which is L times (3 to 4 times) longer. Clearly, by
going more or less tangentially, the neutron must go a longer distance in the shell than if it
went radially.
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The coefficient of X2 will be negative as long aa

0=1 1
—>—
at L.

(2.20)

Thus relatively small inelastic scattering (i/, or ‘/$ of total) will suffice to make the trans-
mission curve bend initiaIly downward,

Let us examine now how thin the shell muet be made if one wants to avoid multiple-
scattertng corrections: Aseuming uel > Uin, the parenthesis in Eq. 2.18 is about –oel(L - 1).
Therefore, tf the tnelastic cross section is deduced f rom a measured transmission by means
of the exponential formula (Eq. 1. I) or the linear formula (Eq. 1.2), the relative error in it,
according to Eq. 2.18, will be

1
~ Oel (L - 1)X (2.21)

The inelastic cross section deduced from an elementary analysis will always be too large. If
we want to make the error (Eq. 2.21) equal to 5 percent, and if L = 4, then the probability of
an elastic scattering in the shell must be kept down to 3 percent. In the region of 1 or 2 Mev,
Uin is about ‘/2 or l/s of Oel for most substances; therefore the probability of inelastic scattering
must be about 1 percent! To measure the transmission in such a case with efficient accuracy
is virtually impossible.

From the previous discussion it can be seen that the elementary formulae should not, in
general, be used to evaluate sphere transmission experiments. A more nearly correct method
of computing inelastic cross sections is to use Eq. 2.8 or 2.18. These equations, however, have
a limited range of application and should not be used in the case of a thick shell. Some specific
examples in which transmissions computed according to Eq. 2.18 are compared with transmis-
sions determined from a more detailed theory are given in Chapter 4.
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Chapter 3

THICK-SHELL THEORY AND ISOTROPIC SCATTERING

We shall now treat the case of a shell of arbitrary thickness in which an arbitrary number
of collisions may take place. However, we shall still assume that the thickness is of the order
of one mean free path, rather than many. This means that the density of neutrons from the—
source will not fall off too much from the inside of the shell to the outside — an assumption
which will be useful in the theory. The case of very thick shells could be treated by diffusion
theory, but it has practical importance for measurements only when it is desired to measure
extremely small absorption cross sections.

The theory will be greatly simplified if we assume isotropic scattering. Aa will be shown
in Chapter 4, this assumption is a good approximation if the elastic transport cross section is
used for the elastic scattering cross section. The error thus made in the inelastic cross sec-
tion is of the order of 1 percent. We shall, therefore, use in this sectton the total transport
cross section utr and the elastic transport cross section ~et, rather than the total cross section
at and the total elastic cross section ~el. We further assume, as before, that the detector does
not respond to inelastically scattered neutrons.

3.1 Number of Second Collisions

Let us consider the neutrons which have suffered one elastic collision in the shell. Their
number (for one source neutron) is, similar to Eq. 2.4

with

The fraction which suffer their first collision between r and r + dr is

‘Utr(r-rl)mtr dr
fi(r) dr = e

l–TO

(s.1)

(9.2)

(3.3)

A neutron which starts at position r at an angle 8 with the radius will have a probability

P(r, O) = e–am Y(rIe) (3.4)

of escaping from the sphere without making any further collisions. Here y(r, f3) is the distance
travelled in the shell (if there is no collision), as shown in Figs. 2.1 and 2.2 and as calculated
in Eq. 2.9. If the scattering is isotropic, we are interested in the average escape probability
of a neutron starting at r
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P(r) = & , P(r, 0) du (3.5)

The probability that such a neutron makes at least a second collision is then 1 – P(r), and the
probability that this neutron makes a second collision which is inelastic, is

‘* [1 - P(r)]

The total number of inelastic second scattering is then

(3.6)

12=Ei~
s

“f,(r) dr [1 – P(r)]
‘tr ~,

(3.7)

It is convenient to introduce the average escape probability for neutrons emerging from first
collisions

Pi = ~r’fi(r) dr P(r)
II

Then, if we remember that by definition

~~i(r) dr = 1

we find

12= E##l-Pi)

3.2 Number of Third and Higher Order Collisions

The number of second elastic collisions is

Ez=Ei~(l– Pi)

(3.8)

(3.9)

(3.10)

(3.11)

Suppose we knew the spatial distribution of these neutrons, fz(r) dr. Then we could define an
average escape probability for neutrons after the second collision

P2 = ~~z(r) dr P(r) (3.12)

The number of neutrons which are inelastically scattered on their third collision is then

13= E##l-Pz)

= Ei ‘& :: (1 – PI)(l – P2) (3.13)

This may be continued in an obvious way, giving for inelastic collisions on the n + 1 collision:

I
()

~+1= Elfi ~
‘tr ‘tr

‘-1(1 -Pi)(l-P2)... (l– Pn) (3.14)

The difficulty here lies clearly in the calculation of spatial neutron distributions. It is
possible, though troublesome, to obtain this for the second collisions, fz(r), but it would be
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prohibitive to try to calculate the distributions for higher collisions. However, two circum-
stances help at this crucial point:

(1) The spatial distribution of successive collisions converges to a limiting distribution
which we shall call fro(r), and this convergence is quite rapid. This will be discussed in Sec-
tion 3.3.

(2) The escape probability P(r) does not depend very much on r, and therefore the average
escape probability Pn is not very sensitive to the assumed distribution function f~(r).

Concerning statement 2, we remember the result of Eq. 2.14 which showed, at least for a
thin shell, that 1 – P(r) [actually< y(r)> in Eq. 2.14] varies only by about 20 percent from maxi-
mum to minimum as a function of r. Any “reasonable” distribution function ~(r) of the starting
points of the neutrons will give the same average (1 – P) within a few percent.

For thicker shells, of the order of one mean free path, the dependence on r maybe slightly
greater. Consider, for example, neutrons starting at the outer and inner edges of the shell, rz
and rl, respectively. They will, on the whole, follow the same paths, such as that shown in
Fig. 3.1.

Fig. 3.1

Let y be the length of a typical path through the material on one traversal of the shell.
Then the probability of a collision within the shell is

1 – P(ri,O) = 1 – e-uuy I (3.15)

if the neutron starts from the inside (point A) going either “up” or “down.” If it starts from the
outside (point B) and goes “up,” the neutron will not traverse any material, giving zero collision
probability, while if it starts “down,” we get

1 – P’(r2,0) = 1 – e- 2uuy

The average between “up” and “down” is

1 – P(r2,0) =+(1 – e–zut,y)

(3.16)

(3.17)

If we expand Eqs. 3.15 and 3.17 in powers of y, the linear terms are equal

1- P(r1,6) = 1 – P(r2,6) = atiy (3.18)

This corresponds to the result in Eq. 2.14, where the inner and outer edge gave equal values of
<y(r)>. However, for thicker shells, Eq. 3.15 is clearly greater than Eq. 3.17. The maximum
collision probability, which for thin shells lies at the middle of the shell, moves with increas-
ing shell thickness towards the inside edge. At the same time, the variation of 1 – P(r) with r
is apt to increase, but even for very thick shells it is not likely to exceed a factor of 2 (com-
pare Eqs. 3.15 and 3.17).

In Fig. 3.2 we give 1 – P(r) as a function of r for some typical cases.
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Fig. 3.2 — Plot of 1- P(r), the probability of making another collision for neutrons scattered
isotropically at various points in spherical shells, with ri/r2 = 0.8.
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3.3 Normal Mode Distribution

Statement 1 (page 28) clatms that the spatial distribution of the nth collision, f ~(r), tends to
a limit as n increases. To see this, and to calculate this limit, let us make the following con-
sideration: For given fn, the spatial distribution of the next collisions, fn + I (r), is completely
determined, and does not change if we increase the absolute number of neutrons emitted in each
of the nth collisions. Imagine this is done, e.g., by ascribing to the material a fictitious fission
cross section, such that in each collision not one neutron is emitted, but g neutrons. * Then we
can choose g in such a way that, in the limit of large n, the total number of neutrons making an
nth and the n + 1 collision is the same. Then our shell will be just critical, and the spatial dis-
tribution of neutrons will be that characteristic of a critical assembly of the given shell geom-
etry, i.e., the fundamental normal mode of the shelL We have shown, the% that ~so in our
actual problem, with only elastic and inelastic collisions and no fission, the neutron distribution
tends toward the normal mode.

This argument does not show, of course, how many collisions are required to reach the
normal mode. This depends on the deviation of the dist ributton of first collisions, f l(r), from
the normal mode. Fortunately, this deviation usually is not very great, especially if the thick-
ness of the shell is not more than about one mean free path. In Fig. 3.3 we compare the distri-
bution of first collisions with the normal mode and with a histogram of the distribution of neu-
trons that have made a second collision for a typical case. All collision distributions are
normalized to one collision in the shell. If fl does not differ much from fm, then fz, ft~ etc. ~
will, of course, be even closer to f m.

To calculate the normal mode distribution, we use the method of the extrapolated end point.
We assume that within the shell the neutron flux distribution is

@m“
sin k (r + 6)

r
(3.19)

where k is related in the usual manner of integral theory to the fictitious number of neutrons
produced per collision, g, viz.

and all distances are in centimeters.
To determine k and the “phase shift” 6, we use the following boundary conditions:
(1) At the inner radius, we assume the slope of @m to be zero

d$m _ ~
dr

at rl

krt cot [k(ri + 6)] = 1

(3.20)

(3.21)

(3.22)

This boundary condition is not exact but should ensure reasonably well that there is no net flux,
except for source neutrons, through the inner surface of the sphere r i.

(2) At the outer radius, we have the condition of the extrapolated end point

sink(r2+6+D)=0 (3.23)

*g is usually denoted by 1 + f in neutron diffusion theory. This f is not used explicitly in
this report.

I
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Figure 3.3 — l?adial distribution of neutrons that have made first collisions, second colli-
sions, and normal mode collisions for a shell with utrX = 0.8 and ri/r2 = 0.8.
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where D is the extrapolation distance for which Frankel and Nelson give the very good approxi-
mate formula*

D = 0.71

g ‘tr
(3.24)

From Eq. %23, we have k(r2 + 5 + D) = m, and Eq. 3.22 becomes

kri cot [z–k(x + D)] = 1 (3.25)

It maybe noted that

()kD = 0.71 arctan & (9.26)

Rearranging Eq. 3.25 and substituting Eq. 3.26

()kx + 0.71 arctan -& + arctan (krl) = u (3.27)

In practice, Eq. 3.27 was solved numerically by assuming values of k until the desired X and ri
would satisfy the equation.

For very thin shells, k becomes large, and arctan (k/utr) = 7r/2. Then the phase of the sine
at the outer edge is

()k(r2 + 6) = u – kD = 1.29 ~ = 116° (9.28)

which is now independent of X. If X << ri, then the phase at the inner edge is

and therefore

kX=0.29T+2=0.45+~
2 krt kri

(3.29)

(9.30)

from which k is easily determined.
With the neutron distribution given by the normal mode r2@m (@m from Eq. 3.19) the es-

cape probability can be calculated. In all cases we have considered, Pm does not differ greatly
from Pi, the escape probability after one collision. This problem is considered in more detail
in Section 5.4.

3.4 Calculation of Transmission

If we assume that all higher escape probabilities are equal to that for the normal mode

P2=P~=... =Pm (3.31)

according to Eq. 3.14, the inelastic collision probabilities after the first collision (n z 1,
n + 1 = collision number) are given by

*This formula appeared originally in 1944 in a Los Alamos Scientific Laboratory rePort,

now available as AECD-3497.
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In+l=E,(~)(l-P*)&~-’(l_ pm)’-’ (3.32)

This series can be summed and gives

.

xI
E1(ah/utr)(l – Pl) (9.33)n + 1= 1 _ (uti/atr)(l – Pm)

n=l
Eiuin(l – Pi).
u~ + ue~ Pm

(3.34)

We insert Ei from Eq. 3.1 and the first inelastic collisions from Eq. 2.4 and find thus the
total number of inelastic collisions, which is equal to the number of neutrons which fail to be
transmitted

[
l–T=(l– TO):~ 1+

u~t (1 – P,)
u~ + UetPm1 (3.35)

Since we have actually computed curves of escape probability for neutrons which have
made a second elastic transport collision, an alternate and slightly more accurate formula for
sphere transmission is

[

(1 – PI)(1 -P )&et
1-T =(l-TO)% l+~(l-Pi) +atr(oti+aet\m) 1 (3.36)

Equations 3.35 and 3.36 are our final formulas. These formulas can be simplified if we
assume that the escape probability is the same for the first collision, second collision, and
the normal mode: Pi = P2 = Pm. Then Eqs. 3.35 and 3.36 reduce to

(I–T=(l– TO) ah
Uin + UetPm )

(3.37)

This formula allows a simple physical interpretation. The total number of neutrons which “are
supplied” to the shell is 1 – TO. These can be removed from the shell by two processes, either
by inelastic scattering, or by escape. In a given collision, the probability of inelastic scattering
is tJti, that of elastic scattering followed by escape is uet Pm. This gives for the fraction scat-
tered inelastically the expression in Eq. 3.37.

3.5 Analysis of Experiments

Let us assume the total transport cross section Utr is known, and u~ is to be determined.
Then we first calculate Pi and Pm as a function of utr, rl and r2; this is done in Chapter 5.
TO=e - uax is immediately ob~ed. Experiment @ves 1 – T. Since CA = utr – Cin, Eq. 3.35
contains only the one unknown Uin, for which it can easily be solved. -”

In practice, other experiments give not atr, but the total cross section q. In addition,
Jurney and Zabelg$ *5have measured the angular distribu~of the elastically scattered neu-
trons (for most of the neutron spectra and elements of int,erest here). From these data we
can ,obtain the ratio of elastic transport to total elastic cross section, vfz.

~muel(0) (1 – cos 0) sin 0 dOS–”et -
‘el Jr Oel (8) Sill 8 do

We then write

(3.38)

Uet = (Ut– ah) s
(3.39)

Crtr = Uet + cr~
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which reduces all cross sections in Eqs. 3.35, 3.36, and 3.37 to the measured at and the un-
known Uin. The escape probabilities Pi, P2, and Pm, as well as TO, depend on Utr and thus be-
come functions of the unknown uin. The best way to solve Eq. 3.35 is then by trial and error,
i.e., to calculate the right hand side for a few assumed values of Uin until agreement with the
observed 1 – T is achieved.

3.6 Alternative Derivation

Instead of considering inelastic scattering on the second, third, and subsequent collisions,
we may introduce the total flux of neutrons in the shell which have suffered at least one elastic
collision. Let us integrate this flux over the entire volume of the shell, and call the result W,
assuming that the source emits one neutron per second. The spatial distribution of f.he collisions
1s again assumed to be fro(r) dr so that Wm/4rr2 is the actual flux (per square centimeter per
second) at r. The number of transport collisions per cubic centimeter per second is then
Wtr~/4rr2, and the total number of second or higher collisions per second is

c~t = ‘Iqr (s.40)

because of the normalization of fm.
Of the collisions (Eq. 3.40), the number

c~ = win (3.41)

will be inelastic, and ‘laet elastic. Of the latter neutrons, a fraction Pm will escape, so that the
number of neutrons escaping after two or more elastic transport collisions is

T >2 = Waet Pm (3.42)

To this we add the neutrons escaping after one elastic scattering

()‘et piTi= (l-TO) ~

and the number escaping without any scattering, To. This gives for the total transmission

(3.43)

T= TO+ T1+ T>* (3.44)

This expression for the transmission still contains in T>2, the unknown integrated flux ~.
To eliminate w, we note that we can also calculate the total number of inelastically scat-

tered neutrons, which, of course, equals 1- T. We know that Eq. 3.41 represents the total
number of inelastic collisions on the second collision or later. We need only add the number
of first inelastic collisions

()Ii= (l-To) ~ (3.45)

which gives

()
l–T=(l– TO) ~ + qa~

On the other hand, Eqs. 3.42 to 3.44 give

l-T=(l-To)o-*)-yaetpm

(3.46)

(3.47)
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Equating the two expressions for 1- T gives

~ = (1 – TO)aet(l – Pi)

‘tr (Uin + ‘et ‘m )

and inserting this into Eq. 3.46 gives

( )[l–T=(l– TO) ~ l+oet(l-pi)
Oh + Uet Pm1

(3.48)

(3.49)

This is identical with Eq. 3.35. The present derivation is the mathematical extension of the
physical argument at the end of Section 3.4.
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Chapter 4

ANISOTROPIC SCATTERING AND JUSTIFICATION OF TRANSPORT APPROXIMATION

4.1 Outline of Methods

In principle, the theory with anisotropic scattering is simple. The number of neutrons
elastically scattered on the first collision in the shell at position r into direction 0 is

Uel (0) dw dr e-az(r-rl) (4.1)

where now the total cross section is used rather than the transport. The fraction of these which
suffer a second collision is [1 – P(r, o)], where P is given by Eq. 3.4. Therefore the total
number of second collisions that are preceded by first elastic collisions is

Cz = ~ e-ut(r-rl) dr Uel (0) du[l - P(ri6)] (4.2)

Of these, C2(u~/at ) are inelastic, the rest elastic. The latter agatn have a certain angular dis-
tribution, more complicated than after the first collision, and their further fate may be treated
similarly.

In calculating the total transmission, it must be remembered that the number of neutrons
transmitted without collisions is now

(4.3)

rather than To (Eq. 3.2) ,i.e., here also the total cross section must be substituted for the trans-
port. Likewise, the number of inelastic scattering on the first collision is

(4.4)

Both T~ and Ii are less than their transport-theory counterparts, TOand Ii.
To calculate the number of second and higher order collisions, two different methods have

been chosen, viz.
(a) The angular distribution of elastic scattering has been taken into account on all colli-

sions. In this case, the only feasible method is Monte Carlo. The results of Monte Carlo cal-
culations for typical cases will be given below; the method of calculation is described in
LA-1583.7

(b) We have assumed that, after the second collision, the neutrons are distributed ran-
domly in direction, and according to the normal mode (Section 3.3) in space. Then, after the
first collision, we can use the theory of Chapter 3, i.e., isotropio elastic scattering and trans-
port cross sections. To be in accord with the assumption of isotropic second scattering, we
must then also calculate the escape probability P(r, f?)in Eq. 4.2 by using the transport cross

-36-



section. The total cross section and the actual angular distribution are used only in the de-
scription of the first collision.

The formula for transmission of a sphere in this approximation is then (similar to
Eq. “ 3.36)

[
l- T= (l-T@ l+w(l-mi) + (1 - 7r,)(l - P*) u:~

at Utr Utr (u~ + u~t Pm) 1 (4.5)

The computation of the escape probability nl, essentially 1- C2 (Eq. 4.2) except for the nor-
malization at/(1 – To Uel, is discussed in Section 5.5.

To qualitatively justify the procedure (b), we note that those neutrons which are scattered
through large angles on their first collision will afterwards travel long distances through the
material and will thus have an enhanced chance of making a second collision. Moreover, the
radius vector from the source to the point of second scattering is more or less randomly ori-
ented relative to the radius vector to the point of first scattering, if the neutron has a long
path between first and second collisions. Considering both of these arguments, we conclude
that, even though the differential scattering cross section Uel(tl is strongly peaked forward,
the flux of neutrons available for second collisions will be approximately random tn direction
relative to the radial direction at the point of second collision. Therefore, the neutrons emerg-
ing from the second collision will also tend to be isotropic in orientation relative to the radius
vector.

Procedures (a) and (b) can then be compared witix
(c) Theory using the transport cross section and isotropic elastic scattering for the first

and all later collisions, i.e., use the method of Chapter 3.

