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RADIATION TRANSPORT

October1, 1982 - March 31, 1983
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w
R. D. O’lkll

ABSTRACT

Research and developmentprogress in radiationtrans-
port by the Los Alamos National Laboratory’sGroup X-6 for
the first half of FY 83 is reported. Included are tasks in
the areas of Fission Reactor Neutronics~Deterministic
Transport Methods, and Monte Carlo RadiationTransport.

INTRODUCTION

Research, development,and design analysis performed by Group X-6, Radia-

Transport,of the Applied Theoretical Physics Division during the first

of FY 83 are described in this progress report. Included is the unclas-

sified portion of programs in the Group funded by the U.S. Departmentof Energy

(DOE). Our classifiedwork is reportedelsewhere. Some of the reportedwork

was performed in direct support of other LaboratoryGroups.

This report is organizedinto four sections: (i) Fission Reactor

Neutronics, (ii) DeterministicTransportMethods, (iii)Monte Carlo Radiation

Transport,and (iv)Cross Sections and Physics. Technicalprogram management

for these areas is provided by William L. Thompson, Group Leader for Group X-6,

and by Associate Group Leaders R. Arthur Forster, R. Douglas O’Dell~ and

Patrick D. Soran.*

*AuthorS of individualtask reports are listed in parentheses after each task
title. Authors not in Group X-6 have their affiliationalso noted. Readers
are encouragedto contact these cognizant technicalpersonneldirectly for
additionalinformationor further published results.



Effective October 1, 1982, Group T-1, Transport and Reactor Theory, was

joined with Group X-6, RadiationTransport. The progress reports previously

provided by Group T-1 will no longer be publishedunder the title of Transport

and Reactor Theory, but will hereafter be included in the Group X-6 progress

report entitled “RadiationTransport.” Because of the transitionin merging

Groups T-1 and x-6 during FY 83, only two progress reportswill be issued for

FY 83 - each coveringa six-monthperiod. Commencingwith FY 84, progress

reportswill be issued quarterly.

II. FISSION RRKTOR NE~RONICS

The Fission Reactor Neutronicseffort in Group x-6 is involved in the

developmentand testing of new reactor-orienteddeterministictransportcodes

and methods; in existing code maintenance,improvement,and support;and in

selected applicationsof our codes to civilian nuclear analysis problems.

We report our progress on the existing codes ONEDANT and TWODANT.

Includedare reports on the general release of ONEDANT to users world wide, on

improvementsto the ONEDANT/TWODANTinput module, and on improvementsto both

the ONEDANT and TWODANT codes themselves. A report is provided on validation

testing of the TWODANT code and on its subsequentrelease to Argonne National

Laboratory (ANL) for trial usage. We also report on the implementationof the

AWL diffusioncode DIF3D at Los Alamos. Under our new code developmenteffort,

we report on progress in the developmentof the new triangularmesh code

TWOHEX.

A. ONRDANTCodeRelease(F. W. Brinkley,Jr. and D. R. Marr)

The ONEDANT1 code package for use on CDC-7600 computerswas sent to the

National Energy Software Center at Argonne and to the Radiation Shielding

InformationCenter (RSIC)at Oak Ridge. A CDC-7600 version was also sent to

Jim Morel at Sandia National Laboratories(Albuquerque)and a special version

was sent to J. Stepanek at the Swiss Federal Institutefor Reactor Research.

An IBM version of ONEDANT was sent to Cy Adams at Argonne National

Laboratory (ANL). The code is now operationalat ANL in both free-standing

form and as part of the ARC system. A small number of changes in the code were

requiredin implementingthe code package in the IBM computingenvironmentat

ANL.

2



B. oNEDANT/TWODANTInputModuleImprovements(F. WC Brinkley,DO R“ ~a~~s

and R. D. O’Dell)

A cross-sectioncheck has been added to the generalizedinput module used

by ONEDANT and TWODANT.2 Now, the run will be aborted if the input total cross

section of an isotope is found to be zero. A void cross section (i.e. all

cross sectionszero) will, however, be accepted. This check applies only to

those cases where the cross sectionsare from cards or card images; it does not

apply to ISOTXS or GRUPXS.3

Two changeswere made to the cross-sectfonprocessingsection of the input

module to accommodatethe processingof ISOTXS files as commonly specifiedat

ANL. The first change generates the total cross section by summing the partial

cross sections found on an ISOTXS. It is used only when the total cross

section is not includedon the ISOTXS file, a procedurenormallyused at ANL.

The second change ensures that cross sections are balancedbefore they are

passed to the solver module. If the input cross sectionsare not balanced, the

code now modifies them within group scatteringcross sections seen by the

solver module so that balance is preserved. A warning message is provided for

the user when this procedure is used.

The followingadditionalchangeshave been made to the generalizedInput

Module:

● According to the standardsset by the Committee on Computer Code

Coordination,3the ISOTXS and GRUPXS files do not contain the 2L+1

factor in the higher order scatteringcross sections. Prior to this

time, the generalizedinput module always added the 2L+1 term to the

cross sections that it provided to the solver module when the cross

sectionswere from either ISOTXS or GRUPXS. It has now been found that

there do exist ISOTXS files in which the 2L+1 term has erroneouslybeen

included. In order to properly process these nonstandardfiles, a new

option has been added to the 12LP1 input variable. Setting it to minus

one will force an override of the standard treatmentallowing the

scatteringcross sections from nonstandardfiles to be properly passed

on to the Solver Module.

● A bug was found in the GRUPXS cross-sectionprocessing. If the file

had any isotopewith a CHI matrix, the run would abort. NOW the ~1

matrix is properly skipped and processingcontinues.



. AdditionalCHI input is now allowed. Prior to this time, only the zone

wide CHI specifiedin the Solver input (Block V) could be used. Now

the file wide chi present on an ISOTXS or GRUPXS file will be used

unless it is overriddenby the zone wide CHI. Further, if the cross

sectionsare from either

input in Block 111 using

can be overriddenby the

ODNINP or XSLIB, a file wide vector CHI may be

the CHIVEC= array. Again, this file wide chi

zone wide chi supplied in Block V.

● The geometrymodule can now write a standard GEODST file for the

triangulargeometriesdenoted by IGEOM=9and NTRIAG either zero or

one. These are both parallelogramdomains with, respectively,a 120°

or a 60° angle at the origin. This option is intendedfor use with the

ANL code DIF3D and with the forthcomingLos Alamos code TWOHEX.

● In the mixing input, isotopes from the library are usually specified

with a hollerithname. The name in the mixing input must correspond

exactly, characterby character,to the name on the library in order to

be accepted. Some librariescontain leading blanks in the names; this

forces the user to include those blanks in the mixing free field input

by using quotes. This nuisancehas been eliminated;now, the code

strips leadingblanks as it reads the names from the library and the

quotes are no longer needed.

c. ONEDANT/TWODANTImprovements(D. R. Marr)

The cross-sectionprint in hth ONEDANT and TWODANT has been modified to

indicatewhether the 2L+1 Legendre expansion factor is included in the printed

higher-orderscatteringcross sections. The printed cross sectionsare now

also compatiblewith the original library form, that is, if the 2L+1 term was

included on the original library, it is now includedin the print and con-

versely.

D. TWODANT Code Improvements(D. R. Marr and F. W. Brinkley)

TWODANT has been modified to use the transportcross section from the

ISOTXS file, when available. The transportcross section is used only to form

the diffusioncoefficientfor the first diffusioncalculation. The subsequent

convergedtransportsolution is independentof this transportcross section,

but the change allows the first diffusion calculationto be comparedwith the

results from diffusiontheory codes.
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Another inhomogeneoussource option has been added to TWODANT. Users may

now input an energy vector (spectrum)togetherwith a single full spatial

matrix with the resultingenergy-spacedependentsource being the product of

the energy spectrumand the spatial matrix.

The inhomogeneoussource calculatedcapabilityin TWODANT was tested and

validatedby comparingseveral test problem runs with TWODANT-11results.

The input of the ZONES array in two-dimensionalproblemswas changed to

make the ZONES array a stringed array, i.e., ZONES (IM;JM). This makes the

code consistentin the form of all two-dimensionalinput arrays.

An additionalnegative flux fixup test was added to the code at Dr.

Alcouffe’ssuggestion. The test eliminatedsome convergenceproblemswe had

experiencedwith certain problems.

In the diffusioncalculationportion of

manipulations. We were quite concerned that

exportabilityproblems. With Dr. Alcouffe’s

TWODANT we had previouslyused bit

such bit manipulationsmight cause

assistancewe were able to remove

these manipulationswith a resultingreductionin computationaltime.

It was observed that the generationof the source-to-groupwas relatively

time consuming. An IF test was removed with a resultant 5% decrease in running

time. In addition, it was noted that the source-to-groupcalculationinvolved

a large number of SCM-LCM transfers.

two-level computer, there is a small

large core memory (LCM). On IBM and

large fast core. Such computersare

Recall that on the CDC-7600,a so-called

fast core memory (SCM) and a rapid access

CRAY computers there is no LCM but only a

called single-levelmachines. To make

such single-levelmachines appear like the two-levelCDC-7600,a portion of

fast core is used to simulateLCM. LCM-SCM data transfersare thus simulated

by actually performingfast core to fast core transfers. Although such

core-core transfersare actually unnecessary,this proceduresimplifiesthe

exportingof two-levelcomputer codes to single-levelcomputingenvironments.

On the CRAY single-levelmachine, core-core transfersare extremely rapid and

they essentiallycost nothing. On IBM computers,however, core-core transfers

can be quite costly. Since such transfersare, in fact, unnecessaryon

single-levelcomputerswe did some selective recodingso that on single-level

computers, insteadof effectingcore-core transfers,we simply change the core

pointers. Some 30-50% of our core-coretransferson single-levelcomputers

have been eliminatedby using this pointer change procedure in portions of the

source-to-groupcalculations.
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The periodicdump procedurehas been changed so that the user may input

the time between dumps. The dumps are only of the scalar fluxes. We also

modified the code so that the code shifts the dumps downward so that a mximum

of the three most current dumps is in the local file space.

A new iterationmonitor has been installed. It provides a print very

similar to that from ONEDANT.

For adjoint problems,all printed output now shows the direct group number

so that the user no longer needs to invert the group numbers printed in the

output as was previouslyrequired.

In a major effort, TWODANT is undergoinga thorough internaloverhaul.

The goals are threefold:

● Eliminatethe debris left from the developmentprocess.

9 Make the code more amenable to future improvements.

● Improve the characteristicsof the code that allows it to be used as

a test bed for new 2-D discrete-ordinatesmethods.

Expandingon this last goal, the ONEDANT code system was originally

conceivedas a very modular one, one in which the flux calculationwas isolated

from the Input and Edit sections. The flux calculationwas done in a section

called the solver module. The goal was to be able to replace the Solvernmdule

with new Solvermodules, using new or differentmethods, while minimizing

changes to the Input and Edit portions of the code. Thfs process was used

successfullyin the developmentof TWODANT. The 1-D Solver module of ONEDANT

was replacedwith a Solvermodule formed from the TWO-DA code. NOW, we would

like to extend this philosophydeeper into the 2-D Solver module so that

installationof new spatial di.fferencingmethods would requireminimal changes

to areas outside of the innermostflux calculationalareas. Very little of

this internaloverhaul should be apparent to the user.

E. ValidationTestingof the PreliminaryProductionVersionof IWODANT
(D. R. kCOy*)

As part of the TWODANT code validationeffort, two problemswere received

from Argonne NationalLaboratory (ANL) for analysis. TWODANT is our new

two-dimensional,time-independent,discrete-ordinatescode using diffusion

syntheticacceleration. The two problemswere (i) an (x,y) geometry ZPPR

*p~esent address: Group X-5, Los Alamos NationalLaboratory.
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Assembly 11 test problem and (ii) an (r,z) geometryheterogeneouscore problem

with a great deal of external structurewhich has been used at ANL to determine

shieldingrequirementsand detector responses. The problemswere analyzed on

the Los Alamos CRAY-I computers. Each of these problemsand the results of our

analysis are describedbelow.

The ZPPR–11model problem is a nine energy-group,(x,Y) geometrymodel

using a 60x120 spatialmesh. The geometrymap of the problem is shown in

Fig. 1. Several analyseswere performedon this model problem and a summary

results is shown in Table 1. The various runs shown in the table are

(i) TWODANT S4P0 using vectorizedline successiveoverrelaxation(LSOR) for

the syntheticdiffusioninner iterationsand Chebyshevaccelerationfor the

of

diffusionouter iterationswith a very tight convergencecriterionof E = 10-’,

(ii) the same as (i) but with a convergencecriterionof 10-5, (iii) TWODANT

S4-P0 with a convergenceof 10-5 but using our multigrid (MG) method for

solving the diffusion inner iterations (insteadof LSOR) and with Chebyshev

accelerationfor the diffusionouter iterations,(iv) TWODANT diffusion
-5calculationonly using LSOR on the diffusion inner iterations,& = 10 ~

(v) TWODANT diffusioncalculationonly using MG on the diffusioninner

iterations,& = 10-5, and (vi) DIF3D4 using vectorizedLSOR on its inner

iterationand Chebyshevaccelerationon its outer iterations,s = 10 .-5

331 y,cm.

nl

1
a

Eu

-1
x’

o
0

Fig. 1. ZPPR-11 model problem.



TABLE1

SIM4ARYOF ZPPS-11K)DEL PROBLEMESSOLTS

MAX.
POINTWISE NUMBEROF OUTERITERATIONS CRAY-I
FISSION CPUTIME

METHOD k ERROReff TRANSPORT DIFFUSION (See)

‘IuoDANTa
(LSOR$ 0.981359 301X1O-7 10 161 434
c=lo-

TWODANTa
(LsOR\ 0.981359 3.1X10-5 6 39
E=lo-

130

TwoDANTa
(MC) 0.981358 6.1X10-5 6 42
C=10-5

112

TwoDANTb
DIFFUSIONONLY 0.970452 9.3X1O-6 31 53
(LSOR)

TwoDANTb
DIFFUSIONONLY 0.970452 1.1X1O-5 39 31
(MG)

DIF3DC
DIFFUSION 0.976024 8.2x10-b 22 46

as4-Po

bc-lo-s

cC=lD_s,vectorized LSOR

Several observationscan be made regardingthe results shown in Table I.

First, the eigenvaluesfrom TWODANT (diffusiononly) and DIF3D differ because

the diffusionequation used in TWODANT solves a five-pointvertex-differenced

diffusionequationwhile DIF3D uses a five-pointcell-centereddifference

equation. As the mesh spacing is refined, the differencein results from the

two methods is reduced. A second observationis that running TWODANT with a
-7very tight convergence,e.g., 10 , accomplisheslittle other than consuming

much more computer time. The eigenvaluesfrom the 10-5 and 10-7 are both

identicalto six significantfigures,but the 10-7 run took nearly four times

8



longer than the 10-5 run. It is our general observationthat because of the

convergencecontrolsextant in the preliminaryversion of TWODANT, any conver-

gence criterionsmaller than 10-5 constitutesoverkillwith very little practi-

cal improvementin accuracy but with substantialincreasesin computer run

times. Next, we observe that the multigrid diffusionmethod gives the same

results as the LSOR diffusionmethod. Althoughnot indicatedby the results of

the ZPPR-11 analysis,the multigridmethod can be markedly superior to the LSOR

method in many problems,e.g., problems containingvoid cells. Finally,we

note that on the Los Alamos CRAY-I computers,a full S4-P0 transportcalcula-

tion can be effectedon the ZPPR-11 problem in about three times the time

requiredfor a diffusioncalculation. Historically,older two-dimensional

transportcalculationsnormally required perhaps 20 to 50 times as much com-

puter time as diffusioncalculations.

The successfulanalysis of the ZPPR Assembly 11 model problem with TWODANT

fulfilledone of our DOE physics milestones for FY 1983.

The second ANL test problem is a heterogeneouscore model in (r,z) geome-

try. The core is surroundedby a very large amount of sodium, steel, and

structure,so that it is essentiallya very deep penetration,shielding-type

problem. The geometrymap is shown in Fig. 2. The problem used 12 energy

groups and a 104x195 spatial msh. Even though the total number of mesh cells

is over 20 000, the problem is still severely undermeshed. A summary of

results is shown in Table II. The various runs whose results are shown are

(i) TWODANT S4-P0 using vectorizedLSOR and Chebyshevaccelerationon the

diffusion inner- and outer-iterations,respectively,with a convergence

“, (ii) same as (i) but with multigrid accelerationon thecriterionE = 10

diffusion inner iterations,(iii) TWODANT diffusiononly with LSOR on the

diffusion inner iterations,c = 10-5, (iv) same as (iii) but with MG on the

diffusion inner iterations,and (iv) DIF3D diffusionwith nonvectorizedLSOR on

the inner iterations,c = 10-5.

For this core-shieldingproblem, it is seen that the TWODANT diffusion

only calculationsran significantlyfaster than the DIF3D diffusion calculation

presumablydue to the lack of vectorizationin DIF3D for this problem anal-

ysis. The TWODANT MG diffusion only run was significantlyfaster than the

TWODANT LSOR diffusiononly calculationindicatingthe superior performanceof

the multigridmethod over successiveoverrelaxationfor acceleratingthe
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&
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l-l”
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Fig. 2. Heterogeneouscore–shieldingmodel problem.

diffusion inner iterations. Just as in the ZPPR-11 analysis,the TWODANT

diffusionkeff value differs from the DIF3D diffusionkeff value because of

the d5.fferentdifferencingschemes in the two codes. That this problem is

severelyundermeshedwas evidencedby the fact that the diffusionanalyses

yielded negative scalar fluxes in several locationsand also by the large dif-

ference in keff (1.8%)between the vertex–differencedand cell-centered-

differenceddiffusionresults. Nevertheless,it was this meshing that was

specifiedand that we used.

