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EXECUTIVE SUMMARY

The Compton differentialscatteringof photons from a.relativisticMaxwell

Distributionof electrons is reviewedand the theory and numericalvalues veri-

fied for applicationto particle transportcodes. We checked the Wienke exact

covariant theory, the Wienke-Lathropisotropicapproximation,and the Wienlce-

Lathrop fitted approximation. Derivationof the approximationsfrom the exact

theory are repeated. The IUein-Nishinalimiting form of the equationswas

verified. Numericalcalculations,primarilyof limitingcases, were made as

were comparisonsboth with Wienke’s calculationsand among the various theo-

ries. An approximate(Cooperand Cummings),simple, accurate,total cross -

section as a functionof photon energy

Azimuthal integrationof the exact and

but rejected for practicaluse because

large quantitiesand are algebraically

and electron temperatureis presented.

isotropiccross sections is performed

the results are small differencesof

cumbersome.

The isotropicapproximationis good for photons below 1 MeV and tempera-

tures below 100 keV. The fitted approximationversion discussedhere is gener-

ally less accuratebut does not require integration,replacing the same with a

table or with graphs. We recommend that the ordinary Klein-Nishinaformula be

used up to electron temperaturesof 10 keV (errors of < 1.5% in the total cross—
section and of about 5% or less in the differentialcross section.) For great-

er accuracies,higher temperatures,or better specific detail and no tempera-

ture or photon energy limits, the exact theory is recommended. However, the

exact theory effectivelyrequires four multiple integrationsso that within its

accuracy and temperatureand energy limits the Wienke-Lathropisotropicapprox-

imation is a simpler solutionand is thereby recommendedas such.

The mean energy of a photon scattered from a Maxwell distributedelectron

gas is calculatedby four methods: exact; the Wienke-Lathropisotropicand

one-parameterfitted approximations;and the standard (temperatureT = O)

Compton energy equation. To about 4% error the simple Compton (T = O) equation

is adequate up to 10-keV temperature. Above that temperaturethe exact calcu-

lation is preferred if it can be efficientlycoded for practicaluse. The

isotropicapproximationis a suitable compromisebetween simplicityand accu-

racy, but at the extreme end of the parameter range (T = 100 kev incident

vii



photon energy v’ = 1 keV, scatteringangle 0 = 180°) the error is as high as

-28%. For mid-rangevalues like 10 to 25 keV, the errors are generallya per-

cent or so but range up to about 8X (25 keV, 1800). The fitted approximation

is generallyfound to have large errors and is consequentlynot recommended.

The energy depositedin the electron gas by the Compton scatteringof the

photon, i.e., the heating, is only adequatelygiven by the exact expressionfor

all parametersin the ranges 1 < T < 100 keV and 1 < v’ < 1000 keV. For low—— ——
depositionsthe heating is the differencebetween two large quantities. Thus

if one quantity is approximate,orders of magnitude errors can occur. However,

for scatteredphoton energy v >> T the isotropicapproximationdoes well (0.13%

error for v’ = 1000 keV, 0 = 180°, T = 10 keV, v = 790.7 keV; and 2.7% error

for v’ = 1000 keV, Cl= 90°, v = 583.5 keV, T = 100 keV). The regular T= O

Compton also does well for T < 10 keV and v >> T (0.7% for v’ = 1000 keV,—

e = 180°, T = 10 keV, v = 790.7 keV; and 0.08% for v’ = 1000 keV, 0 = 180°,

T = 1 keV, v = 795.9 keV). The fitted approximationis without merit for

heating.

viii



COMPTON SCATTERINGOF PHOTONS FROM ELECTRONSIN
THERMAL (MAXWELLIAN)MOTION: ELECTRON HEATING

by

Joseph J. Devaney

ABSTRACT

The Compton differentialscatteringof photons from a
relativisticMaxwell distributionof electrons is
reviewed. The exact theory and the approximatetheories
due to Wienke and Lathrop were verified for applicationto
particle transportcodes. We find that the ordinary (zero
temperature)Klein-Nishinaformula can be used up to elec-
tron temperaturesof 10 keV if errors of less than 1.6% in
the total cross section and of about 5% or less in the dif-
ferentialcross section can be tolerated. Otherwise,for
photons below 1 MeV and temperaturesbelow 100 keV the
Wienke-Lathropisotropicapproximationis recommended.
Were it not for the four integrationseffectivelyrequired
to use the exact theory, it would be recommended. An
approximate(Cooperand Cummings),simple, accurate, total
cross section as a function of photon energy and electron
temperatureis presented.

I. INTRODUCTION

This report criticallyreviews the exact Compton differentialscattering

of a photon from an electron distributedaccording to a relativisticMaxwell

velocity distribution. We base our study on the form derived by Wienke using

field theoreticmethods.1-7 (ParticularlyEq. (1) of Ref. 1, whose deriva-

tion is presentedin Ref. 2.) Wienke was the first known to this writer to

point out the simplicityand power of deriving the Compton effect for moving

targets by the coordinatecovariant (i.e., invariantin form) techniquesof

modern field theory. His derivationis equivalentto,’4but replaced,earlier

methods8 which involved the tedious and obscure making of a Lorentz



transformationto the rest frame of the target electron,applying the Klein-

Nishina Formula, and making a Lorentz transformationback to the laboratory

frame.

We also criticallyreview the Wienke-Lathropisotropicapproximation

to the exact formulawhich selectivelysubstituteselectronaverages into the

exact formula so obviatingintegrationover the electronmomenta and colati-

tude. The electrondirectionsin a Maxwell distributionare, of course,

isotropic,hence the name chosen by Wienke and Lathrop.

We verify the theory for the exact expressionand the plausibilityargu-

ments for the isotropicexpression. We verify in detail numerical comparisons

between the two theoriesat selectedelectron temperaturesand initial photon

energies. We rewrite the formulasin a form suitable for application,espe-

cially for the Los Alamos NationalLaboratoryMonte Carlo neutron-photoncode,

MCNP.1O

As a further approximation,Wienke and Lathrop have reduced the iso-

tropic approximationto a one- or two-parameterfitted approximation,9 which

we also review. As always, the choice between the methods is complexityversus

accuracy and limitationsof parameterranges.

We include a simple, accurate estimate of the total Compton cross sec-

tion. We give the mean scatteredphoton energy and the mean heating of the

electron gas by the photon scattering. Both quantitiesare given as a function

of the photon scatteringangle, (3;the electron temperature;and the incident

photon energy, v’.

as calculatedwith

approximations,as

equation results.

We compare these means, v> and I-D: as calculatedexactly,

the Wienke-Lathropisotropicand one-parameterfitted

well as with the unmodified,regular,T = O, Compton energy

Recommendationsare offered.