4.2 Numerical Test of Trans~ort Theorv

To test the transport theory, we have calculated the transmission for 11 different cases,
using both the “correct” procedure (b) and the transport procedure. Four different angular
distributions for elastic scattering were used in the computations in examples 1 to 8. Three
assumed distributions were of the form

crel (0) = a. + al cos 0 + az cos2 0 + as Coss 8 + a4 cos’ 0 + as Coss @ (4.6)

The coefficients were assumed as follows:

Cases 1-5 Case 6 Cases 7–8

a. 0.115 0.059 0.311
al 0.066 0.030 0.625
az –0.250 -0.258 -2.283
a9 -0.382 0.010 -3.827
a, 0.954 1.210 4.107
as 1.040 0.953 5.394

Thus, cases 1 to 5 correspond to a moderate peak in the forward direction, 7 and 8 to a stronger
peak, and 6 to an even more pronounced peak. In fact, cases 1 to 5 correspond rather closely
to a measured distribution for fission neutrons in iron, and 7 and 8 to that for uranium.6 The
angular distribution used in case 6 was chosen from the continuum theory predictions for about
4.0 Mev neutrons and A = 45. This is thought to be a rather extreme case, being far more for-
ward peaked than almost all distributions used in our analysis and even much more forward
peaked than distributions recently measured at 4.0 Mev neutron energy.a Various thicknesses
of the shell and various ratios of inner to outer radius were considered and are listed in
Table 4.1.
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As an extremely unfavorable case for the transport approxtmatton, we have also consid-
ered an angular distribution tn which the neutrons are scattered either directly forward or
dtrectly backward, 0 = O or 180°, with equal probability. In this case, of course, transport and
total cross section are equal (cases 9, 10, 11).

In the “reasonable” cases 1 to 8, the agreement between procedures (b) and (c) is very
close indeed, as shown by Table 4.1. A good way to show the agreement is to calculate the
transmission by the “correct” method (b), using the assumed thickness, cross sections and
angular distributio~ and then to deduce an apparent inelastic cross section from this calcu-
lated transmission by use of method (c). Table 4.1 shows that the inelastic cross section de-
duced from (c) agrees to within 2 percent (always in the same direction) with the “correct”
cross section from methcd (b), for cases 1 through 8. It is also clear from the table that the
method of Chapter 2, method (d), does not give accurate results below about 90 percent trans-
mission for the cases tried. For the lowest transmission calculated using Eq. 2.18, the error
made in inelastic cross section is about 10 percent.

In the abnormal cases 9, 10 and 11, the error is as great as 14 percent. ‘l%is is not sur-
prising. The assumed scattering in these cases, straight backward, does not give rise to a
very long path of the neutrons through the shell, on the average, 3/2 times the thickness X.
Half of the scattering is assumed to go forward and thus does not lengthen the path at all
(average path after scattering = ~z X). Averaging between backward and forward scattering
gives a path after scattering equal to the shell thickness, far less than the average path after
isotropic scattering (except in case 9, where the shell is almost solid). Therefore, using the
transport assumption and the same cross sections, we expect much more chance for inelastic
collisions after the first collision, and a much smaller transmission, than ustng the “correct”
theory. Thts is borne out by Table 4.1. Conversely, if the inelastic cross section is deduced
from the “calculated” transmission by the transport method (c) as described in the last para-
graph, we get values that are too small. Fortunately, experimental angular distributions ordi-
narily do not have the behavior assumed in cases 9, 10, and 11, but are commonly peaked in
the forward direction.

To test the accuracy of method (b), E. D. Cashwell and C. J. Everett of LASL Group T-8,
and J. M. Kister, Group T-l’, have run four problems on the Los Alamos MANIAC with the
Monte Carlo metho~’ taking into account the exact angular distribution in all collisions, i.e.,
method (a). The three angular distributions used, as well as other specifications of the prob-
lem, are listed in Table 4.1.

The Monte Carlo transmissions were compared with those calculated from method (b),
and the agreement was wtthin 2 percent. The corresponding maximum error in the deduced in-
elastic cross section is about 2 percent (case 9, non-realistic angular distribution). We con-
sider this as an excellent empirical justification of method (b). Considering, then, method (b)
as established, the calculations reported in Table 4.1 justify also method (c), i.e., the use of
the transport cross section even for the ftrst collision, for a realistic angular distribution of
elastic scattering.

4.3 Analytical Justification

The considerations of the last section may be regarded as a justification of the transport
approximation by empirical mathematics. However, a more general and theoretical argument
is desirable.

As is well known, the concept of the transport cross section was developed originally in
differential dtffusion theory. In the limits of that theory, i.e., when there are many collisions
before absorption or escape, the neutron flux at a given point in space may be written as a
function of direction in the form

f(r,a) = A(r) + B(r) cos a (4.7)

where a is the angle between r and the direction of motion of the neutron. Under these condi-
tions, i.e., when all higher spherical harmonics are absent from the angular distribution, the
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entire influence of scattering on the neutron distribution can be described by the transport cross
section. Indeed, the net number of neutrons elastically scattered into the direction a is

C = -uel f(r,a) + J uel (8) f(r,a’) ~

dn ‘= B(r) ~ fJel (0) (cos a’ - cos a) ~

(4.8)

The first term in the first line represents the neutrons scattered out, the 8econd those scattered
in from direction a‘. In the second line, Eq. 4.7 has been used; in the last, well known relations
of spherical trigonometry. The last integral is the elastic transport cross section. In the further
development of diffusion theory, only Utr occurs; e.g., the diffusion coefficient is

Do = ~S Itr V (4.9)

where ltr is the transport mean free path and v W the neutron velocity.
The distribution (Eq. 4.’7) will be established whenever there are many collisions. In our

problem, then, the use of the transport cross section will be valid within the same limits in
which the normal mode solution is valid, i.e., for shell thickness large compared with a mean
free path. Thus, the transport approximation is exact withtn the limits where the multiple
scattering is most tmportant.

Let us now investigate the opposite limit, that of a thin shell. The number of first tnelastic
collisions is, as in Eq. 2.6

The number of second inelastic collisions is gtven by Eq. 2.7,

(4.11)

which can also be derived from Eq. 4.2. The length of chord y(r, 0) is given by Eq. 2.9. Except
for very small /cos O[, Eq. 2.9 may be written for a thin shell in the form

y(r, O)= ~ ifcose>o

Y(r’e)=w ‘fCos‘<0 (4,12)

This means essentially that the curvature of the shell is neglected.
Let us now expand Uel (0) (cross section for scattering per unit solid tingle) in powers Of

cos e,

ual(0)= ao+alcos O+aacos2 f3+aacos’ 0+... (4,1s)

Inserting this into Eq, 4,11 we see that we can use the approximation of Eq. 4.12 for y, together
with every term in Eq. 4.13 except the first. The first term, on the other hand, has been inte-
grated in Eqs. 2.14 and 2.16. Therefore, we can evaluate Eq. 4.11 in good approximation, and
noting that <r2 —r> = <r - ri> = ~z ~ we get

[
1; = ~2 ainX2 aOL -al + a2 -

E?+ ~%]
(4.14)

n
odd even
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Adding this to Eq. 4.10, we get to order X2

‘~%+~(g-ii&)an]‘4*”)
odd even

where we have used the expreaaion for the total elastic cross section corresponding to Eq. 4.13

(4.16)

even

The elastic transport cross section is

11
z

1
z

1
Cret

‘ao-3a’+3a*-
—an+
n+2 m % (4.17)

n n
odd even

Now our old Eq. 2.18 gives, ii uet ia aubatituted for uel

( 1

)

1
l=l-T=~in X 1-3%X +~uinuet X2(L-1) (4.18)

In other worda, if we use the tranaport cross section, the bracket in the “correct” result (Eq.
4.15) is replaced by Eq. 4.17, multiplied by L -1. Reasonable values of L are between 3 and 4,
corresponding to rl/r2 between 0.55 and 0.85, Eq. 2.16. Choosing L = 4, the bracket in Eq.
4.15 is

3a0 - al +~a, – 0.33a2 + 0.30ad – 0.20a5 (4.19)

whereas the transport theory glvea for this case

3a. - al + a2 – 0.6a2 + 0.6a, – 0.429a5 (4.20)

Thus for L =4, the coefficient of ~ ia correctly* given by tranaport theory. If the angular dis-
tribution ia just a. + al cos 9, we would therefore get the correct result by using the tranaport
cross section theory. With moat meaaured angular diatributiona of elastic scattering, the “cor-
rect” result (Eq. 4.19) ia likely to’be smaller by 10 percent or ao than the tranaport result
(Eq. 4.20). For angular distributiona requiring high order terms (a.) in the cosine expanaion
(Eq. 4.13), the discrepancy between the exact and tranaport theory is lncreaaed.

Thus we aee that even in the limit of very tiin shells, the transport theory is quite a good
approximation, especially if we remember that the bracket in Eq. 4,15 occurs only in a correc-
tion term. Since the transport theory is a good approximation for thin shells and ia exact for
~k ones, it is not surprising that it is very good for intermediate thicknesaea, in accord with
Table 4.1. Even the sign of the error can be underatoock We have eeen that the elaatic trana-
port croaa section, ueed in Eq. 2.18 or 4.18, predicts too high an inelastic scattering for a given
cross section, and hence too low a sphere tranamiasion. This agrees with Table 4.1.

Since Eq. 4.18 predicts slightly too much i.nelaatic scattering, it follows that uet ia sliSh~Y
larger than a true effective elaatic cross section would be. The use of the total elaatic cross
section uel in Eq, 4.18 would greatly aggravate this error; in fact, the factor (1 - coa 0) does
not reduce the croaa section quite emmgh.

* The coefficient of aO ia, of course, alwaya correct.
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In view of the above discussions of inelastic scattering, it is important to note that the
evaluation of experiments with the transport cross section gives a lower limit to the inelastic
scattering cross section and as we have shown, a very close limit. — —

4.4 Small Angle Limit

An interesting special case is that of a very sharp forward peak in the differential cross
section for elastic scattering. l%is is not relevant for our own experiments at energies around
1 to 6 Mev, where there is always considerable elastic scattering through 90° and more, but it
is important at high energies, such as 14 Mev. We shall treat this case also analytically. We
shall assume throughout that the shell is thin compared to its radius and that we have effec-
tively plane geometry. In the beginning, we shall assume further that crt X CC1; then we can
use the approximations of Chapter 2. Later on, we shall relax this condition.

Using Eq. 2.9 for small angles 8, we find (see Eq. 4.12)

‘(r$e)=(r’-r)(1‘+’) (4.21)

If the neutron had proceeded forward, the path length would have been rz -r, so that the in-
crease of path is l/2(r2 - r) 02, as is geometrically obvious.

The sum of first and second inelastic collisions is, to order X2, similar to Eqs. 2.18
and 4.15

(4.22)

where <02> is the average of 02 over all elastic collisions. In the last term, cfel X is the proba-
bility of a first elastic collision, to order X. This is multiplied by the probability of a second
inelastic collision, which is Uk times the average of Eq. 4.21 over r. Equation 4.22 may be
rewritten

( Uxl
Ii + 12= crinX 1 –~+Z. uel <t?2>X

)

Now for small scattering angles

r4r Crel <e%
ue~ = ue~ (9) (1 -cos O)d(o= z

o

so that the total number of inelastically scattered neutrons is

( )UinX +-l- T= Ii+12=crbX l-~
2

TO accuracy X2, this may be written in the form

T = e-ainy

We define an effective thickness Y by

(Y=x l+;cletx
)

The last factor describes the lengthening of the path due to elastic collisions.

(4.29)

(4.24)

(4.25)

(4.26)

(4.27)
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We can now generalize this result to greater thickness of the shell. For this purpose, let
us separate the effects d, elastic and inelastic scattering. All that the elastic scattering does
is to lengthen the path of the neutrons. Let p(z) dz be the probability that the total path through
the shell of a neutron, originating at the sphere center, is between z and z + dz, if there is only
elastic scattering of the correct cross section and angular distribution. In principle, p(z) can
be calculate@ clearly, p(z) = O if z < X and p is normalized so that

~- P(Z)dz = 1 (4.28)

Now consider the inelastic scattering. The probability that a neutron will not be inelasti-
cally scattered if it travels a distance z, is e-uinz. Hence, wttb no approximations, the total
probability of transmission without making inelastic collisions is

T = ~a p(z) e-ui.z dz
o

(4.29)

Now let us make our assumption that the scattering angles are small. Then, tn general,
the path length z will be not much greater than the shell thickness X. Precisely, we assume
that

u~(z-x) <<l (4.30)

for all important values of z. Then we may expand Eq. 4.29 as follows

T = e-%x ~ p(z) e-ui~fz-~ dz

. e-uinx~ p(z) dz [1 - CJh(z - X) + . ...]

=e-’Y~nx[l- U~< Z-X>+...]

= e-~in~

where

y = <z>

neglecting terms of order cr~z(z - X)2 (assumption of Eq. 4.30).
Thus, if Eq. 4,30 is true, we need only find the average length

tering.

(4.31)

(4.32)

of path due to elastic scat-

We thus calculate the average path length of a neutron which does not suffer inelastic col-
lisions, assuming that the neutron starts at the center of the sphere. The distance that an av-
erage neutron travels tn going from r to r + dr is

dY=
dr

(
<a2(r)> + -

=dr l+y . . .<Cos a> )
(4.33)

where a is the angle between neutron direction and radius vector, and c az(r) > is the statistical
average of a2 over all possible neutron paths, taken at position r. As is well known, a2
increases linearly with the distance the neutron has already traveled. Explicitly

<aZ(r)> = ae~ (r - ri) <02>

= 2(r – ri) IJet (4.34)

where <92> is the average over the deflections in one collision, and, on the right hand side, the
distance traveled has been put equal to r – ri. Inserting in Eq. 4.33 and integrating over r, the
total average path length of the neutron becomes
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(Y=X l+~aetX
)

(4.35)

in exact agreement with the thin-shell formula (4.2’7).
Thus, Eqs. 4.26 and 4.27 have been established if only (1) c a? > remains small, and (2)

the condition of Eq. 4.30 is fulfilled. Condition 1, according to Eq. 4.34, means

aetX cc 1 (4.36)

replacing z by its average Y, (Eq. 4.35) means

ain aetX2 <c 1 (4.3’7)

In practice, for 14 Mev neutrons, ah >> uet; hence, if Eq. 4.37 is fulfilled, Eq. 4.S6 will be
true a fortiori. On the other hand, for the same reason it is not necessary that cqnX be small;
in other words, the average number of inelastic scattering may well be larger than 1. In
practice, again, ael = ~in, so aelX may also be larger than one. III fact, the number of elastic
collisions in the shell is totally irrelevant, as long as the deflection in each of them is small
so that Eqs. 4.36 and 4.37 remain true.

We shall now compare the results of the small angle limit (Eqs. 4.25, 4.26, 4.31) with the
transport theory as summarized in Eq. 4.18. Equation 4.25 differs from Eq. 4.18 only by the
absence of the factor L -1. Since L is, in general, equal to 3 or 4, the effect of elastic scat-
tering in the correct formula (Eq. 4.25) is smaller than in the transport formula (Eq. 4.18) by
a numerical factor of 2 or 3. This is understandable because great lengthening of the path oc-
curs only for scattering between say, 60” and 150°, and such large angles are specifically ex-
cluded by condition 1, above.

We see that the error of transport theory is in the same direction as in the general case
discussed in Section 4.3, but much greater. In both cases, transport theory overestimates the
enhancement of the number of inelastically scattered neutrons. by elastic collisions. However,
in the case of very fast neutrons, the whole enhancing effect of elastic scattering is very small,
even if it is overestimated by the use of transport theory. Thus the discrepancy between cor-
rect and transport theory tn this limit is not very important. However, if high accuracy is
desired, the use of Eqs. 4.26 and 4.27 is recommended at 14 Mev, and at intermediate energies
(6 to 10 Mev) the result will lie between the values of Eqs. 4.26 and 4.27 and those of the trans-
port theory used tn the bulk of this paper.
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Chapter 5

DETERMINATION OF ESCAPE PROBABILITIES

6.1 Escape Probability After First Transport Collision (Pi)

The escape probability after the first transport collision, Pi, h defined by Eq. S.8

where fl(r) dr is the first collision distribution in the spherical shell, given by Eq. 3.3, and
P(r) is the escape probability from the shell as a function of radius (Eq. 3.5). The quantity
P(r,8) in Eq. S.5 is defined in Eq. 3.4. The integral, which we will do by numerical methods,
is thus

(5.1)

where all distances are now expressed in traneport mean free paths and the new variable
u = cos 0 is introduced; y(r,~), se in Eq. 2.9, is

y(r,d=-rK +Jr~+rl#-r*-a4 r~+rzpz-r~

where a=2 if F
1 a~z-1- l-—

r2

Isotropic elastic scattering is assumed in Eq. 5.1 because we are now treating only transport
collisions.

To completely epscify Pi it is only necessary to give the values of two parameters since
these will fix rl and rz: (1) the shell thickness in transport mean free paths Utr X, and (2) the
ratio of inside to outside shell radius rt/r2, or K. Then
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K(atr X)
‘i= 1-K

(atr x)
‘2 =1-K

(5.2)

The determination of the proper tranaport cross section to use for a gtven incident neutron
energy is di.scuBsed in Section S.5.

The integration of Eq. 6.1 was done numerically on the CPC (Card Program Calculator)
machines at Los Alamos for a variety of choices of atr X and K. The results are graphed in
Fig. 6.1. Simpson’s rule was used to perform both the # and r integrals. In most of the com-
putations, five equally spaced values of r and 21 values of y varying from 1 to -1 were chosen.
To determine whether Pi could be obtained to sufficient accuracy by calculating P(r) at five
points in the shell and combining these values, P(r) was also calculated for nine equally
epaced values of r and these nine values were combined to form Pi, The Pi values computed
by the two methods were compared for a number of shells and were found to dtffer by 0.3
percent in the woret case. To check whether a sufficient number of intervals was choeen for
the L integration, the number of values of w was increased from 21 to 41 in some typical
cases, with the result that P(r)tl wae at most 0.1 percent clifferent from P(r)tl. Some of the
numerical integrals were performed using both the trapezoidal rule and Simpson’s rule. The
results of the two methods agreed to 0.1 percent. It is thought, however, in view of the smooth
nature of the curves for P(r, O) and P(r), that Simpson’s rule gtves a slightly better approxi-

mation to the correct answer. The small differences mentioned above we not the result of
carrying too few places in the machine computation. In all of the numerical computations eight
places were carried. In view of these uncertainties the values of Pi calculated on the CPC
machines are thought to be uncertain to = 0.4 percent.

To construct each of the curves for a fixed K in Fig. 5.1, five values of ~tr X were chosen
(~trX= 0.2, 0.4, 0.8, 1.2, and 1.6). Smooth curves were drawn through these points and the
origin. For an arbitrary shell, K and atrX usually require an escape probability somewhere
between the computed points. To obtain this escape probability, one reads Pi for each K at
the desired utrX. These values can then be plotted as a function of K and a smooth curve
drawn through the points. Pi at the desired K can then be read from this curve. Pi determined
by interpolation between computed points was within 1 percent of values actually calculated on
the computing machine for several cases.

It can be shown that

(5.s)

For most of the experimental work reported herein, 6a~/uh (the error in inelastic cross
section due to an error in computation of escape probability) is less than 1 percent, although
for some of the measurements taken with the Np23f detector 6qn/u~ is about 2 percent. This
is, however, about ~’ of the statistical counting error in these cases and is thus not very
significant.