LSOR and MG on the diffusion

10

The two transportcalculations,Sk-Po, using

accelerationinner iterationsyielded keff



TABLE II

SKRU6RYOF EEISROGSHSOUS~RE - SEIXLDINGPSOBLSUmsa~

NUM8EROF OUTERITEMTIONS CRAY-1

METHOD
CPUTIME

keff TRANSPORT DIFFUSION (See)

TWODANT8
(LSOR) 1.04965 5 34 740

IWODANTa
(MG) 1.04966 5 41 552

TWODANTb
DIFFUSIONONLY 0.99635 25
(LsOR)

150

TWODANTb
DIFFUSIONONLY 0.99635 21
(MG)

48

DIF3DC
(DIFFUSION) 1.01466 21 602

as4-Po,c = 10-.4

b& = 10-5

cNonvectorized LSOR,c = 10-5

values some 4-5%

the MG transport

roughly a factor

different than diffusion theory. The running time penalty for

calculationcomparedwith the MG diffusion calculationwas

of 12 - much higher than the factor of 3 to 4 observedwith

the ZPPR-11 calculation. This large difference is probably explainedby numer-

ical difficultiesassociatedwith the coarse meshing used for the heterogeneous

core-shieldingproblem and the nanner in which iterationconvergenceis defined

in TWODANT. Using the LSOR version of TWODANT the Sq-Po transportcalcula-

tional time was 5 times that required for a diffusiononly calculation. The

absolute run times for the LSOR TWODANT, however, were considerablylonger than

the correspondingtimes for the MG version of TWODANT. Actually, the fact that

the transportcalculationsheld togetherand were successfullycoupletedis

remarkabledue to the coarse meshing

stabilityof the diffusion synthetic

of the problem. This fact attests to the

accelerationmethod as applied in TWODANT.
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1n conclusion,then, we have conductedvalidationtests on two problems

providedby ANL using preliminaryproductionversions of TWODANT. The tests

showed that the diffusionaccelerationemployed in TWODANT is an effective

method and the transportcalculationscan be performedwith TWODANT with much

more acceptabletime penaltiesrelative to diffusioncalculations. Further,

the validationtests have confirmedour feelings that the use of the multigrid

method on the diffusionaccelerationinner-iterationsis more stable and as

fast or faster than the use of line successiveoverrelaxation.

F. Exportof TWODANTto ArgonneNationalLaboratory(F. W. Brinkley,Jr.)

At the request of Argonne National Laboratory (ANL), it was agreed to pro-

vide them with a preliminaryproductionversion of our two-dimensional,time-

independent,diffusionsyntheticaccelerated,discrete-ordinatescode TWODANT.

It was also agreed that TWODANTwould be validated prior to shippingby using

the code to calculatetwo test problems to be providedby ANL. These problems

were subsequentlyreceivedand the test calculationsperformedsuccessfully

with TWODANT. The results of this validation testing are reportedin Sec. 11.E

of this progressreport.

As a result of our validationtesting, it was decided to drop further

developmentof our regular TWODANT which used a line successiveoverrelaxation

(LSOR) techniqueon the diffusion inner iterationand, instead,to focus our

attentionon our version of TWODANT which used the multigrid (MG) method on the

diffusion inner iterations. This multigrid version of TWODANTwas thus

selected for exporting to ANL.

Since the code is used on the CIUY-1 and CDC-7600computersat Los Alamos,

the preparationof TWODANT for use in ANL’s IBM Computingenvironmentrequired

that the code be processedto create an IBM-compatibleversion. Our prior

experiencewith exportingONEDANT to ANL proved very valuable in convertingour

CRAY/CDC-7600version to an IBM version.

Since both ONEDANT and TWODANT use the same Input and Edit Modules and

differ only in their Solver Modules, C. H. Adams of ANL requestedthat both

Solver Modules be combinedinto a single overall ONEDANT/TWODANTcode package

for ANL. This was done and the package transmittedto Argonnewhere it was

readily compiledwith only a few minor changes.

Upon executionof the code package at ANL, however, a subtle but serious

problem was uncoveredwhich took several days to uncover and correct. The

12



problem was traced to the fact that the IBM compilerpasses argumentsby value

if the argument is not thought to be an array. The problem can be illustrated

by example.

CA.LLMULTIG (A(LIx))
.
●

●

END
SUBROUTINEMULTIG (IX)
[DIMENSIONIx(1)]
.
.

&LL MULT (IX)
●

●

.
END
SUBROUTINEMULT
DIMENSION IX(1)
.
●

&TD

(Ix)

In our typical Los Alamos coding, the statementDIMENSION IX(1) enclosed in [ ]

in subroutineMULTIG is not requiredand thus was not present. Without this

statement in an IBM environment,however, the followingoccurs. When

subroutineMULTIG is called, the address of A(LIX) is passed to the subroutine

as IX. When subroutineMULT is called from MULTIG, IX has not been defined as

an array so the IBM Compiler passes the value of IX to MULT instead of the

address of IX. SubroutineMULT then tries to use the value of IX as an address

which is totally incorrect. All that needed to be done to correct this is add

the DIMENSION IX(1) statementindicatedin brackets to MULTIG. Several

routines in our TWODANT Solver Module had to be correctedin this manner.

Once this problem was corrected,the ONEDANT/TWODANTpackage executed

properly at ~. The package is now being used as a productiontest at

Argonne.
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G. DIF3DImplementationat Us Alamos(F. W. Brinkley,Jr., and D. R. McCoy*)

During this reportingperiod an improved CRAY version of the Argonne

National Laboratorydiffusioncode DIF3D4 was receivedand made operationalon

our Los Alamos CRAY-1 computers. The implementationalso includedthe intro-

duction of graphicswith DIF3D under DISSPLA. Only a few minor problemswere

encounteredin inking the code operational, and these were readily corrected.

H. TUOHEXLkwelopment(W. F. Walters)

Three test problemshave been analyzed using both the DITRI scheme as

implementedin the code THREETRAN (hex,z)5aridthe triangularlinear character-

istic (TLC) scheme as implementedin the code TWOHEX which is still under

development. The first two problemsare simple one-groupproblemsused to test

the accuracy and rate of convergenceof the TLC method. The third problem is a

four-groupproblem describedin Ref. 6. This problem is used to examine the

effect of Chebyshevaccelerationon outer iterations.

The first problem is a simple one-energygroup problem. The domain is the

hexagon shown in Fig. 3. The cross sectionsare also indicatedin this figure.

I Vlf I
T %timmm

Fig. 3. Test problem 1.

*presentaddress: Group X-5, Los Alamos NationalLaboratory.
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The graph in Fig. 4 indicates the manner in which the eigenvalueconverges

as the size of the trianglesin the mesh is reduced. The height of a triangle

in the mesh starts at 6 cm and is reduced as indicated. From the graph it is

quite clear that the TLC scheme is far superior to the DITRI scheme in terms of

accuracy. Table III indicatesthat the TLC results are convergedwhile the

DITRI eigenvaluehas not yet converged. Of course, this is a severe high leak-

age test problem and is simply used to test the methods. The problem is not

meant to be characteristicof a reactor core.

Notice that these schemes do not converge to the same result for this

problem. This is due to the fact that the THREETRAN (hex,z) code and the

TWOHEX code use differentquadraturesets. The THREETRAN (hex,z) code uses the

90° rotationallyinvariantset used by TWOTRAN-11code.7 The TWOHEX code uses

a 60° rotationallyinvariantTschebyschev-Legendreset first describedby

Carlson8and used in the D1AMANT2 code.g The DITRI result is obtained using

the S6 quadraturewith 24 directions total. The TLC result is obtained by

Onc

O DITR1.604- \

\

.602

~ .. :&/

.598- 0

.596
I

0.0
I

?.0 4.0 6.0

Fig. 4. Eigenvalueas a function of mesh size.

15



TABLE 111

EIGENVALUECOMPARISON

Mesh Size Eigenvalue

(Height of Triangle) DITRI

cm S6

12.00 0.53983

6.00 0.58919

4.50 0.59796

3.00 0.60115

2.40 0.60265

1.50 0.60424

0.75 0.60501

Eigenvalue

TLc

S4 Rectangular

0.62363

0.60111

0.59950

0.59912

0.59900

0.59891

0.59890

using a rectangularS4 set (2 points on each z-directioncosine level). This

S4 set also has 24 directions. Additionalresults indicate that these two sets

are convergingto the same result as the number of discrete directionsis

increased.

The second test problem has been used before to test numericalschemes.

The geometricconfigurationfor this problem is shown in Fig. 5. Region I is a

highly scatteringregion with a source density of unity and surrounds the

almost “black” central region 11. The mesh for the second problem is 20

triangles long by 10 triangleshigh. In region 11 the side of a triangle is 5

mean free paths. The plot shown in Fig. 6 indicatesthat the TLC method is

much more positive than the DITRI method. No fixup of any kind is used in

either of the schemes. The negative fluxes appearingin the TLC plot are so

small that they are not apparent in the graph. This plot is along triangle

band number 5. This problemwas analyzed using the sam quadratureset as in

the first problem.

The third test problem is problem 1 of Ref. 6. The geometry and material

compositionis shown in Fig. 7. This problem was run with six trianglesper

hexagon. The S4 quadratureset with 24 directionswas used. It was found that

16
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Region 1: 0.0 IOO.O 100.0 0.0

Region 11: 1.0 0.05 100 0.95

Fig. 5. Test problem 2.
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Fig. 6. Cell average scalar flux as a function of position.
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Fig. 7. Two-dimensionalproblem 3.

the number of outer integrationswas reduced from 11 to 9 when three term

Chebyshevaccelerationmethod similar to that describedin Ref. 4 was used to

acceleratethe fission source. The theoreticallimit for the reductionof

outer iterationsusing this method is reductionby a factor of two. In this

problem relativelyfew outer iterationsare required even without accelera-

tion. This happens because the dominance ratio is about 0.7 for this “high

leakage”system.

For some of the systems analyzed in Ref. 4 the dominanceratio is closer

to unity and the number of outers is reduced by a factor of almost 2. For a

full sized LMFBR the dominance ratio will be closer to unity, and it is

expected that Chebyshevaccelerationof the outer iterationswill result in a

much larger percentagereductionin the number of outer iterations.

This type of accelerationwas used due to the ease with which it could be

inserted into the code. No changes were requiredin the inner “sweeping”

routinesat all. In the next quarter Chebyshevaccelerationwill be added for

the inner iterations. Again, this accelerationwill require no changes in the

sweeping routines. It is expected that this additionalaccelerationwill

significantlyreduce the number of inner iterations.

Additionalwork this quarter will include testing PI scatteringon the

TWOHEX code and adding the one-thirdcore boundary conditions. At present

TWOHEX accepts only whole core problems.
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111. KWIWWINISTICTRANSPORTMETHODS ~

Our work in Group x-6 on deterministictransportmethods involves the

development,implementation,and assessmentof both analyticaland numerical

methods and models to aid the advancementof deterministictransportcode

development.

This reportingperiod we report on our progress in developinga diffusion

syntheticaccelerationscheme for the diamond difference discrete ordinates

equation in sphericalgeometry. This is followed by a report on a linear dis-

continuousscheme for the general two-dimensionalgeometry transportequation.

Next we report on rapidly convergingiterativemethods for numerical transport

problems. As part of our thermal radiationtransportmethods development

effort, we present reports on modified one-group accelerationof the frequency-

dependentdiffusionequation,a modal accelerationmethod for frequency-depen-

dent diffusionequations,the behavior of DSA methods for time dependent trans-

port problems,and new diffusion-syntheticaccelerationstrategiesfor

frequency-dependenttransportequations. Next is a report on calculational

results from a test code that solves the thermal radiation transportequation

using discrete-ordinatesmethods. We conclude this sectionwith a report on a

sharper version of the Cauchy-Schwarzinequalityfor real-valuedfunctions.

A. DiffusionSyntheticAccelerationfor the DiamondDifferenceDiscrete
OrdinatesEquationin SphericalGeometry(R. E. Alcouffe and E. W. Larsen)

The developmentof the unconditionallystable diffusion-syntheticacceler-

ation (DSA) method for the diamond-differenceddiscrete ordinatesequations

has been described fully in one-dimensionalslab geometry,lo~lland also in
10x,y-geometry. However, the method has never been discussed

geometries,where extra considerationsinvolving treatmentof

redistributionterms occur. Therefore,we shall now describe

for curvilinear

the angular

the DSA method

for the one-group,sphericalgeometry discrete ordinates equation.

We considera sphere ()<r<R,divided spatially into I concentricshells,——

‘i-l/2<r<ri+l/2’‘ith ‘1/2 = 0 and ‘1+1/2 = ‘“
We also consider any standard,

even-orderGauss-Legendrequadratureset on the interval -l<v<l; the quadrature——

points are ~ and the correspondingweights Wm are normalizedso that
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N

E j [1+ (-l)j]
pm Wm = , j = 0,1,2.j+l

In addition,we define the angular cell edges pm+l,2 by

m

‘m+l/2
= -1 +

E
w , O<m@.
m ——

n=l

(1)

(2)

Then for l<m<N, the m-th angular cell is p—— m-1/2<p<pm+l/2’and ‘im1ies
within this cell (but normally not at the center). From Eq. (2) we have

w
m = ~m+l/2- Pm_l/2 $ (3a)

IJ1/2=-l ,

and

%+1/2 = ‘1 “

Finally,we define

2
‘i+l/2 = 4=ri+l/2 ‘

m

am+l/2,i
= - (Ai+l,2- ‘i-I/2)x pnwn , O~m~N,

n=l

and constantsZm according to two separatedefinitions:

Io (diamonddifference)
‘c=
m

I

●

Pm - #Pm+l,2 + pm_1,2) (Morel-Montry12)
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(6)



Later we shall discuss the differences

that the constantsa
m+l/2,i

satisfy

and

al/2,i
=0,

aNtl/2,i=
o,

are symmetricfunctionsof angle:

between these two definitions. We note

Pm+l/2 = ‘pn+l/2 + am+l/2,i= an+l/2,i “

(7a)

(7b)

(7C)

The one-group,sphericalgeometry discrete ordinatesequations can now be

written as

1+1/2 2+1/2
)~m(Ai+l/2‘m,i+l/2

- ‘i-l/2 ‘m,i-l/2

1+1/2 1+1/2 J + (aTv)io~
+ ~ (am+~/2,i*~+~/2,i - am-~/2,i ‘m_l/2,=

2+1/2
w
m

= (C@i L!&+ (Vs)i , (8a)

~1+1/2
1 +.Z

m 1+1/2 1-zm 1+1/2
‘4’m_l/2,i “. —4m+112,i

mi 2 ‘2

(8b)

(8c)

In the analysishere we shall not be concernedwith boundary conditionsat r=O

or R, or with a startingdirection calculation;our primary interest is just in

the discretizedtransportequation described by Eqs. (8). In these equations,

1 or 1+1/2 denotes an iterationsuperscript. We assume that @~i is known,
1+1/2

we solve Eqs. (8) for 4ti , and we wish to constructequations for deter-
2+1/2mining $Oi .

With the definition
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m=l

the standardsource-iterationmethod uses the followingprescription:

(9)

(lo)

The DSA method does not use Eq. (10); instead,more complicated(but ulti-

mately, nmre efficient)equationsare developedwhich have the property that

the exact solution is computed in one iteration if the angular flux is a linear

function of p. To derive these equations,we operate on Eq. (8a) by the

operators

N
1
Tz P:(“)“ , j =0,1,

m
m=l

use the definitions

N
~2+1/2 1=—

x

1+1/2
n 2 Pn(pm) @m “m , n=0,1,2,

m=l

and obtain the two equations

1+1/2 1+1/2 1+1/2
‘i+l/2 ‘l,i+l/2- ‘i-l/2 ‘1,i-1/2+ ‘aTv)i ‘Oi = (a~”)i O:i

+ (“s)i ,

1+1/2
)

3At+l,2 @:;;~:/2
- ‘i-l/2 4’2,i-l/2

N

22
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~2+1/2 1+1/2 = ~
x ‘am+l/2,i

$:+;;;,i) Wm + (~Tvi)oli “
m+l/2,i - am-1/2,i -

(14)

Now, using Eq. (7), we have

& ( 1+1/2 ~A+l/2
Pm am+l/2,i ‘m+l/2,i- am-1/2,i m-1/2,i) ‘m

m=l

N-1
1
x(

2+1/2pm) atil/2,i ‘m-t=l/2,i‘m.-—
2 P~~ -

m=l
.

[

N-1
1
E

@ti~

I

1+1/2= -— - Vm) am+l/2,i‘m2 $Oi
m=l

N-1

++
z

@ti~ .(+,;llz,::,,,$wm. (,,)
- ‘m) am+l/2,x

m=l

Also, using Eqs. (1) and (5), we have

N-1
1-—

x
(Ptil - Pm) a~l/2 ,i ‘m2

m=l

N-1 m
= ‘i+l/2 - ‘i-l/2

2 EE O-&l - Pm)Pnwn

= ‘i+l/2 - ‘i-l/2
2

m=l ~=1

N-1 N-1

m (‘m+l
- pm) pnw[l

n=l m=n

N-1
= ‘i+l/2 - ‘i-l/2

E

A
(ILN

i+l/2 - ‘i-l/2
2

- pn) pnwn = - 3
. (16)

n=l
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CombiningEqs. (14, (15), and (16),we get

A+l/2
+ (aTv)i $Ii

1+1/2= - ; (Ai+l/2 $2,1+1/2
- ‘i-112 4’;::!;/2)

N-1
1.—
2 E

(wti~ - ‘m) am+l/2,i
m=l

In addition, operatingon Eq. (8b) by the operatorsin Eq. (11), we obtain

(17)

(18)

Eqs. (13), (17), and (18) are exactly solved by the solution@+l/2 of

Eq. (8). We define accelerationequations from Eqs. (13), (17), and (18) by

A 1+1 1+1 1+1
i+l/2 4’l,i+l/2- ‘i-l/2 ‘1,i-1/2+ “’Rv)i ‘Oi = (Vs)i ‘ (19a)

2+1 ) - ~ (Ai+l/2- ‘i-1/2) ‘i;l~ (Ai+l/2‘;~;+l/2
- ‘i-l/2 4’o,i-l/2

N-1
1

z
Oti~ - ‘m) am+l/2,i (’$;;1’2

- ~A+l/2-—
2 m+l/2,J ‘m ‘
m=l

(19b)

(19C)

where
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=0 - 0 ●

‘RT s
(20)

These equationshave the followingproperties:

(i) They agree with Eqs. (13), (17), and (18) upon convergence.