Because much of this report is devoted to derivationand verification,

we recommendthat a user-orientedreader turn first to the recommendationsof

SectionXVI, then for differentialcross sections,SectionsIX to XI as

desired,which give applicationstogetherwith referenceto Figs. 2 through 8,

which show the accuracy of the cross-sectionapproximations. For scattered

photon energiesand heating, refer first to Sectionxv for comparisonsand

errors, particularlyFig. 10 and Tables 11 and III, then as desired Sections

XIII to XIV. Refer to the Table of Contents for further guidance.
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II. THE EKACZ (XMPTON SCATTERINGOF A PNOTON FROM A REMTIVISTICMAXWELL
ELECTRONDISTRIBUTION

We will follow the notation and largely the method of Wienkel>9and

first choose the “natural”system of units in which h = c = 1 and kT ~ T in

keV. Let the incomingphoton and electron energies be v’ and s’, and the

outgoing be v and c, with correspondingelectron momenta ~’ and ~, and photon

momenta ~’ and ~, respectively. The angle between $’ and ~ shall be (3;q is

oriented relative to some fixed laboratorydirectionby azimuthalangle Oq.

The angle between~’ and ~’ shall be a’ and that between ~ and $’ shall be a.

The azimuthalangle between the sphericaltriangle sides ~’ and <’$’ shall be

4. Thus on the surface of a sphere with origin of the vectors~,~’, and $’ at

the center of the sphere and intersectionslabelledon the surface thereof,we

have the sphericaltriangleshown in Fig. 1.

Fig. 1. Angular relations.



The law of cosines applied to the triangleof Fig. 1 gives

cos a = cos a’ cos e+sinaf sine COS$ . (1)

In terms of energy, e, and (vector)momentum,~, the four-vectormomentum is

(2)

Its square is

2=2 -$2 ● (3)

Now all four vectors are requiredto transform (Lorentztransformation)alike,

in particularas the line element

ds = [dt,d~] (4)

so as to keep (ds)2 invariant. Thus P2 is invariant.

In the rest frame ~ = o, s ~ m, so that generally for any four-momentum

P of mass m,

2 2=m .

In particular,for photons,m = o, so that their four-momenta,Q, satisfy

Q2= o (photons) .

(5)

(6)

Considernow the Compton scatteringof four-momentaP’ + Q’ into P + Q.

Four-momentumis conserved,so

p=p~ +Q? -Q . (7)

The square of Eq. (7) yields

P’Q’ = P’Q + Q’Q ,

4

(8)



where we have used Eqs. (6) and (5):

P2 = P’
222 2
= m , Q = Q’ = O .

Expanding the four-momentumproducts into energy and

by, for example,

PtQt = E*V’ _;h$f ,

and then using Fig.

+9p .;1 = plq?

1 to determine

Cos a’,

where p’ and q’ are, of course the

get finally for Eq. (8)

three-momentumproducts

(9)

that, for example,

magnitude of the 3-momenta~’ and ~f, we

(lo)

&’v’ - p’v’ cos a’ = c’v - p’v cos a +vv’ - vv’ cos 9 ,

where we have used q’2 = v’2, q2 = V2 for the zero rest mass photons.

The Compton collision,of course, also conserves3-momentumso that

If now we square Eq. (12) and use the relation

+2
p +m2=E2

plus scalar products determinedfrom Fig. 1 as we did for Eqs.

we get

(11)

(12)

(13)

(10) and (11),

?-l . . .
L

& = & ‘L+VL+V’L + 2p’v’ cos a’ - 2p’v cos a - 2vv’ cos 0 . (14)

The Compton cross section for scatteringa photon into a direction solid

angle do, and into an energy intervaldv, from a relativisticMaxwell electron

distribution,f(~’), is given by Wienkel to be

I

I



dcs
r’

[
()

20
d~dv = _

d3&f(p’) s fi” 6 (c’ +v’ ‘E ‘V) “ K , (15)

where

[( 2 2

)

2
K= m m

Ctv’-ptv’cos a’ - c’v-p’v cos a

(

m’ m’
+2

c’v’-p’v’cos a’ - E’v-p’v cos a
)

+ Etv’-ptv’cos a’ + c’v-p’v cos a
c’v-p’v cos a 1c’v’-p’v’cos a’ ‘

(16)

m is the electron rest energy (or mass, c = 1),

and

r. E e2/mc2 is the classicalelectron radius.

We integrateover final photon energy in order to remove the

~-function. However, the 6-functionis not in the form 6(v - Vo), where V.

is constantbecause Eq. (14) shows that e = e(v). We must first use the

identity

u-1
ti(f(x))= g 6(X-XO) ,

x
o

from which, using Eq. (14), then differentiating,then substituting

C+v = e’+v’, and then Eq. (11),

E(+)
6(E+V-E’ ‘V’) ‘E, -p, ~osa,6(V-vo) ,

for some constantoutgoing photon energy, Vo.

Substitutingin Eq. (15), integratingover v, and replacingV. by v

(i.e., v is now the outgoing photon energy),we get

(17)

(18)

r’
do O

f
d3;’ f(p’) c

m’—.—
dQ 2 - pt cos a,) ‘>)’ K “

(19)
E’(s’



Formulas (15) and (16) have been checked by independentcalculationby

C. Zemach, TheoreticalDivision,Los Alamos NationalLaboratory.* In the

form of Eqs. (19) and (16) the formulas are the same as those of Pauli8 and

Ginzburg and Syrovat-Skiillprovidedone corrects for the electronmotion.

The number of events per unit time are equal to the flux times the density of

electrons times the cross section times the volume. For an electron of

velocity~, the number of events per unit time is increasedby the factor

+,

()++c’ -
+, v

V.c P “~ ~?
1

-p’ cosa’-— = .
c’

s’ E’ s

where again c ~ 1.

The relativisticMaxwell electron distributionis

7/,2 2
f(~’) = (4TCy)-1e- p % T

or for

E’ =m+K’ .

K’ being the electronkinetic energy, then

f = (41rf)-1 e-m/T . e-K’/T
9

where the normalizationconstanty is given by

1/2
y = m2TK2(m/T) . m2T(~)

[
15 ~, + *&)2ea’T 1 + ~ 8m .

(20)

(21)

(22)

where K2 is the modified Bessel function of the second kind and order. We

use

(23)

f=
/2% “

which is good for

(24)

e-K’/T

[

9

2xm2T 1 + 15(;) + ~+)’ - ~~)3 + ~(&14] (25)

T << 4 MeV, more accurately,for T < 400 keV.

*Informationfrom C. Zemach, November 1982.



We generallyprefer to describe electronsby their kinetic energy, K’,

rather than momentum~’, so using &’2 = p’2 + m2 and c’ = m + K’ we have

2
P’ dp’ = (K’ +m) ● d~-v dK~ ,

also

d3$’ = p’2 dp’ dcos a’ d$ .

We put

thus

dp = -sin 8 de.

For convenience,define

K = &’/m =l+(K’/m) ,

Em ‘1 (E’ - p’ Cos a’) = K - A- Cos (x, ,
‘1

and

K2Sm ‘1 (&’ - p’ cos a) = K - Gcos a ●

Substitutinginto the energy equation ((11)j we get simply

K mv‘
1

= Vv‘(1 - p) + K2mv .

Substitutinginto Eq. (16) and with a little rearranging,

[ 1K = ‘1 ; ;)2 - 2(’ -“) +5+5 ,
‘1K2

VK2 V ‘K

‘1K2
1

and the cross section,Eq. (19), becomes

r2
do - 0
d$2 T J

dK’ (K’ + m) -. f(Kt) ● ~ ● (~~
KK

IV

x K ● d$ ● d cos a’ .