In Section 3.2 it is pointed out that P(r) should not depend very much on r in a spherical
shell. Curves of some typical examples of 1- P(r), computed by the above methods, are
given in Fig. 3.2 to illustrate this point. As expected, the magnitude of 1- P(r) changes more ‘
from the inside to the outside radius of the shell for a thick shell than it does for a thin shell.

-46-



Fig. 5.1—Plot of Pi, the escape probability from
collision.
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5.2 Escape Probability After a Second Transport Collision (P2)

The escape probability after a second transport collision, Pz, is computed from Eq. 9.12.
The relative probability [f2(r) dr] of a second elastic colli,4ion between r and r + dr is yet to be
determined. We shall now endeavor to find this probability for a finite size Ar.

Thus we write

(5 .4)

where r, is the inner radius of the subshell in question and rj+l is the outer radius in transport
mean free paths. Thus

Arj = rj+l – rj

G(O,r,rj, rj+l) is the probability of a second collision in the subshell between rj and rj+l, ff a
neutron scatters on its first colllsion at a position r and through an angle O. The numerator in
Eq. 5.4 is then the number of second collision in the spherical subshell Arj, and the denomi-
nator is just the total second collision rate. To minimize computing effort, a four-region dis-
tribution function was decided upon, i.e., Arj = (iz – rl)/4. The geometry is shown in Fig. 5.2.
To describe G(8,r,rj, rj+l ), we define the following quantities

a(r,j ,v) = r~ – r; – r2 + r2p2

b(r,j,v) = rp + {r! – r2 + r2P2 (5.5)

c(~, r) = 2 r? —r2 + r2~2

Of course, v = cos .9, and distancee are expressed in transport mean free paths.

Case A

Case B

GO.w,rj,rj+l ) = eati) _eaQ+U (5.6)

G@, r,rj ,rj+l ) = e au)*-eaQ+1)*(5.7)

G=O (6.8)
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arrangement showtig the spherical shells used in computing P2.
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oi,.JmjLJ=j
G = JW+U _e4+N (5.9)

4=2 F(iii)- l-r ==#==- 1-;
r

To evaluate Eq. 5.4, the w integral was done first using 21 values of v between +1 and -1
at each r. The integrand was evaluated for five values of radial position r, and the final P2
was obtained using Simpson’s rule to combine these values of the integrand. These numerical
integrals were performed on the CPC machines for several choices of the two parameters
necessary to describe a spherical shell: K = ri/r2 and utrX. To obtain a complete four-region
distribution function, six hours of machtne computing time was required. From Eq. 5.4 it is
clear that

(5.12)

This allows one to check the results of the second collision probability calculation against the
probability of a second collision computed in another way, namely, 1- P1. The 1 – Pi value
is, of course, not computed by the methods of this section but by those of Section 5.1. In 12
cases which were compared, the probabilities of a second collision computed by both methods
were essentially the same.

In Fig. 3.3, the second collision distribution in a typical case is compared with the first
collision distribution and with the normal mode. One may see that even for the second col-
lision, the distribution function is begiming to resemble closely the normal mode.

Curves of second collision escape probability P2 are given in Fig. 5.3 for the two param-
eters K and u~ X. Values of P2 obtained from these curves are probably subject to slightly
more error than values read from Fig. 5.1 because the collision distribution here is some-
what less well determined. The question of whether it is necessary to refine the shell theory
to the extent of including P2 is discussed in Section 5.4.

5.3 Escape Probability After a Third or Later Transport Collision (Pm)

Escape probabillt y after a third or later transport collision, Pm, may be calculated using
Eq. 3.12 with the normal mode collision distribution function f~ (r) dr replactng fz(r) dr. The
justifications for using the normal mode for third and higher order collisions are discussed
in Section 3.3. The appropriate distribution function is given by

fro(r) = ~ sin k(r + 5),
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Fig. 5.3 —Plot of P2, the escape probability after a second elastic collision.
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where c is just a normalization constant. A solution of Eq. 3.27’ gives k, and 6 is determined
from Eq. 9.22. Pm resulting from integration over the normal mode distribution is believed
to be determined-ultimately to the same accuracy as Pi, Le., to N 0.4 percent. Curves of Pm
for the two parameters K and Utrx are giVen in Fig. 5.4.

5.4 Importance of Collision Distribution

If the escape probabilities Pi, Pz, and Pm are compared as in Table 5.1, it is observed
that for the same shell parameters the three values are not drastically different. This is not
unexpected in view of the considerations given in Section 3.2. However, if one replaces P2
by Pm in the transmission formula for a spherical shell, an error of 1 or 2 percent may
occur in the calculated inelastic cross section, especially for thick, nearly solid, shells. It is
thus usually desirable to include P2 in the transmission formula (Eq. 3.36). If one cannot ob-
tain Pz from Fig. 5.3, for a particular case it is possible to estimate Pz quite well by as-
suming it is the average of Pi and Pm.

TABLE 5.1 —ESCAPE PROBABILITIES FROM SPHERICAL SHELLS AFTER FIRST,
SECOND, AND NORMAL MODE COLLISIONS

K

0.9
0.9
0.9

0.8
0.8
0.8
0.8
0.8

0.6
0.6
0.6
0.6
0.6

0.4
0.4
0.4
0.4
0.4

UtrX

0.2
0.4
0.8

0.2
0.4
0.8
1.2
1.6

0.2
0.4
0.8
1.2
1.6

0.2
0.4
0.8
1.2
1.6

0.675
0.491
0.293

0.711
0.527
0.319
0.207
0.139

0.756
0.585
0.367
0.243
0.163

0.790
0.632
0.415
0.279
0.191

0.673
0.488
0.293

0.710
0.528
0.322
0.217

0.758
0.588
0.373
0.252

0.794
0.636
0.426

0.531
0.329
0.224
0.1625

0.593
0.386
0.269
0.197

0.647
0.444
0.321
0.241

The fact that the collision distribution does not drastically affect the average probability
of escape from a spherical shell has an interesting consequence. It occasionally occurs thai
the spatial distribution of neutrons making a particular kind of collision (inelastic scattering,
for example) is influenced by one cross section (that for a “fast” neutron), and the escape prob-
ability from a point in the sphere after this collision is influenced by another cross section
(that for a “slower” neutron). The average escape probability desired has the form
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Fig. 5.4 — Plot of Pm, the escape probability after a third or later transport collision.
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~& fn(f,r)dti d, e-”;y(rgo)
(5.14)

‘n= ~~~~ fn(a~r,~) d~ d,

where fn is fl, f2, or fm. Since collision distribution does not markedly influence the average
escape probability per collision, a fairly accurate value of Pn may be obtatned by using the
function fn (u~r,r) instead of fn(u~,r) and by then referring to the existing curves in Figs. 5.1,
5.3, or 5.4.

5.5 Escape Probability, Including the Elastic Scattering Angular Distribution Explicitly

In Section 4.1, an approximate theory (termed the “correct” theory) for sphere transmis-
sion is given, in which one includes the elastic scattering angular distribution explicitly.
One solves for the inelastic cross section, using Eq. 4.5. We will now discuss the method used
to determine the quantity U1 needed in Eq. 4.5. As mentioned before,

(1 – c*)crt
‘l= Oel(l– T~)

where C2 is given by Eq. 4.2. Specifically

(5.15)

where y(r, t?) is given by Eq. 2.9, and all distances are in centimeters.
To check whether both Eqs. 4.5 and 3.36 give the same result for sphere transmission

(with the same input conditions), computations using the “correct” theory (Eq. 4.5) were
carried out in complete detail for two angular distributions. These two angular distributions
had been measured for iron and normal uranium with a “28” (U2Se)threshold detector and with
a beam of fission neutrons from the Los Alamos Fast Reactor by Jurney and Zabel.s So that
one can make comparisons of shells of various sizes, general sets of curves were prepared of
Ti for these two angular distributions. Other than the specific angular distribution, one needs
three parameters to specify Eq. 5.15: crtX, utr/ot, and ri/r2. To indicate how one prepares
the general sets of curves of rl, we have included the set for the iron angular distribution,
Figs. 5.5, 5.6, and 5,7. To determine ml for a specific sphere one must do a double inter-

polation using values read from these figures.
The rl values were computed using the same general coding for the CPC machine as used

for previous sections of this chapter. The accuracy of this computation is thus the same as
mentioned in Section 5.1.

Table 4.1 indicates that for reasonable angular distributions of elastic scattering, one
does not gain a significant amount of accuracy in the determination of the inelastic cross
section by using this analysis in preference to the simpler analysis of Chapter 3.
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~totrj ( ‘2- rl )

Fig. 5.5— Plot of ?rl for iron angular distribution, measured with “28” detector, when
Utr /at = 1.0.
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Ctotal (r2-rI)

Fig. 5.6 —Plot of rri for iron angular distribution, measured with’’28” detector, when
otr/ut = 0.75.
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Chapter 6

CORRECTIONS

Assumptions included in the derivation of transmission T in Chapters 3 and 4 are that the
internal source is a point, non-absorbing isotropic emitter; the detector is small and isotropic;
and the source-to-detector distance is large, relative to the sphere radius. By the reciprocity
theorem, these assumptions are equivalent to the set: The internal detector is a point, non-
absorbing isotropic detector; the external source is a small isotropic emitter; and the source-
to-detector distance is large, compared with the sphere radius. The latter set of assumptions
is of primary concern to us since an external neutron source was used in the execution of the
experimental work.

Since a fission neutron source produced with thermal neutrons is an isotropic emitter, we
are interested in the following variations from ideal conditions: finite source-to-detector
distance, finite counter size, absorption in the counter material, and angular variation of
sensitivity of the counter. In addition to the above corrections, one needs also to consider the
effect of losses of energy on elastic collisions, with the resultant decrease in counting effi-
ciency in the neutron detector. The corrections derived in this chapter should be made to the
observed transmission before comparing it to the theoretical transmission calculated under
the ideal conditions assumed in Chapters 3 to 5. If intensity permits favorable geometrical
conditions, these corrections will be quite small. Since this was true m our experiments,
these small corrections are all treated independently and are only first order approximations.
The availability and use of these corrections does not in any sense obviate the necessity
of starting out with a relatively clean experiment.

6.1 Finite Distance Between Source and Detector

The characteristics of the finite distance effect are discussed in LA-14281 and LA-740.2
The problem here will be to continue the description of the effect from Section 3, LA-1428,
so that an approximate correction term for it can be computed along with the escape proba-
bilities (Eqs. 3.8 and 3.12, Chapter 5) on the CPC machine.

The reason for the finite distance effect can be best understood when one thinks of the
source inside of the sphere and the detector outside. Then it is evident that all the neutrons
which are recorded in the detector with the sphere on, do not come from the same position as
the recorded neutrons do with the sphere off. Thus, on the average, neutrons which have shell
collisions have a slightly different probability of passing through the counter (solid angle) than
neutrons that come directly from the source. In Chapters 3 and 4, we implicitly assumed that
all neutrons of the initial energy, whether they had made elastic collisions in the shell or not,
had the same chance of passing through the detector.

In Section 3 of LA-1428, the quantity n(r, 0) dV du is introduced and is there defined
as the number of neutrons which have their last collision before escaping from the spherical
shell in the volume element dV at position r, and whose direction of motion immediately
after this last collision is in solid angle dw at an angle 8 with the radius. Then
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n(r, O) = nl(r, e) + n2(r, @ + nm(r,o)

where nl(r, tl) includes only those neutrons whose last collision in the shell is their first colli-
sion, n2(r, @ includes only those neutrons whose last collision is their second, and n m(r, 0)
includes all neutrons whose last collision is the third or higher. Then Eq. 25 for T’ (the sphere
transmission with the finite distance effect) fn LA-14281 can be rewritten as follows

W 27r sin OdO [nl(r, O) + n2(r,9) + nm(r, O)]
T’ =

‘dvJ w

Expanding the square root in the denominator of a characteristic term, one obtains

3 r’
+~@1’8+. . .

)

In the nomenclature of this report

~ dV ~ 2= sintl dfl nn(r,f?) = EnPn

(6.1)

(6.2)

(6.3)

the number of neutrons escaping from the sphere after the nth collision. En is the total num-
ber of neutrons which have made n elastic collisions and Pn their average escape probability
as calculated in the manner of Eq. 3.8 or 3.12

1 4T rl

Mpn=~ ~ ,L fn(r) dr P(r, 0) dw

We may also write

2“J“‘v J’ ‘n “’’)”2‘in’‘d’ ‘Enp:
where

1 4X rt

HP:=~ ~ ,1 fn(r) rz dr sinz O P(r,O) dw

Similarly

4X %
P:* = J SJ411 1) *L

fn(r) r’ dr sin4 8 P(r,O) dw

(6.4)

(6.5)

(6.6)

(6.7)

Introducing these quantities into Eq. 6.1, one obtains for the observed transmission

T’ = T +~[EIP~ + E2P~ +EmP# + $ [EIP~* +E2P~* + EmP~*] + . . . (6.8)
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The term to be subtracted from the observed transmission to correct for the finite source to
detector distance is, for the analysis of Chapter 3

( ){(Pf

– ‘(’-pi) [%+%13P?*
Ji=(l– TO)~

)~+ 8b4 ‘u~

[-+ %1} ““g’

+ p – P,)(1 – P*) U:t %
IJ~ (~in + ‘JetPm) 2b

For the analysis of Chapter 4, the correction term is

“=(l-T’(%){(3+%)+%(1-%$+%3
‘l-”’)(1-P2)OW+ %1} ““10)+ IJti(Uin + uet Pm) 2b

In most of the geometrical situations encountered in this investigation, the quantities P?*,
P;*, and P%* were fairly small. However, an approximate correction was usually made for
these terms. Ignoring the exponential present in the integral Equations 6.6 and 6.7 and as-
suming spherically symmetric elastic scattering, it can be shown that

(6.11)

6.1.1 Finite Distance Correction for Analysis of Chapter 3

The quantities P?, Pi, and P: were calculated on the CPC using M. 6.6. It v- necf=s=Y
to modify only the integration of Pi, P2, and Pm discussed tn Chapter 5 to include the additional
factor (r* sinz 0) at each point in the integration. The integration of P: proceeded concurrently
with that of Pn on the computing machines. Simpson’s rule was used for both the r and O in-
tegrations. Twenty-one equally spaced values of cos .9between 1 and – 1 and five equally spaced
values of r between rl and rz were used. The error introduced in P: by the numerical methods,
mentioned above, is estimated to be =2 percent. This is considerably greater accuracy than is
required in the correction term, since b2 is known to a few percent at best.

To calculate the correction factor for the finite distance effect from Eq. 6.9, one first ob-
tains trial transport cross sections in the manner of Section 3.5. The (1 – K)P~, (1 – K)P/,
and (1 - K)P~ values are then read from Figs. 6.1, 6.2, and 6.3, respectively (or obtained by
interpolation). As in Chapter 5, the only parameters necessary to fix P: are K or rl/r2, and
the sphere thickness in transport mean free paths. The distance between the centers of source
and detector, b, must be expressed in transport mean free paths because r in Eq. 6.6 is ex-
pressed in these units. When the source-to-detector distance is approximately equal to the
sphere diameter, it becomes necessary to include P** in the correction terms (Eq. 6.11). Of
course, if J1 is large, one must recompute it for each new trial IJin and subtract it from the
observed transmission.

6.1.2 Finite Distance Effect Correction for Analysis of Chapter 4

If one decides to calculate the correction for finite source to counter distance using the
more exact Eq. 6.10, P? and P% can be obtained from Eq. 6.6 (Figs. 6.2 and 6.3). In addition,
n ~ must be computed including the desired angular distribution. If in Eq. 6.6 one replaces
dw/4r by [uel (0) dw]/uel the desired n~ will be obtained. However, u? is determined by three
parameters: the shell thickness in transport mean free paths, K or rl/r z, and utr/u~ since
f ~(r) dr is a function of at and P(r, 0) is a function of atr.
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% (r2- rl)

Fig. 6.1 — Plot of (1 –K)P~, finite distance effect correction for escape probability, assuming
spherically symmetric scattering, and exponential collision distribution.
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% (rz- ‘I)

Fig. 6.2 — Plot of (1 – K)P~, finite distance effect correction for escape probability, assuming
spherically symmetric scattering and second collision distribution.
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%($-!)

Fig. 6.3 — Plot of (1 –.K)P&, finite distance effect correction for escape probability,
spherically symmetric scattering and normal mode collision distribution.
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In practice, a great deal more computational effort is required to evaluate Z? than P?,
just as more work is required to find ?rI instead of Pi. This is true because r~ must be found
by actual machine calculation each time the elastic scattering angular distribution is changed,
whereas, in principle, a general set of curves applicable to any angular distribution can be
prepared for P? by machine computation once and for all. It is thus desirable to use Eq. 6.9
instead of Eq. 6.10 if one is certain of the accuracy of the transport analysis. Clearly, when
either the elastic scattering is spherically symmetric or is concentrated in a delta function
in the forward direction (the two opposite extremes), Eqs. 6.9 and 6.10 give the same result.
Between these extremes one can not be sure without actually comparing the results. To check
this point, the curves of r~ in Figs. 6.4, 6.5 and 6.6 were prepared, including explicitly the
angular distribution for elastic scattering from iron measured with a “28” counter using a
beam of fast neutrons from the Los Alamos Fast Reactor.g This angular distribution is char-
acterized by uet/uel = 0.56, which is approximately midway between the two extremes. A
comparison of typical J1 values computed from Eqs. 6.9 and 6.10 indicates that an error of,
in general, less than 10 percent is made in Jt by using Eq. 6.9. The entire correction to Oh
for finfte distance of source and detector is less than 10 percent in most cases to be con-
sidered.

6.2 Finite Counter Size Correction Factors

Throughout the experimental investigation discussed in this report we used cylindrical
spiral fission chambers or cylindrical rolls of aluminum foil. To compute the effect of a finite
counter, uniformly sensitive throughout, we replace it by a non-absorbing source distributed
uniformly in the same volume (see Section 1.2). The finite source size introduces three types
of effects:

(a) The flux of neutrons at a detecting point in space is not specified exactly by the distance
between the center of the source and the detecting point.

(b) Neutrons from the source go through the sphere obliquely, with a greater path length
than the thickness, thus increasing the probability of a first collision in the shell.

(c) The distribution of neutrons which have made a first collision in the shell is changed
somewhat from an exponential. Therefore, the escape probability after the first collision will
be changed. This third effect is totally neglected because small changes in the collision dis-
tribution in a spherical shell do not appreciably change the escape probability after the col-
lision (Section 3.2).

We must compute: (1) the flux of neutrons that have had no collisions in the shell, at the
detecting point on the X axis (Fig. 6.7); (2) the flux at the detecting point on the X axis with no
sphere; and (3) the total number of neutrons that make at least one collision in the shell. The
escape probability y after the first collision is considered unchanged [effect (c)], and Pz and Pm
are also considered unchanged.

We will now compute (3), the total number of neutrons that make at least one collision in
the shell. Referring to Fig. 6.7, let us determine the flux of neutrons at an arbitrary point in
space ~, yo. We will first find this flux d~, which is due to an element of source volume dV
at position x, y, and z. We consider a cylindrical source and choose Y to be the axis of the
cylinder. AU collisions will be described by transport cross sections as in Chapter 3. Then

d@ = Q dV e-sum
47rH2V6

V~ = total volume of source
H = distance between points (Xo,yo) and (x,y,z)
b = distance between center of source and point
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Ctota[( !2-‘1)

Fig. 6.4 — Finite distance effect for escape probability m?, including iron angular distribution
measured with “28” counter and exponential collision distribution when crtr/ut = 1.
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o 0.5 1.0 1.5

cr+o+al(r2- r,)

Fig. 6.5 —Finite distance effect for escape probabilityrf, including iron angular distribution
measured with “28” counter and exponential collision distribution, when atr/ut ‘0.75.
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Hz = (XO– X)2 + (yO – y)z + Z2

Q = source strength

Inverting

11

[
~=p 1+

2(X.X + YOY) (X2+ y: + Z2) 4(Xx+ Yoy)’
~2 b

+0
b’ ‘“”” 1

and

Expanding the square roots

R2(L:) +:(&*) +...m=r2–rl+~ri

It can be shown geometrically that

R2 = (v. - Y@2
b2

+Z2 +...