(ii) If the cell edge fluxes are linear in angle in the followingsenses:

.t+l/2 = 1+1/2 1+1/2+ 3Pm @l,i+l/2 ‘
‘m,i+l/2 $o,i+l/2

(21a)

(21b)

then the “1+1/2” terms [on the right side of Eq. (19b)] vanish and Eq. (19)

becomes four equationswhich exactly determine

1+1 1+1 1+1 J+l
~o,i+l/2’h,i+l/2’ ‘Oi li “

To rewrite the accelerationequations in a more computationallyuseful

form, we define

and subtractEqs. (13), (17), and (18) from (19a,b,c)to obtain

1+1 fl+l
‘i+l/2fl,i+l/2- ‘i-l/2 l,i-1/2

+ (aRv)if:;l

1+1/2
= (Cp)i(ooi - O:i) ,

~1+1
) - + @i+l/2

1+1; (Ai+l/2f;~:+1/2
- ‘i-l/2 0,1-1/2 - ‘i-l/2)foi

(22)

(23a)

(23b)

(23c)
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Now we reduce these equations to a single (edge-differenceddiffusion)
1+1

equation for f
0,1+1/2”

TO do this, we first introduceEqs. (23c) into

(23a) and (23b) to eliminate f~~l, and then we manipulatethe resultingtwo

equationsover two adjacent cells in a straightforwardmanne,r;this results in

1A
- fl+l - fl+l+ ; ;:-;;2 (f::;+l/2i+3/2 (f:::+3/2

-3 (dTv)i+l o,i+l/2) o,i-1/2)Ti

1 (QOi+l (Ql)i

‘~ Ai+3,2 + Af+l,2 ‘f;~;+3/2
+ f~+L

0,i+l/2)‘; Ai+l,2+ Ai 1,2

Gssv)i+l
x (f:::+l/2

+fl+l
0,i-1/2)= Ai+3,2 + Ai+l,2 “;;if-; - $:,i+l)

(C@i 1+1/2
‘A (Ooi -O:i) s (24)

i+l/2 + ‘i-l/2

which is the desired result.

The DSA method now consistsof”Eqs. (8) [whichdetermine

EqD (g) [whichdetermines~
1+1/2

], Eq. (24) [whichdetermines
o

Eq. (22), i.e.,

o1+1 = J+l/2
Oi

+ f:;l ,
Oi

(25)

2+1which determines4 . This fterativemethod is repeateduntil convergence.

It has been tested over a wide range of problems and it convergesvery well,

leading to an error reductionof about two orders of magnitude for every three

iterations,independentof the type of problem and of the mesh size. However,

a conceptualdifficultyexists, which experimentallyappears to have little

effect on the stabilityor convergencerate, but which we now wish to discuss.

The derivationof the DSA equations is based on the concept that if the

cell edge fluxes are linear in the sense of Eq. (21), then the exact solution

is computed in one iteration. We now wish to discuss the followingpoint: is

it possible for the cell edge fluxes to be linear in the sense of Eq. (21)?
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The answer is “yes”, providedEqs. (8b,c)and (21a,b)are ~tuallY consistent>

and “no” otherwise. From Eq. (8b) we get

Hence, introducingEq. (21a) into (8b), we find

1

[

A+l/2
z @o,i+l/2

1+1/2
+ 3Vm01,ii-1/21[+;$1+1/2 1+1/2

o,i-1/2
1

+ 3vm01,i-1/2

1+1/2$::1’2+ 3Pm@1i “

Next, we introduceEq. (21b) into (8c) and use Eq. (6) to obtain

~1+1/2
1 + -Tm

[

&/2 + 3pW1/2 li 1~1+1/2=—
mi 2

ETrn

[

~+1/2+ 3pm-1/2 ‘li— OOi
1

1+1/2
‘2

2+1/2 +
= OOi

+ (vul+l/2+‘m-l/2) (DD)

1 Pm (Morel-Montry)

(26)

(27)

(28)

ComparingEqs. (27) and (28), we see that there is an inconsistencyif the

diamond difference (DD) definition~m = O is used, but there is no

inconsistencyif the Morel-Montrydefinitionis used. [Note that with this

latter definition,we have

1+’C 1-’C
m

Pm = 2 ‘~m+l/2+ 2 ‘m-l/2 ‘
(29)

consistentwith Eq. (8c)I. Morel and Montry proposed the weighted-diamond-in-

angle approach [Eqs. (6), (8c)] to guarantee that the discrete ordinates

equationshave the correct diffusion limit, and thus to eliminate the
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otherwise-presentflux dip at r = O. With their definitionof Zm, the

discrete-ordinatessolution can become consistentlylinear in angle (thus

ensuring the correct diffusionlimit) and the DSA method can, in principal,

converge in one iteration;otherwise,it cannot. For practicalproblems, the

use of the DD definitionof ‘cmdoes not appear to damage the overall stabil-

ity, but it is possible that in extreme cases this could occur, and then the

Morel-Montrydefinitionwould become a necessity.

B. A LinearDiscontinuousSchemefor the Two-DimensionalGeneralGeometry
Transport~uation (R. E. Alcouffe)

The linear discontinuous(LD) method for two-dimensionalgeometrieshas

been developedby many authors elsewhere. In this report we outline a specific

method which has been coded with an eye to efficiencyand to investigatethe

interactionwith iterationaccelerationby the diffusion syntheticmethod.

To begin, we write the R,Z transportequation for cell (i,j)which has

incorporatedinto it the diamond assumptionin the angular directionas:

ar~ a~
Pm&+(Pm- Pm) *m(r,z)+ qr + + rat@m(r,z)= rsm(r,z)

+ Pmd.&l/2(r,z)‘ (30)

m = 1, ..., m,

for

‘i-l/2 ~ r ~ ‘i+l/2

‘j-l/2–‘z~zi+l/2 “

The linear discontinuousmethod assumes the followingexpansion for the angular

flux within the cell i,j,

(31)

28



where h, k are the mesh spacing in the i and j directions,respectively,

‘j =; (zj+1,2 + zj-1,2) .

From the diamond in angle assumption,it is readily shown that,

2$mij = $m+l/2ij+ 4m-1/2ij ‘
(33)

24
rmij = 4rm+l/2ij+ $rm-1/2ij ‘

(34)

2+ (35)
zmij = ‘zm+l/2ij+ ‘zm-l/2ij “

To develop the requisiteequations for the unknowns,we substituteEqs. (31)

and (32) into Eq. (30) and take the first three spatial moments of Eq. (30).

This yields the following three equations:

~(Ai+l/2+i+l/2 - ‘i-l/2 4’i-1/2)+ (Ai+l/2- Ai_l/2)(9 - P)(+ + fit=)

+ qB(@j+l/2- 4’j-l/2)+ at”+

= “S + (A - Ai-1/2) ~($m-1/2+ 64rm-I/2) (36)
i+l/2

[p (ri+l/2
A

- ;) A
i+l/2°i+l/2+ ‘r - ‘i-l/2) ‘i-l/2$i-l/2 1

+(p- ;
@(Ai+l/2 - ‘i-l/2) ‘6($ - F ‘r)

- ~V*+ V ~’ ‘@rj+l/2 - 4rj-1/2)

+ Crtw+r

,.
= WSr + @(Ai+l/2- ‘i-l/2) (h6)(0m_l,2-;4 ~_l/2) , (37)
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~(Ai+l/24’zi+l/2
) + (Ai+l,2- Ai-l,2)(P- P) @ ‘12~~)

- ‘i-l/2$zi-l/2

+ TIM9+1/2 + $j+z) + ‘tv*z

= Szv+ 13@i+l/2
-Ai-l/2) 4’zm-l/2 ,

(38)

where all but the cell edge subscriptshave been suppressed. The coefficients

for X,Y, R,Z and R-e geometry are shown in Table IV. In the above we have

three equations in 7 unknowns (the outgoing or downstreamboundary fluxes,or,

0=, and their slopes on the outgoingboundaries). The essence of this linear

discontinuousscheme is the followingapproximationsfor the unknown slopes,

%mij =
h

(4mit1,2j- @mij) , for p :0 ;
‘i?l/2

-;
(39)

YASLE IV

ZX.PRZSSIONSFOltlYIRVARIOUStXXWFICISNTSfN FWJATIONS(36)-~~J

CoefficientX,Y

Ai+l12j k

“ij hk

‘i k

61 0

+ h%‘ij

.
‘i ; @i+l/2 + =i_l/J

‘j ; (zj+l/2 + ‘j-l/2)

w! w

AS AFUNCTION OF OROMBTRY -
----

R,Z R,I3

2*ri+l/2k 2Kri+l/2*’3

n@+l/2
2 )k 2

- ‘i-l/2 fi(=:+l/2 - =i_l/2) *I3

2 2
n(ri+l/2- ‘1-1/2) h

h h

6(=i+L/2+ ri-1/2) 6(ri+l/2+ ‘1-1/2)

2 2 2
kB ‘i+l/2+ ‘i-l/2_ ;2 y &+l_lJ2 -
li- 2 i h 2

2 2 3 3
2(ri+l/2- ‘1-1/2) 2(ri+l/2- ‘i-l/2)

3(=:+1/2
2 2 2

- ‘i-l/2) 3(ri+l/2- ‘i-u2J

-2
‘i

+ (zj+l/2+ ‘j-l/2)

w

;(A9 j+l/2‘*ej-l/2)

be #;h2
j 12=)

‘i
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o = t 2 ($
mijt1/2 - ‘mij) $

for q;o ; (40)
zmij

4zudf1/2j ‘+ (41)
zmij ‘

0rmijf1/2 ‘4
(42)

rmij “

It has also been establishedthat in Eq. (36), very little loss of accuracy is

obtained when 6 is set to zero. Thus, our set of equations,for p < 0 and

T < 0 is the following:

- lpi (Ai+1,24i+1/2- ‘i-l/24i.-l/2) + ‘Ai+l/p - ‘i-l/p(~ + IVI) 4

- \TIlB(4j+l/2 - 4j+1/2) + ~tv4 = ‘s + @(A~+~/2- ‘i-~/2)@m-I,/2 (43)

- lpl[(ri+l/2
- (; - ri-1,2) ‘i-l/24i-l/21

- ~) Ai+l/24i+1/2

+
[1 I

1
v V + (~ + IPI)(Al+l/2 - ‘i-l/2)h64

h- (~ + IPI)(Ai+l/2 - ‘i-l/2)(6~)(A ) ($ - 4i-~,2)
r - ‘i-l/2

H [ h 1-‘4- 4i-~/2)- Tl~ 4rj+l/2 ;

- ‘i-l/2

+ Ctw()h ($ - 4i_1/2) = “r
.
r
- ‘i-l/2

+ @@i+l/2 - ‘i-1/2)(h6) 4m-1/2 - ~ *m_l,2)
(44)

11[-P’ (dJ- 4j_1/2)]+ 2(Aj-+1,/2- ‘j.-l./2)‘i+l/24zi+l/2- 2Ai-1/2

x (~ + 1~1)(~ 4j_~/2) + 12 ml ‘4- 6 qIIB[oj+l/2+ 2(4- 4j_~/2)]]

+ 2atV(4 - 4j-1,2) = Szv + 13(Ai+l,2- Ai_l,2) 4zm_l,2 . (45)
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Equations (43-45)then give the relationshipamong the basic unknowns$, 0j-1/2

a*d $i_l/2 for the incoming-downwarddirectionsin terms of the known $i+l,2,

‘$j+l/2’‘m-l/2’ ‘rm-l/2
, and @

zm-1/2”

The next ingredientin the method as we have implementedit is to define

the source moments S and S The strictly correct method is to store the
rij zij”

flux moments in a multigroupproblem (with isotropicscattering)as:

g
# _ z ari.j sog’+g ‘rg’ij

g‘=1

—
Sg = z aZij Sog’+g $Zg’ij

g’=1

where

m

4
x

w+
rgij = m rgmij ‘

m=l

m

o
z

W(JI
Zgij = m zgmij “

m=l

s

Y

(46)

(47)

(48a)

(48b)

This implies that the storage required is two more flux arrays per group which

for many realisticproblems is a large penalty associatedwith the linear

discontinuousmethod. We have an alternativein that we are acceleratingthe

iterativeprocedurewith the diffusion syntheticmethod. Thus, we have

available the correcteddiffusion flux at the mesh vertices. From this we may

compute estimatesof the slopes for the source. That is, if

‘i+l/2j+l/2
= the correcteddiffusion flux,

an estimate of the scalar flux slopes is given by
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.1+1
@ = 21#1

(

1+1/2‘i+l/2j+l/2+ ‘i+l/2j-l/2

)

- ‘i-l/2j+l/2- ‘i-l/2j-l/21+1
rgij gij

9
‘i+l/2j+l/2+ ‘i+l/2j-l/2+ ‘i-l/2j+l/2+ ‘i-l/2j-l/2

(49)

(

1+1/2 f

)

+ ‘i-l/2j+l/2- ‘i+l/2j-l/2- ‘i-l/2j-l/2
1+1

.A+l
$ * 24

i+l/2j+l/2
zgij gij ‘i+l/2j+l/2+ ‘i+l/2j-l/2+ ‘i-l/2j+l/2+ ‘i-l/2j-l/2

(50)

where 1 is an iterationindex. These are estimatesof the flux moments from

which the source moments are computedbut which are computedas needed”

The last ingredientis the

the source representationto be

this. The source expansionmay

r -;
JsS(r,z) = Sij + h rij

positivityof the source. That is, we desire

positive and we adjust the slopes to accomplish

be written as,

z -z
+ As

k Zij “
(51)

The source is nonnegativeif

(12‘ij~T ‘i+l’l- ‘i Isrijl+ Iszijl) ‘or ‘rij <0 ‘

or

(;.-r
12=h

‘ij ‘z ‘-1’2 Isrijl+ Iszikl) ‘or ‘rij >0 “

Thus, > 0, we can guaranteea positive source of adjusting the
assuming ‘ij –

slope so that

(r -; z - z.
S(r,z) = S + a Js + ~s

ij ij h rij k Zij
)

(52)

where
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= min
aij

aij
= tin

1,
2sij

z ‘i+l/2
-;

s
h Irij + ‘zij

2s
1, -

ij
I

r
2

- ‘i-l/2 s
h I

+s
rij Zij

for

for

s <o
rij

s >0 .rij

With this method coded into the TWODANT code, we have run some preliminary

test problems to assess the performanceof the method. The test problem

selectedhere is a two-region,two-group,R,Z problem with dimensions5 x 5

cm. The left and bottom boundariesare reflectiveand a uniform source is in

the left hand, bottom, 1 x 1 cm region. The two group cross sectionsare:

atl
= 1.5 9 = 1.0 ,

‘s1 ‘s1+2 = 0.5 ;

6t2 = 1.0
0 = 0.5 .

9 S2

The mlculated leakage from the system for each group is given in Table V

functionof spatialmesh size; the coarsestmesh is 1 x 1 cm. A diamond-

differencedcalculationof this problem is also displayed for comparison.

TABLE V

A(X14PARISON0FTEELINEAR DISCONTINUOUSMETEODWITH THE DIAMOND
METEOD ON AlllDEL PROBLEM

Spatial mesh Leakage Error as a function
size Diamond

group 1 group 2

1 -43.9% -32.8%

1/2 -18.6% -9.5%

1/4 -4.2% -2.4%

1/8 -0.9% -0.5%

1/16 0.006863 0.033698
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of group and method
Lin-earDiscontinuous

group 1 group 2

-11.5% 5.50%

-2.0% 1.32%

-0.4% 0.26%

-0.06% 0.08%

0.006881 0.033763

as a

We



see that in this problem the performanceof LD is indeed better than diamond

differencing. The convergencerate of the solutionwith mesh size is between

O(h2) and O(h3) and hence is not as good as expected.That is, we expect O(h3)

in the integralparametersfor LD.

The timing studies done thus far show that on the CRAY-1, LD is about

1.5-2times slower than diamond with fixup. What remains to be done is to test

this method on fission-eigenvalueproblems in order to assess the impact of the

spatial moment approximations(Eqs. (49),(50)).

c. RapidlyConvergingIterativeMethodsfor NumericalTransportProblems
(E. W. Larsen)

We have taken a close look at two previously-proposediterativemethods

for solving numerical transportproblems, the first a nonlinearmethod due to
14 These methodsGol!din,13the second a linear method due to Lewis and Miller=

have certain featureswhich we have recently observed numerically(or, in some

cases, are

(i)

(ii)

(iii)

(iv)

apparentanalytically):

Both methods are based on equationswhich are derived from and

equivalentto the exact linear transportequation.

Numericalsolutionsgenerated by both methods are observed to

convergeextremely rapidly,with an error reductionof

approximatelytwo orders of magnitude for every three iterations,

for any reasonablediscretizationof space, angle, and energy.

These numerical solutionspossess the diffusion limit.

These numerical solutionsare generallynot equal to the

numerically-generatedstandard discrete ordinatessolutions

computedon the same mesh.

In the following,we describe these methods and outline the above results in

more detail.

First we shall outline Gol’din’s (or equivalently,the Variable Eddington

Factor15) nethod. We consider the transportequation

1
a

~~ (X,p)+ cfT$(x,p)=;
I

$(x,P’)dP’+Q .