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)



The expressions(32), (33), (34), (25) (or (23) and (24))> and (1) con-

stitute the exact Compton scatteringcross section of a photon of energy v’

from a relativisticMaxwell distributionof electrons,f(Kt), into the solid

angle d!2= sin f3dO d$q. The o-integrationcan be carried out analytically,

see Appendix A, but we found the result both too cumbersomeand too inaccurate

for practicaluse. The latter was caused by small differencesof very large,

but exact, quantitiesthat our calculatorcould not handle.

In the limit T + O, Eq. (34) or Eq. (19) should reduce to the Klein-

Nishina Formula (i.e., Compton for zero velocity electrons). So it does, as we

now show. Observe that the relativisticMaxwellian is normalizedsuch that

! fd~’ = 1 (35)

and from Eq. (25) for T + O that for K’ # O,f = O and for K’ = O, f = -, so

that we may write

f d3;’ + 6(P’) dp’ (36)
T+O

because the tkfunction,6(x), is defined as

6(X # o) = o

~ 6(X) dx = 1 . (37)

SubstitutingEq. (36) in Eq. (19), using Eq. (33) and Eqs. (29), (30), and

(31), (i.e.,K = 1 = K~ = K2), we get the usual Compton energy equation from

Eqo (32).

mv’ = Vv’(1 - ~) + vm (initiallystationaryelectron) (38)

and the Klein-NishinaFormula10~12for unpolarizedlight,

do r2 2
v—= — ()[d$2 2° ~

1
;+:, + p2-1 , (39)

as we should.



III- NUMER.ICALVERIFICATIONOF THE EWX COMPTONSCATTERINGFROMA MAXWELL
DISTRIBUTION

Integrationover $ in Eq. (34) is possible analyticallybut is both

complicatedand leads to small differencesin large quantities(see Appendix

A). Accordingly,we have used Simpson’srule to integrateover $, a’, and K’

to provide dcs/dOvs 0. By symmetry the cross section is independentof $q.

We used angular intervalsof 22.50° and variable electronkinetic energy inter-

vals appropriateto yieldingan error of about 1% or less. Our numerical

calculationsagree with Wienke and Lathrop9 to about 1% or better except at

T = 1 keV, v’ = 1000 keV, and 13= 30°, where the agreementwas only 3.5%

because of our using a coarse K’ interval. We found and checkedwith Wienke

that his latest communication(Ref. 9, February 15, 1983) has an erroneous

exact curve in Fig. 6. (T = 100 keV, v’ = 1 keV); however, we agree with ear-

lier Wienke-Lathropexact calculationsfor these parameters. The parameter

sets for which we have numericallychecked the Wienke-Lathropexact angular

distributionsare given in Table I.

TABLEI

P~~R%TS~~I~~E~~~~-~OP~~
FOR du/deWERE VERIFIED

INCIDENT
TEMPERATURE PHOTONENERGY
T (keV) V’(kev) PHOTONSCATTERINGANGLES,e

100 1 45°,90”,

100 1000 45°, 90°,

1 1 60°, 140°

1 1000 30°

00° 135”

35”

I

(As noted, agreementis within the error of our Simpson’srule

approximationerror, i.e., = 1% except, 1, 1OO(),30°: = 3.5%.)

10



Iv. THE wlENKE-LATHROPTSOTROPICAPPROXIMATIONPOR THE COMPTONSCATTERINGOF
A PHOTONFROMA REUTIVISTICMAXWELLELECTRONDISTRIBUTION

The exact Compton formula (34) requires three integrationsto provide

the differentialscatteringcross section dci/dQ. It requires four integrations

to provide the total scatteringcross section (the fifth integrationover @q

is trivial, yielding 2X because of symmetry). Accordingly,an approximateform

of Eq. (34) without such integrationscould be quite useful when the errors of

the approximationcan be tolerated. We derive the Wienke-Lathropisotropic

approximationby a plausibilityargument. This approximationremoves the inte-

gration over p’ and a’. In place of averaging the covariantCompton expression

over a Maxwell spectrum,key parametersare averaged in that expression,an

inexact but reasonableapproach leading to a simpler expression.

Because the relativisticMaxwell distributionis isotropic,it is clear

that

<cosa’>=o , (40)

where the average, < >, is the Maxwell average over K’ and at. The first

approximationthen is to replace cos a’ by its average

cos ar + <cos a’> = 0 (41)

so that

and Eq. (1) becomes

cosa=sinf3 cos~ .

Consequently,by Eq. (30)

‘1 ‘K “

(42)

(43)

(44)



Since (Eq. (24)) K

but Wienke chooses rather

E’ =/ <p’2>+m2 ,

~ c’/m, one might, for example, choose K = <c’>/m>

to set

(45)

which he shows and we verify and expand to be

SubstitutingEq. (42) into Eq. (31) yields

‘2 = K
- = ● (sin ~ .0s $) .

Eq. (32) reduces by Eq. (44) to

v K—. .
v’

: (1-~) + K2

Rememberingthat the Maxwell averagingoperator,

J d3$‘
— f (p’)
d4

(47)

(48)

(i.e.,except for $) now applies solely to cos a’, where it gives zero, and to

<p’>2, where it yields Eqs. (45) and (46), we perform that averagingin

Eq. (19) with K taken to be Eq. (33) to obtain the isotropicapproximationfor

the differentialcross section

12



2 2n
dd ‘O 1

J[
(;)

2 (1 - p)2 _ 2(1 - V) + V’K + ‘:2
—=%”dQ ~ 1d+ , (49)~KK2)2 KK2 VK2 v K

o

where r. ~ e2/mc2 is the classical electron radius,K2 is given by Eq. (47)s

K by Eq. (46), v = cos i3,and v/v’ is given by Eq. (48).

do - do dcs—-
d$l- sineded$ = 2nsinedEI

q
(50)

because of @q symmetryof the problem. ~US

x
do r2 sin 8

J
d$ (~)

[

2 (1 - p)2 - 2(1 - P) + v’ K + ‘;2
w= o

“T 1.(51)(KK2)2
KK 2

v
‘2 v K

o

The @-integrationof Eqs. (49) or (51) can be performedanalytically,but we

found the result to be small differencesof very large quantitiesleading to

inaccuraciesin small computersas well as to be algebraicallycumbersome.

Accordingly,we found it simpler to use direct numerical integrationby

Simpson’srule. For angles, only 8 intervalsgave sufficientaccuracy for our

purposes.