(6.13)

(6.14)

Substituting these quantities and the X of Eq, 2.1 into Eq. 6.12,

[

d@=QdV ~+ 2(XOX+ YOY) @ + # + Z2) + 4(%X + YOY)2
4rb2V~ b2 – b2 1

x ‘-”UX [l-% (:-iri~)2+z2+)+l ‘615)

The radial flux at point Xo,yo is needed to compute the total number of neutrons escaping
from a spherical surface concentric with source and sphere. It is

d@ is given by Eq. 6.15 and

[

2(%X + yoy) (X2+ ~2 + ~2)
d$r=~ 1+ 4(XOX+ YoY)*

4ub V~ b2 – b2 1

x
‘-””’ [&[ Al+w%@2+’91 ‘6.’6)

We will call the radius of our cylindrical counter a, and its height, 2yi. We can then per-
form the source volume integrations of Eqs. 6.15 and 6.16. Terms containing the first powers,

x, Y, or XY~tegrate to zero, and the quadratic terms give
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(6.1’7)

If this is used, for instance, in Eq. 6.16 we get

We can now calculate the number of neutrons which have made at least one collision in
the shell. For this purpose, we subtract from the source Q the total number of neutrons es-
caping from the shell with no collisions. The latter is—

~@2rb2sin6d~=Q0 (6.19)

where @ is given by Eq. 6.18. The integration in Eq. 6.19 goes over the angular coordinates of
~ and y., It can be seen that the average of y: /bz is 1/3 and that of &b2 is 2/3. Then the
terms without utr in the bracket of Eq. 6.18 integrate to zero —as indeed they should, because
for Utr = O the total radial flux out of the sphere must be Q. The result is

(6.20)

The number of neutrons which have made at least one collision is then (quantity 3, page 64)

(3) =Q–@ =Q(l –e-”ux+ W)

where

(6.21)

“w-w+!ae-uux (6.22)

Next we calculate the total (not the radial) flux at the detector. For our analysis the
detector is located on the x axis, so that y. = o and X. = b. We calculate the flux first without
a sphere around the source. In this case, the exponential and the last bracket in Eq. 6.15
ehould be omitted, and we obtiln after integrating over counter volume (quantity 2)

((2) = @(sphere off) =&2 1 + ~ – ~
)

(6.23)

The flux of neutrons which have made no collisions, at the same point on the x axis with the
sphere on (quantity 1), is obtained by integrating Eq. 6.15 including all terms over the source
volume, giving

—

@(sphere on) =~ [e-%x- w’]
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where

[

2
W’ =e-%rx $– $

+%4-W++)]
(6.25)

We formulate the correction term to be added to the observed transmission as follows:
The counting rate in the detector with the sphere off is @(sphere off) Vd/~d$ where @(sphere
off) is given by Eq. 6.23. The counting rate in the detector with sphere on, due to neutrons
that have made no collisions, is @(sphere on) Vd/hd, where @(sphere on) iS given by Eq. 6.24.
The counting rate in the detector due to neutrons that have made one or more elastic collisions
is @(collision) Vd/Ad, where

[
@(collision) = ~& [1 - e-%x+ W] ~ Pi+ (1 - Pi) ‘~+ ‘1

- Pf)(l - P@&P

‘tr (ah + ‘et ‘m) al
(6.26)

neglecting the finite distance effect. Then the sphere transmission, corrected for counter size,
is

@(sphere on) + @(collision)
I#J(sphere off)

The term to add to the observed transmission to correct for finite counter size

[1

a’ 2
‘T

[

(1 - P,)(I – P2)uiiP+ WI – WUQ Pi + (1 – Pi):&2 +
‘2 = ~ - 3b2 obs % ‘tr(ati + cetpm) ‘1

M then

(6.27)

If one includes the angular distribution of elastically scattered neutrons in the analysis of the
first collision, as in Chapter 4, the correction term is as follows

‘2=[s-3F0bs [ % %(”in+oetpm)ml
+ w’ – W::l m~+ (1 - lri)u4P2 + (1 - 7r~)(l - P2)u:tP

(6.28)

where W and W’ are computed from Eqs. 6.22 and 6.25 respectively by replacing utr tith fJt.
The correction terms of Eqs. 6.27 and 6.28 are quite small (=0.002) for this experimental work
and the next terms in the expansion of H and m in Eq. 6.13 are unnecessary.

6.3 Absorption in the Counter

To compute the effect of absorption in the counter, the absorbing counter is replaced with
an absorbing source. We next assume that elastic scattering in this source can be neglected
since the neutron’s direction only is changed and not its energy or probability of a collision in
the shell. Since the absorption correction is usually very small, we will consider it independ-
ently of the previous corrections (Sections 6.1 and 6.2). We will merely make the necessary
changes fn the typical transmission formulas derived in Chapter 3. The number of neutrons
escaping from the shell with no collisions has the same form as before, except that the source
strength is now the number of neutrons escaping from the source per second. This redefinition
does not affect the transmission formula. However, all escape probabilities and collision
probabilities now depend on the probability of an absorption in the source.

An equivalent way of writing Eq. 3.36 is

[
T = To + (1 - TO)~ Pi+ (1 - P&~P2 +

(1 – PJ(l - P2)u& Pm

‘tr(”in + ‘etpm d
(6.29)
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where Pn is the average probability of escape after the nth collision and (1 – Pn ) is the average
probability of making another collision in the shell after the nth collision. The effect under
consideration necessitates changes in Pn and (1 – Pn) as follows

Pn - Fn = Pn - POPAP1$O

and

(1 - Pn) - (1 - Fn) = 1 – Pn - POP* lP’80(1 - ‘Plso)

(6.30)

(6.31)

where

Pn = relative probability that a neutron goes in an average solid angls Q (the solid angle
required to pass through the source after a collision, Fig. 6.8).

PA = average probability of an absorption in the source per incident neutron.
‘Ptso = probability that a neutron, if initially scattered into solid angle $2, will penetrate

into the cavity.
2P1*0= probability that a neutron escapes on the opposite side of the sphere after it

traverses the cavity.
p180 = (lp180)(2p180)

Fig. 6.8

One then intraluces these changes into Eq. 6.29 to obtain the formula for the spherical
shell transmission including an absorbing source

(6.S2)

Since this effect is small, it maybe estimated by calculating the “escape probabilities”
1P1OI2ad zpiso at exactly 180°. Pn can be estimated using spherically symmetric elastic
scattering.

This effect may be included in the evaluation of the transmission experiments, if desired.
However, for detectors used in the experimental work discussed in this report, the effect of
detector absorption does not appear to cause an error of more than 0.5 percent in inelastic
cross section.
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6.4 Angular Asymmetry of Counter

In deriving transmission formulas in Chapters 2, 3, and 4, we have assumed that the
detector (source) inside the sphere was isotropic, but in practice this is not necessarily
realized. To evaluate the situation with an asymmetric counter, we retain the counter inside
the sphere. This correction, like that of Section 6.3, is small in practice for our experimental
conditions and will be considered tndependently of all other corrections.

Let us assume that our detector has a reduced efficiency A over a solid angle Q, and an
efficiency of unity over a solid angle (1 - S2). We shall further assume that neutrons elastically
scattered in a sphere of material come into a central counter with equal probability from all
angles. This latter condition is clearly questionable, but it should be most nearly realized
if one considers transport collisions only.

Transmission equation 3.36, or its equivalent, Eq. 6.29, rewritten with the reduced
efficiency region of the neutron detector directed away from the source, gives (no neutrons
enter through this region with the sphere removed)

[
T(away) = e-uuX + (1 – e-otrx)u~t pi + (1 – pi)%p2 + (1 – PI)(l – PJu~~Pm

at= Utr ~(uin + OetPm) 1 (6.33)
x[(l–$2)+QA] “ -

This reduces to

(1 - A)G? (6.34)

where T is given by Eq. 6.29. The transmission formula with the reduced efficiency region of
the neutron detector directed toward the source is

[
T(toward) = T + (1 – e ‘acrx)~~~ Pi + (1 - Pt)u~t p2 +

(1 – Pi)(l – P2)u:tPm
Ctr ctr(a~ + uetPm) 1 (6.36)

~(l– A)(l-f2) ‘ -
A

Elimimting T between Eqs. 6.34 and 6.35, we obtain

(1–A !2(1-A)2
T(toward) = T(away) + (1 – e-oux )c~ ~ -

A )

[

(6.36)

x pi + (1 – P*);:P2 + (1 – Pl)(l - P2)a&PCrtr(u~ + u~t Pm) ‘1

For typical values t2 = 0.1 and A = 0.95, the term S2(1 – A)2/A is very much less than (1 - A)/A
and may therefore be neglected in Eq. 6.36. Thus, A can be determined by measuring a sphere
transmission with the reduced sensitivity region of the detector pointing toward the source and
measuring the transmission of the same sphere with this reduced sensitivity region pointing
away from the source. Also, A can be measured directly by placing the detector in a beam of
fast neutrons and counting with the detector oriented at several angles with respect to the
direction of the fast beam. Experiments of both types are discussed in Section 10.9.

Final cross sections reported in Chapters 11, 12, 13, and 14 were corrected for counter
asymmetry, using Eq. 6.33. Our particular counter orientation dictated this choice. Correc-
tions to the inelastic cross sections averaged around 1 percent and are assumed to be correct
only to one-half their magnitude, due to uncertainties in (1 – A) and S2.
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6.5 Correction for Losaof Energy on Elastic Collisions

If one re-derives the first order transmission Equation 1.2 for a continuous spectrum
neutron source as in Chapter 7, and a non-ideal threshold detector, including loss of energy on
elastic collisions, one obtains an additional apparent inelastic cross section of the form

(6.97)

=1 is the average elastic cross section for the neutrons which count in the detector, given by

~ = ~“ N(E) dE uD(E) Oel(E)
e

~“ N(E) dE UD(E)
(6.38)

where

N(E) dE = the energy distribution function for the continuous spectrum of interest,
here the fiesion spectrum.

ael (E - E’) dE’ = the cross section for scattering elastically from energy E into an energy
interval dE’ at E’.

UD(E) = the detection cross section for neutrons of energy E.
Uel (E) = the total elastic cross section at energy E.

‘I%e evaluation of Eq. 6.37 in its present form is impossible without far more experimental
data than exist at present. One may, however, proceed further if one aesumes that neutrons of
all enegies to be considered in the integral in the numerator of Eq. 6.S 7 have the same angular
distribution for elastic scattering, an average angular distribution. We next define a nor-
malized angular distribution function F(O) dw as the probability of scattering into solid angle
dw at angle 0. Then

uel(E) F(8) dw - ael(E ~ E’) dE’ (6.39)

where E’ and 9 are related by the expression (for moderately heavy and heavy elements)

E’=W)+(%%4

(–)A–l Z
‘= A+l

(6.40)

where A is the atomic weight of the target nucleus. Substituting the left side of Eq. 6. S9 into
Eq. 6.37 and removing ael (E) from both numerator and denominator, since we wfll assume this
varies elowly with energy, we obtain

[

~o-f$W) dE F(O) dw UD(W)
Aa=~l 1-

~; N(E) dE OD(E) 1
(6.41)

This may be evaluated now, numerically as has been done in a trial case, or Eq. 6.41 maybe
simplified even further. If one now finds the average energy ~ after an elastic collision, the
bracket in Eq. 6.41 may bb simplified. Equation 6.41 becomes

-74-



The average

[

~N(E) dE u ‘(E)

‘“’m l-~ N(E)dEOD(E) 1

energy after an elastic collision

(6.42)

is obtained from

J4UF(9) dw ~ = ~ (6.43)
o

For the comparison of the more involved Eq. 6.41 with Eq. 6.42, we selected the angular
distribution function measured by Jurne y and Zabel with a “28” detector, and a nickel scattering
sample, for the continuous, essentially fission, spectrum from the Los Alamos Fast Reactor.
The bracket in Eq. 6.41 gave 0.0167 and in Eq. 6.42 gave 0.0180. This indicates that the ap-
proximate method (Eq. 6.42) gives acceptable results for this correction.

To further check that the correction made with Eq. 6.42 was reasonable, the Monte Carlo
problem ceded for the Los Alamos MANLAC computer was revised by E. D. Cashwell, C. J.
Everett, and J. M. Kister, to include the energy loss on each elastic collision which a neutron
suffers before escaping from the ehell. This problem is, of course, done by assuming that
only one initial neutron energy is present. The neutrons leaving the sphere were classified
into 54 energy groups non-uniformly distributed from the initial energy to zero energy.

Case 5, Table 4.1, was recalculated on the computing machine, and the energy spectrum
of neutrons leaving this thick iron shell after only the elastic collisions P(E’) dE’ wae deter-
mined. The true shell transmission is related to the observed shell transmission by

[

~:~o’ N(E) dE T(E) P(E’) d(E’) UD(E’)
T obs = ‘true

~o- N(E) dE T(E) u“(E) 1 (6.44)

where

T(E) is the shell transmission as a function of neutron energy and is unknown. Since it occurs
in both numerator and denominator, its effect was thought to be slight. Several reasonable
functions were tried for T(E) and these changes, as expected, turned out to have negligible
effects on the result. To check whether the Monte Carlo problem gives the same answer for
the apparent inelastic cross sectton as does Eq. 6.42, one computes the bracket in Eq. 6.44
and solves for Ttrue. From Tob~ one computes the trUe inelastic cross section, PIus the
apparent inelastic cross section Au; and from T ~me one computes OrdY the true kehtic
cross section, using Eq. 3.36. Subtracting these numbers, one gets Au = 0.047 barns, and
Eq. 6.42 gives Au = 0.040 barns, which is acceptable agreement. Of course, even the Monte
Carlo problem suffers from some of the difficulties inherent in the simpler correction
formulas. For example, we are still assuming the same elastic angular distribution function—
an average —for all fission spectrum energies detected in our threshold detectors. To re-
move the apparent inelastic cross section in the numerical analysis of our data, Eq. 6.42 was
used. The uncertainty in the correction was assumed to be 50 percent. This uncertainty is,
however, probably quite a conservative estimate.

In the course of a recent investigation using the sphere method and a monoenerget.ic neu-
tro~ source 10 it was possible to make a more detailed study of the effect of losses of energy
on elastic c~llisione. TWOmethods of correcting for this effect were compared: (1) a detailed
Monte Carlo calculation and (2) essentially Eq. 6.42. The comparison is shown in Table 6.1.
The elements studied are listed in the firet column from the left. In the second column the
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angular distribution shape factor IJet/uel is listed to tell whether there is a large or small
amount of forward scattering. The first four values listed are for 1 Mev neutrons, and the
remafning are for 4 Mev neutrons. The cross section deduced from the monoenergetic sphere
experiments before this correction is made is next listed. The cross sections after correction
for this effect by the Monte Carlo method and by Eq. 6.42 are listed next. In the last column
the ratio of these two cross sections is given. One can see that the Monte Carlo method is
essential for light elements with nearly isotropic elastic scattering angular distributions, but
is not essential for elements with atomic weights greater than alum fnum, if the elastic scat-
tering shape factor aet/uel is less than about 0.60. Part of the reason why the Monte Carlo re-
sults disagree a large amount percentagewise with Eq. 6.42 for light elements is that the in-
elastic cross sections are much smaller fcm these elements.

TABLE 6.1 — COMPARISON OF CROSS SECTIONS CORRECTED FOR LOSSES
OF ENERGY IN ELASTIC COLLISIONS BY MONTE CARLO METHOD AND BY EQ. 6.42

(ret Oin, barns Uin, barns Din, barns u (by Monte Carlo)
Element q (uncorrected) (by Monte Carlo) (by Eq. 6.42) ‘;ti (by Eq. 6.42)

c
Al
Fe
Cu
Be
Al
Ti
Fe
Zn
Cu
Zr
Sn
Cd
Ag
Au
Pb

0.94
0.’73
0.80
0.88
0.59
0.54
0.38
0.37
0.39
0.39
0.49
0.42
0.42
0.42
0.23
0.32

0.71
0.21
0.47
0.27
1.04
1.10
1.45
1.53
1.75
1.68
1.73
2.22
2.22
2.10
2.78
1.95

0.117
0.04
0.419
0.192
0.62
0.75
1.27
1.35
1.67
1.59
1.56
2.17
2.18
2.05
2.74
1.85

0.243
0.09
0.439
0.222
0.39
0.73
1.24
1.37
1.68
1.55
1.53
2.13
2.13
2.02
2.73
1.88

0.48
0.44
0.96
0.86
1.59
1.03
1.02
0.99
1.00
1.03
1.02
1.02
1.02
1.02
1.00
0.98

6.6 Treatment of a Non-isotropic Neutron Source

We are including this section on how to treat a non-isotropic external neutron source for
those who may wish to use the sphere method with the neutron sources Li7(p,n)Be7, D(d,n)He3,
T(p,n)HeS, and T(D,n)He4. The situation encountered with these sources is that the fntensity
falls off fairly rapidly with angle a in Fig. 5.2 (the detector being inside the sphere). The first
step in the procedure is to fit these intensity variations as best one can with a function

W(CY)= A + B COS2a (6.45)

where W(O”) = 1, or A + B = 1.
We next think of the neutron source being inside of the sphere and the detector outside,

of course, now calling the source intensity variation the angular detection sensitivi ty of the
external detector (reciprocity theorem). The transmission formula becomes now, analogous
to Eq. 6.1
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T’=J”V~“27r sin o do [nl(r, 8)+ nz(r, 0)+ nm(r, O) ~~

a is not an independent variable, instead

sina=~ sine
b

Cos a is of course just another way of writing the obliquity factor

J%=
Performing a power series expansion of W(a)/Cos a (cf. Eq. 6.45)

W(a) _ ~ + (A - B~2 sin2 O + (344- BJbr4 sin4 o + . . .
Cos c1

(6.46)

(6.47)

(6.48)

Now introducing Eq. 6.48 into Eq. 6.46 and using the definitions of P=, Pi, and PA* of Eqs. 6.4,
6.6, and 6.7, respectively, we get the final transmission formula, which includes both the
obliquity effect and the intensity fall-off effect

(6.49)
+ (3A -B)

Bb, [EiP~* + E2Pf* + EmP&*] + . . .

Pn, P;, and P;* are determined as in previous sections.
These considerations are, of course, not needed for the work of this report since our

neutron source was an isotropic emitter.
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Chapter ‘7

DETECTOR CHARACTERISTICS

In the experimental work presented in the following chapters, three neutron threshold
detectors were used: Np287and U2S*fission detectors, and an A12r(n,p)Mg21 activation detector.
The theory used to evaluate the experiments has been derived by assuming an ideal step func-
tion threshold detector and energy loss on all inelastic collisions sufficient to degrade the neu-
tron below the ideal threshold.

Since there is no guarantee that a neutron will lose sufficient energy on an inelastic colli-
sion to go below the threshold, it is necessary to think of the elastic cross section used in the
analysis as containing a contribution from those inelastic processes which leave the resultant
neutron with an energy above the threshold. Furthermore, the threshold detectors used in the
experb.nents do not have ideal responses, as shown in Fig. 7.1. It would be useful, however, to
designate as the effective threshold of a non-ideal detector, the threshold energy at which an
ideal step function detector would give the same response to the neutron spectrum as the non-
ideal threshold detector.