-1

(53)

Defining
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1

6*(X) = +
f

pn~,(x,p)dp , n = 0,1,2, (54)

-1

and taking the zero-th and first angular moments of Eq. (53), we obtain

Eliminating$1 between these equations,we obtain

-++ I$2(X)+ (CJT- QOO(X) = Q(x) “
T

Gol’din’smethod, based on Eqs. (53), (54), and (57), is now describedby:

1+1/2
d 1 d 42 1+1

+ (6T
1+1——

- ~ (YTdx 1+1/2 ‘$0 - 65) 40 ‘Qo
00

(55)

(56)

(57)

(58)

(59)

We have tested this method numerically,for various discretizationscon-

strained only by the requirementthat each iterativesolutionbe positive,

so that d~+l/2 > 0 in Eq. (59). For each discretizationthe method generates

solutionswhich convergevery rapidly,with an error reductionof three orders

of magnitude for every two iterations,and for spatialmeshes up to 103 mean

free paths across. We observed no degradationof stabilityfor the thicker

spatial meshes. We also observed that while $~+1/2 and 0:+1 convergevery

rapidly, they do not converge to identicallimits. In other words, for the

numericallycomputedvalues on any mesh,
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and

?

(60a)

(60b)

(60c)

M addition, if QO denotes the convergeddiscrete ordinatessolution,

then in general@o, $., and 00 are all distinct= Of course, the extent of

this phenomenonis problem- and mesh-dependent;as the independent-variable

mesh becomes increasinglyfine, the three solutionsall merge together to the

solution of the exact transportequation.

Finally,we observed that numerical solutionsobtained by Gol’din’smethod

possess the diffusionlimit. To explain this precisely,let us consider the

followingresealingof the cross sections and source in Eq. (53):

(61)

Q+ EQ .

We note that for c = 1, the original cross sections and source are obtained.

Eq. (61) imply

CT-US+ E ‘6T ‘6S) ‘
(62)
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Therefore,in the diffusionapproximationto Eq. (53),

d
dx ~~$(x) + (aT

-— - as)$(x) = Q(x) ,
T

if the substitutions(61) are made, the identicalequation is recovered!

other words, Eqo (63) iS invariantunder the change of scale describedby

(63)

In

Eq. (61). On the other hand, the transportequation is not invariantunder

this change of scale. In particular,as c+o, we have UT+=, os~, crT- 0s +0,I
and Q+O, and it can be shown that in this limit, the transportsolution con-

verges to the diffusionsolution. [The method in Sec. 2 of Ref. 16 gives this

result very easily.]

Based on the above observations, we now make a definition. We say that a

numericalsolutionof the transportequation (53), with a fixed spatial and

angular mesh, has the diffusion limit if the followingconditionis met: under

the change of scale of cross sectionsdescribedby Eq. (61), the numerical

solution of Eq. (53)converges,as s+O, to the solutionof a discretizedver-

sion of the diffusionequation (63). [This is a strongerdefinitionof dif-

fusion limit than that used in Ref. 16.]

To show that the analytic equations (58) and (59) possess this limit is

easy; introducingEq. (61) into (58) and (59) and keeping only the leading

order terms in e, we obtain

$
1+1/2

= 0: ,

1+1/2
dld ‘$2 1+1/2
dx aT dx ~ 40

+ (aT 1+1 =-——— - 65) 00 Q.
o

(64)

(65)

Eq. (64)implies that @2+1/2 is isotropic (independentof angle). Therefore,

using Eq. (54),we have
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and so Eq. (65) reduces to the standarddiffusionequation (63). Thus,

$: satisfies this equation,and by Eq. (64),

(67)

To summarize,as E+O, the transportand diffusionscalar fluxes agree

($0 = $.), and both satisfy Eq. (63). This same reasoningcan be applied to

any reasonablediscretizationsof Eqs. (58) and (59). In fact, we have tested

this concept numericallyfor values of E as small as 10-3,and the numerical

solutionsfollow preciselythe same pattern as the analytic solutions;as e+O,

the transportand diffusionscalar fluxes agree, and both satisfy (the

discretizedversion of Eq. (63).

The second method we wish to discuss, due to Lewis and Miller, is derived

from Eq. (53) as follows. Defining

1

in(x) =+
f

pn(p)o(x,p)dv

-1

(where Pn(p) is the n-th Legendre polynomial)and taking the zero-th and

first angular moments of Eq. (53), we get

2 d~2 ~ d~o -
.— ——
3 dx ‘3dx ‘aTOl=O “

Eliminating~1 between Eqs. (69)and (70), we obtain

(68)

(69)

(70)

(71)
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The Miller-Lewismethod, based on Eqs. (53),(68),and (71)siS describedaS

follows:

(72)

d ld 2+1 l-tl ,— — — -1+1/2
+ ((YT- 6s) 00 . Q + :X :T ix 02-———

dx 3aT dx 00
● (73)

We have tested this method numerically,for various discretizations(which

now are not constrainedby positivity). Overall, the behavior of this method

is identicalto that of Gol’din’smethod. The argument that the Lewis-Miller

method has the diffusionlimit proceeds as follows: introducingEq. (61) into

(72) and (73), we obtain (to leading order in E) ~= (64) and (73)● BY

Eq. (64),$1+1/2
-1+1/2

is isotropic,implying$2 = O, and hence @~+l satisfies

the correct diffusionequation. Moreover, Eq. (64) implies that

(74)

and so the transportand diffusion scalar fluxes agree.

The Lewis-Millermethod has the computationaldisadvantagethat in its

discretizedform, one cannot guaranteea positive solution,whereas Gol’din’s

method (at least 1-D geometries)can be discretizedto guaranteea positive

solution. On the other hand, the Lewis-Millermethod is linear and can be

Fourier-analyzed(doing this proves the method’s stabilityand effectiveness),

whereas Gol’din’smethod is nonlinear,and thus perhaps somewhat less reliable.

To conclude,either of these methods (or a variant) seems attractivefor

obtaining rapidly convergentnumerical solutionsof transportproblems in

actuationswhere the standarddiffusion-syntheticmethod will not work, (i.e.,

Lagrangianmeshes, or a two-dimensionalnon-diamonddifferencingscheme). The

main difficultyis that neither of these schemes produces the standarddiscrete

ordinates solutions,and thereforenumericalstudies will have to be performed

to determine the accuracy of the solutionsobtained. It is possible that in

some respects these solutions are nmre

result, but in other respects they are

40

accurate than the discrete ordinates

worse. The extent of these differences,



as well as the ultimate use of the final method of choice,will jointly have

be taken into account. We plan to pursue these questions,as well as the

problem of modifyingGol’din’smethod in two dimensionsso as to guaranteea

positive solution.

D. ModifiedOne-GroupAccelerationof the Frequency_DependentDiffusion
Equation(E. W. Larsen)

Previously17we describeda method for acceleratingthe convergenceof a

frequencydependent (multigroup)diffusionequation by a one-groupdiffusion

equation. This method is defined by

ala ~2+1/2+ J+l/2——
‘Z3aax ‘X$:(x) +Q(x,v) ,

J‘+1’2(X) = @l+l’2dv ,o~

o

2+1(x) = (j:+l’2(x) + F;+l(x) .00

Here we have @ = 0(x,v), a = CT(X,v), x = x(x,v), and

m

f
X(X, V) dv = 1 ●

o

For the cross sections

1 - e-a”
6(v) = p 3 9

v

x(v) = ae-av ,

to

(75)

(76)

(77)

(78)

(79)

(80)

(81)
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the infinitemedium spectral radius of the above method is computedby a

Fourier analysis to be 0.867, for any choice of the constantsa and $.

A modified (and improved)version of this method is describedas follows:

ala 1+1/3+ ~$1+1/3.—
‘G30aX@ ‘x4#+Q ,

J1+1/3 m
$0 = m$l+l’3dv ,

0

0

(82)

(83)

9 (84)

(85)

-(/~*~:d)F:+l=-p(@:+-$:+1’3)+(,-$:)s
(86)

1+1
00

2+1/2
‘+0 +F:+l . (87)

The infiniteudium eigenvalueu of this method is given by

2
U=y l-y

(p + 1 - py) ,

f
A2 - ~ dv

o
302

m

f
3a2x dvy=

o A2+3c12

(88)

where

(89)

42



and A is the Fourier Transform parameter. (See Ref. 17 for details.)

for the cross sections given by Eqs. (80) and (81), the above formulas

to

h)= Y2 - A&qp+l-py) ,
Zcl

where

m

f

3t3(l- e-t)e-t dty(z) =
z2t6 -t 2 ‘

o + 3(1 - e )

Thus, w is a function only of p and z = A/a3$, and for any given p the

radius is

However,

reduce

(90)

(91)

(92)

(93)

spectral

sup ~
spr = .

z

Numerically,we observe that the choice p = 218.0 leads to the minimum

value

spr = O.3 .

Since ~ = 0.55, we have that for this new method, the error reductionper

multigroup diffusion calculationis about 0.55, whereas for the earlier method

[Eqs. (75)-(78)]it is only 0.867. Thus, this modificationof the method (75)-

(78) appears to be much more efficient. However, in general problems including

time dependence,the factor p must be computed,and we do not yet know how

efficientlythis can be done. We plan to pursue this topic in the near future.
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E. A NodalAccelerationMethod for Frequency-DependentDiffusionEquations
(E. W. Larsen)

The frequency-dependent(multigroup)diffusionequation

a 1
- & 3cJ(x,v)O(X,V)+ 6(X,V)@(x,v)

a

= X(x,v) J cJ(X,V’) I$(X,V’) dv’ +S(X,V) ,

0

with

can be solved by the followingaccelerationmethod:
17

ala 1+1/2+ 641+1/2—— —
ax 3a ax 4

=Xog(x) +s ,

0 J

o

,!I.+1
00 (x) 2+1’2(x) + F2+1(x) .= $~

For the cross sections

X(V) = ae-av ,

1 - e-av
6(v) = p V3 s
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(96a)

(96b)



the spectral radius of the above method is 0.867, for all choices of the

constantsa and p. (See Ref. 17.)

Equations (95) are derived by examining the stabilityof the unaccelerated
1+1

method [Eqs. (95a,b,d)with F set equal to zero]. ‘l’heeigenfunctionsare

fh(x,v) =
3q iAx

e 9
AZ + 3C?

(97)

and the most slowly convergingmode correspondsto A = O:

.x
‘o CT “

Equation (95c) is derived by requiringthat if

solution @ can be described solely by this A =

computed in one iteration. Here we describea

the frequencyvariationof the

O eigenfunction,then $ should be

meth.tdwhich generalizesthis

idea; it requires that given a fixed number (n) of functions,or “modes” (the

first of which is x/o, but the rest of which are arbitrary),the solution should

be computedexactly in one iterationif its frequencyvariation at each point

can be describedsolely as a linear combinationof these n modes.

To derive this method, we retain Eqs. (95a,b) but discard Eqs. (95c,d). We

begin by introducingn-l functionsPj(x,v),2 ~j <n. These functionsare

arbitrarybut fixed. Next we define the functionsy,, 1 ~ j < n, by
J

Yl(x,v) = 1 ,

y2(x,v) = b2(x) [1 + a21(x)

y3(x,v) = b3(x) [1 + a31(x)

etc., where b (x) and a (x) are
j ij

m

Pl(x,v)l ,

pl(x,v)+a32(x) p2(x,v)l s

uniquely determinedby the conditions

f
X(X,V) YP(X,V) Yq(%v) dv = ~pq s l~p,q<n .

(98a)

(98b)

(98c)

(99)

o
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Thus, the functionsy (x,v) are determinedexplicitlyin terms of, and are an
j

orthonormalizationof, the functions P (x,v).
j

Now we express the solutionof Eq. (95a) as

n
I+m(x,v)=g[:,:]
G

9 z 2+1’2(x) +RA+l’2(x,v) ,Yj(x,v) Clj

j=l

where

m

1+1/2(x) =
f

2+1’2(x,v)dv
‘k

O(x,v) Yk(x,v) $

(loo)

(101)

o

2+1’2(x,v) is aand R “remainder”which, by Eqs. (99)-(101),satisfies

m

f
CJ(X,V)yj(x,v) R‘+1’2(X,V)dv = O , j=l, ..., n .

0

We remark that if $
1+1/2

can be expressed solely as a linear combinationof the
1+1/2 = O.

n functionsxy~/ts,then R

We now write Eq. (95a) as

We

to

multiply this equation by yk, integrateover v, and use Eqs. (99) and (101)

get

m m

-f
ala 1+1/2 1+1/2(x) = bklq(x) +

‘k 3X 3CS3X
—— — 4 dv + Ok

.J
yk s dv . (102)

o 0

Next we introducethe expansion (100) into Eq. (102):
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m m

d(x) + J f ala ~2+1/2
= akl 1 Y~ s dv + ‘k ?)X3(saX

——— CIV .

0 0

(103)

This equation is automaticallysatisfiedby the solution of Eq. (95a). We now

1+l(X),define a system of n accelerationequationsfor the n unknowns@k

l<k<n, as

m m

J f ala #+1/2. yk s ‘v + ‘k & 30 aX
—— dv .

0 0

Defining

F;+l(X) = @;+l(X) - @;+l’2(x) ,

and subtractingEq. (103) from Eq. (104)Swe obtain the result

n=

-u
ala~ Fl+l

(x) + (1
1+1

‘k aX 36 aX CS
—— — yj dv j - tjkl)Fk (X)

1+1/2(x)
= akl ‘1

- o;(x) s

(104)

(105)

This procedure reduces to that of Eqs. (95) for the case n=l. Moreover, if

there exist functions@j(x) such that for every sPatial Point

n

z

XY.
$(X,V) = J@.(x) ,

J
j=~ a

(106)

then $ is obtained in one iteration.
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However, we have not yet specified the functionsP. in Eqs. (98), and thus
J

the functionsy are not fully determined.
j

Also, we do not know in general

whether the system (105) is ill-posed (or well-posed)for determiningthe func-

tions l?t+lk
, or whether special functionsP

j
have to be

system well-posed. Finally,we do not know in general

Eqs. (105) leads to an accelerationmethod with better

than that obtainedby takingn small.

determinedto make this

whether taking n large in

convergenceproperties

Thus, in the following,we shall consider the cases n=l and n=2 in detail.

For the moment, we assume that Eqs. (105) can be (and are) solved to determine

~+l(x) , and we focus on the stabilityquestion for the accelerationmethod

(95a), (95b), (105), and (106).

Following the Fourier stabilityanalysis outlined in Ref. 17, we obtain

the following. If we define

“ .4

!
~jk. ~dv s

o

(107)

m

f
3rs2x

‘o =
dv ,

0 A2+ 3cr2
(108)

then U. is the unacceleratedeigenvalue(A is the Fourier transformparameter

satisfying- = < A < OY). WI, the eigenvaluefor the n=l accelerationmethod, is

defined by

3(1 - Wo)

‘1 = ‘o- 9
A2P02

and U2, the eigenvaluefor the n=2 accelerationmethod, is defined by

3(1 - Uo)

‘2 = ‘o - 2 9
A (po2-K)

(109)

(110)
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where

.

A2(P10P02- P12)2
K= . .-8-. .

3(P20- P;())+ ~%:() Po.#P~oP~2 + P22)

At this point we shall assume

m

[–

xP~
0 # p12 =

o
2 ‘v “

(111)

(l12a)

(l12b)

[By Eq. (98b), we can add a constant function (i.e., independentof v) to PI

without affectingthe form of y2, and this constant can be chosen so that

Eq. (l12a) is satisfied. Thus, without loss of generality,Eq. (l12a) is

satisfied. However, we must simply assume that Eq. (l12b) is satisfied (which—-

it clearly is, in general).] Thus, Eq. (111) reduces to

A2p;2
K . >0.

3P20 + #p22
(113)

Now we shall prove analyticallythat for all choices of x and a, any x#O,

and any functionP (v) satisfyingEqs. (112),

0<(02<(01<(.0.< 1 ● (114)

Then, defining the spectralradii

sup
spr =

n HA ‘n ‘
(115)

49



we obtain from (21)

spr2~sprl~spr0 < 1 .— (116)

Thus (unlessequality holds) the n=2 method is stable and convergesmore rapidly

than the n=l method, which in turn is stable and convergesmore rapidly than

the n=o (unaccelerated)method.

To begin,we note from Eqs. (94b) and (109) that

o < LO.< 1 9 A#o.

This result and Eq. (109) implies

‘1 < ‘o ‘ A#o.

Next, by Eqs. (110) and (113),

‘2 < ‘1 ‘ A#o.

To proceed,we use the inequalityla

1
2 .

1 ++ (po2 - K)

Cauchy-Schwarzinequality,18we obtain

(l17a)

(l17b)

(117C)

(118)
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●

and hence, by Eq. (113),

2

K< @ <po2 .
P22

Thus the denominatoron the right side of Eq. (118) is positive,and so we can

easily rearrangethis inequalityto obtain

or

3(1 - @

‘“o> 2
.

A (po2 - K)

This result and Eq. (110) imply

o <(A)2 . (119)

Combining the inequalities(117) and (119), we obtain the desired string of

inequalities(114)0

We have numericallycomputed spr [Eq. (115)] for a and x given by Eqs.

(96) with a = ~ = 1 and (for n = 2) v~rious choices of P (v). We find

spr
o
= 1.0 ,

spr
1
= 0.867 , (N = 16)

and
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PI(V)

V2

v

1/2
v

1/3
v

V114

X2

x

1/2
x

2/5
x

1/3
x

f*(v)

spr2

0.81

0.75

0.69

0.67

0.65

0.79

0.73

0.63

0.59

0.61

0.53

N

11.0

8.0

6.2

5.7

5.3

9.8

7.3

5.0

4.4

4.7

3.6

Here N, the number of iterationsrequired to converge the answer by one order

of magnitude, is explicitlydefined by

N
spr = 0.1 9

and the function f*, defined by

f*(v) = 30X

[10.131 2 + 3a2 ‘

a3 P

arises from Eq. (97) with an optimal choice of A (whichwas determinednumer-

ically). Thus, for all of the consideredchoices of Pl, we have

spr2 < sprl < spro = 1 ,

which is consistentwith the theoreticalresult (116).
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It remains to discuss possible proceduresfor solving the system of Eq.