The approximation(49) also reduces in the limit T + o to the Klein-

Nishina formula12>10for unpolarizedlight, as it should. In Eq. (46) set-

ting T

now no

= O gives K = 1, which in Eq. (47) then gives K2 = 1, i.e., K2 is

longer a function of $, and thus yields from Eq. (48)

)1 1—=
v’

+ (1 - p) + 1’
(T + O)

(52)

which is identicalto Eq. (38), and from Eq. (49) (with ~ d$ = 2x) yields the

unpolarizedKlein-NishinaFormula (39)

r’ 2
da O V—=— ●

(-) [d$2 2 V’ “ 1: +++p2-1 ● (T + O) (53)

13



v. NUMERICALVERIFICATIONOF TRE WIENKE-LK1’RROPISOTROPICAPPROXIMATIONOF
COMPTONSCATTERING

We have numericallyverified Eq. (51) against the independentcalcula-

tions of Wienke and Lathrop.9 We find all points in agreement to within our

error in reading the curves of Wienke and Lathrop and possibly also including

the differencein our use of more terms for K, Eq. (46). We verified the for-

mula (51) for f3= 30°, 60°, 90”, 120°, and 150° for all parametersets. In

addition, for T = 100 keV, v’ = 1 keV, the differentialcross section was veri-

fied at Cl= 80°, 100°, 110°, and 115° because of the peaked behavior of the

approximationnear 100° (see Fig. 5).

VI. COMPARISONOF TEE WIENKE-LATHROPAPPROXIMATIONTO TED?EXACT(XXWTON
SCAT1’ERINGOF PHOTONSFROMA MAXWELLIANELECTRONGAS

In Figs. 2 through 6 we compare the isotropicapproximationversus the

exact differentialComp~on scatteringcross sections,do/dCl. T refers to the

electron temperature,and the photon energy is the initial photon energy v’.

The isotropicapproximationcurves are dashed and are taken from Eq. (51)

(integratedover $). The solid curves are the exact curves from Eqs. (34) and

(50) after numericalintegrationover K’, $, and a’. The Wienke-Lathrop

approximationis a good one except for T large and T >> v’. However, the total

Compton cross section,o, is very well representedby the Wienke-Lathrop

approximation. Figs. 7 and 8 show the Compton cross sections integratedover

the photon scatteringangle, (3. Again, dashed is the isotropicapproximation,

solid the exact. It is evident that the two total cross sections, isotropic

and exact, are nearly indistinguishableup to 100-keVtemperature. Figures 2,

3, 6, 7, and 8 are reproduced,by permission,from Ref. 9 (February15, 1983).

Figures 4 and 5 also contain the Wienke-Lathropfitted approximationcurves

(dot-dash),which we discuss next.

In the event that a poorer approximation(the present version - it could

be made better) than the isotropicis satisfactory,Wienke and Lathrop9 offer

a “fittedapproximation”that avoids even the ~-integrationof their isotropic

approximation. However, an adjunct plot or plots or tables of the parameters

<K1> and <K2> versus T and v’ are required. Moreover the isotropicapprox-

imation can be integratedanalytically,but perhaps uselessly (see Appendix B).

14



In Eq. (34) the functionsK1 and K2 are replacedby the fitting param-

eters <K1> and <K2> and K is taken to be the average (46) independentof K’

so that integrationover the Maxwell distributionis triviallyperformed:

and we are left with

do - do 2—-
dp - sin 0 d13= n ‘.

● * (:12 Kf
1

(55)

with now,

[

Kf = “ - ‘)2 - ~;’>~~p: +x. ~ + ~ . Y
<K1>2<K2>2

v <K2> V’ 1<Kl> ‘
(56)

12

and from Eq. (32),

<Kl>m

(;) = .
V ‘ ( 1 – @ + <K Z>m

(57)

Equations (55), (56), and (57) can now be fitted to exact curves to

determine the parameters<K 1> and <K2>, and the resulting values tabulated

or graphed for computationaluse. Wienke and Lathrop9 have carried out such

a fitting to the total cross section. It is not the most general, however,

because one parameter,<K2>, is fixed, <K2> = K, thus reducing the problem

to a one-parameterfit. They also simplify Eq. (56) by omitting the K-factors

from the last

(;) =

two terms. Their one parameterfit is then of the form

<Klh

V’(I - ~) + Km

and

[ 1(1 -1.02 - 2(1 - @ + ~ + y-
‘fl = <K >2K2 <K1>K v v’

1

(58)

(59)
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with <Kl> given by themg in Fig. 9 (reproducedby permission)so as to

match the total cross section (checkedby us at T = 100 keV and 1 kev, and

v’ = 1 keV). K is given by Eq. (46). Equations (58) and (59) are substituted

in Eq. (55) to get the differentialscatteringcross section da/dC). As

alleged, this proceduredoes eliminateintegrations,but requiresuse of a

table or graph, Fig. 9. We have calculatedthe differentialcross section by

this one-parameterfitted cross section for T = 1 keV, v’ = 1 kev and found it

indistinguishablefrom the isotropicfor these parameters. However, for

T = 25keV= v’, Fig. 3, and T = 100 keV, v’ = 1 keV, Fig. 4, the differences

are appreciable. We label the one-parameterapproximationin Figs. 4 and 5 as

“approximate(fitted).” Especiallyfrom Fig. 4 do we conclude that the iso-

tropic approximationis superiorat least to the one-parameterfitted approxi-

mation of Eqs. (58), (59), and (55). Of course, one may be able to improve the

fits by the use of additionalparameterssuch as <K2>. But again such use

means additional

VIII. TEE TOTAL

Following

scatteringcross

complication,additionaltables.

(X)MPTONSCA7TERI.NGCROSS SECTIONAT TEMPERATURET

Cooper and Cummings,13we give a fit to the total Compton

section in the range T = O to 150 keV and v’ in the range 1 to

1000 keV. The accuracy is better than 1%, except at v = 300 keV, T = 150 kev,

where an error of 1.9% appears. At higher temperaturesup to 200 keV the error

is 3.7% or less. We numericallyverified for T = 10 and 100 keV and for v’ = 1

to 1000 keV that the differencebetween this fit and both the Devaney and

Wienke-Lathropexact total cross sectionswas less than could be discernedon

the graphs, Figs. 7 and 8 (i.e., < l%).

For unpolarizedlight the total Compton cross section for electrons

at rest is given by:12>14

1[= 2nr2 l+y 2y(l+y)
(sc o l+2y

- In(l + 2y)
Y3 1

!

‘M(1 + 2y) - 1 + 3+ 2y

d

(1 + 2y)2 ‘
(60)
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where

y = v‘ /m (m the rest mass energy of the electron)

and

is the

puters

e2/mec2ro =

classicalelectron radius. For low photon energies,y <<< 1, small com-

fail to calculatelogarithmsaccuratelyenough, so that below 10 keV to

an accuracy of six significantfigures or better Eq. (60) can be replaced

bylz

(81Tr2 ~ 26 2
CT .—
c 30

)
-2Y+~Y “ (61)

The terms outside the bracket constitutethe Thomson scatteringcross section,

which is, of course, the limit of the Compton cross section at low energy. The

Thomson cross section gives the elastic scatteringof a photon by an effec-

tively free electron.

For electronsin thermalMaxwellianmotion we correct Eqs. (60) or (61)

by the factor (in brackets)13

ac(v?

[

=my,T) = ac c 1 - ~7703 ‘~T637 69V,
. .

1

(62)

with accuraciesnoted above. Refer to Figs. 7 and 8 for a plot of Eq. (62) at

T= 10 and 100 keV. Eq. (62) is indistinguishablefrom the exact curve there,

error A < 1%.