For a reasonably flat neutron spectrum over the energy region of interest, this point is
located so that area A equals area B in Fig. ‘7.2. Therefore, using non-ideal threshold de-
tectors, one measures the cross section for collisions leading to energies below the effective
detector threshold, instead of measuring average total inelastic cross sections. The effective

energy threshold of a Np2s1detector, accord~g to the above definition, iS 0.7 Mev, that of a

Uzsa counter is 1.4 Mev, and that of the aluminum detector is about 5.O Mev. This choice is
influenced by the fact that the fission spectrum is far from flat over the sensitive range of the
N detector.

The measured inelastic cross sections may also be interpreted in another way, in terms
of a certain average over the fission neutron spectrum. This average is obtained by deriving
Eq. 1.2 for a continuous neutron spectrum. The energy losses on both elastic and inelastic
collisions will be considered. Macroscopic cross sections (cross sections in cm-i) are used
here. We define now the following quantities:

N(E) dE = flux of neutrons between E and E + dE in the fission spectrum

ut(E) j Uel(E), o in(E), IJC(E) = tot~, elastic, inelastic scattering, and capture cross sections
for an element at energy E.

a ‘(E) = detector sensitivity at energy E.

IJel(E + E’) dE’ = cross sectton at energy E for producing neutrons between
energies E’ and E’ + dE’ by elastic scattering.

uin(E - E’) dE’ = cross section at energy E for producing neutrons between
energies E’ and E’ + dE’ by inelastic scattering.
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Fig. ‘7.1-Relative detection sensitivities for the three threshold detectors used in the sphere
transmission experiments. The general shape of the fission neutron spectrum is also shown.
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‘EFFECTIVE ENERGY

Fig. 7.2

The counting rate in the neutron detector with no sphere present is

f,- N(E) dE UD(E) (7.1)

The counting rate in the detector, in this thin shell ap proximation, due to neutrons that have
made no collisions is

~,- N(E) dE UD(E) - X ~- N(E) dE IJt(E) crD(E)

The detector response to the neutrone that have made one scattering is

X ~0- JOE N(E) dE [UeI(E - E’) + IJin(E - E’)] dE~ uD(E~)

The sphere transmission to order X can be written

T = 1- X(&in + Au)

where Tin is defined by the relation

~in = ~- N(E) dE[uin(E) + Uc(E)]~D(E) - ~~ ~’ N(E) dE Oin(E - E’) dE’ c~E’)

~“ N(E) dE CID(E)

and

~,- N(E)dE IJ,I(E) aD(E) - ~-~’ N(E) dE urA(E - E’) dE’uD(E’)
Au =

~,- N(E) dE CTD(E)

Equation 7.6 is the apparent inelastic cross section due to losses of energy on elastic

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

collisions, and is exactly the same as Eq. 6.37. Equation 7.5 is one of the ways of defining the
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average inelastic cross section that we measure experimentally. This integral definition is,
of course, approximate since only a thin shell analysis has been used in this discussion.

Another cross section which we use in the numerical analysis is the average total cross
section

at ~ f,” N(E) at(E)UDOOdE

~: N(E) crD(E) dE

The average elastic cross section to use then is

(7.7)

(7.8)

The proper average total cross section to use in the analysis (Eq, ‘7.’7)was obtained either
by numerical integration of Eq. 7.7 or by measuring this average directly. E. T. Jurney and
C. W. Zabel performed these measurements using a beam from the Los Alamos Fast Re-
actor ‘~’s Angular distributions for elastic scattering used in our numerical a.rialysis were.
those for elastic collisions as defined by Eq. 7.8. These angular distributions were also
measured by Jurney and Zabel for the Npn7 and U2S8threshold detectors.6~i6 Angular distri-
butions used in the aluminum threshold detector analysis are discussed in Chapter 13. A
single set of average cross sections was used for all collisions in the shell. No hardentng
effects or spectrum changes were considered in the analysis, and the results of the ~ysis
have indicated no need for considering these effects.

A method of comparing integraI inelastic cross sections given in Chapters 11, 12, and 13
quantitatively with inelastic cross sections obtained with monoenergetic neutron sources, is
to evaluate Eq. 7.5 numerically using the differential data. Equation 7.5 indicates that it is not
correct to just average the differential data over the fission spectrum, but that the detector
energy response must be included. In other words the inelastic cross section depends on an
apparent spectrum shape that is given by N(E) UD(E). These so-called spectra are shown in
Fig. 7.3 for the three detectors.

Thus, in conclusion, one may think of the inelastic cross sections for fission spectrum
neutrons given in this report as deffned by (1) the neutron cross section for collisions leading
to energies below the effective detection threshold, or (2) the neutron cross section defined
by Eq. 7.5.
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Fig. 7.3 — N(E) u ‘(E) curves obtained by combining the sensitivity of each neutron detector
with the fission neutron spectrum.
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Chapter 8

GENERAL GROUP THEORY

To study the behavior of a continuous spectrum of neutrons realisticall yin amaterial, it
is very often necessary to divide the spectrum into several energy groups and to assign aver-
age cross sections to each energy group. We have until now in this report placed all neutrons
in one energy group in deriving sphere transmission and correction formulas. However, the
methods developed in previous chapters are adaptable to the description of many group phe-
nomena where transfer of neutrons back and forth between groups by successive scattering
occurs.

We are, of course, interested mainly in spherical geometries with the detector inside the
sphere and an external source. However, as before, the transmission equations are most
easily derived for a central source and external detector. Therefore it is again necessary to
test the validity of the reciprocity theorem. Unfortunately, the reciprocity theorem (source-
detector interchange) does not hold unless one makes certain changes in the formulas derived
with source inside of the sphere. We will first show what those changes have to be.

8.1 Reciprocity Conditions

As nearly as possible, we will follow the proof of the reciprocity theorem given in LA-
1428.1 However, in that report it was assumed that elastic scattering did not change the
energy of the neutron and that inelastic scattering rendered the neutron undetectable. The
second assumption is not made in the generalized group treatment in this section. Unfortu-
nately, some of the parameters will be designated by slightly different symbols here to con-
form with nomenclature in this report. In this report, ri and r2 are the inner and outer radii
of the scattering shell and r the radius of an arbitrary point in the shell. cr~ is the total cross
section measured in cm-l in energy group i. ui (6) du is the elastic scattering cross section
into solid angle dw for neutrons in energy group i. aij (8) dw is the inelastic scattering cross
section into solid angle dw for events that remove neutrons from energy group i and furnish
these same neutrons to energy group j.

We will consider a neutron source at the center of the sphere with a probability of emis-
sion into energy group i of P? and treat two successive inelastic scattering followed by escape
from the shell. The first inelastic collision occurs in arbitrary volume element dVi and the
second in dV2 (see Fig. 8.1). On the first inelastic collision the neutron changes from group i
to group j, and on the second from group j to group k. After escaping from the sphere, the
neutrons in energy group k hit ~ isotropic detector of area Ad, thickness Td, and detection
sensitivity per unit volume of Pk at distance b from the sphere center. P~ is, of COUrSe,

proportional to UD, used in Section 6.5 and Chapter 7.
Assuming that the first scattering volume has an area dA1, and a thickness dTi = dVi/dA1,

the number of source neutrons in energy group i hitting it is

(6.1) I
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where rol is the distance of dV1 from the sphere center, and Xl is the distance actually traveled
through the shell material. The fraction of expression 8.1 which is inelastically scattered at
dV1 from group i to group j through angle 9 into solid angle dul is

Uij (6) dT1 dwl

Thus the number of neutrons scattered into solid angle dwi, at the same time changing energy
group from i to j, is

P? dV1 e ‘Ul%l uij (0) d~i (8.2)
4n r~l

The second scattering volume of area dAz and thickness dTz subtends at dV1 the solid
angle

(8.3)

where r12 is the distance between dV1 and dV2. The number of neutrons hitting dA2 is given by
Eq. 8.2, using Eq. 8.3, and multiplied by an attenuation factor

e -UjX*~ (8.4)

where X12 is the distance traveled through material from dVi to dV2. The scattering probability
through an angle 02 into dwz and from energy group j to group k is Cjk(oz) dwz dT2. The abso-
lute number scattered, as discussed above, is

Now the detector subtends at dV2 the solid angle

(8.5)

(8.6)

where rzs is the distance from dV2 to the detector. The detector will count the fraction Td ~
of the neutrons tncident upon it. Therefore the number of neutrons detected is

s
-dX,,‘V2 ~tx12 Ujk (02) ~ %D eD12 = ‘i ‘~ e-~xl ~ij(Ol) ~ e

4r rol 12
(8.7)

If the shell is removed, the counts in the detector would be

k P; P? v~
Do =i=o

41’rb2
(8.8)

and the contribution to the shell transmission due to D12 is Di2/Do.
Now let us consider the inverse problem with the source outside the sphere. We would

like to place the source outside the sphere, but subject to the condition that we get the same
sphere transmission or that the term D12/Do is given by the same expression as above. How-
ever, now the problem is more involved, since if we start with group i neutrons outside and
retrace the chosen path b&veen source and detector, we do not get the same expression. For
example, ~ij (82) occurs instead Of Ojk(02) and the exPOnentialS have ~correct tom cross sec-
tions. In spite of these differences, we shall show that if one postulates three things it will
be poesible to obtain the desired expression for the term b12/Do with an external source
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1. The probability of detection of group i neutrong when the detector is outside ia the
probability of emission of group i neutrons when the source is outside.

2. The probability of emission of group i neutrons with the source tnoide is the proba-
bility of detection of group i neutrons with the detector in8ide.

3. If aij (0) is the transfer cross 6ection of neutrons from group i to group j and %i (0) that
from group j to i with the source inside the sphere, then uji(0) is the transfer cross section
from i to j and Uij(0) is that from j to i when the source is outside. *

Using this method, let us retrace the arbitrary path through the shell, starting with group
k neutrons outside the sphere, The number of source neutrons hitting dVz is now

The number of those scattered at dV2 from group k to group j which hit dV1 is

(8.9)

where we have used condition 9 for ujk(02). The number detected by the central detector is

(8.10)

where Va is the volume of the original source inside the sphere and P; is the sensitivity per
unit volume. The counting rate with the sphere removed is

It is clear then that

D,2 _ D21
Do Dd

(8.11)

(8.12)

It is, therefore, possible to do an experiment with the neutron source outside the 8phere
and to do the group multiple scattering analysis by putting the source inside the sphere, if the
source and detector used in the analysis have the characteristics given in conditions 1 and 2
above, and if one also satisfies condition 3 concerning the group transfer cross sections. Of
course, there was no mention of these conditions when we were only concerned with elastic
scattering, as in LA-1428.1 The reciprocity theorem for the elastic scattering case can be
proved, either using the three conditions or not using them.

8.2 Group Formulation

The purpose of this section is to derive general formulas for use in determining average
transfer cross sections between energy groups. Using a central neutron source, the expres-
sion for the number of neutrons escaping from a spherical shell in energy group i, the meas-
urable quantity qi, will be formulated in terms of average group transfer coefficients and
known group cross sections. We will consider ~ energy group. The highest energy group will
be denoted by the highest group number. The fraction of the neutrons from the central source

*The third condition was originally suggested to us by Ben@ G. Ca’leon of LASL.
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in energy group i is @i. V? is the flu of
[0 #

roup i neutrons that have suffered n collisions, inte-
grated over the shell volume. 1#, u#, a , ui, and i are the transport, elastic transport,
fission, capture, and inelastic scattering cross sections, respectively, for energy group i. We
are assuming, for generality, that the substance of the shell is fissionable, ~ addition to having
inelastic and elastic scattering. vi is the number of neutrons for each fission produced by a
neutron in group i, and uji is the cross section for transferring neutrons from group j to group
i by inelastic collisions. The fraction of the fission neutron spectrum in energy group i is fi.
Then the number of n + 1 collisions for neutrons in energy group i is @ cr~.

The number of neutrons of group i produced in the n + 1 collisions is

We shall rewrite S~+l as follows

(8.13)

(8.14)

where

(8.15)Cji = cr~t6ji + Uji + uf~jfi

Of course, uji = O for j < i.
The number of neutrons of group i which stay in the shell after the n + 1 collision is

S~+l (1 – Pi). This is also the number of n + 2 collisions for group i neutrons. Therefore

(8.16)

The same escape probability will be used in this analysis after every collision for energy
group i. This is a highly desirable simplification and introduces very little error, as discussed
in Section 5.4. Indeed, this simplification makes it possible to sum Eq. 8.16 over all collisions,
which gives the more useful equation

Or, using Eq. 8.14

(8.17)

(8.16)

We now introduce a quantity Vi, which is the total flux of neutrons of energy group i in the
shell

qi=~q~ (8.19)

Rewriting Eq. 8.18

(8.20)

This is essentially the desired equation, relating the total fluxes vi to each other and b V!. We
can find V! since we know the total number of first collisions, namely

(8.21)

The purpose of the multi-group analysis is, of course, to find Cji, the transfer cross
sections between groups. This can be done from Eq. 8.20 if we know *1. The directiy meas-
urable quantity iS qi, the number of neutrons in energy group i escaping from the shell. Thus
we must obtain vi from qi. It is easily seen that
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From Eqs. 8.17 and 8.19

$.s:+l =
Cf(?q – w;)
~

Inserttng Eq. 8.23 in Eq. 8.22, we obtain

(8.22)

(8.23)

(8.24)

This is the deeired equation, giving ~i in terms of the measured quantity qi and other known
quantities.

8.3 A Conservation Theorem

Unfortunately, the Vi do not give us sufficient information to solve Eq. 8.20 for the Cji.
In fact, there are only i. equations 8.20, one for each i, while there are altogether ~ unknown
coefficients Cji. The situation could be changed by doing the measurement not only with one
source, but with h different sources having different spectra @i. H, for instance, each so~ce
emitted only neutrons of one group, it is clear that we would have enough information to de-
termine all the Cji. Unfortunately, at least in our experiments, we had only one source
available, the fission source.

On the other hand, the Cji are not entirely UnknOWIL Goin back to their definition, Eq.

f8.15, we may assume that we know the fission cross section u , the number of neutrons per
fission, v,, and the fission spectrum fi. Furthermore, we may assume that we know the total
cross section IJt and $?u~l.

)?
Hence, if we know all inelastic cross sections aji, we also know u~l

and therefore u ‘. Th s means that the unknowns are really only the inelastic cross sections Vji ~
which are io(io – 1)/2 in number. We shall do all our analyses wtth three groups, i. = 3, and In
this case the number of aji values is also three, so that it seems that we have sufficient informa-
tion to determine all of the unknowns from the three values of ~i measured with a - source.

However, this is not so because there is a linear relation between the Vi which is always
fulfilled. This is most easily seen for a material which has neither capture nor fission. Then
the total number of neutrons emerging must be equal to the total number of source neutrons,
in other words

This means, for example, that qi can be predicted once all the other qi (from i = 2 to io) have
been measured. Thus, the measurement of ~ doee not give any further information, but
merely a check on the other measurements. The number of independent pieces of information
is i. – 1, not io, and in particular, when we use three groups, we have only two sets of ex-
perimental data. One of the three inelastic cross sections aji will, therefore, remain un-
determined.

Similarly, tf the material captures neutrons, then the total number of emitted neutrons
Zqi wiIl determine the average capture cross section & of the sphere material for the neu-
tron spectrum. If the material also undergoes fission, the quantity determined will be the
average of Uf(v – 1) – cr”. To show this explicitly, divide Eq. 8.$0 by 1 – Pi and sum over i.
Then the inelastic cross sections aji combine to form ~aji = uj . Ustng Eq. 8.15 and the
definition
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(8.26)

It will be seen that the inelastic scattering has csncelled out. Combining the terms u~ ~i on
both sides of the equation, we may then use Eq. 8.24 for this quantity and Eq. 8.21 for v!.
After some algebra we obtain

fi[d(.i-l)-dlv,=5qi-fi@i
1=1 1=1 1=1

(8.2’7)

On the right hand side is the difference between the total number of neutrons emerging from
the sphere and the total number of source neutrons. On the left is the quantity Uf(u – 1) – UC,
averaged with the “measured” fluxes SIi (Eq. 8.24) as statistical weights. Equation 8.27 gives
a very accurate means of determining the average of Uf(v – 1) - DC, or of the capture cross
section C# alone for non-fissionable materials. The accuracy depends, of course, on one’s
ability to measure Zqi precisely; i.e., on the availability of a detector whose response is
truly “flat” as a function of energy.

8.4 Determination of Group Constants by Variation of Shell Thickness

The discussion of the preceding section leaves unsolved the problem of determining the
three inelastic cross sections U82,u~i, and u2i (if we decide to use three groups). Of course,
if one of these three can be determined from other information, then the remaining two can
be found from Eq. 8.20 — in fact from two of the three substitutions in Eq. 8.20 since the third—
yields Eq. 8.27.

If we have no other such information, and if we have only one primary neutron spectrum
available, then the only possibility is to try to moderate that spectrum by using shells of dif -
ferent thickness. As the shell thickness increases, we may expect that the number of neutrons
in energy group 3, the highest energy group, will decrease relative to that in the two lower
groups. There are two reasons for this: (a) both the lower groups receive neutrons in addition
to losing them, and (b) the inelastic cross section is usually largest fn the highest energy
group (see Chapters 11 to 14).

The increase of the population of group 1 is unimportant since no inelastic scattering
starts from this group, but the relative increase of group 2 means that a measurement at
large thickness weights u~ more than c#’. Since the neutron spectrum does not change rapidly
with thickness, this method does not permit a very accurate determination of the three in-
elastic cross sections, but still, if we are satisfied with fairly wide limits, a determination of
all three is possible. This method was used to determine the u fi for some non-fissionable
elements; the results are given in Chapter 14.

We shall now derive the necessary formulas for this analysis. The experiments were
done with an external fission neutron source, and detector inside the sphere. Since we wish
to use our previous calculations of escape probabilities, we must employ the reciprocity
theorem of Section 8.1 and the conditions 1, 2, and 3 stated in that section. We shall be inter-
ested in the transfer from energy group 3 to 2, u~t. Condition 3 now states that the transfer
cross section between groups 3 and 2, U3Z,is to be called that between 2 and 3. Condition 2
specifies that the fictitious neutron source inside the sphere must have a group emission
probability equal to the actual detector group response.

Two detectors were used for this work. The first (“28” or U*38detector) detected only in
group 3, and the other (“37” or Npz~?detector) in both groups 2 and 3, with relative efficiencies

of P~T and ~’ for the two groups. To conform with condition 2, we must, therefore, consider
two neutron sources, one emitting only group 3 neutrons and the other both group 2 and group
3 neutrons, with probabilities proportional to P]’ and P:’.

The sphere transmission measured with the “28” counter, group 3 source, is, of course,
the same as Eq. 3.37. With the two-group neutron source, Eq. 8.20 gives
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cl: (V3- @ = (1 – Ps) (Cr:t‘% + %24+) (8.28)

and

(8.29)fJF(4i2 -@ = (1 - P2) cr$w2

For the integrated flux in group 2, we obtain from Eq. 8.29

cs~Q!
‘I’z= ~

(U2 + c$ + u:tP*)
(8.30)

The number of neutrons escaping in group 2 in given by

qt = XT e-u~x +
-

(8.S1)

The integrated flux in group 3 is, from Eqs.