(105). For n = 1 this system reduces to a single diffusionequation,which

needs no further discussion. For n = 2, the system can be written

F (X) - L
- ’00 o 01 FI(x) = Q(x) ,

F (X) - Lll Fl(x) + Fl(x) = O ,
- ‘lo o

(120a)

where

Q(x)
= &+l/2(x)

1
-a;(x) ,

and for simplicitywe have deleted the iterationsuperscripts1+1. Let us

define

Jeij(x) = Yi ~yj
dv ;

o

then, for a homogeneousmedium,

(120b)

d2
‘ij —= ‘ij dx2

.

Now let us write F. and FI in the form

‘o = ‘Ol”o + ell”l

‘1 = - ‘Oo”o - ‘Ol”l

(121)

(122a)

(122b)

where U (x) and U (x) are to be determined.
o

IntroducingEqs. (122) into Eqs.
1

(120) and rearranging,we obtain
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- (LOOell- LO1OO1) U1 = Q+ (LOOeOl- LO1OOO)-UO s (123a)

For a homogeneousmedium, Eq. (121) holds and Eqs. (123) reduce to

d’
- (eooell - e~l) —

dx’ul= Q ‘

d’
- (000011- e~l) —~x2 ou ‘eoouo+eoluo=o “

(124a)

(124b)

This is a triangularsystem which can be solved without having to iterate

between the two equations,and this suggests the followingiterationscheme for

Eq. (123): introduceinitial choices for U. and UI on the right side of Eqs.

(123) and solve for the improvedvalues of U. and U1 on the left side. Then

insert these improvedvalues into the right side and repeat the procedureas

often as required. Only one such iterationis requiredif the system is

homogeneous. Moreover,

,(j>dj(j-gdj=eooe,,,

and hence the diffusioncoefficientsin Eqs. (124) [and (123)1 have the correct

sign. [Also,Eqs. (122) can be invertedand solved for UI and Uo.]

To summarize,this model method appears to be advantageousin accelerating

the convergenceof iterativesolutionsof the frequency-dependentdiffusionEq.

(94). However, testingwill be required to determinewhether the extra

calculationswhich need to be done will be significantly

savings obtained from having to perform fewer multigroup

54
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F. Behaviorof DSA Methods for Time-lkpendentTransport Problemswith
UnacceleratedDiffusionIterations(E. W. Larsen)

At each time step in the fully implicitmethod for solving time-dependent

radiationtransportproblems,one must solve the equation

ml
a

P&$ L+ (0+7) +(x,v,p) - 2
ff

cx$d~’ dv’ =Q ,

0 =1

where

03

f
X(X,V) dv = 1 ,

0

1
T =—

cAt ‘

and Q depends on informationobtained from the previous time step. The

accelerationmethod

a 1+1/2+(k) ~.R+l/2
P~o (x,v,I-L) = xYhx) + Q ,

0 --1

m

al ~ f‘+1
1+1

!

~f2+1-—
ax 3(o+T) aX

+(o’+T)f -x (X,V’)dv’

o

. x (d+l’2-Y5 ,

m

Y?+l(X) = Y!J+l/2(x) + J of 1+1
(X,V’) dv’ ,

(125)

(126)

(127)

(128a)

(128b)

(128c)

(128d)

o

55



can be used to obtain the solution,but the diffusionEq. (128c) must itself be

iterated to obtain a solution. Here we shall describe propertiesof the above

accelerationmethod obtained by iteratingEq. (128c) directly (i.e.,without

acceleration)a finite number of time. (This number is denoted by n.) In

particular,we wish to determinehow the spectral radius of the resulting

accelerationmethod depends upon T and n.

The accelerationmethod is describedas follows:

I?Q1+l’2+(o-h) $“~+1’2(x,v,p)
p ax

ti=x (x)+Q ,

ml

J.1
@+l/2(x) =.! @2+l/2dV,dv, ,

2
0 -1

a 1
~f I+l,m+l+ (&T) f1+1‘m+l(x,v)

- & 3(o+’c)ax

/

=xF 1+1‘m(x)+ V2+1’2(X)- Y?(x) ,

0

F+l(X) = #+1/2(x)++’yx) ,

The results of the stabilityanalysis are as follows. Setting

Q =0 ,

then u is the eigenvalue,given by the followingequations:

56

(129a)

(129b)

(129c)

(129d)

(129e)

(129f)



m

! 3CS(CJ-I-C)
Y = 2X dv ,

0 X2 + 3(6-I-Z)

a= Q (l_yn) .
n P-l_y Y

(130a)

(130b)

(130C)

For the special choice of cross sections

-av
x = ae 9 (131a)

-av
a = P 1-3e s

v

(131b)

we find numerically that for all values of a and (3>the maximum value of ~n

occurs for A = O providedUn is not much smaller than 0.2. Thus,

max wn(A) = Un(o) if Wn(o) > 0.2 . (132)—

o<A<-

For A = O, we obtain from Eqs. (130)

m

o

and

n
Wn(o) = p ●

(133a)

(133b)
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For small z, Eq. (133a) can be expanded to give

m

P= f
(1 - ~ + L ... ) X dv

o a’

=1- TFI+ 0(-C2) ,

1
= 1 + ‘ce+ 0(-T2) ,

where, using Eqs. (131),

w

f

6.494Xdv z— .0= ~

o a3P

CombiningEqs. (127), (132)-(135),and defining rn as the largest value of

~ (the spectral radius),we get

(134)

(135)

(136)

provided the resulting value of rn is greater than 0.2. Equation (136) shows

that, as expected,rn increases to 1 as At increases to ~, and that for fixed

At, rn is a decreasingfunctionof n. However, for large At, rn is a very

slowly decreasingfunction.

Let us now ask a differentquestion: for large At, what value of n is

needed to produce a given spectral radius for the ful1 method? If this desired

spectral radius is rn = 1/4, then we must solve

‘=(’+$an“
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Hence,

n = O.213 a3@cAt .

1.386

()

= 6.494

a3~cAt

(137)

This is our main result, and is valid for large values of a3$cAt, say

larger than 10. It shows that for large values of At, proportionatelylarge

values of n are required to maintain a constant value of the spectral radius.

In other words, as At increases,the number n of diffusion iterationsmust

increase accordingto Eq. (137) so that the total number of iterationsof the

full method (129) [i.e.,the total number of transportiterations]is held

constant.

G. New Diffusion-SyntheticAccelerationStrategiesfor Frequency-Ikpendent
Transport Equations (E. W. Larsen)

In a previous quarterly report,17 we discussed several diffusion-synthetic

accelerationmethods for the frequency-dependent(or “multigroup”)transport

equation

= X(x,v)Jf
o -1

with the constraint

m

J x(X,~) dv = 1 ●

o

O(X,Vt) $(X,Vf,~l)dp’dv’ + Q(x,v) (138)

(139)

The procedurefor acceleratingthe iterationof Eq. (138) by a one-group

diffusionequation is:
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The

d++x) = YA+l/2(x)+ FA+l(x) .

procedure for acceleratingthe iterativesolution of Eq. (138) by a

frequency-dependent(or multigroup)diffusionequation is:

~a~~+l’z+ J+l/2
(x,v,p) = xY’?x) + Q ,

(140a)

(140b)

(140C)

(140d)

(141a)

ml

@+l/2(x) = ~ @A+l/2 dp,dv,
2 If 9 (141b)

o -1

w

ala f1+1—— + of1+l(X,V) - x
f

~f1+1
- % 30 ax dv‘

o

[9
1

+1/2(x) -yJ’(x) ,‘x (141C)

(141d)
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For the special choice

1 - e-a”
a(v) = p 3

v

-av
x(v) = ae s

of cross sections

s (142a)

(142b)

the spectral radii of the two accelerationmethods are respectively0.888 and

0.164, for all choices of the constantsa and ~. [The spectral radius of the

latter method is erroneouslyreportedas 0.082 in Ref. 17.] In practice,the

one-groupdiffusionaccelerationmethod probably convergestoo slowly to be of

practicaluse. The multigroupdiffusionaccelerationmethod has acceptable

convergenceproperties,but one must generallyperform a considerableamount of

iterating to get the multigroupdiffusionequation (141c) converged. Thus, to

solve this multigroupdiffusionequation,written as

m

a 1
~ f(x,v) + f(x,v) - X(x,v)

- G 3cKx,v) ax f
dX,V?) f(x,vf) dv’ = S(X,V) ,

0

we proposed17 the followingone-groupdiffusionaccelerationmethod:

ala f2+l/2 + ~f1+1/2(x,v)——
- = 3G ax

=xFA(x) +S ,

0

(143a)

(143b)

(143C)

(143d)
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With the cross sections

0.867.

Here we describea

given by Eq. (142), this method has the spectral radius

“family”of accelerationmethods for the transport

equation that combine the methods (140), (141), and (143). Conceptually,these

methods each consist of four parts, the third of which is repeatedn times,

where n is an arbitrarynonnegativeinteger. For n=O, the method reduces to the

one-group accelerationmethod describedby Eq. (140). For n-, the method

becomes the multigroupaccelerationmethod describedby Eq. (141). For finite

positive n, we obtain new accelerationmethods that have convergenceproperties

intermediatebetween those of the n=O and n- methods, and which tend

monotonicallytoward the n=~ propertiesas n increases. The methods are

describedas follows.

1+1/2
a+ + ~@l+l/2

P~ (X,v,p) 9=x (x)+ Q ,

a 1
@+l/2

(x)=+
J[

~ol+l/2
dp’dv’ ,

0 -1

m

-f &---- --dv’ +“(x) ‘&+l’2(X) ‘#(X) .
0

Fern> landO<m<n-1,— ——

a 1 ~ fl,m+l/2+ ~fl,m+l/2
- G 36 ?3%

(X,v)

=xF ~’m(x) + @+l’2(x) - #(x) ,

m

~,m+l/2(x) =
I

~fl,m+l/2
dv’ ,

-(!$~~’d)

~.t,m+l
v (x) = 1+’m+l/2(x) _ #,lll(x)

(144a)

A

(144b)
I

I

B (145)

(146a)

(146b)

(146c)
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@rtl
(x) = F

1,m+l/2
(x) + GX’M+l(X) ,

@+*bd=y~+m(x) +FX’n(x) .

\ (146d)

D (147)

Step A describes the transportsweep, which is the first step for all

transportaccelerationmethods. Step B is patternedafter the one-groupdiffu-

sion accelerationof the transportequation IEqs. (140)]. Step C is patterned

after the one-groupdiffusionaccelerationof the multigroupdiffusionequation

[Eqs. (143)]. Step D is patternedafter the final step in both the one-group

and the multigroupdiffusionaccelerationof the transportequation [Eqs. (140d)

and (141d)].

For n=o, step C is omitted and the above method reduces to the one-group

diffusionaccelerationmethod described by Eqs. (140). For n=, the diffusion

equation (146a,b)is fullv converged,and the above method becomes the full

multigroupdiffusionaccelerationmethod described by Eqs. (141). For each

positive, finite value of n, we have a new accelerationmethod for which the

multigroupdiffusionequation is not fully converged.

The stabilityanalysis proceeds exactly as before, and for uniform cross

sectionswe obtain w (the eigenvalueof the full method) versus L (the Fourier

Transform parameter)defined by the followingequations:

0

P -1
‘o= m .

A2f
& dv

~ 3U2

(148a)

(148b)

Forn~landO~m <n-l,—

‘m

[

co [&dv
= (rm + p-1)

J
3a2x

r dv - ~ 1+r 0;
(148c)

m+l
o A2i- 352

f
1 dv

o 302
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(A)*= p + rn . (148d)

In Eqs. (148),p is the unacceleratedeigenvalue,UO is the eigenvaluefor

the one-groupdiffusion-accelerationmethod describedby Eqs. (140), and for

n ~ 1, Un is the eigenvaluefor the accelerationmethod with step C repeated

n times. For the cross sections given by Eq. (142),we have plottedp and ~

versus A/CY3~for n = O, 1, 2, 3, 4, 5, and = in Fig. 8. As can be seen, the

method for each choice of n is stable, and as n increases,the eigenvaluesuni-

formly decrease. The spectral radii for n = O, 1, ... i 10 are listed in Table

VI togetherwith M, the number of full iterationsof the method (144)-(147)

required to reduce the transporterror by a factor of 10.

In principle,for any given problem, one can now select the value of n

which minimizes the computingcost. For small values of n the cost of doing

the multigroupdiffusion iterations [step C] is low, but spr is high and so the

cost of doing the transportiterations [stepA] is high. For large values of n

the spr is low and the cost of doing the transportiterationsis low, but the

cost of doing the multigroupdiffusion iterationsis high. Thus, the total

cost will be minimized for some finite value of n (possibleeven n=O).

TABLE VI

TNBSPECTRALRADIUSANDMVERSUSN

n

o

1

2

3

4

5

6

7

8

9

10

spr

0.888

0.791

0.707

0.635

0.572

0.517

0.470

0.429

0.393

0.362

0.336

M

19.4

9.8

6.6

5.1

4.1

3.5

3.0

2.7

2.5

2.3

2.1
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SC-31 ,01 .1

Our analysis answers

Lo 10D

Fig. ~. w versus

two questionswhich

A/a3fl.

have been asked about the multi-

stabilityifgroup diffusionaccelerationmethod (141). First: what happens to

the diffusionequation (141c) is not fully converged? In the context of the

undiscretizedequations, the method is stable, but its overall convergenceprop-

erties improve as the multigroup equation is better converged. (However,we

have not shown what happens when the one-group equations themselveshave to be

iteratedupon and are not fully converged. Second: is it possible,without loss

of stabilityor efficiency,to perform relativelyfew iterationson the multi-

group diffusionequation (141c) in the early stages of

cess and then more fully converge this equation in the

is no. Stabilitywill not be affected, but efficiency

hurt by such a strategy,as is shown by the results in

the entire iterationpro-

final stages? The answer

will almost certainlybe

Table VI.
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H. Thermal RadiationTransport (B. A. Clark)

In previous quarterlyreports,we have reportedour progress in solving

the thermal radiationtransportequationusfng discrete-ordinatesmethods.

During this quarter we have run three sample problems to verify the accuracy of

our current methods.

The first problem is a 4 cm slab of material with opacity describedby the

analyticmodel

27a(v,e) = — (1 - e-hv’e) ,
(h”) 3

(149)

where 0 = kT is the material temperaturein keV. The results of this problem

have been reported previously.19,20,21 The Rosselandmean optical depth of the

problem varies from 5 x 109 mfp (1 eV isothermalslab) to 0.5 mfp (1 keV

isothermalslab); thus, we refer to this as a thin slab problem. The

discrete-ordinatessolution of this problem is in

previous transportsolutions.

However, the thin slab problem does not test

radiation thermalwave through the material. For

excellentagreementwith

the accuracy of followinga

this reason, the “thick slab

problem”was run; it consistsof a 20 cm slab of material describedby

Eq. (149) driven by a 1 keV black body boundary source. The Rosselandmean
10

optical depth varies from 2.5 x 10 mfp at 1 eV to 2.5 mfp at 1 keV. Ten

spatial zones are utilized and S4 discrete-ordinatesquadratureis adequate.

The results of this problem showed significantadvantagesover the multigroup

diffusion theory solution. MultigroupdiffusLon,without variable Eddington

factors or flux limiters,allowed radiationto propagate through the slab faster

than the speed of light. The discrete-ordinatestransportsolutiondid not

suffer from this problem.

The third test problem is a modificationof the thin wall problem;in the

region 2 cm < z < 2.5 cm, the constant in the analytic opacity (Eq. (149)) is

replaced by 1000. This thick “wall” region has a Rosselandmean optical depth
10

that varies from 10 mfp at 1 eV to 2.3 mfp at 1 keV. The”wall is treated

using two mesh cells. Comparisonsof solutionsusing discrete-ordinatesand

ImplicitMonte Carlo (IMC) are in agreement for this problem. The timing of the
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penetrationof the thermalwave through the wall agreed to within 10%. Spatial

temperaturedistributions,chosen at various times, also agreed with IMC solu-

tions.

The discrete-ordinatesmethod providesaccurate solutionsto these diffi-

cult problemsusing the simplest positive spatial differencescheme, diamond-

differencewith set–to–zerofixup. The results indicate that this difference

scheme is adequate for one-dimensionalproblems. These solutionsalso illus-

trate the performanceof the nonlinear DSA scheme developed for time-dependent

thermal radiationtransportcalculations.

The wall problem also brought forward some unexpectedresults. The number

of transportiterationsrequired for convergenceof the thermal source is

expected to be a smooth functionof time step; also, the total number of trans-

port iterationsper time step should remain less than 5-7. This expected

behavior was observed in the calculationsbefore the thermalwave hit the wall.

After the wave hit the wall, the number

“noisy”and some time steps requiredas

behavior is, as yet, unexplained. Some

been identifiedand are being examined.

can be explained in the near future.

of iterationsper time step became

many as 50 iterations. This unexpected

potentialcauses for the noise have

We are confident that these problems

Our futurework will include examinationof the noise in the iteration

strategy. Also, a l-group accelerationmethod will be employed to accelerate

the convergenceof the iterativemultigroup DSA calculation. Further refine-

ments in the opacity/transportiterationprocess will be studied to reduce the

number of opacity calculations,a first step toward adding tabular equation-of-

state and multigroupopacity capabilities.

I. A Sharper Version of the Csuchy-SchwarzInequalityfor Real-Valued
Functions (E. W. Larsen)

The standard Cauchy-Schwarzinequality22~23for real-valuedfunctionscan

be stated as follows. Let

b

<.> = J (*) dx ,

a
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and let f and g be real-valuedfunctionsof x such that <f*> and <g*> exist.

Then <fg> exists and

o ~ <f2><g2> - <fg>2 ,

with equalityholding if and only if f and g are linearlydependent.

A simple proof of (150) is as follows. We define the functional

F(A) = <(f -Ag)2> ,

(150)

(151)

which is quadratic in A and attains a minimum value of zero if and only if f and

g are linearlydependent. The value of A at which F assumes its minimum,k*,

fs determinedby

() = F’(A*) = - 2 <(f - Ag)g>

and is

~*=sQ ●

<g2>

Introducingthis result into the inequality

O~F(A*)

(152)

(153)

(154)

and rearranging,we obtain the inequality(150). Also, equality holds in (150)

if and only if equality holds in (154),which holds if and only if f and g are

linearlydependent.