Note that the use of the Sampson equations,15 also suggested

earlier,16is limited to T and v’ << 100 keV and they are less accurate

(< 4%).

Ix. APPLICATIONm Mom Quuo (0R0Tm3R) CODES: m mm EQUATIONS

The exact differentialcross section for the Compton scatteringof a

photon of energy v’ from a Maxwell gas of electrons at a temperatureT is given

by Eqs. (l), (34), (33), (32), and (25) (or (23) and (24)). The scatteringis

to photon energy, v, and is in a direction solid angle d!J= sin 9 df3d$q and

17



is symmetricin $q. The total scatteringcross section (i.e., integrated

over all five variables)is given by Eqs. (60) or (61) and (62). All quanti-

ties possible are in energy units.

The equationsgive the cross section, or with the total cross section

the relative probability,of a particularevent. For example, to determinea

particularscattering(v’ + v, e,$q) by a particularelectron (K’,a’,$)no

integrationof Eq. (34) is required. However, usually a user is interested

(becauseof @q symmetry)only in da/de, the differentialscatteringcross

section of the photon into an angle, (3,and to energy, v. Thus the other four

variablesmust be integratedover. The succeedingsectionsgive approximate

methods for such integrations.

“The simplestapplicationof Monte Carlo is the evaluationof inte-

gralsO”17 In fact, highly ~lti-dimensional integrals are likely to be effi-

ciently solved by Monte Carlo methods.lo “Every Monte Carlo computationthat

leads to quantitativeresultsmay be regardedas estimatingthe value of a mul-

tiple integral.m18 fius, the above equationsare amenable to formal solution

by Monte Carlo methods. The equivalentMonte Carlo particle transportmeth-

odslo may also be employed. At first inspectionone might imagine sampling

for electronkinetic energy, K’, from the Maxwell distribution,Eq. (25) (or

(23)plus (24)), and for the isotropicsphericaldirectionsa’ and $, then

applying these to Eq. (33) and (34) as well as to (32) to determineprobabili-

ties. The actual detailed applicationsof Monte Carlo to the exact equations

are beyond the scope of this work.

x. IuwLIamoN m mm umo (OR OTEER)mDE5: THE umntE-LATNROP Iso-
TROPICAPPROXIMATION

If the accuracy of Wienke-Lathropisotropicapproximationis satisfac-

tory, see for example, Figs. 1 to 7 for a comparisonof it with the exact scat-

tering cross section, then considerablesimplificationin the formulas can be

achieved. Note from the figures that for temperatureswell below 100 keV, say

25 keV or lower, the isotropiccross section does very well. Note further that

the total cross section is extremelywell representedby the approximation,as

Figs. 7 and 8 show. Thus, if a problem is insensitiveto angular distribu-

tions, indeed if fore and aft symmetryonly is required,then the isotropic

approximationis good even up to 100-keV temperature. Also note that Figs. 2,

3, 5, and 6 show extreme behavior so that Fig. 5, the worst, describesa rare

18
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event out of a large totality for most problems. Thus, the isotropicapproxi-

mation may well be the practicalmeans of choice for most Monte Carlo calcula-

tions. It involvesonly one integrationover O, and in fact not even that for

the integralscan be integratedanalytically(done in Appendix B). Unfortu-

nately, the result involvessmall differencesof very large quantitiesfor some

of our parametersand considerablecomplexityso this author recommendsrather

numerical or other (e.g.,Monte Carlo) quadrature. The accuracy even with

intervalsas large as 22.5° appears good so that numericalmethods can give

good accuracy and reasonablecalculationalefficiency. The total Compton cross

section is given by Eqs. (60) or (61) and (62). The differentialisotropic

cross section is given by Eqs. (51), (48), (47), and (46)●

XI. APPLICATION111PKMTE CARLO (OR (YI’HER)CODES: TEE WIENXE-LATEROP FITTED
APPROXIPUYL’ION

If a somewhatpoorer approximationthan the isotropicis tolerable,the

Wienke-Lathropfitted approximationis perhaps the simplest to use. See

Figs. 4 and 5 for comparisonsof the three cross sections: exact, isotropic,

and fitted. In place of integrationover 0, a graph or table is required. The

particularone-parameterfit to the total cross section suggestedby Wienke and

Lathrop9 yields the differential

Eq. (59) and (v/v’)given in Eq.

Fig. 8. The total Compton cross

(62).

XII. TEE MEAN

From Eq.

SCATTEREDPHOTON

cross section (55) with Kf given in

(58). The parameter<K1> is obtained in

section

ENERGY,

(32) the exact scattered

~

V’(1 - p)
V=V’K

1 1+K2,
m

with K1 and K2 given by Eqs. (30), (31),

in, or heating H of, the electron gas by

H=vt ‘v .

is given by Eqs. (60) or (61) and

NEATING: THE EXACT TfIEORY

photon energy is

(63)

and (l). The energy deposition

the photon is, of course,

(64)
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We will calculatethe mean heating of a relativisticMaxwell electron gas by

the Compton scatteringof a photon, v’, through the angle, 6. Using the same

notation as in Appendix A, we define

(65)

b .- G sin a, sin ~

c ~ (v /m)(1 - p) ,

where

(66)

(67)

p 5 cos e.

By Eq. (30) and (1)

‘2
= a + b cos $ ,

and by Eq. (31)

‘1 = K
- E Cos at

Eq. (29) gives

K = 1 + (:) .

(68)

. (69)

(70)

We average Eq. (64) over the relativisticMaxwell distribution(25). We first

integrateover the azimuthal angle $; our equation is, using Eq. (A1O),

[

IT,

‘1
<D. = v‘ 1 - ;

I

d$
c + a + b cos @

o 1
with solution

[/

<H) = v’ 1 -
‘1

4

1

.

(c + a)2 - b2

(71)

(72)
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Let

?=x ,Cos a -

and define

~+- ~ (Note 00, see Eq. (70))

C = C2 + 2CK + K2~2 + 1 - ~2 .

Then our average over the angle of elevation,a’, is given by

[

1

<H>
1

J/

(K - ~ x) d.
+,x = “ 1 -7

-1 Ax2 + Bx + C 1

(73)

(74)

(75)

(76)

(77)

with solution

<D $,X =
[

v’ l-p- 1 (K - P(C + K))

26

IC+K+K
x In

1C+ K-~ “

(78)

Finally,we integrateover electronkinetic energy, K’, or in terms of K from

Eq. (70),

28



<ID($,X,K = ID =~jKdK . ~ ● e-(w/T)

1

( r

x /(1 - U) - ‘ I(C + K)(1 - U) - C I

( ““”26 ‘- ‘- ‘- ‘

KC+K+ K

1

9

C+K - ~K2- 1

(79)

for the full Maxwellianaverage. We evaluate thewhere we simply write 0

integral (79) numerically. By Eq. (64) and the distributivelaw of integration

over addition,

V>=v’ -H.) ● (80)

Eqs. (79) and (80) give the exact mean electron heating and scattered photon

energy, v’, scatteredthrough an angle e, after impactingon a relativistic

Maxwell electron gas.