The number of neutron,s escaping in group 3

8.28 and 8.30

(1 - P$) U$lu:w:
(8.32)

(Cf:n+ u; + &P:)(u:n + ~ + &P,)

ia now

Or introducing Eqs. 8.30 and 8.32, we get

(8.93)

@T(l- e+’) US2*PS
14)

+ (* + u; + u$P2)(c# + 4 + t#P*)

The tranamieaion with the “37” counter is given by (8.34)

(8.35)

where f2 and f~ are the probabilities of fission spectrum neutrons being in groups 2 and 3,
respectively, which in the “reciprocal” problem is the detector response in those two groups.

Now that Eq. 8.35 is derived, we may forget the reciprocity theorem and deivcribe how the
equation is to be used in analyzing experiments. The experimental information (for a given
shell thickness) consists of the transmissions measured with a “28” and a “37” counter.
From the “28” transmission, we obtain the group 9 constants, using the analysis of Chapter
3. In Eq. 8.35, we must insert q2 from Eq. 8.31 and Q from Eq. 8.34. The resulting equation
contains the known distribution of fission spectrum neutrons f2 and fa, the known relative
efficiency of the “9?; counter for neutrons of groups 2 and 3, @7 and P;’, the known group 3
constants u: ~d % :~~,e~nd f~ally the two -owns C3Zand cr~ + a; (IJr follows from

# + u~known, as given by Sectionn3.5). From a giventhe measured U2and U2 /02 , once z
measurement, we can therefore obtain only a relation beiween U22and z + u:.

In practice, we allow oat to take several values between zero and c@ (fixed by the “28”
counter analysis) and plot a curve of the resulting u2b + ~ vs cql.

For each shell thickness we get a different slope for this curve, which is almost a
straight line. Thus, if all measurements were infinitely precise, we should obtain an inter-
section of all the curves of & + u; vs cr~zcorrespmding to different shell thicknesses, and
this would represent the correct cross sections. In practice, the various curves are nearly
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parallel, and not very precise, so that their intersection cannot be obtained very accurately.
This is illustrated in Chapter 14 by the application of these methods to actual measurements.

8.5 An Approximate Relation Between Cross Sections

In Chapter 12 it is shown that it is possible to deduce consistent one-group cross sections
from the “37” counter measurements that are independent of shell thickness. This result is
rather surprising in view of the fact that group 2 neutrons increase at the expense of group 3
as the shell thickness increases, and the inelastic scattering for the two groups is very dif-
ferent. In fact, we can explain the result only if there is an approximate relation between the
various inelastic cross sections. To obtain this relation, we note that the cross section for
removal of neutrons from group 2 is u~n + u:. The effective cross section for removing from
the “37” counter counts that are due to group 3 neutrons, is

(8.36)

where 47 and 47 are the detection cross sections of the “37” counter for groups 2 and 3.
Since the experiments tell us that the neutron removal cross section as measured by a

“37” counter is apparently independent of the spectrum of neutrons in the shell (&s., of the
fr~ction of group 2 and group 3 neutrons present), the removal cross sections u, and
Uz + u: must be approximately equal, i.e.

(8.37)

It should be emphasized once more that this equation is only approximate because the fact
that the inelastic cross section as measured with a “37” counter is independent of shell thick-
ness, can only be established crudely. The analysis using Eq. 8.35 for various shell thick-
nesses is more reliable.
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Chapter 9

EXPERIMENTAL ARRANGEMENTS

9.1 Reactor Facilities

A schematic diagram and typical photographs of the experimental set-up at the “Water
Boiler” reactorii are gtven in Figs. 9.1, 9.2, and 9.9. The large cavity in the graphite thermal
column provides an external thermal neutron flux of relatively high intensity and cadmium
ratio. The internal tapered paraffin blocks reduce the number of escaping fast neutrons. Both
internal and external collimators are made of materials which either produce low-energy
capture y rays, or have low thermal neutron capture cross sections. Cadmium, in particular,
was avoided wherever the thermal neutron flux was high. This is because the photo-fission
cross sections of the detectors are not zero for the high-energy capture y rays emitted by
cadmium. Experimental checks on this point are described tn Section 10.6.

The thermal neutrons irradiated a plate of U2SS,producing a fission spectrumiz source of
about 2 x 1010 neutrons per second. The uranium was covered on the outside by a thin tmnd-

10 This had two functions: (1) to attenuate the thermal neutronswith of aluminum and boron .
which passed through the uranium plate, and (2) to prevent scattered thermal neutrons from
entering the uranium plate from the room and causing fission. It was calculated that less than
2 percent of the fast source neutrons suffered collisions in the uranium and aluminum- boron
cover plate before escaping. The last 10 inches of collimator, onto which the source plate was
fastened, was a thin aluminum box containing boron10 (Fig. 9.2). Not more than about 1 percent
of the neutrons reaching the detector resulted from single scattering in this collimator. The
scattering from the floor and reactor face is discussed in Section 10.2.

The thermal column used for this work is provided with a boron “curtain” which can be
lowered easily to decrease the neutron flux by a factor of about 500. This curtain was lowered
when personnel entered the reactor room.

The fast neutron detectors were held in position by a system of clamps and stands which
were completely independent of the sphere supports. The spheres were held by an aluminum
cone, supported on a thin aluminum vertical tube, and braced at right angles by aluminum
tubes. A discussion of the scattering by supports is in Section 10.3.

The source-to-counter distance was measured from the midpoint of the uranium plate to
the middle of the detector, and was accurate to about ~1, inch. The detector was centered in the
sphere to about ~~2inch.

9.2 Monitor Systems and Reactor Stability

Two independent neutron monitors were inserted into the side of the thermal column
ZSS. The slope of its counting rate(Fig. 9.1). One was a spiral fjssion counteris containing U
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V9biaB curve was about 0.2 percent per volt, for about 25 volts. The electronic circuits for
this counter were duplicate systems, housed inathermostated cabinet.

The second monitor also contained U2Sfi,and the slope of its counting rate vs bias curve
was about 0.1 percent per volt for about 60 volts. The positions in the column of these two
monitors were arranged so that their counting rates were approximately equal, and about 10
to 100 times the counting rates of threshold detectors. The monitor counts were always used
to normalize the data.

With these monitors, incidentally, the flux from the “Water Boiler” was found to be con-
stant to about 0.2 percent over periods of the order of an hour or two. These were the lengths
of time involved in making a single transmission measurement.

9.3 Spiral Counter Syetem

9.3.1 Counters and Electronics

In order to obtain sufficient sensitivity in the fission threshold detectors, spiral counters
were used (Fig. 9.3). If the fissionable material is thicker than a few tenths of a milligram
per square centimeter, the counting rate will generally be a rapid function of the discriminator
setting. This was the case for the counters used in these experiments, the counting ratee
changing a few percent per volt change in bias. To obtain accuracies of the order of 0.1 percent,
therefore, required electronics stability of the order of a few hundredths of a volt.

Some of the things which were done to the electronic counting systems to promote reli-
ability and convenience are listed below.

1. A special service transformer isolated the electronics circuits from the commercial
power line.

2. Line filters and Sorenson voltage regulators were used on all circuits.
3. All circuits were housed in closed cabinets, thermostated to * 2“C.
4. Some questionable components in the circuits were replaced. Principally, the one-

turn discriminator potentiometers were replaced by heliopots in the Model 700 and ’750 scalers.
5. The electronic circuits on the threshold detector were in triplicate, from preamplifier

through scaler.
6. Care was taken to avoid grounding the detector., except through the c~le shielde con-

necting to the main amplifier chassis.
7. The sensitivity of the detectors to the collecting voltage was checked at different gain

settings.
8. The amplifier noise and preamplifier noise were periodically examined on an oscillo-

scope.
9. A thermostated Los Alamos Model 500 pulser was used between runs to check over-

all gains through a 1 p~ capacitor.
10. Most of the vacuum tubes were checked before each running period.
11. The circuits were normally left on, so that temperature equilibrium was established.
12. The counter and preamplifiers were mounted on rubber to minimize microphonics.
13. To minimize radiation hazards, the counts were registered in an adjacent, shielded

room.
Checking the gain stability of the electronic components through the small capacitor was

done as follows:
The coarse gain of the Model 101 amplifier was reduced, the fine gain left in its running

position. The 60 cycle pulser was plugged into the preamplifier distribution box and the dis-
criminators on the three scalers were adjusted to give a counting rate of 30 ~ 3 counts per
second on each one.

The discriminator heliopot readings could be estimated to 0.02 volt, and changes of about
this amount would remove the pulser counting rate from within the above limits. On successive

-96-



gain checks, at intervals of approxtmately30 minutes, the three systems generally did not
change in the same direction. This indicated that thepulser, when used in this way, was stable
to about 0.02 volt. The actual changes required in discrimator setting were usually not more
than about 0.03 volt.

Estimates of counting rate stability, based on the gain checks and bias curves of the
counters were as follows:

(1) U2S8counter *0.05 percent
(2) Np2S7counter +0.09 percent

These numbers, together with the confidence gained by making independent repeat trans-
mission measurements, indicate that the statistical uncertainties quoted on the transmissions
are reliable. The results of the experiments recorded in Chapters 11, 12, and 13 show that
the present accuracy was necessary for the followtng reasons:

1. To obtain meaningful transmissions for very thtn shells.
2. To obtain reliable measurements of some of the small effects in order to verify the

theory which explains them.
3. To obtain reasonably accurate final inelastic scattering cross sections. 9

9.3.2 Collection of Data

With the reactor off, the source, counter, and sometimes a sphere were set up. The
ampltfier gains were checked with the pulser, and the noise patterns were observed with the
oscilloscope. The reactor was started. Personnel left the reactor room, the boron curtain
was raised, and three to six 10-minute runs were taken. The three sets of counts from the
threshold detector, and three sets from the monitors were recorded for each run. All counting
rates were examined to insure that all systems indicated the same changes, if any,

The boron curtain was then lowered, the amplifier gains were checked with the pulser,
and the sphere was changed, if appropriate. After more data were taken, transmissions
were computed for each of the six electronic channels.

If there was not agreement to well within the statistics for at least two of the three systems
on the threshold detector, the data were not used, but the counter and electronics were sus-
pected and investigated. When at least two of the systems did agree, which usually occurred,
the average of these was computed, and this was divided by the average ratio of counts for the
monitors. The resultant transmissions are given in the Tables 11.1, 12.1, 13.1. The statistical
uncertainty is that computed from the numbers of counts recorded. The fractional statistical
uncertainty in the monitor transmissions was about ye of that for the threshold detectors.

In many cases, the transmission which is recorded in the tables is the average of two or
more independent measurements made on different days. Such repeat runs were seldom out-
side of the combined statistical accuracies.

9.4 A12’(n,p)M< T Counting System

9.4.1 Detector and Counting hrangement

For sensitivity reasons, spirals of aluminum foil were used as detectors. Pure 2-S
aluminum foils were cut uniformly to the followtng dimensions: 0.010 inch thick by 0.50
inch wide by 18 inches long. During irradiation, a foil was rolled into a tight spiral and
inserted into a small brass holder which was similar in design to, and supported like, the
fission detectors. The foil was then covered by a YU inch thick cadmium cup.

Durtng counting, the foil was wrapped around a 0.003 inch thick aluminum sleeve which
fitted snugly over a cylindrical, alumtnum walled, proportional, methane flow p counter. This
counter, with a 0.0005 inch diameter central stainless-steel wire operated at about 2.5 kv, had

-97-



a flat bias curve, and at the gain and bias settings used, hada voltage plateau of about 1 percent
per 100 volts. The effective dead-time of the system was less than 10 microseconds. This was
the primary reason for building it. The counts were recorded on either one of two Model 750
scalers which could be alternated instantaneously by a switch.

The uniformity of sensitivity of the counter was checked by sliding a Csisf ~ 6ource over
the surface of the aluminum sleeve. The counting rate over most of the surface was constant
to wtthin +1 percent. The maximum deviation from the average was 2 percent. The effect
seems to be caused by variations in the wall-thickness, and is expected to be smaller for the
higher energy M&f @’s.

For the aluminum foils used, the self-attenuation of neutrons during irradiation and of
/3’s during counting are both small, and are about the same for both sphere-off and sphere-on
runs. Errors of this sort tend to cancel out, particularly if the neutron attenuation is caused
principally by elastic scattering. A directional asymmetry in sensitivity of the spiral is an
indication that effects caused by attenuations will not cancel in a sphere transmission. The
foils which were used in these experiments had been checked in a well-collimated fast neutron
beam and re-cut to decrease such asymmetry to not more than 1 percent.

6 Some incidental observations made during the course of these runs are:
1. The M~’ half-life was checked to about 1 percent, and, though slightly shorter, does not

disagree with the previously reported value.i’
2. The coincidence output unit on Los Alamos Model 750 scalers maybe subject to large

errors, especially for short-duration pulses whose peaks are close to the bias setting. The
condition of the 6J6 tubes is important.

3. A localized decrease in gas amplification of about 20 percent was found after 109 counts.
This was produced by a collimated fl source, and was easily observed by sliding the source
along the counter. The effect may have been caused by a deposit on the 0.0005 inch diameter
central wire. The measurements of this report were not affected by this change in gain.

9.4.2 Collection of Data

With the reactor off, the foil was inserted into its holder. The reactor was brought up to
operating power in about 1 minute, and a 30 minute irradiation was timed by a stop watch and
monitored with counters. Shutting off the reactor ended the irradiation. The aluminum foil
was unwound, washed in clean acetone, and wrapped around an aluminum sleeve, which was
slid over the P counter. With the two scalers and the alternating switch, counts were taken
every 30 seconds for about 10 minutes, and then every minute for about 20 minutes more.

Two or three more counts were taken at intervals of a couple of hours to determine the
effective background, of which about 60 percent was true counter background and about 40
percent was due to the foil. The half-life of this latter activity was about 14 hours, and presum-
ably was caused by the Alz’ (n, a)Na24 reaction.

The background, long-lived activity, and short-lived A121(n,y)A128 activity were subtracted
graphically from. the total counts recorded in 30 minutes. This left only the counts caused
by the A127(n,p)M&T reaction. Of approximately 10s counts recorded for each irradiation, about
90 percent were due to the (n$p) reaction. A systematic method of making the subtractions had
been established by studying foils whose activations were much higher than the foils irradiated
in the transmission measurements.

9.5 Sphere Design and Dimensions

The spheres were machined as two hemispheres with an overlap in the equatorial plane.
There was one hole, centered in this plane, through which the counter stem entered. The
area of the hole was, in general, much less than 1 percent of the sphere surface area, and
faced normal to the line joining source and detector.
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All sphere dimensions were measured with a micrometer to the nearest 0.001 inch, and the
spheres were weighed to an accuracy of better than 0.1 percent. Average densities were then
computed to about 0.1 percent, and usually agreed with the best handbook values.

The composition or uniformity of some spheres was questionable. Spectroscopic analyses
or radiographic measurements were made, and where these indicated a necessity, corrections
were made, or the limits of error were increased on the inelastic cross section.

In making repeat transmission measurements, the positions of the hemispheres were
sometimes interchanged, with no apparent real change in the observed transmission.
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Chapter 10

EXTRANEOUS EFFECTS

In this chapter a more detailed diacuaaion ia preaented of some of the effects which may
cauae uncertainties or errora in a aphere tranamiaaion experiment. Some are characteristic
of the present experiments, in which a reactor waa used, and some are characteristic of sphere
tranamiaaion experiments in general.

10.1 Faat Neutrona Not Produced by the Source

In reactor experiments, some faat neutrona are alwaya preaent. These constitute a
background of uncertain spectrum and geometry. In the preaent cavity and collimation system
the magnitude was leaa than 1 percent at all source-to-counter diatancea used, and waa nearly
the same for both U2S8and Npz~l detectors. Since t,heae neutrona were in a broad beam, however~

it waa not clear how they would affect the meaaured tranamiaaion of a sphere. Sphere trana-
miaaiona were therefore run without the U2SSfiaaion source in order to remove this effect. The
Iargeat correction, about 1 percent in tranamiaaion, waa found for the Iargeat apherea at the 5
inch source-to-counter distance.

The diatancea of the

10.2 Room Scattering of Source Neutrona

source and detector from the floor and reactor face were not large, so
there waa a background at the counter cauaed by source neutrona scattered from these aurfacea.
This background waa expected to be relatively uniform throughout the region around the source
which waa used in these experiments. The neutron flux coming directly from the source will
fall off approximately aa the inverse of the square of the distance. Therefore, if meaaurementa
of this background are made at the largeat source-to-counter distance, a rough estimate can be
made of the background at other poaitiona.

The following meaaurementa were made with the U*S8counter to evaluate this background,
and ita effect on a sphere tranamiaaio!’c

(1) The residual counts were determined behind a bulk shadow shield covering the large
(4% by 6 inches) source plate.

(2) The residual counts were determined behind a good geometry shadow shield of a 1 inch
diameter fission source.

(3) An approximate computation of the percentage of scattering waa made.
(4) A measurement was made of the counting rate aa a function of source-to-counter

distance.
(5) Sphere transmiaaions were rwi behind the bulk shadow shield.
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10.2.1 Large Source with Bulk Shadow Shield

The detector was mounted 20 inches from the large U2’6 source, and the counting rate was
determined with various thicknesses of the scattering pieces between the two. The scattering
pieces, made of steel, polyethylene, or a B,C-paraffin mixture were large enough to shield the
counter from every point of the source. With a 13 inch thickness of each of these, for which the
simply computed transmission is not more than 1 percent, the apparent background was about
6 percent. To eliminate the possibility that much of this apparent background was caused by the
poor geometry of the shadow shield, the following experiment was done

10.2.2 Small Source with Good Geometrv Shadow Shield

The large U2gs plate was replaced by a 1 inch diameter disk of U*sC,and the counter set up
at 20 inches. In this geometry, the computed transmissions of the shadow bars were less than
1 percent, but the same value j approximately 6 percent, was obtained for the background at
20 inches. The counter was moved farther from the source and longer shadow bars inserted.
The apparent relative background increased with increasing source to counter distance, as
was expected.

10.2.3 Computation of Background

The expected behavior of the relative background as a function of source to counter
distance was computed under the following assumptions:

(1) Source neutrons are emitted isotropically from a point.
(2) All neutrons which enter either the floor or reactor face are elastically scattered

isotropically at the surface.
(3) Air scattering is neglected, and the roof and other walls are very far away.
This should give an overestimate, because of assumption 2, and because the counter

actually has a relatively high threshold. The computed relative background at 20 inches from
the source was 9 percent.

10.2.4 Inverse Square Measurement

A measurement was made of the counting rate as a function of the distance between the 1
inch disk source and the counter. The accuracy was not high, but the deviation from an inverse
square fall-off indicated about 5 percent relative background at 20 inches from the source.

10.2.5 Small Sphere Transmission Behind BuIk Shadow Shield

Since all measurements were consistent with a relative background of about 6 percent at
20 inches from the source, the effect on a sphere transmission was studied directly. The
transmissions of small spheres were measured while the counter and entire sphere were
shielded from the large Uzss source by bulk shadow shields. In the cases tried, the transmission
of the background was within 2 percent of that obtained with no ehadow shield present. Upon
removal of the properly weighted background transmission from the transmission obtained with
no shadow shield present, the apparent inelastic cross section changed by only about 1 percent.
On transmissions run at 5 inches and 10 inches from the source, the background effect must be
several times smaller, but it was not measured. Since this background correction is not large,
it has not been applied to the data.