We shall now derive the followingsharper version of the inequality(150):

Let f, g, and h be any real-valuedfunctionssuch that <f*>, <g*>, and @*>

exist with ~2> # O. Then

<(f<gh> - g <fh>)2>
~ <f2><g2>- <fg>2 ,

*2>
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with equalityholding if and only if f, g, and h are linearlydependent. The

derivationof this inequalityis based on a simple generalizationof the

procedure (151)-(154).

To begin, one can easily show that if g and h are linearlydependent,then

(155) explicitlybecomes an equality. Thus, from this point on we assume that g

and h are linearlyindependent. We define the functional

F(A,P) = <(f - Ag - ph)2> ,

which is quadraticin A and p and attains a minimum value of zero if and only

if f, g, and h are linearlydependent. The values of A and p at which F

assumes its minimum, A* and p*, are determinedby

o = FA(A*,p*)= – 2(<fg> - A*<g2> - p*<gh>)

o = FA(A*,p*)= - 2(<fh> -A*<gh> -p*<h2>) s
P

and are given explicitlyby

A* = <fg><h2>- <fh><gh>

<g2><h2> - <gh>2

<fh><g2>- <fg><gh>
P* =

<g2Xh2> - <gh>2

(We note that A* and p* uniquely

independent.) Now we explicitly

O < F(A*,P*)

and after considerablealgebraic

.

exist because g and h are

introduceEqs. (156) into

manipulation,obtain

(156a)

(156b)

assumed linearly

the inequality

(157)
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~ < <f*><g*><h*>- <f2><gh>2- <g2><fh>2- <h2><fg>2+ 2 <fg><gh><hf> ,

<g*><h*>- @h>*

The denominatorin this inequalityis positive,and hence the numeratormust be

nonnegative. This implies

<h2>[<f2><g2>- <fg>2]&>2~h>2 - 2 <fg><gh><hf>

+ <g2><fh>2= <(f<gh> - g<fh>)2 > ,

which immediatelygives (155). Also, equality holds in (155) if and only if

equalityholds in (157),which holds if and only if f, g, and h are linearly

dependent.

To illustratethe ability of (155) to produce sharper results than (150),

letus takea=O, b=~,

f ‘[’(1+911’2

g-[-r’
h= P1[,(l+~~]l’2 ,

where X(X) is a nonnegativefunctionsatisfying

m

1=
f

x dx ,

0

a(x) is a nonnegativefunctionsatisfying
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PI(x) is any function satisfying

o # p,?) ,

and A can

<f2>

<g2>

<fg>

<gh>

assume any real value. We then have

. 1,

. 0,

2
<fh> ‘} pl~ ‘

2
<h2> = P20 ‘} P22 “

(158a)

(158b)

(158c)

(159a)

(159b)

(159C)

(160a)

(160b)

(160c)

IntroducingEqs. (159) into the standard Cauchy-Schwarzinequality (150) and

rearranging, we obtain
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1
UO(A) ~ 2“

1 ++
P02

(161)

However, introducingEqs. (159) and (160) into the new inequality(155) and

rearranging,we obtain

.1
WO(A) > s

2

[

&;2
1 ++ po2 -

3P.20 + A2p221
(162)

which provides a sharper estimate than that of Eq. (161) for any function P
1

satisfyingEqs. (158).

Iv. FKINTECARLO RADIATIONTRANSK)RT

Group X-6 has a significanteffort devoted to the development,implementa-

tion, assessment,and applicationof Monte Carlo methods and codes for radiation

transportcalculations.

During the reportingperiod,we present our progress on the MCNP, Version 3

Monte Carlo code, on portabilitytechniquesused in the code, and on implementa-

tion of MCNP, Version 3 in numerous computingenvironments. These reports are

followedby a discussionof a new surface source capabilityinMCNP. Next come

reports on the generalizationof MCNP standard sources, on a new biasing tech-

nique, and on a new weight-windowgenerator for MCNP. As part of our coupled

electron/photontransportwork, we report on calculationsfor two electron-gamma

convertersperformedwith our CYLTKAN computer code. Next are two reports per-

taining to our multigroupMonte Carlo code MCMG. These are followedby a brief

report on the applicationof MCNP to a total gamma ray yield detector. Progress

on 3-D graphics is also reported. The section concludeswith a descriptionof a

method of sampling from a cumulativeprobabilitydistributionand a brief report

on further MCNP testing.

A. MCNP Version 3 (T. N. K. Godfrey)

MCNP is a general-purpose,continuous-energy,generalized-geometry,time-

dependent,coupled neutron-photonMonte Carlo transportcode.24

widely accepted and is heavily used both within and outside Los
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Laboratory. The code continuesto be actively improvedand

of Group X-6.

The portableversion of MCNP, Version 3, has started a

enhanced by members

period of trial use

at Los Alamos and by volunteersamong RSIC’S correspondents. Version 3 has been

developedover the last two years in parallelwith the sequence of Los Alamos

productionversionsof MCNP. Version 3 presentlyhas all the features of the

current productionversion,which is Version 2D. Now that Fortran 77 compilers

and librariesare availableon all widely-usedscientificcomputer systems,

includingours at Los Alamos, it is time for Version 3 to go into production.

When the period of trial use is complete,Version 3 will replaceVersion 2D at

Los Alamos and will be distributedto other installationsby RSIC.

B. PortabilityTechniquesused in MCNP Version 3 (T. N. K. Godfrey)

The potentialusers of MCNP outside Los Alamos have a wide variety of com-

puters, operatingsystems, and utility software. We would like to be able to

provideMCNP to anyone who has access to any fairly common computingsystem.

Our success in making a single MCNP program (with a few isolated system-

dependent sections)run on LTSS and CTSS in productionat Los Alamos and at the

NMFECC, and the recent availabilityof a standard programminglanguageadequate

for large-scalescientificand engineeringcomputing,FORTRAN 77,25 led us to

believe that we could provide and maintain a single MCNP program for use on all

common computingsystems. Using this approach,we have successfullyrun the

FORTRAN 77 version of MCNP, Version 3, on a CRAY-1 with CTSS, on CDC machines

with LTSS or NOS and with LCM, ECS or neither, on a VAX-780 with VMS, on an IBM

3033, and on a PRIME-750. We are satified that our approach is a good one and

are presentlypolishingup MCNP Versicn 3 for distributionthrough the Radiation

ShieldingInformationCenter (RSIC) at Oak Ridge.

The most importantportabilitytechniquein MCNP Version 3 is the use of

FORTl&%N77. With FORTRAN 77 most of the difficultieswith character represen-

tation, internal conversionbetween character data and numeric data, file open-

ing and closing, structureof binary files, and nonuniforminterpretationof

control statementsare avoided. The generic intrinsic functionsmake it easy to

use double precision type on 32-bit machines and real type on 60 or 64-bit

machines. The PARAMETER statement for defining constants of all types greatly

simplifiesthe creation

required. In addition,

of system-dependentsections of code where they are

FORTRAN 77 is a good convenientprogramminglanguage,
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without the narrow limitationsthat made the previous standard,FORTRAN 66,26

difficult to use for large programs. The only significantlimitationof FORTRAN

77 for MCNP is the absence of away to allocate storage dynamically. Storage is

dynamicallyallocatedin MCNP only during the setup phase of a problem. This

limited dynamic allocation.of storage can be done within FORTRAN 77, albeit

clumsily,by means of statementfunctionsor by offsets in subscripts. The

latter method is illegal (subscriptexpressionvalue exceeds upper dimension

bound) but works on all the systemswe have tried.

System-dependentsections of code are necessary to provide features that

are outside the scope of the programminglanguage. Some importantexamplesare

overlays or segments,graphics,execute line message~ field-lengthcontrol>and

double precisiontype on 32-bit machines. The system-dependentsectionsare

defined by *IF,DEF,name,rangeor *IF,DEF,nameand *ENDIF directivesand are

evoked by a *DEFINE,name,...,.namedirective. These directivesare interpreted

by a pre-processorwhich can be HISTORIANor UPDATE, at least one of which is

availablemost places, or by PRPR in MCNP’S own preprocessor. PRPR which iS

only 107 lines long, is written in pure FORTRAN 77, and works everywhere.

At present we provide system-dependentfeatures such as the time and

terminal interruptsonly if it can be-done by calling, from FORTRAN,

subroutinesprovidedby the system vendor or, in some cases, by the local

installation. We may someday considerwriting assembly languagesubroutinesto

provide these features in cases where the necessary system calls exist but

there are no FORTRAN-callablesubroutinesthat can make the system calls. We

use comdecks in MCNP to shorten the code, to make maintenanceeasier, and to

isolate and concentratesome of the system-dependentmaterial. A good example

is the comdeck ZC, which is called in most of the subroutinesof MCNP. It

contains thirty system-independentmmed constantsand seven system-dependent

constantsthat handle peculiaritiesranging from the effect of double precision

on dynamicallyallocatedstorage to the effect of automaticvectorizationon

the strategyused for storing tally scores. The comdecksare defined by

*COMDEC,namedirectivesand are called by *cALL,namedirectives,which are

interpretedby HISTORIAN,UPDATE or PRPR.

Another strategyused to isolate system-dependentcode is to concentrate

it in a few subroutines. The subroutinesGRAFIX has twelve ENTRYs providing

elementarygraphics operationssuch as “move to a specifiedpoint” or “skip to

the next frame.” Each ENTRY section of GRAFIX has alternativecode for calling

74



subroutinesfrom CGS, PLOTlO, or DISSPLA. The subroutinesthat call the GRAFIX

ENTRYs are free from the clutter of the alternativecoding and, even more

important,are free from the nonstandardFortran requiredby many of the calls

to the graphics systems. If any of the graphics systems are made standard-

conforming,only the one subroutineGRAFIX in MCNP will need to be changed.

In spite of good efforts to create and distributea standard library of

mathematicalsubroutines,it is not yet practicalto assume that it wil~ be

availableeverywhere. FortunatelyMCNP does not use very many mathematical

subroutines. Those that are used were taken from the Los Alamos mathematics

library,were convertedto FORTRAN 77 and to MCNP programmingstyle (which

shortened them a great deal), and were incorporatedinto MCNP as the last 600

lines of the program.

Some limitationsof some systems are accommodatedwithout providing

alternativesectionsof code. For example, the IBM compiler complainsif

double-precisionquantitiesdo not fall on even word boundaries. Correct code

is generated in that case, but to avoid the annoyanceof all the warning

messages from the compilerand to avoid the reduced computingspeed that could

result on some IBM systems,we have put all of the integer variablesand arrays

in each common block at the end of the block.

The cross-sectionlibraries that we provide with MCNP have to be as

portable as MCNP is. So we provide them as formattedfiles of 80-character

records. Such files are about twice as large as correspondingunformatted

files and are much slower to read. So we provide with MCNP a small conversion

code to translatethe formattedfiles into direct access unformattedfiles.

This code can also be used to put the cross-sectiontables into files in any

arbitraryarrangement. An installationwhere only one kind of MCNP problem is

run can put just the tables for the nuclides they regularlyuse in their main

cross-sectionfile, thus saving public file space if it is scarce. MCNP iS

able to read both formattedand unformattedcross-sectionfiles. Note that

although the formattedcross-sectionfiles are both standard-conformingand

portable, the unformattedfiles are standard-conformingbut not portable. This

is because the FORTRAN 77 standard specifieshow files are to be written and

read but says nothing about how they are to exist in the actual hardware

storagemedium. Each system does files its own way. The only reason the

formattedfiles are portable is that there are a few ways of putting 80-column

75



card images on 9-tracic1/2” magnetic tape such that just about any installation

can manage to read then somehow.

A Monte Carlo ptogram has to have a generatorof pseudo-randomnumbers.

It is highly desirableto have the generator produce the same sequence of

pseudo-randomnumbers on all systems. The generatorin MCNP does this. It

implementsthe commonly-usedalgorithm,X’ = A*X (mod M) with M=2**480 A and X

are each a pair of 24-bit integers carried in real (double-precisionin 32-bit

machines)variables. The multiplicationis done by a programmeddouble-pre-

cision multiply. This gets around the lack of a low-ordermultiply on most

computers. The whole thing is done in five executableFORTRAN 77 statements.

c. MCNP Version 3 Implementation(J. T. West)

‘ MCNP Version 3 has now been implementedon CDC 7600, CRAY, VAX 780, PRIME

750, IBM 3033, Cyber 176, and Cyber 825 computer. Version 3 is written in the

new FORTRAN 77 Standardfor probability. The new FORTRAN 77 compilerscur-

rently in existencecontain many minor bugs, but in general perform satis-

factorily. A serious problem exists in the IBM and CDC systems that will

require correction. IBM’s FORTRAN 77 compilerhas problems reading and writing

character type arrays, where the array limits are specifiedonly in “Dimension”

statements. This problem makes it impossibleto generate and use as MCNP

RUNTPE on IBM. CDC has a problem performingcharactercomparisonson character

type variablesstored in LCM. The problem is in a CDC system library routine

called “DCC=”. A local fix exists at Los Alamos and is requiredon CDC machine

using LCM and the CDC FTN5 compiler. Implementationon the VAX was accom-

plished with all featuresavailableon LTSS and CTSS, includingthe interrupt

capability. CRAY implementationhas been successfulon both CTSS and COS.

The type 1, card image cross-sectionformat, has proved very portable.

Conversionto binary has been accomplishedon all systems using the auxiliary

program MAXXSF. The concept of a cross-sectiondirectory pointing to either

disk files or peripheral storage devices has proven and will prove in the

future to be very versatileand flexible in implementingcross-sectionfiles on

different computerhardware.

MCNP Version 3 graphics is operationalusing the Los Alamos Common Graphic

System, CGS, the TektronicsPLOTlO software,and the ISSCO DISSPIA graphics

systems. The Los Alamos CGS softwarehas been installedand implementedon

several systems not having either PLOTlO or DISSPLA, includingthe Defense
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Nuclear Agency’s Cyber 176 for the Naval Weapons EvaluationFacility,NWEF. CGS

is not proprietaryto Los Alamos and is availableto the general public.

D. BKX?P,A New Surface Source &pability (J. T. West)

Frequently in

break up a problem

system rather than

effectivewhen:

1. the parts

running radiation transportproblems it is desirableto

into parts and concentrateeffort on a part of a geometry

trying to compute the complete system. This approach is

of a geometry system can be decoupled,either due to distance

or size, and,

2. when albedo effects are properly treated at the couplingboundary.

This procedureis effectivein studying small geometric perturbationsthat have

a negligibleeffect on the larger system. For these applications,the smaller

or secondarysystem is decoupled from the larger system. Changes in the smaller

system thereforedo not affect radiationtransport in the larger system. An

advantage to being able to conduct parametricstudies on the smaller system

without rerunningthe complete larger geometry system is to be able to obtain

better Monte Carlo statisticsin considerablyshorter computer runs. This

techniqueallows more design informationto be obtainedwith less demands on

computerand manpower resources. Running coupled calculationsis a common

practice in many radiationtransportapplications. The two most commonly used

coupled links are coupling SN to SN and coupling SN to Monte Carlo.

X-6 has developeda general Monte Carlo to Monte Carlo coupling technique

for use in MCNP. The method utilized in MCNP preservesboth the particle

current and the statisticsof the particle distributionon a surface source.

Several methods are in common use for surface source coupling. Most techniques

in the past used either discrete distributiontables, or functions (such as

Legendre Polynomials)to preserve the phase space distributionof particleson

the surface. These approachesto surface source samplingmay preserve the flux

and possibly the current on a surface, but directly wash out the statistical

informationof the particleswhich-generatedthe surface source.

In order to preserveexactly the statisticalinformationof the particle

distributionon a surface source, it is necessary to correlateparticle tracks

with the individualhistories,which generated the track. The relativeerror

computed for tallies in MCNP is:
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= Relative Error Y (163)

where X representsthe tally contributionfrom the ith particle history.
i —

Actually Xi is

M,1

j-l

(164)

‘here‘u is the tally contributionfrom the jth particle track born from the—
ith history and Mi is the number of tracks for the i~ history.— Several pro-

cesses exist for generatingsecondaryparticles from a parent particle. For

example, secondaryparticle generationor particle splitting. MCNP computes

statisticsbased on individualparticle histories,as opposed to calculating

statisticsfor a batch of particles,and then calculatingerrors based on

variancesbetween batch averages. The MCNP approachallows computationof

statisticsduring the run, and may be terminatedcleanly at the end of any

history.

Surface sources in MCNP are generated by saving all relevantparticlephase

space informationat a boundary on a file. A surface source”file is a boundary

crossing file. It is clear that,

‘i N2E Y
I>j = x xi

i=l j=l i=l
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and that

N ‘i N

while it is true

(165b)

xx(Yi j)z =z (X1)2 .>
i=l j=l i=~

(165c)

The MCNP surface source, by correlatingparticle tracks with their respective

historiespreserves both the sum of particle contributionson a surface and the

sum of squares of the history contributions,thereby preservingthe flux, the

current, and the statisticaldistributionof particles on a surface source.

By allowing splittingand Russian roulette on a surface source, the number

of particles tracked from a surface source may be independentfrom the number of

particlesused to generate the surface source in the initial calculation. The

absolute variance of a surface source will be modified, if all particle tracks

on the surface are not tracked.

The new MCNP surface source has the following features:

1. The surface source may be composed of an arbitrary number of surfaces;

all or selected surfacesmay be sampled.

2. All surface types are available for use as a surface source.

3. Biased sampling by energy is allowed. This is convenientwhere tally

results are being computed, which are more sensitive to a given energy

range. It is then possible to sample from a biased distributionmore

efficientlythen the true distributionon the surface source.

4. Surfacesmay be segmented to allow partial sampling from a given area

of interest.

5. Surface sources may be repeatedand arbitrarilypositioned,an arbi-

trary number of times, and sampled from a biased distributionof repe-

titions.
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6. IJncollided(i.e. from the surface) point detector estimatesmay be made

from a surface source using discrete tables defining the angular emis-

sion probabilityon the surface.