Results of the exact heating calculationsusing Eq. (79) are found in

Table III. Selectedresults of the exact scatteredphoton energy (Eq. (80))

are found in Figs. IOa, b, and c. The exact results are comparedwith the

isotropicand fitted approximationsof Wienke and Lathrop,9 and with the

unmodifiedT = O Compton energy equation.

XIII- TEE MEANSC4TTRRED PHOTONENERGY,HRATING: THE WIENKE-LATRROPISOTROPIC
APPROXIMATION

For the isotropicapproximation,Eq. (48) gives the scattered photon

energy

v = IV’K ~:(1 - ~) +K2] , (81)

where K is given now by Eq. (46):
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K =J+:[l+@~)+,20(&)2-960(&)3+4320(&●..] (82)

and K2 by Eq. (47):

The isotropicapproximationheating, H1, is

[
H1=V’-V=V’ 1- K

c+K+ecos ~1
using Eq. (67) and defining

The mean heating is given by the average over the azimuthalangle @:

‘n

HI> = <H > = $
f[

d$ 1 - K
1$ C + K + e COS $

10

using again Eq. (A1O),with solution

(83)

(84)

( 85)

(86)

[

HI> ‘V’ ~ - K

~C + K)2 - (K2 - 1)(1 - P)2

(87)

where p = Cos e.

Eqs. (87), (70), (67), and (82) give the mean heating in the iSOtrOpic

approximationof a photon of energy v’ Compton scattered throughan angle (3,

(1.1= cos El),by a Maxwellianelectron gas at a temperatureT. The correspon-

ding mean scatteredphoton energy, v>, is from Eq. (80):

‘I = “ - HI> .

30
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XIV. TEE MEAN SCATTEREDPEOTON~GY , EEATING: TEE WIENKE-LATHROPoNE-
PARAMETERFIITEDAPPROXIMATION

Equation (58) gives the one-parameter,i.e., Ql>, fitted approxima-

tion of Wienke and Lathrop.9 <K1> is found in Fig. 9 and K is given by

Eq. (82) or (46).

<Kl>

v=v’—
C+K’

where as before (Eq. (67)],

c= (v’/m) ● (1-p) .

1 The fitted heating is then

~=vf ‘“=”’[1--1 ●

(89)

(90)

(91)

Equations (89), (91) , (90) , and (82) togetherwith Fig. 9 give the one-param-

eter fitted approximationto the heating and scatteredphoton energy of a

photon of energy v‘ incident on a Maxwell gas of electronsat temperatureT.

xv. COMPARISONSOF TEE MEAN SCATTERED
GIVENBY ‘131EEXACT,TNE ISOTROPIC
MATIONTEEORIES

A. ScatteredPhotonEnergy

The ability of the Wienke-Lathrop

rately the mean Compton scatteredphoton

give accuratelythe differentialcross section: both are accurate for T small

and then for v‘ large compared to T. Figure 10 shows a comparisonof the mean

scattered photon energies at the higher temperaturesof 100 and 25 keV. For

the lower temperaturesof 10 keV, the isotropicis in error at most only 3.8%,

PHOTONENERGYAND THE MEANHEATINGAS
APPROXIMATION,AND TEE FITTEDAPPROXI-

isotropicapproximationto give accu-

energy correspondsto its ability to

and for l-keV temperaturein error only at most O.39% (both at 9 = 180°,

v’ = 1). The same plots

differenceswith the two

placed O in Figs. 9a, b,

of these temperatureswould fail to show significant

theories and so were omitted. Because of the dis-

and c, the differencesbetween exact and approximate
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are emphasized. The worst scatteredphoton energy error, as noted, is in

Fig. 9C for T large, namely 100 keV, and for v’ << T, namely v’ = 1 keV, at

e= 180°where the error of the isotropicis -28%. Again, as noted in Sec-

tion X, incidentphoton energy near v’ = 1 keV when Telectron= 100 keV is

not likely in the totalityof problems to be a large fractionof incidentpho-

tons, so that examinationof usual problems reveals that the somewhat large

errors of v’ = 1 keV and T = 100 keV usually play but a small role. Thus, the

isotropicapproximationis certainlya useful approximationin the ranges

O< T< 100 keV, 1<v’ < 1000 keV.— ——

Up to 10 keV, however, the ordinary,T = O, Compton equation (Ref. 1,

Eq. (38)) is adequate. Its error is less than 4% at 10 keV (-3.8%or less

absolutely)and less than 0.4% at 1 keV (-0.39%or less absolutely).

On the other hand the fitted approximationvalues for the scatteredpho-

ton energy are simply poor (except at low temperature,but T = O Compton is

better) and for the most part exceed the ranges of Figs. lOa, b, and c. The

fitted approximationerrors relative to the exact results are given in

Table II. The ordinaryT = O Compton energy equation (Eq. (38)) is superior to

fitted energy equation (Eq. (58)) at all incidentphoton energiesup to

T= 100 kev. In fact at T = 100 keV the T = O errors are 2 to 29%.

TABLE XI

TaE oNz—PARAmmzxPIITEDAPPROXIMATIONZSSORSIN IXIESCATI’ZRED
PBOTON INZRGY IN (PZRCKNT)

(Error = 100 ● ‘v(exac~~e~a~~~itted)). T is electron temperature (keV),v’ is

incidentphotonenergyin keV.

PhotonScatteringAngle,13:

T=l,v’ =1
T=l,v’ = 1000

T= 10, V’ = 1

T = 10, “’ = 10
T = 10, V’ = 20
T= 10, V’ = 100
T= 10, V’ = 1000

T = 25, “’ = 25

T = 100,V’ = 1

T= 100,V’ = 10
T = 100,“’ = 100
T = 100,V’ = 1000

0°

1.6%
-2.2

11.2%
10.5
10.2
8.4
4.6

19.5%

52.9%
51.1
41.8
39.4

45” 90” 135° 180”— —— —

1.5 1.3 1.3 1.2
-2.2 -2.2 -2.3 -2.3

10.5 9.0 7.5 7.0
9.9 8.5 7.1 6.5
9.6 8.2 7.0 6.5
7.9 6.8 6.1 5.8
4.7 4.3 4.1 4.1

17.9 14.3 11.2 10.0

44.3 27.2 13.7 9.2
42.8 26.5 13.6 9.6
35.6 24.9 17.7 15.4
41.1 38.5 36.3 35.6
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The fitted approximationfor the cross section is, however, the simplest a3.ge-

braically,although

use of the standard

tion is used. Note

be constructedwith

require yet another

B. Heating

one must append Fig. 9 or a table thereof. We recommend

Compton energy equation (Eq. (38)) if the fitted approxima-

that a two (or more) parameter fitted approximationcould

the expectationof greater accuracy. Again one would

additionalgraph or table.

Because the energy deposited in the electron gas by the scatteringof

the photon is often the small differenceof relativelylarge numbers, approxi-

mate results are bound to give very poor heating numbers (see Table III). In

short, for accuratemean heating of an electron gas by Compton scatteringat

all parametervalues, the exact theory must be used. Note that the greatest

error in the isotropicheating occurs for the least heating, so that for many

problems the worst discrepanciesof Table 111 overstate the total heating error

by a considerableamount. It is clear from Table 111 that the best heating

numbers (althoughvery poor for incident photon energies near the electron

temperature),are given by the isotropicapproximation,next best T = O

Compton, and the fitted heating numbers are essentiallyuaeless.