With the Np2s7 counter, the relative background at 20 tnches from the source was 8.5
percent. The transmissions of the small spheres were not measured behind the large shadow
shield, however. This is because of relatively low counter sensitivity, and the fact that the
sphere transmissions would have been very close to unity and consequently difficult to tnterpret.
As in the case of the U298counter, the effect at 5 inches was not measured because of the
prohibitively high transmissions of such short “shadow shields”.
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For the Np2STcounter, correction for this background might increase the inelastic cross
eections by 5 percent at the most. However, since it is probably smaller in most cases and
we do not know it accurately, we have not made this correction.

Because of the shape Qf the fission spectrum and the positions in energy of the
thresholds, the background in the A12T(n,p)M# detector was expected to be even lower than in
the U*SScounter. A measurement was not made, however, nor a correction.

10.3 Scattering from Supports

In the initial experiments, small steel rods were used for hanging the spheres. When a
sphere was removed, it was most convenient to remove the rods also. This procedure removed
some scattering material, and caused an error of 2 to 5 percent in cross section. A small
aluminum cone system was later used for supporting the spheres. This caused less then 0.2
percent scattering into the counter. The cone was left in place when the sphere was removed
and mechanically was much superior to the hanging rods. All of the data in the tables of
Chapters 11, 12, 13 and 14 have been obtained with this cone support.

10.4 Check on Neutron Spectrum

Some of the data on total cross sections and angular distribution of elastic scattering which
are used in the calculations of Uti (see Chapters 11 and 12) were obtained with a beam of
neutrons from the fast reactor (Clementine). In order to determine how similar the spectrum
of that beam was to a fission spectrum for neutrons above the U2S*threshold, the same
detector was used to measure the total cross section of hydrogen in both spectra. The measure-
ments in the fast reactor beam were made by E. T. Jurney and C. Zabel.iC The value obtained
in the fast reactor beam was 2.15 + 0.2 barns.

To determine the average hydrogen cross section at the “Water Boiler;’ polyethylene and
graphite scatterers were interposed midway between the external 1 inch diameter U*3$source
and the U*S*counter. The scattering cylinders were 1.27 inches in diameter and about 1 inch
long. The distance between source and counter was 13 inches. The total cross section for
hydrogen which was obtained, with no correction for in-scattering, was 2.18 * 0.11 barns. The
numerical integration of the published hydrogen cross section over the fission spectrumic and
the U*S8fiseion cross section gave 2.45 barns.

10.5 Non-threshold Neutron Detection

Two effects to be considered here may introduce errors into the sphere transmission
measurements. First, the fissionable material of the threshold detector may have a finite
thermal fission cross section. Second, there might be a contaminant which has a finite fission
cross section at all energies. If either of these should occur, some low energy neutrons will
be detected.

With cadmium sheets placed on the floor and face of the reactor, cadmium cups on the
detector made no observable effect on the counting rate. The fraction of the counts to be
expected from the two above causes was determined by further experiments to be less than
10-’ for the Np2s’ and U*33counters. Any such effects were routinely eliminated by the
method of analysis of the A127(n,p)Mg2’ data.

10.6 y Ray Effects

10.6.1 y Fission in the Threshold Detectors

High energy y rays can produce photo-fission in the detectors. The two principal y ray
sources are capture of thermal neutrons in the collimator materials and y rays accompanying
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fission or radiative capture in the U235source. The first was minimized, as has been potnted
out in Section 9.1. The second could not be avoided. The following two evaluations were made
of these effecttx

(1) Transmission measurements were made on small spheres behind different types of
shadow shields.

(2) Computations were made of the number of y rays from the fission source.
In the experiments when a low atomic weight shadow shield was tnserted (Section 10.2.5),

the neutrons were attenuated by a factor of about 20, whereas the high energy y rays were
attenuated by a factor of 2. This increased the relative number of y rays by a factor of about
10. Sphere transmissions behind the shadow shield thus gave an upper limit of the relative
numbers of photo-fissions in the detector.

By replacing the central 2 inches of B4C-paraffin shadow shield with 2 inches of lead and
repeating the sphere transmission measurements, a more accurate value was obtained. The
relative number of photo-fissions in the detector with no shadow shield and no sphere was
0.000 * 0.005.

For the computations, the following assumptions were made:
(1) All y rays come from the source.
(2) There are 12 y rays per fission, distributed in energy like the spectrum reported by

Motz.17
(3) The photo-fission cross section in the region of 6 to 7 Mev is 0.030 barns.
With no sphere around the detector, the number of photo-fissions in the Uzso detector is

computed to be 0.1 percent of the number of neutron fissions.

10.6.2 Photo-Neutron Production in the Sphere

The y-n cross section of many of the sphere materials is finite at the y ray energies
involved. Some of the neutrons produced are above the counter thresholds. However, the
contribution is less than 0.01 percent in transmission.

10.7 Spurious Counter Effects

It was desired that the statistical uncertainties in counting should give reliable estimates
of the accuracy of the experiments. Therefore, it was necessary to look for obscure and
spurious counter effects which might cause about 0.1 percent error in a transmission. Many
effects, such as dead-time counting losses, y ray pile-up pulses, a pulses, and temperature
effects, have been looked for in the spiral counters used. Simple experiments were performed
to evaluate some of these effects separately, and sphere transmissions were measured under
various conditions to make integral-type studies. All of the differential measurements
indicated that there should be no observable effect, but sphere transmissions run at low bias
and high counting rate (at the 5 inch source-to-counter distance) deviated by a few tenths of a
percent from those run at lower source strength, higher bias, or lower flux (at 10 tnch and
20 inch positions).

The conclusion from the experiments is that transmissions measured at biases which
are high relative to noise are not subject to peculiar effects. Those measured with low bias
seem to be, and none of these have been used in computing u~.

10.8 Counter Size and Position in Sphere

In Section 6.2 the calculation of counter size corrections is discussed, and formulas are
derived. An effect intimately connected with this is the position of the center of the counter
inside of the sphere. If the counter size correction is small, then one also expects the
counter position to be relatively unimportant, as long as the distance between sphere center
and counter center is of the order of the counter dimensions.
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Tranamiasions run with the U2S8detector about 1 inch off-center in an 8 inch outside
diameter, 7 inch inside diameter sphere were within 0.2 percent of the values obtained with
the detector centered tn the spheres. This is consistent with the computed counter size
corrections of about 0.1 percent in transmission.

10.9 Counter Angular Asymmetry

The method of correcting a measured transmission when the detector is not isotropically
efficient is discussed in Section 6.4. As was pointed out there, the correction is most
sensitive to the quantity A, which can also be measured most easily. The following two things
were done to evaluate this facto~

(1) Each detector was irradiated in a 1.4 inch wide, well-collimated, fast neutron beam
in two positions. The first position was with the axis of the spiral parallel to the beam, and
the second position was with this axis perpendicular to the beam, the center of the detector
remaining at a fixed point. The ratio of the two sets of counts is the A of Section 6.4. A
rough measurement of the angle over which A was constant indicated that it was a few degrees.
The smallest value of A, that for the U*SScounter, was 0.950 * 0.004; A for the Np28r counter
was 0.976 * 0.010; and A for the aluminum foils was made 1.00 + 0.01 by proper cuttkg of the
foils .

(2) The second evaluation of A for the U*S8detector was made by running sphere
transmissions with the axis of the counter both parallel and perpendicular to the normal to
the fission source plate. For two different spheres, one lead and the other iron, analyzed as
discussed tn Section 6.4, the values of A were 0.952 + 0.01 and 0.966 + 0.01. These agree with
the directly measured A of 0.950 + 0.004.
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Chapter 11

ANALYSIS OF EXPERIMENTAL DATA OBTAINED WITH U2S8THRESHOLD DETECTOR

In this chapter we will give the “28” detector and fission spectrum data used in our analy-
sis for inelastic cross section and will give the final results of this analysis. It is to be under-
stood that inelastic cross sections obtained here are defined as stated in Chapter 7, viz., (1) by
Eq. 7.5 or (2) as the average cross sections for collisions leading to energies below the effec-
tive detector threshold for the part of the fission spectrum above the effective threshold. For
the “28” detector the effective threshold is about 1.4 Mev.

11.1 Table of Cross Sections

Table 11.1 presents the results of our experiments. In column one are listed the 15 ele-
ments studied, in column 2, the sphere diameterw, column 3, the sphere thickness in total mean
free paths; column 4, the average distance between the “28” counter and effective cen~of the
neutron source; column 5, the average total cross section used in the multiple scattering analy-
sis (Eq. 7.7); column 6, the average uet/uel used in the multiple scattering analysis (see Sec-
tion 3.5 and Chapter 7); column 7 the final transport cross section for neutrons above 1.4 Mev
in the fission spectrum, using the column 11 final inelastic cross section% column 8, the
measured shell transmissions; column 9, the inelastic cross section, interpreting the trans-
missions of column 8 with Eq. 1.1; column 10, the inelastic cross sections obtained using Eqs.
3.36 or 4.5 and correcting for all effects except the detector angular asymmetry and the loss
of energy on elastic collision% and column 11, the final average inelastic cross sections with
corrections for these latter two effects.

11.2 Accuracy of Final Inelastic Cross Sections

In assigning the final uncertainties to the numbers reported in column 11, we considered
the individual uncertainties in the measured shell transmissions, tn the computation of the
multiple scattering correction, in computing the source to detector distance effect, in the
counter size correction, and in the corrections for loss of energy by elastic scattering and for
counter asymmetry. In combining these errors to obtain the final error in the measurement,
we assumed that we were dealing with independent errors and calculated the square root of
the sum of the squares of individual errors to obtain the final rms error.

The rms errors in the transmission measurements are given also in column 8. These
uncertainties imply an uncertainty in inelastic cross section given by

(11.1)

where C lies between one and two for most of the shells of interest. When more than one shell
was measured, the statistical error in ah was determined by combining the individual errors
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TABLE 11.1—R38ULTS OF SPNERE TRAN?MMION ~PEIUMENTS USINGA U;aTNRZ8MOLD DIYrECTOR
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c.ute.ide
dfcmeter,

Element ,-.L--

1

N

‘lY

v

Fe

la

c-xc

Zn

Zr

AZ

cd

Sn

w

Au

Pb

Bi

zmncm

a
6
8

4.6

2,62

B
B
8
6
6
6
6
8
6
6
s%
z
4.96
4.96
5.24

6.24
6.24

B
6.22
6.22

B

4,6

8

s
B

8
8

4.s5
4.96
6.26

6.99
6,99
6.00

6
8
8
8
8

4.92
8
0

TMcknem,
total mean
freepzthn

a

0.307
0.618

0.647

0.940

2,466
1.106
L108
1,021
1.021
1.021
1.021
0.661
0.611
0.611
0.610
0.60B7
0.277
0.277
0,172

0.2076
0.612

1.160
0.670
0.1897

0.6716

0.65s4

0.7316

0.8s3s
1,967

0.6611
1.309

0.4229
0.4223
0.2669

0.8844
0.8644
0.8644

0.4172
0.6B6
0.886
1.99
1,99

0.282
0.602
1.821

Di,ctznce
tosource,
fnches

4

10
10

10

10

10
10
20
20
10
6.26
6.4S
10
10
20
10
6.4B
10
6
10

10
10

10
10
10

10

10

10

10
10

10
10

10
6
10

5
10
20

10
10
20
10
20

20
10
10

AND A F16310NSPECTRUM SOURCE

fJtJ
barns

6

2,67
2,67

9.79

9,67

S.17
9.17
3.17
9.17
9.17
S.17
3.17
3.17
3,17
3.17
9.17
9.17
9.17
3.17
3.17

9.24
3.24

3.29
3.2s
S.2B

9.37

4.61

4.80

4.90
4.90

6,02
6.02

6.29
6,29
6.29

6.%0
6.60
6.60

6.66
6.06
6.66
6.66
6.66

6.’IO
6.70
6.70

ffu
G

6

0,670
0.670

0.600

0.690

0.68
0.68
0.68
0.60
0.56
0.68
0,68
0.66
0.66
0.68
0.68
0.68
0.68
0.68
0.68

0.611
0.611

0.607
0.607
0.607

0.566

0.674

0.449
0.469
0.469

0.482
0.482

0.s91
0.391
0.991

0.414
0.414
0.414

0.627
0.627
0.627
0.627
0.627

0.556
0.666
0.656

‘Jrr*
barna

7

L6B
1.6s

8.47

2.34

2.13
2.18
2.19
2,13
2.13
2.I.2
2.1s
2.19
2.13
2.13
2.1s
2.18
2.19
2.1s
2.13

2.26
2,26

2.35
2..%
2.96

2.92

3.06

9.07

3.11
3.11

3.00
3.00

9.82
9.82
.9.82

3.9s
3.93
9.s3

.%64
3.84
9.64
3.84
3.84

4,05
4.06
4.06

‘rrilmnrclmlial

6

0.949s● 0,0020
0.8963● 0.0022

0.8840● 0.0022

0,920s● 0.0026

0.4878k 0.0040
0.7120& 0.0018
0.7080* 0.009
0,7964* 0,0020
0.7414i 0,0018
0.7484● 0.0018
0.7626k 0.0021
0.866 k 0.0018
0.86Sk 0.0017
0.8660* 0.0020
0.8660* 0.0017
0.6787* 0.0022
o.llM4● 0.0016
0.9245* 0.0018
0.9584* 0.0018

0.9456● 0.0020
0.8370* 0.0020

0.048S* 0.0016
0.8176i 0.0018
0.9420i 0.0016

0.8176* 0.0016

0,8429i 0,0026

0.7384h 0.0018

0.7766h 0.0018
0,5870i 0.0020

0.8980& 0.0022
0.6998* 0,0020

0.8503& 0.0018
0.8529* 0.0014
0.9096.t0.0016

0.7203● 0.0018
0.7211● 0.0018
0,7164k 0.0036

0.9470h 0,0017
0.9106● 0.0013
0.9069i 0.0026
0.S16* 0.0018
0.605i 0.0030

0.W416i 0.004
0.8170i 0.002
0.8229● 0.002
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0.46S* 0.012.
0,478k 0.010

0,776* 0.016

0.764k 0.028
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2.63 & 0.027

0.866* 0.020
0.896h 0.013
0.93440.026
0.972A 0.000
1,097* 0.015

0.966● 0.098
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0.40
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1.64
1.64

1.169
1.141
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0.741
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0.736
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0.729
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correcttotm)

barns {
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0,2.19* 0.046

0.66S● 0.061
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0.666● 0.04s
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0.000& 0.06S
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2.22 ● 0.18

2,04 ● 0,11

0,712h 0.0-48

0.728● 0.046



of the runs. Most of the final uncertainties in Uin due to counttng statistics on the transmission
measurements were between 0.5 and 2 percent.

In using the multiple scattering analysis discussed previously, one introduces two types of
uncertainties: uncertainty in the accuracy of the method, and uncertainties in the quantities
Ut and uet/uel. To allow for the first uncertainty, we added 1 percent error to the final error,
which included all other effects. This seems reasonable in view of the comparisons in Table
4.1 since, except for iron, Eq. 3.36 was used throughout this work. Iron was analyzed using
Eq. 4.5. The uncertainty assumed for at was 10 percent which introduced about 3 percent un-
certainty into the tnelastic cross section determination. An uncertainty of 10 percent was
assumed for Uet/uel, introducing about the same error.

The error in the determination of the finite distance effect was assumed to be about 10
percent. Equation 6.9 was used except in the case of iron, where Eq. 6.10 was used. This un-
certainty consists partly of uncertainty in b (source to detector distance) and partly of the
uncertainty in the method of amlysis (see Section 6.1.2).

Usually the change in the true sphere transmission due to finite counter size was very
small (C0.001). This correction was made (except for iron) using Eq. 6.27. Equation 6.28 was
used for iron. It was assumed that no uncertainty was produced in the final cross sections re-
ported because of uncertainties in this correction.

The correction for loss of energy on elastic collisions is discussed in Section 6.5. The
apparent inelastic cross section due to this was obtained using Eq. 6.42. As stated there, we
assumed the correction was 50 percent uncertain, which is probably very conservative. The
magnitude of this correction to the inelastic cross section varies from 20 percent for lightest
elements to 1 percent for the heaviest elements. The uncertainty in this correction is respon-
sible for most of the uncertainty in the cross sections reported for the lighter elements in
column 11 of Table 11.1.

The counter asymmetry correction was computed using Eq. 6.33 or 6.34. As stated in
Chapter 10, A for this counter is 0.950 and S2 is 0.10. The magnitude of the correction was
between 1 and 3 percent of the inelastic cross section. An uncertainty of 50 percent was as-
sumed in the correction because of approximations made tn the analysis of Section 6.4.

11.3 Errors Involved in Use of Equation 1.1

Comparing the inelastic cross sections recorded in column 9 of Table 11.1 with those in
columns 10 and 11, it is apparent that one must make an effort to correct for multiple scatter-
ing of neutrons in sheUs even a few tenths of a mean free path thick, if accuracies of a few
percent are desired. To show this, in Fig. 11.1 the inelastic cross sections of columns 9 and
10 are both plotted vs shell thickness for various shell outside diameters. It is seen that the
sphere theory developed in this paper gives the same inelastic cross section for all sphere
thicknesses and sizes, within about 1.5 percent. The cross sections deduced frorn~he expo-
nential, on the other hand, increase rapidly with increasing shell thickness, and are more than
30 percent too high for the thickest shells, compared with the theory of this report. Even for
the thinnest shell measured, the exponential gives ati still about 10 percent too high, and for
this shell the transmission is nearly 96 percent. With our good statistical accuracy, the cross
section can be determined only to *5 percent by extrapolating the inelastic cross sections
determined from the exponential formula to zero shell thickness.

It should also be clear from Fig. 11.1 that it is no guarantee of a correct result if the
transmission is measured for dtfferent shell thicknesses, and the cross sections (evaluated by
the exponential method) agree within experimental error. For instance, the 5 inch spheres
with shell thickness 0.45 and 0.75 inch give crti = 0.834 + 0.021 and 0.877 + 0.011, respectively—
almost within each other’s error—and still their average is 20 percent too high. A linear
extrapolation through these results to zero thickness would still give a cross section that is
10 percent too high. These difficulties would be aggravated if the transmission were measured
to an accuracy of only 1 percent in each case. Therefore, to establish that multiple scattering
corrections are both necessary and valid, it is necessary to measure the transmissions to a
few tenths of a percent, and to vary the shell thickness by at least a factor of 4 (actually, in
Fig. 11.1, it was varied by a factor of 14!).
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If the observed transmission had been corrected by the methods of Chapter 6 for all the
geometrical effects of the experiment except multiple scattering, and if the inelastic cross
sections were determined from this corrected transmission by the exponential relationship,
the values obtained would be, if anything, in worse agreement with those from the sphere
theory. Thus, the difference between the two curves in Fig. 11.1 arises because the exponential
relationship ignores multiple scattering, and not because of other geometrical effects of the
experiments.

11.4 Interpretation of Corrected Uin

It has been explained tn Chapter 7 and in the first paragraph of this chapter that we are
measuring an average cross section for going below the effective energy threshold of our de-
tector. However, for many elements considered, there is inelastic scattering without sufficient
energy loss to place the resultant neutron below the energy threshold. Furthermore, neutrons
in the fission spectrum with the highest inelastic cross section are removed first. Thus, as
the shell thickness increases, the spectrum of neutrons detected would be expected to ct&ge
somewhat. At first it was not known whether these effects would make the average inelastic
cross section dependent on shell thickness even after multiple scattering corrections. From
column 10, Table 11.1, it is clear that we have observed essentially no changes anywhere
attributable to spectrum distortions above the detector threshold, even for very thick shells.
Experimentally, then, it has been demonstrated that a set of meaningful average one-group
cross sections can be assigned to the neutrons above about 1.4 Mev in the fission spectrum,
and that the behavior of these neutrons, even in large amounts of material, can be understood
in terms of these cross sections.