Point detector estimatesmade from a surface source, presently,do not com-

pute the correct detector variance where the angular emission distributionis

not known exactly. Much effort has gone into benchmarkingand understanding

uncollidedpoint detector estimates from a surface. A peripheral program,

FRED, computesas many as four sets of six dimensionaltables for describingthe

angular distributionof particleson the surface.

Two sets of tables are computed for neutronson a surface,and two sets are

computed for gammas on a surface. One set of tables describes the angular dis-

tributionsfor particleson a surface source which sufferedno collisionsin

reaching the surface source. Another set of tables describes the angular dis-

tributionof particleswhich suffereda collisionbefore reaching the surface

source.

The reason for two tables is that the angular distributionof uncollided

particleson a surface can be drasticallydifferentfrom the angular distribu-

tion of collided particleson a surface source. Therefore,the angular distri-

bution tables for collidedand uncollidedparticleson a surface must be kept

separately.

An extreme case is a point source in a sphere, or a line source in a

cylinder. The uncollidedparticle angular distributionfrom such a hypo-

thetical source is a true delta functionvalid only in a monodirectionalbeam

emitted from the surface. If the sphere or cylinder containeda scattering

medium, the collided particleangular distributionon the surface would be

completelydifferent,such as a cosine of the angle of emission raised to some

power.

The peripheral program, FRED, bins each set of tables in six domains of

phase space. They are time, energy, two space domains, polar angle of

emission,and azimuthal angle of emission. Tables are generatedin a single

FRED run for each surface in a surface source file. At present a method has

been developedand implementedin FRED to compute relativeerrors for each

bin. Plans are to eventuallybe able to complete correctlythe errors on

direct point detector estimatesfrom a surface source. The problemmay be

understoodas:
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where

(166)

‘i>j(ii, ~, E, t) - is the tally contributionto a point detector from

the j
th

track of the i
th

history at space position

~, emitted in direction; with energy E at time t.

‘i)j
(~, t, E, t) - is the probabilitydensity function for particle

emission from a surface source at location~ with

direction;, energy E, and time t.

- distance from location~ to the point detector of
‘i>j

interest.

Y.l,g
number of mean free paths from fito the point

detector.

Pi,j(~,~, E, t) is not a preciselyknown quantity when making direct

estimatesto a point detector from a particle bin emitted from a surface

source. The probabilityof emission is computed from a statisticaldistribu-

tion of particleson a surface. The probability,P. (R,+2,+E,t), has a
~>j

relative error associatedwith it which implies that each individualtally

ri j(~, ~, E, t) has a relativeerror. The sum of the individualtallies then

be~omes the sun of partial estimates,each containingrelative errors. The

problem is to compute the error on the sum of the individualestimates.

The probabilitydensity function P
isj

(~, 3, E, t) is a functionof

azimuthal angle of emission,polar angle of emission, two space domains,

energyy and time. As a discretelybinned density function for six domains of

phase space, there exists six hierarchal probabilitydensity functionsand six

hierarchal cumulativedistributionfunctions. Since each density table is

normalized,an individualbin element in each table is a fraction,where the

numeratorhas an error associatedwith it, the denominatorhas an error

associatedwith it, and a covarianceerror exists due to the addition of the

numeratorin the denominator. To illustrateconsider
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‘isj(0, v>X> Y, E, t) = s

Q;, ~(Ps x, y, E, t)

where

( 167a)

( 167b)

Qi,j@~ IJSx? Y, E, t) is the weight found in some bin defined about some

azimuthal angle of emission$, about some polar angle of emissionp, about some

space domain x, about some space domain y, about some energy E, about some

time t. Both Qi,j and Q~,j are not
‘~$~ ‘epresents‘i>j

summed over all $ .

absolute quantities,but are statisticalquantities. The problem is to compute

the relativeerror of P
i$j”

This may be accomplishedby computing the relative

error of Q
i,j’

the relativeerror of Q: and the covariancerelativeerror of
,l>j’

Qi,j’s contributionto the error in Q
f9j”

This approachhas been implemented

in FRED, so that tables of angular emission probabilitydensity tables are com-

puted and their respectivetables on relative errors on the angular emission

probabilitytables.

In the future further developmentof the direct point detector contribu-

tion from surface sources will include calculationof the error due to statis-

tical fluctuationon a surface source.

Surface source developmenthas occurred in X–6 through the efforts of Ed

Snow, Art Forster, Dick Prael, and mainly Jim West. Ed Snow has successfully

blended the surface source patch in MCNP, so that its file organizationand

input requirementfollow standard MCNP guidelines. Art Forster contributedto

the conceptualdevelopmentof the surface source and contributedto its verifi-

cation by developingsimple analytic models of angular distributionon simple

surface geometries. Dick Prael contributedto the conceptualdevelopmentof the

surface source method and to the understandingof error analysis involving the

surface source. Jim West contributedto the conceptualdevelopmentof the sur-

face source, the initial programmingof the surface source patch, the benchmark-

ing and verificationof its initial operation.
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E. Generalizationof MCNP Standard Sources (R. G. Schrandt)

The existing standard sources of MCNP have been modified to allow more

flexibilityand some generalization. Dependencybetween source variablescan

be defined. Up to fifty source distributionsare allowed and can be associated

with any of these variables.

In particular,particlescan now start uniform in volume in more than one

cell. The probabilitiesare computed from the cell volumes. Multiple energy

spectra are allowed and can be selected as a functionof cell.

For energy-angledepending,either one can be defined to be the indepen-

dent variable. This variable is then sampled from a tabular distribution. The

index of the bin selected then points to a set of spectra for the dependent

variable. A spectra from this set is selected and the dependentvariable is

then sampled from this distribution. These spectra are in the S1, SP, SB

format2q of MCNp which allows any or all of them to ~ biased. A frequency

table can be printed for each distribution.

This modificationis in a friendly user version and is not as yet part of

the standardMCNP. An X-6 memo of November 16, 1982, describes it in more

detail and gives some examples.

F. A New Biasing Techniquefor MCNP (T. E. Booth)

During this reportingperiod, I have tested a new biasing techniquebased

on preferentiallychoosing random numbers so as to enhance those random number

sequences that have been most successfulin previous histories. Before reading

further,be advised that this “biased random number technique”appears to have

failed for the moment. However, there is still hope for this technique,in my

opinion.

My personal goal for MCNP is to relieve the user of all concern about

variance reduction;the user should set up his problem and MCNP should figure

out what to do about “appropriate””variance reductionparameters. Although I

do not always obtain my goals, there is truly some reason to believe that this

one is obtainable,albeit perhaps not easily.

It is well known (for linear Monte Carlo) that zero-variancesolutionsof

Monte Carlo transportproblems are possible if the adjoint solution is known

exactly; however, then the problem is aLready solved. As a practicalmatter,

low variance solutionsare possiblewith an approximateadjoint. The weight
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low variance solutionsare possible

window/importancegeneratorhas had

using an adjoint solutionestimated

with an approximate

major (althoughnot

during the previous

adjoint. The weight

universal)success in

Monte Carlo run.

Factors of two to twenty improvementover the “best” user’s run are common for

the ger.erator.The user still must partitionup the phase-spacein an “appro-

priate”way because the generator estimatesimportancein the user-specified

phase-spacecells.

The importancegeneratorworks by keeping records of the average score

generatedby a particleentering a phase-spacecell. The generatoressentially

answers the question “what particle trajectoriesgenerate the highest scores?”

The particle trajectoriesare determinedby the random number sequence;so,

suppose instead,one asks “what random nunber sequencesgenerate the highest

scores?” Suppose that a random number sequence (~ = rl, r2~ r3s ...) generates

a high score, one probablywishes to sample more random number sequencesin the

“neighborhood”of ~. Thus, instead of keeping records of what cells are most

important,a generatorcould keep records of what random number sequencesare

important. This relieves the user from specifyingcells.

Another way of consideringthe idea is to think of the Monte Carlo problem

as a function that assigns a score (or tally) T(:) to each random number

sequence;. Traditionalbiasing schemes work by changingT so that the random

number sequence is the argument of a new functionT1(~), and ~ specifiesan

entirely differentparticle trajectory. What I propose to do is to always have
+
r specify a given particle trajectorybut alter the probabilityof choosing~;

that is, I propose to do the biasing in the random number space rather than the

physical space. The mean can be preservedby multiplyingthe tally by the true

density pt(~) divided by the density p(~) actually used. Thus, the tally

associatedwith ~ would be [pt(~)/p(~)]T(~).

Thus far, this approachhas failed.

G. A New Weight Window Generatorfor MCNP (T. E. Booth)

An effectivespace-angleweight window generatorwas developedand

debugged throughversions 2B, 2C, and 2D. The method and some calculational

results are describedin Ref. 27. Another problem that the space-angle

generatorhas solved is the infamous “Tophat”problem. This problem is shown

in Fig. 9. The material is concrete,but the density (g/cc) in regions A, B,

C, and D is 20, 10, 0.5, and 2, respectively. The horizontallines are planes,
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Fig. 9. The ‘“Tophat” Problem.

and the vertical lines are cylindersso that A and B form a central cylinder

with C and D being rings. The source is 14-!4eVpoint isotropicneutrons and is

ever so slightlyjust inside region A. The radii of the cylindersare 5, 10,

and 15 cm; a plane at 8 cm bounds the top of the regions A, B, and C; a plane at

16 cm bounds the top of regionU and the void above regions C and D. The object

is to calculatethe total current (integratedover everything)leaking through

the segmentedplane above region B.

The average mean free paths in regions .4,B, C, and D are about 0.8, 1.5,

33, and 8 cm, respectively. As part of the problem, there is absolutelyno

variance reductionexcept for splittingand Russian roulette;even obvious

(obviousyou think) source directionbiasing is not used. Capture is analog,

and the energy cutoff is 1 MeV. Although not shown in the drawing, there is a

horizontalplane every centimeterused for splitting.

The “best”and most reliable calculationalresults obtained in 1980 are

shown in Table VII. These were obtained using a CDC-7600 computer. Note the

jumps in the figure of merit; the error even at 3-4% statisticsis unreliable.

Now conpare Table VIII and note how well behaved the error is. Table VIII is

the result of the same space-angleweight window and space-anglegenerator

described in the Tolcyopaper and calculatedon a CRAY-1 computer. Althoughmuch

85



TA8LEVII

NPS

10000
20000
30000
40000
50000
60000
?Lxx30
80000
90000
100000
110000
120000
130000
140000
150000
16000Q
170000
180000
190000
200000
210000
220000
230000
240000
250000

NPS

32000
64000
96000
128000
160000
192000
224000
256000
288000
320000
352000
384000
416000
425519

‘BEST-TOPHATSSSIJLTSOF1980
(Weight Window, energy independent)

MEAN
x 10-5

3.17
3.59
3.91
3.92
4.08
3.96
4.09
4.07
4.09
4.10
4.09
4.11
4.05
4.05
4.05
4.06
4.12
4.1?
4.16
4.10
4.13
4.14
4.23
4.24
4.23

ERROR

.133

.099

.077

.066

.073

.066

.061

.056

.052

.049

.047

.045

.043

.041

.041

.040

.039

.037

.037

.037

.036

.035

.046

.044

.043

TASLS VIII

1983TOPHATRSSULTS

MEAN

5.04912E-05
5.07058E-05
4.9651OE-O5
4.82126E-05
4.77104E-05
4.80046E-05
4.79021E-05
4.79770E-05
4.80059E-05
4.76699E-05
4.81356E-05
4.78260E-05
4.80842E-05
4.80287E-05

ERROR

0.0441
0.0329
0.0267
0.0232
0.0206
0.0187
0.0173
0.0162
0.0152
0.0144
0.0138
0.0132
0.0126
0.0124

FIGUREOF
MERIT

110
96
104
106
70
71
70
72
74
76 /

76
75
77
78
73
72
72
72
69
69
66
67
38
39
40

FOM—

114
102
104
104
106
107
107
108
108
108
108
108
109
109

7600equivalent FOM =% = 61..



refinenent is required,this techniqueshows great promise for lligl~lyangle-

dependent problem.

Il. Cyltran Calculationsfor Two Electron–Gamma(kmverters(H. C. Hughes and
J. M. Mack)

At the requestof R. 1?. Hoeberling([~SP/WAC), who has an i.tIte D2St in

pulsed radiography,we have inves~igatedthe energy and angular distribution

of photons producedwhen electrons inpinge on a tungsten target. The calcula–

tions were carried out using CYLTRAN,28a general purpose Monte Carlo code for

the solution of coupled electron/photontransportproblems in cylindricalgeom–

etry. The physicalsituation that we aodeled is shown in Figure 10. The inci-

dent electronsare uniformlydistributedin the cosine of the angle relative to

e-.

---- -.
—----------”-=

A ~---------......
7- ------------------------------ . . . . . .

V +

Fig. 10. Model Geometry for the CYLTRAN Calculation.
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the normal, but are confined to a cone with a half-angleof 45 degrees. Two

problemswere studied, namely an incident electron energy of 1.1 MeV with a

target thicknessof 0.02746 cm, and an incidentelectron energy of 5 MeV with a

target thicknessof 0.11399 cm. The transmittedphotons were tallied in 10-

degree angular bins and in energy bins with lower limits of 0.9, 0.8, and 0.5

times the incidentenergy. The targetwas essentiallytreated as a semi-infi-

nite slab, and no spatial informationabout the emerging photons is available.

The results for the l.1-MeVproblem are summarizedin Tables IX and X,

which give respectivelythe transmittedphoton energy per steradian,and the

number of transmittedphotons per steradian,in the three energy groups of

interest. (The totals given at the bottom of each table are integralquanti-

ties, and are no longer per steradian.) The correspondingquantitiesfor the 5

MeV problem are given in Tables XI and XII. All of the numbers in these tables

are normalizedto one incidentelectron. The customaryassociationof a one-

sigma error with each number has been omitted here, since through a combination

of variance reductiontechniquesand brute force, all of these numbers have

been driven to a precisionof one percent or better. It should be emphasized

that this refers only to the precisionof the Monte Carlo calculations.Compar-

ison between these calculationsand actual experimentscan be cruder than this,

because of uncertaintiesin the cross sections,differencesbetween the model

and the experiment,and other factors.

I. MQ4G Update (D. G. Collins and W. M. Taylor)

The MCMG patch to version IB of MCNP has been updated to version 2C of

MCNP. MCMG Version 2C is a multi-energygroup version of the continuousenergy

MCNP Version 2C code. The main advantagesfor maintaininga multigroupversion

of MCNP are: 1) Solutionof adjoint equationare possiblewith MC= and

2) multigroup cross-sectionssets prepared for Los Alamos discrete-ordinate

codes can be utilized in MCMG.

The updated version of MCMG is currentlybeing tested through comparisons

with problems run with MCNP, ONEDANT,and TWODANT. A test problem designed to

compute the photon fluxes transmittedthrough and reflectedfrom a 10 centi-

meter iron slab was run to produce results to compare with an MCNP calcula-

tion. The source consistedof a 5-cm-thickslab of 1 MeV, isotropicphotons

adjacent to the iron slab. A 22-groupphoton cross-sectionset obtained from

Ooug O’Dell was used in the MCMG calculation. The comparisonbetween MCNP and

MCMG results is shown in Fig. 11.
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TAELE IX

TRANSMITTED PHOTONENERGIESAS A FUNCTIONOF ANGLE
(MeV/STERADIAN,NORMALIZEDTO ONE INCIDE~ ELECTRON)

INCIDENTELECTRONENERGY= 1.1MeV

Angular
Bin

(Degrees)
-----------

!) to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90
------------

Total Energy

Photons
Above

0.55 MeV
.-------

1.08e-03
1.05e-03
9.93e-04
8.99e-04
7.86e-04
6.79e-04
5.77e-04
4.71e-04
2.67e-04
--------

4.00e-03

Photons
Above

0.88 MeV
--------

2.17e-04
2.09e-04
1.93e-04
1.70e-04
1.43e-04
1.16e-04
9.16e-05
7.00e-05
3.91e-05
--------

6.98e-04

Photons
Above

0.99 MeV
--------

7.37e-05
7.05e-05
6.40e-05
5.49e-05
4.43e-05
3.39e-05
2.47e-05
1.73e-05
8.95e-06
--------

2.09e-04

TABLEX

TRANSMITTEDPHOTONNUMBERSAS A FUNCTIONOF ANGLE
(NtEIBER/STERADIAN,NORMALIZED TO ONE INCIDENT ELECTRON)

INCHMNVTELECTRONENERGT= 1.1 HeV

Angular
Bin

(Degrees)
---------

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90
-------------

Total Number

Photons
Above

0.55 MeV
--------

1.50e-03
1.46e-03
1.38e-03
1.26e-03
1.10e-03
9.57e-04’
8.19e-04
6.71e-i34
3.79e-04
--------

5.64e-03

Photons
Above

0.88 MeV
--------

2.25e-04
2.17e-04
2.Ole-04
1.77e-04
1.49e–04
1.21e-04
9.61e-05
7.35e-05
4.lle-05
--------

7.29e-04

Photons
Above

0.99 MeV
--------

7.14e-05
6.83e-05
6.21e-05
5.32e-05
4.30e-05
3.29e-05
2.40e-05
1.69e-05
8.71e-06
--------

2.02e-04
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TABLEXI

TRANSMITTEDPHOTONENERGIESAS A FUNCTIONOF ANGLE
(MeV/STERADT.AN,NORMALIZED‘IOONE INCIDENTELECTRON)

INCIDENTELECTRONENERGY= 5.0WV

Angular
Bin

(Degrees)
-----------

0 to 10
10 to 20
~1) to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90
------------
Total Energy

Photons
Above
2.5 MeV
-------

3.19e-02
3.06e-02
2.82e-02
2.44e-02
1.89e-02
1.36e-02
9.80e-03
6.75e-03
2.78e-03
--------

8.68e-02

Photons
Above
4.0 Mev
----—--

5.65e-03
5.41e-03
4.92e-03
4.lle-03
2.94e–03
1.84e-03
1.13e-03
6.54e-04
2027e-04
--------

1.29e-02

Photons
Above
4.5 MeV
-------

1.65e-03
1.59e-03
1.45e-03
1.18e-03
7.92e-04
4.30e-04
2.18e-04
lo05e-04
3.02e-05
-—--—---

3.38e-03

TABLEXII

TRANSMI’lTEDPHOTONNDMBERSAS A FUNCTIONOF ANGLE
(mER/STERADW, NORMLIZED ‘X0ONE INCIDENTELECTRON)

INCIDENTELECTRONENERGY= 5.0 MeV

Angular
Bin

(Degrees)
-------—--—

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
90 to 90

------—--—--

Total Number

Photons
Above
2.5 MeV
—--—---

9.82e-03
9.43e–03
8.71e-03
7.55e–03
5.87e-03
4.28e-03
3.lle-03
2.16e-03
8.98e-04
——--—---

2.71e–02

Photons
Above
4.0 Mev
-------
1.30e-03
1.25e-03
1.13e–03
9048e-04
6.79e-04
4.27e-04
2.62e–04
1.53e–04
5.33e-05
—-.—.—--

2.99e-03

Photons
Above
4.5 Mev
----—--
3.53e-04
3.40e-04
3.08e-04
2.53e-04
1.69e-04
9.19e-05
4.68e-05
2.25e-05
6.51e-06
---——-——

7.22e-04
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Fig. 11. MCMG-MCNP Comparisonon Iron Slab Problem.