XVI. RECOMMENDATIONS

In the spirit of the founding fathers of Monte Carlo particle transport,

E. D. Cashwell and C. J. Everett, one should always use the best and most

precise physics that is practicable. There is also a very real, very pragmatic

further reason to do so. Sooner or later every code and every theory will be

used beyond the domain originallyintendedby the creators. Here, use of the

exact theory is suitable for any parameter range provided only that one rememb-

ers that the Compton effect is not the only photon process (photo-electric,

pair production,etc., exist and can be dominant)and that the electron distri-

bution specificallyconsideredis the Maxwellian. (The reader may substitute

his own normalizeddistribution,f(p’) in Eq. (19) or f(K’) in Eq. (34) if

desired.) In contrast,the isotropicapproximationis appropriatefor a

limited range: O < T < 100 keV and 1 < v’ < 1000 keV. Indeed, as Fig. 4— ——
shows, significantdeparturefrom the exact angular distributionbegins for

T= 100 keV and v’ = 1 keV, although in most calculationsthe total effect will

be small (see the discussionin SectionX).
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TABLE221

1

1

10

10

10

10

30
(L) Theory

1

1000

1

10

20

100

Exact
Imtropic
Fitted
T - 0 C@apton

Exact

Iaotropic
Fitted
T - 0 (Annpton

Exact
Isotropic

Fitted
T = O Caapton

Exact
180tr0pic
Fitted
T - 0 Compton

Exact
Isotropic
Fitted
T - 0 C%npton

Exact
Iaotropic

MUANENSNCYDEPOSITION~ SEATING,Q, OF A lU5iSLL sLFcm3N CM
AT A TKNPSNATONS,T, SYAPB02Y3N0 FINITIAL=8CY, v’,

Cf3HP’itINSCA2TENEDlW030GEANANCL813

I

T
o 22.5”

o -2.68(-7)
-2.81(-4)

-!.6(-2) -1.58(-2)
o +1.49(-4)

o 129.4

0 129.0
22.1 148.6
0 129.6

0 -1.36(-2)
o -4.13(-3)

-.112 -.111
0 +1.49(-4)

o -2.57(-4)
o -2.82(-2)

-1.05 -1.04
0 1.49(-2)

o +2.89(-2)
o -2.72(-2)

-2.04 -1.98
0 +5.94(-2)

o 1.31
0 1.02

45”

-7.89(-7)
-8.96(-4)
-1.54(-2)

5.73(-4)

363.7

363.3
377.7
364.3

-5.21(-3)
-1.43(-2)

-.Ill
5.73(-4)

-7.43(-4)
-9.05(-2)

-.993
5.70(-2)

.111
-6.68(-2)
-1.80

.227

4.85
4.01

67.5”

-8.94(-7)
-1.30(:3)
-1.47(-2)

1.21(-3)

546.4

546.1
556.4
S.i?.l

-1.10(-2)
-2.45(-2)

-.110
1.21(-3)

-7.96(-4)
-.132
-.926
0.119

.235
-2.10(-2)
-1.54

.472

9.69
8.66

— 8—

90”

1.58(-8)
-9.81(-4)
-1.40(-2)
-1.95(-3)

661.1

661.0
668.7
661.8

-1.77(-2)
-2.83(-2)

-.109
1.95(-3)

+1.37(-4)
-.100
-.848
0.192

.380
+.191

-1.23
.753

14.81
14.18

112.5°

2.03(-6)
1.98(-4)

-1.32(-2)
2.70(-3)

729.5

729.5
735.6
730.2

-2.45(-2)
-2.29(-2)

-.109
2.70(-3)

2.10(-3)
+1.82(-2)
-0.771
0.264

.525

.558
-.940
1.03

19.37
19.54

135”

4.61(-6)
1.87(-3)

-1.26(-2)
3.33(-3)

769.0

769.1
774.2
769.6

-3.02(-2)
-1.15(-2)

-.108
3.33(-3)

4.54(-3)
.179

-.707
.323

.648

.973
-.698
1.25

22.87
23.85

I

L57.5”

6.78(-6)
3.32(-3)

-1.22(-2)
3.75(-3)

789,6

789.6
794.3
790.2

-3.40(-2)
-5.90(-4)

-.108
3.75(-3)

6.56(-3)
.314

-.664
.363

180”

7.62(-6:
3.89(-3:

-1.20(-2:
3.90(-3:

795.9

796,0
800.5
796.5

-3.53(-2:
+3.78(-3:

-.107
3.90(-3:

7.34(-3;
.366

-.649
.377

.730
1.29
-.539
1.40

25.05
26.59

.758
1.41
-.484
1.45

25.78
27.53



TABLEIII(cont)

MEANENKIUXDEFO.VIT20NDEEEATINC,ID, OF A X4NELL ELEC2RONGAS
AT A TEIWERATURE,T, BY A PWKIN OF INITIAL NNEIIOY,V “ ,

COHPTUN SCA2TEMDmRDOGHANANOLE0

(Lv)

1000

25

1

10

100

moo

I— e I

45”o
m

l%eory 90” I 112.5” I 135”(k:v)

10

25

100

100

22.5” 67.5” 157.5” lee”

Fitted
T - 0 (hnpton

Exact
Ieotropic
Fitted
T - 0 Compton

Exact
Isotropic
Fitted

Exact
Isotropic
Fitted

Exact

Iaotropic
Fitted

Exact
180tropic
Fitted

Exact
Isotropic
Fitted

-e.35
o

0
0

-45.5
0

-6 .e 1
1.47

127.1
123.5
+86.6
129.6

-2.64
5.42

+3.02
lo. e

e .94
16.4

14.18
21.3

le. le
25.0

20.65
27.4

784.2
7e5. I
775.4
790.2

21.4e
ze. 1

790.7
791.7
782.1
796.5

.106
2.oe

-2 .3e

-.400
+2.e3(-3:

-.525

-3.40

35e.1
353.6
32e.2
364.3

539.5
531.3
518.7
547.1

654.4
653.9
639.4
661.8

723.3
723.7
711.7
730.2

763.3
764.1
753.6
769.6

-1.05(-2)
-.572

-4.47

-1.02(-2)
-.e46

-4.05

-.124
-.296
-.52e

+4.6e(-3)
-.639

-3.57

-.201
-.37e
-.527

3.36(-2)
+.101

-3.10

-.277
-.294
-.526

6.el(-2)
1.05

-2.72

-.342
-.142
-.525

-3.77(-3)
-.175

-4.76

-1.54(-2)
-3.67(-2)
-.529

-.356
-5.10

-2.49
-40.3

104.4
70.5

25e.5

9.57(-2)
loco

-2.47

-.3e5
-3.38(-2)
-.525

-7.32(-2)
-4.71

19.66
-11.41

724.3
730.9
625.7

0
0

-4.e6

o
0
-.529

0

0
-5.11

0
0

-41.e

-5.90(-2)
-.145
-.52e

-.537 I -1.7e

-3.46
-4.90

-2.94

-1.11
-4.76-l== -2.57

-4.e2
+.276

-4.70

4.23
22.07

-10.47

731.7
739.1
636.2

100

100

-.413 I

---t--

-8.6e -13.52
-36.1 -30.4

301.6 46e.9
247.0 432.6

14.6 256.2

+.604
-9.96

-24.17

3.03
12.43

-14.16
+1.16

-18.55

656.6
653.e
52e.7

0
0

394.2

583.5
sale. z
423.0

700.7
704.4
592.1f



I feel the ultimate reliabilityof a theory used “’inranges unexpectedby

the author is a very strong argument for physicaland mathematicalrigour as

I’ve indicatedabove. Not fully in contrast is the fact that much data, many

theories,and the significanceof the results alike do not warrant great accu-

racy. In short,many calculationserr in using needless precision.