11.5 Conclusions

In Fig. 11.2 the inelastic cross sections of column 11, Table 11.1, are plotted vs A24. This
plot shows that in general our observed inelastic cross sections seem to be a linear function
of the nuclear area. Exceptions to the above statement occur at the magic number or partially
magic number nuclei: Z r, Sn, Po, Bi. The scarcity of levels in the magic target nuclei may
explain why the cross sections are low in these cases.
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Chapter 12

ANALYSIS OF EXPERIMENTAL DATA OBTA”iNED WITH NP297
THRESHOLD DETECTOR

The auxiliary data used in the analysis and the final results of the “37” detector experi-
ments are presented in this chapter. The cross sections which we give here are one-group
cross sections and are defined like those determined in the last chapter and as stated in
Chapter 7. For the Np2s7detector, the effective detector threshold is 0.7 Mev.

12.1 Table of Cross Sections

Table 12.1 presents the results of our experimental and analytical investigations. In
column 1 are listed the 15 elements investigated; in column 2, sphere outside diameters;
column 3, the sphere thickness in total mean free paths; column 4, the average distance be-
tween the “37” counter and the effective center of the neutron source; columns 5 and 6, the
average total cross sections and uet/uel, respectively, used in the multiple scattering analysis
(for further information see Section 3.5 and Chapter 7); column 7, the final transport cross
section for neutrons above O.’7Mev in the fission spectrum, using the column 11 inelastic
cross sections; column 8, the measured transmissions; column 9, the inelastic cross sections,
evaluating column 8 with Eq. 1.1; column 10, the inelastic cross section obtained using Eq.
3.36 and correcting for all effects except detector asymmetry and loss of energy on elastic
collisions; and column 11, final average inelastic cross sections with corrections for these
latter two effects.

12.2 Accuracy of Final Inelastic Cross Sections

The same effects were considered in assigning the final errors in column 11, Table 12.1,
as we considered in Section 11.2. Errors were combined to find the final uncertainty reported,
in much the same way. The uncertainties in the quantities Ut and tset/ Uel , used in the mUl-
tiple scattering analysis, were assumed to be about 20 percent here, introducing from 7 to 10
percent uncertainty in Oin, due to each of these uncertainties. Corrections were made for the
counter asymmetry effect, using Eq. 6.34, with A measured as 0.976 and $2 estimated to be
0.1. In general, all corrections made to these data were a larger percentage of the final
answer than comparable corrections in Chapter 11.

12.3 Conclusions

As in the previous chapter, it is very apparent from the results (Table 12.1) that one
must make the multiple scattering analysis to obtain a reasonably accurate cross section.
Column 9 values (evaluation using Eq. 1.1) differ even more percentage-wise from the correct
answers for this work than they did for the “28” counter results. As observed in Chapter 11,
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the evaluation of the data with the multiple scattering theory gives essentially one cross sec-
tion independent of shell thickness, while the exponential theory (Eq. 1,1) does not.

If one compar,es the final cross sections in column 11 of Tables 11.1 and 12.1, it is
evident that the Table 12.1 values are considerably less (a factor of 2 or more in most cases).
However, 70 percent of the counts in the “37“ detector come from the same neutron energy
region in which the “28” detector is sensitive. The low “37” cross sections, therefore, clearly
imply that most of the inelastic scattering of neutrons above the “28” threshold will lead to
energies between the “37” and “28” thresholds.

Let us now denote, as usual, the neutrons above the “28” threshold as group 3, those be-
tween the “37” and “28” thresholds as group 2, and those below the “37” threshold as group 1.
Then the small “37” inelastic cross section indicates that the number of neutrons in group 2
in the shell must increase at the expense of group 3 neutrons as the thickness of the shell in-
creases. One would, therefore, expect to observe a cross section which depends on shell
thickness even after the multiple scattering analysis, but again, as shown in Chapter 11, this
does not happen. We have shown in Section 8.5 that this experimental fact forces us to con-
clude that there is an approximate relation between the various inelastic cross sections, as
given by Eq. 8.37.

The significance of the “37“ counter measurements may be explored further using the
three group method of Chapter 8. The analysis of the “37” data using this theory is given in
Chapter 14.

In Fig. 12.1 the final cross section results (column 11, Table 12.1) are plotted vs A7S.
Errors indicated are the absolute errors in column 11. Relative errors between cross sections
for the various elements are less. Again, the magic number nuclei have cross sections which
do not fit with the general cross section trend for the rest of the elements.
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Chapter 13

ANALYSLS OF EXPERIMENTAL DATA OBTAINED WITH
A12T(n,p)Mg2’ THRESHOLD DETECTOR

The pertinent data and the cross sections obtained from the work with the A127(n,p)Mg27

detector are presented in this chapter. Again, we point out that the final “inelastic cross sec-

tions” are average values for removing fission spectrum neutrons that are above the effective

threshold. There are essentially three mechanisms:

(1) Energy loss during elastic scattering.

(2) Capture, such as (n,y) and (n,p).
(3) True inelastic scattering to some energy below the effective threshold. This process

may include some (n,2n) reactions.
The numbers in column 10, Table 13.1 include all three of these processes, and those in

column 11 include only the second and third. The average energy of the detected neutrons is
about 5.5 Mev, and the effective threshold is about 5 Mev.

13.1 Table of Cross Sections

Table 13.1 for the A12r(n,p)Mg27 detector is analogous to Tables 11.1 and 12.1 for the U2Sa
and Np23?detectors, respectively. ‘l?lletotal cross seCtiOnS, cOIUmn s) were Obttined ‘rem ‘O

Nereson’s work. *8
Values for oet/uel were initially computed from the continuum theory of Weisskopf.* How-

ever, these did not agree very well with experimental data on angular distributions in this en-
ergy region. Therefore, the numbers in column 6 were obtained by extrapolation of the data of
Jurney and Zabela and of Walt and Beyster,a using the continuum theory values as a rough guide.

For further comparisons of inelastic cross sections, we have includ%d in column 12 inelas-
tic collision cross sections for monoenergetic 4.5 Mev neutrons obtained by Beyster, et al.10

13.2 Accuracy of Final Inelastic Cross Sections

The assignment of errors and the method of combining them was the same for this chapter
as for Chapters 11 and 12. The uncertainty ascribed to Ut was 10 percent and that to uet/uel

I was 20 percent. Because of the pronounced forward peak in the elastic scattering of these
higher energy neutrons, the resultant uncertainties produced in Uti are only about 2 percent
and 4 percent, respectively. This is an indication of the decreasing importance of multiple
scattering at the higher energies.

A correction was made for energy loss during an elastic collision, and an uncertainty of
50 percent of this correction was included, aa in Chapters 11 and 12. Since there was no “ob-
servable” angular asymmetry in the aluminum foils (Section 10.9), no correction was made for
this type of effect.
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13.3 General Remarks

In comparing columns 9 and 10, one sees that the error in cross section made by using
the simple exponential is between 5 and 10 percent. The geometrical corrections included in
column 10 are everywhere less than 1 percent, and the rms error in ah is caused mostly by
statistical uncertainties in the measured transmissions. Therefore, the errors in column 9
are mostly real, and result from not treating the multiple scattering correctly.

There are two further points of interest about these data:
(1) Figure 13.1 indicates that most of the magic number effect has disappeared at these

neutron energies.
(2) The absolute values of the inelastic cross sections of column 11 have approached a

magnitude of about ‘, Ut. In addition, they agree very well in absolute magnitude with the data
at 4.5 Mev. This indicates that the inelastic collision cross sections in this energy region are
relatively independent of neutron energy and that most of the inelastically scattered neutrons
fall well below the threshold.
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Chapter 14

ANALYSIS OF EXPERIMENTAL DATA BY TWO-GROUP METHODS

In this chapter, the group methods of Chapter 8 will be used to determine cross sections
for scattering between energy groups. This method will be discussed for the iron and cadmium
measurements. A more approximate method will be used to estimate these cross sections in
other cases.

14.1 Two-group Analysis of Iron

The energy groups selected for this analysis are 0.4 to 1.4 Mev, called group 2, and 1.4
Mev to infintty, called group 3. The unknowns to be determined are a~z and (a~ + u~). The total
~, on the other hand, is considered as already determined from the one-group analysis with a
“28” counter reported in Chapter 11, and once a~z is determined, a~l follows as # - aaz. a; is
estimated for this analysis and is quite small. Now Eq. 8.35, together with Eqs. 8.33 and 8.31,
gives the transmission observed with a “3?” counter in terms of the two unknowns, a~2 and
up + a;, and of many “known” parameters, such as air and a~, the efficiencies of a “37”
counter for neutrons of groups 2 and 3, respectively, and the fraction of the fission spectrum
in each of these groups. The fl, fz and f~ values are 0.098, 0.341, and 0.561, respectively, and
P~T/P~T is 0.’70.

Considering all these parameters as known, we may assume values of a~ + a$ and calcu-
late the corresponding value of a~z from the measured “37” counter transmission. This gives
a plot of a~z vs cr2h+ al for each transmission measurement (Fig. 14. 1). This procedure is then
repeated for each shell thickness used in the measurements.

For each shell, a different line in Fig. 14.1 is obtained. Figure 14.1 fifers in particular
to iron, for which three shell thicknesses were measured. We have plotted for each shell the
upper and lower cross section limits allowed by the statistical errors in the transmission ex-
periment. The region of the graph which is permitted by ~ the shell transmission experi-
ments has been shaded in Fig. 14.1. It is reasonable to assume that the correct values of the

h +4 fall somewhere within this shaded area. This then places bounds onunknowns a82 and az
h + a~,ag2 and a2

Auxiliary information is necessary to determine some of the “known” cross sections.to
put into Eq. 8.35. The neutrons in energy group 3 have the cross sections for iron given in
Table 11,1, since they were measured with a “28” detector for which the effective energy
threshold is 1.4 Mev. ~z is determined by numerical integration of the iron total cross section
between energies 0.4 and 1.4 Mev. The ratio a~t/u# is calculated from the 1 Mev elastic
scattering angular distribution of Walt and Barschall. 19 The ~~37~*detector sensitivities in

groups 2 and 3 (P~7 and P~f) are calculated from the fission cross section of Np2S7. The escape
probabilities required for the calculations can be read from Fig. 5.1. The results obtained
from the analysis are
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032 = 0.56 + 0.07

u~i = 0.13 & 0.07

(#’ +u~=O.28 *0.O’7 (14.1)

These cross sections are averages of the upper and lower limits permitted in Fig. 14.1,
and the errors are such that the cross sections may be anywhere in the shaded region. It
should be noted, however, that a much more accurate determination can be made of a certain
linear combination between the cross sections than of each individual cross section. For in-
stance, from Fig. 14.1 we see that

u~2- 1.07(u~ + u:) = 0.27 * 0.01 (14.2)

with a probable error about ~, of those in Eq. 14.1. The reason Eq. 14.2 is .SO well determined
is, of course, that this combination is most closely related to the inelastic cross section meas-
ured with a “37” detector.

Since the average neutron energy in group 2 is about 1 Mev, a? + a; can be compared with
recent monoenergetic work at this energy. The inelastic collision cross section at 1 Mev is
0.40 * .03 barns, io which is somewhat above Uzti+ cr2c.This is understandable since some of the
inelastic collisions of group-2 neutrons do not actually remove neutrons from group 2.

14.2 Two-group Analysis of Cadmium

If one performs the two-group analysis of the “37” counter transmissions of cadmium
spheres, the results shown in Fig. 14.2 are obtatned. The same pieces of auxiliary information
are required here as in the two-group iron analysis and these data are obtatned from the same
sources. The measured cross sections are

092= 0.92 + 0.35

(J21= 0.60 + 0.35

@ + u; = 0.56 & 0.35 (14.3)

Uncertainties are such that all cross sections in the shaded region of Fig. 14.2 are permissible.
The quantity which is accurately determined, in analogy with Eq. 14.2, is

rJS2-1.06 (up + u;) = 0.33 + 0.03 (14.4)

A recent measurementio of the inelastic collision cross section of cadmium at 1.0 Mev

gives 1.04 & 0.08 barns. Any real difference between this value and@ + C# given above could

again be attributed to inelastic processes which do not remove the neutrons from group 2.

14.3 Two-group Analysis for Other Elements

‘n + u: for elements other than iron and cadmium are deter-Estimates of a32, Ual, and U2
mined by a method which is less rigorous than that of Chapter 8. One relationship which we
can use ts based on the cross sections measured with the “28” detector

A similar sort of equation exists for the “37” detector cross section
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Fig. 14.2— Plot of crs2for cadmium as a function of UY + & for three thicknesses of shell.

- 122 -



where B:’ is the probability that a Np 297detector count is from a group 3 neutron, B~7 is the
probability it is from a group 2 neutron, and u:’ and u~qare the average fission cross sections
of the “37” detector for groups 2 and 3, respectively. B~7 and B~r can be defined in terms of
detector quantities used previously in this report.

Equation 8.37 is then used as the thtrd equation. As will be remembered, this equation ex-
presses the fact that u% is apparently independent of shell thickness, a fact which cannot be
established with great accuracy.

The best estimates of Uaz, cql, and IJ2ti + o; are given in Table 14.1. It should be understood
that the uncertainties for these cross sections are much greater than those in the previous sec-
tions. Recent inelastic collision cross section measurements at 1 Mev are given also in Table
141 for comparison. 10 The tabulated values of Uzh + U$ are consistent with the measured 1 Mev.
cross sections.
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TABLE 14.1—INEMSTIC CROSS SECTIONS FOR FISSION SPECTRUM
. NEUTRONS FOR GROUPS 2 AND 3

Element

Al

Ti

v

Ni

m

Zn

Zr

Ag

Sn

w

Au

Pb

Bi

U3 ~ , barns

0,27

0.48

0.49

0.61

0,78

0.82

0,60

1.19

0.87

1.68

1.51

0.60

0.61

03L, barns

0,05

0.08

0.09

0.10

0.12

0.13

0.16

0.4?

0.25

0.55

0.53

0.11

0.12

a~ + a~j barns ain at 1 Mev, barns

0.07 -0.01

0.17

0.22

0.27

0,28

0.27

0.25

0.84

0.30

0.90

0,85

0.17

0.17

0.19

0.10

1.8

0,04

1.9

0.2

0.12
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Chapter 15

CONCLUSIONS

The most striking result of the measurements with “37”, “28” and aluminum counters is
that the inelastic cross section increases strongly as the threshold is increased. For instance,
gold has inelastic cross sections of 1.0, 2.04, and 2.68 barns, respectively, as measured by the
three counters, and for iron the corresponding numbers are abut 0.28, 0.69, and 1.2 barns.
The group analysis of Chapter 14 shows further that the inelastic scattering cross section for
group 2 neutrons is not substantially clifferent from that measured with a “37” counter.

This increase of Oin with neutron energy is entirely reasonable: At low energieS, o~y a

few levels are available for inelastic scattering, while for high energies there are many. In
addition, our threshold detectors indicate only part of the inelastic scattering. For instance,
the “28” detector measures effectively all neut=s above 1.4 Mev. Some of these, when they
suffer an inelastic collision, will still be detectable by the “28” detector. Thus, the measured
cross section gives only a lower limit to the total average inelastic cross section.

The importance of this effect is shown by the comparison of Uzh + u:, as measured by the
“37” detector, with the inelastic cross section for 1 Mev neutrons, as shown in Table 14.1: The
1 Mev collision cross sections for silver, cadmium and gold are roughly twice U2‘i+~(the
other measurements are less accurate because the cross sections are small). Taking this ef -
feet into account, it is likely that the actual inelastic cross eection of a neutron around 2 to 3
Mev is considerably higher than the measured “28” cross section and may be as high as the
measured aluminum cross section.

This effect is probably not important for the aluminum measurements. For, according to
the statistical theory, the energy of neutrons after inelastic scattering is given by a Maxwell
distribution, and experimentally, the nuclear temperatures are of the order of 1 Mev or le~s.
Therefore, very few inelastically scattered neutrons will remain detectable by aluminum. Thus,

we expect that the aluminum counter indicates essentially the total inelastic scattering for neu-
trons which have predominantly energies between 4 and 8 Mev.

The inelastic cross sections measured with the aluminum counter represent a rather
smooth function of atomic weight, with only slight dips for magic elements (page 126). More-
over, the cross section is nearly proportional to A% (Fig. 13.1). These results m=e it likely
that in this energy range the inelastic cross section is very nearly the geometric cross SeCtiOn

of the nucleus.
The “28” measurements, as we have mentioned, represent lower limits to the inelastic

cross section in the range from about 1.4 to about 4 Mev. The total inelastic cross section for
neutrons in this range may well be as high as the geometric cross section, for heavy and non-
magic nuclei. The lower limits given by the “28” measurements themselves are about 75 per-
cent of the aluminum results for these nuclei. This sets severe limitations on the transparency
of a nucleus which can be admitted in a theory like that of Feshbach, Porter, and Weisskopf
(the “clouded crystal ball”) ?0 It should be remembered, however, that the inelastic scattering
is far less sensitive to transparency than the elastic, so that interesting interference effects in
the elastic scattering are by no means excluded by our result that the inelastic scattering has
“nearly” the geometric cross section.
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At lower energy, the inelastic cross section is decidely lower than geometric. This is best
shown by the measurements with 1 Mev neutrons reported in Table 14.1, which indicate a cross
section of about 1.0 barns for gold, about 70 percent of the “geometric” cross section measured
with the aluminum counter. The main cause for this is presumably that few excited states exist
for gold below 1 Mev. However, it may indicate in addition some transparency of the nucleus,
aa required by the “clouded crystal ball” theory.

The magic nuclei have smaller cross sections than the neighboring, non-magic ones at all
energies. The effect is most marked at low energy. For example, at about 1 Mev, lead and bis-
muth have ain about 10 percent of that of gold. For the aluminum counter, the cross sections of
lead and bismuth have increased to about 85 percent of that of gold, while for the “28” counter
the ratio has the intermediate value of about 35 percent. This behavior makes it almost certain
that the small cross section is due to the absence (or scarcity) of low-lying excited levels in
magic nuclei, At high energy, the inelastic cross section for these nuclei will be more nearly
that of their “normal” neighbors. An effect may persist, however, because the magic nuclei
may be somewhat more tightly packed than the other nuclei, and thus have a smaller geometric
cross section.

Tin shows the magic effect somewhat less than the doubly-magic lead and bismuth. Iron
has a rather low inelastic cross section at 1 Mev, but already for the “28” detector the effect
has almost disappeared. This nucleus is known to have a rather high first excited level.

Information on the energy distribution of the inelastically scattered neutrons is given by
the group analysis of Chapter 14, especially Table 14.1. Of the neutrons of group 9, the vast

majority are scattered into group 2, and only a small fraction (about 25 percent on the average)
are degraded into group 1, i.e., below 0.4 Mev.

To get similar information at higher energy, we may divide the neutrons above 1.4 Mev
into two groups: group 3 from 1.4 to 5 Mev, and group 4, 5 Mev and above. Then the fact that
the apparent inelastic cross section measured by the “28” detector is independent of shell
thickness gives rise to a relation similar to Eq, 8.37, viz.

( d-f)C#
& Gi ((y42+ 04,) + q~ 1- (15.1)

If we now assume that the efficiency of the “28” detector is the same for groups 3 and 4, we ob-
tain

(15.2)

The cross section measured by the “28” detector is then U$h, regardless of the neutron spec-
trum. The difference between the cross sections measured with a “28” and an aluminum detec-
tor is U48, The experiments then indicate that about 25 percefit of the neutrone of group 4 go in-
to group 3.
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