The upper plot shows the comparisonsof total photon fluence at the entry

surface,mid-way and exit surface of the iron slab. The two lower plots show

the energy dependence of the fluences at the entry and exit surfacesof the

iron slab. Since all source photons were l-MeV photons, the 0.75 to 1.0 MsV
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energy group shown in the center plot contains the uncollided fluenceentering

the slab while the lower energy groups contain only those fluences reflected

back out of the iron slab.

Discussionof additionaltest problemsbeing run with the MCMG programare

includedwithin the classifiedportion of the progress report.

Thus far, all test problems run with MCMG have utilizedequiprobablestep

cosine bins for defining the scatteringangle distribution. Both neutron and

gamma-ray problemshave been run, but no coupled problemshave been run thus

far.

J. MCMG Utilizationand Adjoint Calculations(D. G. Collins)

BiLL Taylor has updated the MCMG (MultigroupMonte Carlo) patch to version

2D of 14CNP. At the same time the patch was reduced in size by removingmuch of

the cross-sectionprocessingroutines from the patch and incorporatingthose

routines into a separate program named CRSRD.

As Mr. Taylor has been updatingMCMG, I have been using the new version of

the program to insure this version tracks problems that I had run with earlier

versions of the code. I also have conductedan extensive review of the MCMG

code in an effort to understandthe methods employed to bias the samplingof

the unscatteredenergy groups in adjoint calculationsand to determine the cell

and energy dependentimportances.

MCMG currentlyallows the user to make a forward calculationto generate

cell and energy dependent importancesfor an adjoint calculation,but does not

provide for using adjoint fluxes to develop importancesfor a forward calcula-

tion. We plan to add this capabilityto MCMG.

Comparisonbetween MCMG and ONEDANT and TWODANT are being cont?,nued.

Since the same set of multigroupcross sectionsmay be used in all three codes,

these comparisonsreveal the differencesthat one may expect between Monte

Carlo and discrete ordinancecalctilationsand help to determinewhich of the

two methods is the more suitable for a particulartype problem.

K. TotalGamna-RayYield lktector (D. G. Collins)

Several MCNP calculationshave been made to aid in

gamma-rayyield detector. The design criteriahas been

mum shape of a water filled chamber which will absorb a

the design of a total

to determine the opti-

high percentageof
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the energy within a collimatedbeam of gamma rays incident to the chamber. An

additionalcriteria is to make the chamber as small as possible. Calculations

of th”egamma-rayenergy leaking from sphericalchambers and cylindricalchambers

with hemisphericaldomes on either end have been made for collimatedsources

incident to the chambers. Monoenergeticgamma-ray sources of .5, 1., 2., 5.,

and 10 MeV and a fission gamma-raysource have been consideredin the calcula-

tions.

L. 3D Graphics (CONPAR) (J. C. Ferguson)

MOVIE29 is a utility which can produce quality 3D computergraphic

plays, in either line drawing or shaded surfacemodes. It is available

wide (a product of Brigham Young University),inexpensive(= $300), and

dis-

world-

effi-

cientlymaintainedand improved by B.Y.U. It thus providesus with a product

which is not only very useful, but codes based on it are transportable.

In order to significantlyextend the applicabilityof the MOVIE program,

CONPAR serves the purpose of transforminga set of constrainedmathematicalsur-

faces into the necessarypolygonalgeometry required by MOVIE. Surface segments

are internallyrepresentedby parametricequationswhile constraintsurfaces are

defined implicitly. If a surface is to be used both for plotting as well as for

a constraint,then it must have a dual representation.30

Applicationsto the MCNP program are quickly recognizedsince quadric and

torii surfaceshave dual representations. CONPAR is still in development.How-

ever, it has already been used on several MCNP geometry plotting tasks (see

Figs. 12, 13, 14).

M. Samplingfrom a CumulativeProbabilityDistribution(R. G. Schrandt)

In Reference31 a method of sampling from a cumulativeprobabilitydistri-

bution (cpd) is given. The algorithmwas applied to the sampling of long

energy-anglescatteringfunctionsin Reference 32.

The usual scheme of samplinga cpd of length 2 uses a binary search. This

can take some time if 1 is large. This new method pre-calculates1-1 condi-

tional cdf Qj,j = 1 --- 1, togetherwith a pair of minimum and maximum indices

‘lsj and 12,3”
These indices can take on all values from 1 to 1. A random

number ~ is chosen, and j = 1 + z (1-1). The sampled index of the distribution

is either I
l,j

if ~ >
9“ ‘r 12>j ‘f E < 9“
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Fig. 12. Sample MCNP Geometry Plot using CONPAR.

The method is obviouslydirected toward vectorizedsampling. It was

decided to try the method in a scalar mode with the new standardsources of

MCNP.

In one typical problem there were 10 source distributionsof different

lengths from 14 to 152. The longest distributionwas only sampled 5% of the

time, but there was one of length 101 that was sampled 36% of the time. There

were about 1.3 collisionsper particle started. It ran about 2.4% faster with

this method compared to the binary search. A second but more artificial

problem was run samplinga single source distributionof length 1000 in a void

geometry. This ran about 7% faster with this scheme.
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Fig. 13. Sample MCNp (kometry
Plot using CONpARo

Fig. 14. Sample MCNP c-eometryPlot using CONp~o
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One disadvantageto this method is the amount of storagz required. For a

distributionof length 1, 3(1-1)words are needed, although the indices could

possibly be doubly stored.

A typical source distributionin MCNP would probably be of length less than

100. The savings in time in the scalar mode would be marginal, especiallysince

very little time 1s typicallyspent anyway in MCNP in the source subroutine. A

more practicalapplicationfor this or some other such scheme might be in the

total cross-sectionselection.

N. 14CNPTesting (J. F. Briesmeister)

Version 2D of MCNP was tested and various new featureswere tried. Later

Version 3 wag tested against 2D using a wide variety of real problem input

files. Certain sections of the manual were rewrittenfor clarity or to incor-

porate changes. A flow diagram of PiCNPVersion 2D and Version 3 was begun. A

memo was written to W. L. Thompson detailing the setup and calculationof a

berylliumproblem he had requested. Experimentswere performed by Basu e: al.33

to measure the neutron multiplicationin beryllium produced by 14-MeV neutrons

to check basic nuclear data. Using Version 2D of MCNP, our results (1.90)

matched quite closely the calculatedresults (2.03)presented in the technical

note, but did not agree with the experimentalresults (1.58) presentedin the

note for the 12-cm thic!cnesscase.

v. CROSS SECTIONSAND PHYSICS

A portion of our effort in Group x-6 is devoted to the acquisition,vali-

dating, and creating librariesof cross section for use in our deterministicand

probabili.sttccodes. We also devote effort to supportingresearchand evalua-

tion of physics models for radiationtransportproblemsof interest.

In this report we present a discussionof Compton scatteringof photons

from electrons in thermal (Maxwellian)motion. We also report on the mean

energy of Compton scatteredphoton from electron in thermal (Maxwellian)motion

and the resultantelectron heating.

A. Compton Scatteringof I%otons from Electronsin Thermal (Maxwellian)
Motion (J. J. Devaney)

We have criticallyreviewed the exact Compton differentialscatteringof a

photon from electrons distributedaccording to a relativisticMaxwell velocity
24 our study is based on ‘he

distributionfor possibleuse in transportcodes.



form derived by Wienke using field theoreticmethods.34-40 If K’ is the initial

electron energy, m the electron rest mass energy> r. the classicalelectron

radius, T the temperaturein energy units,,v‘ the initial photon energy, v the

final photon energy, EIthe photon scatteringangle, a’ the angle between initial

photon and electronmomenta, a the angle between final photon and initial elec-

tron momenta, and @ the angle between the sides f3and a’ in the sphericaltri-

angle e,a’,a, then the law of cosines gives

cos a = cos a’ cos e + sin a’ sin e cos @

and we use the exact scatteringexpressionsin the forms:

K = (1 + (K’/m))

‘1 = K - rK2-1 Cos a’

‘2 = K - rK2-1 Cos a

P = cos e

(1- )2 _ 2(1-U), ‘*K1 + ‘K2
K= z;

‘1‘2
VK
2

V’K

‘1K2
1

with relativisticMaxwellian (normalized)

f(K’) ~ [4nm2TK2(m/T)]-1e-(m+K’)’T ,

(168)

(169)

(170)

(171)

(172)

(173)

(174)

where K2 is the modified Bessel function of the second kind and order. Our

differentialphoton scatteringcross section into solid angle dS2is then:

2
0=—
2

. (K’ + m) ● . f(K’) ●
1

KK1
●

x K ● dcosa’ ● d~ (175)
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The Coupton energy relationbecomes:

K IUV’
1

= Vv’(1-p)+ K2mv . (176)

These last two relationsreduce in the limit T+o to the standard Klein-Nishina

formulaand the Compton energy relations,respectively:41

mv = Vv’(1-y)+VIU ●

We have verified the derivationof the above

(176) and have checked them numericallyover

1<v’<1OOOkeV, and CK0<180°.—— —.

In additionwe have criticallyreviewed

(177)

(178)

exact formulas,42,43 Eqs. (168)-

the ranges 1<T<1OOkeV,——

the Wienke-LathropIsotropic

Approximatibn44and its development. We verified its plausibilityderivation

and numericallychecked its accuracy against the exact theory. Although for

worst combinationof parametersin our range of interest,to wit v’ = 1 keV,

T = 100 keV, and e = 180°, the error can be as high as -28%, we find the

approximationto be simple, only one integration,and reasonablyaccurate

(=5-8% mid-range). The form of the approximationused by us was

(179)

Actually the $-integrationhas been performedby us, but the result is compli-

cated and is the small differenceof large quantitiesso that numericalinte-

gration of Eq. (179) is both simpler and for smaller computers,more accurate.

In F~. (179),K iS now:

. .~~[I+20&) + 120[&]2- 960&) 3+4320[&]4+ ...] (1801
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(181)

and K
2
is:

‘2 = K -
/—K2-1 ● (sin Clcos ~)

with Compton energy relation:

K mv’ = Vv’(1-p) +K2mv ● (182)

Eqs. (179) and (182) also reduce in the limit T+O to the Klein-Nishinaand

Compton energy equations,Eqs. (177) and (178), respectively.

We studied also the Wienke-Lathropone-parameterFitted Approximation,but

found it of only

and considerably

table or a graph

over, additional

racy.

slightly less complicationthan the IsotropicApproximation

less accurate. However, its merit is the substitutionof a

for an integration,and that may be of value to some. 140re-

parametersmay be used in the approximationto improve accu-

By numericalverificationwe determined that the Cooper-Cummings45total

cross-sectionapproximationis simple and accurate (error <l%). It is given as
—45

a ratio of the T#O to T=O Cmpton total cross sections>cc:

ac(v’,T)
[

= crc(v’,T=O)● 1 -
v’T

47703 + 637.69v’
. (183)

The Compton total cross sections for T=O may be found in Heitler.41 They are,

for y = v’/m:

For y small, it is best to use:

(184)

because smaller computersmay fail to compute logarithmsaccuratelyin the

exact expression:
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{[ 12 L4p ;Y:y) - ~n(l+zy) +J-+1 (l+q)ac (T-O) = 2mro 2y
Y

- (l+3y)

I(l+2y)2 “
(185)

2/3
The Thomson scatteringcross section is of course 8nro . Other total cross-

section approximationsinvestigatedturned out to be considerablyless .

accurate.

tierecommendthe ordinary Klein-NishinaFormula for most problemsup to an

electron temperatureof 10 keV. The formula is already in the Monte Carlo Code

MCNP and other Los Alamos codes. One may then expect accuraciesof better than

1.5% in the total Compton cross section (maximumv’ = 1000 keV) and about 5% or

better in the differentialcross section. For higher accuraciesor for special

results, such as for example photon energy upscatter,one should use the full

temperaturedependenttheories. Even as high as T = 25 keV, the error of the

total C.ompton(Klein-Nishina)cross section is 3.6% or less (maximumv’ = 1000

keV) and of the differentialcross section is of the order of or less than 10%.

(Specificallyat T = 25 keV, v’ = 25 keV the errors are +5.8% at 6 = 45°, +8%

at 90°, and -0.9% at 1350). At 1 keV temperaturethe error of the total KleIn-

Nishina cross section is 0.15% (v’ = 1000 keV) or less, and the errors of the

Klein-Nishinadifferentialcross section is 0.5% or less.

For higher temperatures(than say 10 ‘keVor so), greater accuracies,or

better specificdetail, we recommenduse of the exact equationsas summarized

above. This recommendationis only made with the proviso that an efficient

computationalalgorithm can be found. Otherwise,we recommendthe Wienke-

Lathrop IsotropicApproximationsummarizedabove with numericalintegration

over ~. Such approximationshould be limited to O < T < 100 keV and—

1 <v’ < 1000 kev.——

B. Mean Energy of Compton ScatteredPhotons from Electronsin Thermal
(Maxwellian)Motion. Heating (J. J. Devaney)

In addition to the differentialcross section for the Compton Scattering

of photons from electrons in thermalmotion (relativisticMaxweLlian),one is

of course interestedin the energy of the scatteredphoton and the consequent

energy depositionor heating of the electrons. We give the mean scattered

photon energy and the mean heating of the electron gas by the photon scatter-

ing. Both quantitiesare given as a functionof the photon scatteringangle,
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e, the electron temperature,T, and the incident photon energy, v’. We compare

these means, <v> and <0, as calculatedexactly, as calculatedwith the Wienke-

Lathrop Isotropicand One-parameterFitted Approximations,as well as with the

unmodified,regular,T = O, Compton Energy Equation results.

For the exact equation,averagingover the relativisticMaxwellianpara-

meters, $, a’, and K’ we obtain the mean heatings,<ED:

[

x (1-p) -

where the notation cones

y ~ m2 T K2 (m/T)

K = 1 + (K’/m)

c = (v’/Ill)(l-~).

1

1 ]1 C2-1—. (CR)( l-w) -C ● M c + “ + ‘—

r

9 (186)

2 K2-1 C+K - iK2-1

from the precedingarticle.

(187)

(188a)

(188b)

The mean scatteredphoton energy is:

<V>=v’ -<ID . (189)

For the Wienke-LathropIsotropicApproximation44we obtain the heating:

<H1>=v’ l–
K—————L— 9

r

(190).—..—.—

(C-I-K)*- (K2-1)( 1-P*)

where K is given by Eq. (180). The mean scattered photon energy is:

<VI> = v’ - <HI> .
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We do not reproducehere the Fitted Approximationformulaswhich we do not

recommend.

The regularCompton (T = O) scatteredphoton energy is of course:

~ - vf/(c+l) (191)

and heating

H - vf-~ . (192)

By the above formulaswe calculatedthe mean energy of a photon scattered

from a Maxwell distributedelectron gas by four methods: Exactly; by the

Wienke-LathropIsotropicand One-parameterFitted Approximations;and by the

standard (temperatureT = O) Compton Energy Equation. To about 4% error the

simple Compton (T = O) Equationis adequate up to 10 keV temperature. Above

that temperaturethe Exact calculationis preferredif it can be efficiently

coded for practicaluse. The IsotropicApproximationis a suitable compromise

between simplicityand accuracy,but at the extreme end of the parameter range,

we have considered(T = 100 keV incidentphoton energy v’ = 1 keV, scattering

angle 0 = 1800), the error is as high as -28%. For mid-rangevalues like 10 to

25 keV, the errors are a percent or so up to 8Z. The Fitted Approximationis

generally found to have large errors and is consequentlynot recommended.

The energy depositedin the electron gas by the Compton scatteringof the

photon, i.e., the heating, is only adequatelygiven for all parametersin the

ranges 1 < T < 100 keV and 1 < v’ < 1000 keV by the exact expression. For low—— ——

depositionsthe heating is the differencebetween two large quantities,one

approximate,and so can lead to order of magnitudeserrors. However, for

scatteredphoton energy v >> T the IsotropicApproximationdoes well, (0.13%

error for vt _ 1000 ~V, e = 1800, T = 10 keV, v = 790.7 keV, and 2.7% error for

Vf = 10CO keV, 0 ==90°, v = 583.5 keV, T = 100 keV). The regularT = O Compton

also does well for T < 10 keV and v >> T. (0.7% for v’ = 1000 keV, O = 180°,—
T = 10 IceV, v - 79o.7 kev, and 0.08% for v’ = 1000 keV, 9 = 180°,T = 1 keVj

v = 795.9 kev). The Fitted Approximationis without merit for heating.
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