In view of the foregoingconsiderations,I recommendthe ordinaryXlein-

Nishina Formula and the T = O Compton energy equation for most problemsup to

an electron temperatureof 10 keV. The formulaand equationare already in

MCNP and other Los Alamos Monte Carlo codes. One may then expect accuraciesof

better than 1.5% in the total Compton cross section [from Eq. (62), maximum

v’ = 1000 keV] and about 5% or better in the differentialcross section. The

error in the scatteredphoton energy is 4% or better. For higher accuraciesor

for special results, such as photon energy upscatteror heating, one should use

the full temperaturedependent theories. Even as high as T = 25 keV, the error

of the total Compton (IU.ein-Nishina)cross section is 3.6% or less (maximum

v’ = 1000 keV) and of the differentialcross section is of the order of or less

than 10%. (Specifically,at T = 25 keV, v’ = 25 keV, the differentialcross-

section errors are +5.8% at e = 45”, +8% at 90°, and -0.9% at 135”.) For scat-

tered photon energy the error is 0.4% (22.5°)to 8.5% (180”). At l-keV temper-

ature the error

(v’ = 1000 keV)

section is 0.5%

0.015 to 0.39%.

of the total Klein-Nishina cross section drops to 0.15%

or less, and the error of the Klein-Nishinadifferentialcross

or less. The error in the scatteredphoton energy ranges from

For higher temperatures(than say 10 keV or so), greater accuracies,or

better specificdetail, we recommendthe exact equationsas summarizedin Sec-

tions IX and XII. This recommendationis only made with the proviso that an

efficient cross-sectioncomputationalalgorithmcan be found. Otherwisewe

recommendthe Wienke-Lathropisotropicapproximationsummarizedin SectionsX

and XIII with numericalintegrationover @ for the cross section. Such approx-

imation should be limited to O < T < 100 keV and 1 < v’ < 1000 keV, (buc use——

Klein-Nishinabelow about 10-keV temperature). Formally,as we’ve shown, both

the exact and the isotropicreduce to the IUein-Nishinafor T + O.

The fitted approximationis not recommended. Its complexityis not suf-

ficientlyless than the isotropicto justify the larger errors it introduces.
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For heating, only the exact theory will do. Except only for v’ >> T

will the isotropicapproximationyield a good or even fair approximation. The

regular T = O Compton equation requiresboth T & 10 keV and v >> T in order to

yield fair to good heating numbers.
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($-INTEGRATIONOF TEE

We rewrite Eq. (34) in

.

APPENDIXA

EXMX (XMPTONDIFFERENTIAL

the form

/ .

CROSSSECTION

da ‘~
iiH= 2–1

dK’ . (K’ + m) ● /K” + 2mK’ ● f(K’) ● ~ da’ . I,(Al)
1

where I is the $-integralwhich we shall analyticallyevaluate,

(A2)

SubstitutingEq. (1) into Eq. (32) we get

‘2=K - C cos .1 co., - &sin at sin 0 cos 4 . (A3)

For conveniencedefine

b E - K sin a, sin El

as before p z cos 9. Then

‘2
= a + b cos @ ,

(A4)
I

(A5)

(A6)

(A7)

and by Eq. (32)

v ‘1 ‘1 ‘1—.
= c + a + b cos @ ‘ a’ + b cos @ ‘

(A8)
v’

: (1 - p) + K2

where we have defined

a! ~ c + a = (v‘ /m) ( 1 - W) + K - G Cos CKt Cos El . (A9)

Observe that
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27T It

J
(functionof cos e) df3= 2

I
(functionof cos 13)df3 . (A1O)

o 0

SubstitutingEqs. (A1O), (A8), (A6), and (33) into Eq. (A2), we have

n 2

12
J

d~ ● (
‘1

)[
(1 - p)2 _ 2(1 - p)z + c ‘“K2 + K2=

C+K 22
1

— .(All)
2 ‘1K2 ‘2

C+K

o ‘1 ‘2 2

Expanding in partial fractionsand collectingterms of the same @ dependence

gives

11

12
~[

d$ ‘1 + ‘2= + ‘3 ‘1 + ‘2
C+K

-—

1
(A12)

2 (c +K2)2 7’(C + K2)3 ‘2 K2o

where

[
Al = 2(1 ~ P)2 - $+ 2K1(1 - ‘)]

c C2

[
A2 ~ “ j ‘)2+ 2K1(1 - ‘“)+ K2

c c 11

A3 ~ ‘CK:/(C + K2)3

B2 = (1 - ~)2/c2 .

Defining

(A13)

(A14)

(A15)

(A16)

(A17)

we have in Eq. (A12) the five integrals

1(1,a’,b), 1(2,a’,b), 1(3,a’,b), 1(1,a,b), and 1(2,a,b).



Evaluatingthese integralswith the help of tables,18

I(l,a’,b)= n

m ‘ ‘(’’a’b)= &

I(2,a’,b)=
xa’

I(2,a,b)=
na

3/2 ‘ 3/2
(a,z - b2) (a2 - b2)

I(3,a’,b)=
n(2a’2 + b2)

5/2
2(a’2 - b2)

(A18)

(A19)

(A20)

so that
r

1‘1
a’A

2
(2a’2 + b2)A3

I = 2X
‘1

~+ (a12 -b2)3’2 + 2(a12 -b2)”2 - = ‘A21)

aB
+ 2

3/2
(a2 - b2) 1

Eq. (A21) togetherwith Eq. (Al) is our

●

desired solution.

Using Eqs. (A4) to (A6) to evaluate Eqs. (A13) to (A16),we get

‘1=v:J2-~+2v1:11

A2 . (~ + K1)2

(A22)

(A23)

2
“’K

‘3 = - + (1 - ~) (A24)

‘2
= (m/v )2 (A25)

2
a - b2 = 1 + (K2 - 1)(112+ COS2a’ ) - 2K~ Cos a ‘ E (A26)
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I

a’ - b = 1 - - + -

‘1 = K
- C .

n = 8

5

B

&

, ,

9

,

(C + K2) K2

+ + 1C+K “
2

1) 1),

2 2
r r

= ~ I (with KI + K) = A J ,
47tK2 471K2

J : I(with K + K) .1
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