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EXECUTIVE SUMMARY

The Compton differential scattering of photons from a relativistic Maxwell
Distribution of electrons is reviewed and the theory and numerical values veri-
fied for application to particle transport codes. We checked the Wienke exact
covariant theory, the Wienke-Lathrop isotropic approximation, and the Wienke-
Lathrop fitted approximation. Derivation of the approximations from the exact
theory are repeated. The Klein-Nishina limiting form of the equations was
verified. Numerical calculations, primarily of limiting cases, were made as
were comparisons both with Wienke's calculations and among the various theo-
ries. An approximate (Cooper and Cummings), simple, accurate, total cross -
section as a function of photon energy and electron temperature is presented.
Azimuthal integration of the exact and isotropic cross sections is performed
but rejected for practical use because the results are small differences of
large quantities and are algebraically cumbersome.

The isotropic approximation is good for photons below 1 MeV and tempera-
tures below 100 keV. The fitted approximation version discussed here is gener-
ally less accurate but does not require integration, replacing the same with a
table or with graphs. We recommend that the ordinary Klein-Nishina formula be
used up to electron temperatures of 10 keV (errors of < 1.5% in the total cross
section and of about 5% or less in the differential cross section.) For great-
er accuracies, higher temperatures, or better specific detail and no tempera-
ture or photon energy limits, the exact theory is recommended. However, the
exact theory effectively requires four multiple integrations so that within its
accuracy and temperature and energy limits the Wienke-Lathrop isotropic approx-
imation is a simpler solution and is thereby recommended as such. '

The mean energy of a photon scattered from a Maxwell distributed electron
gas is calculated by four methods: exact; the Wienke-Lathrop isotropic and
one-parameter fitted approximations; and the standard (temperature T = 0)
Compton energy equation. To about 4% error the simple Compton (T = 0) equation
is adequate up to 10-keV temperature. Above that temperature the exact calcu-
lation is preferred if it can be efficiently coded for practical use. The
isotropic approximation is a suitable compromise between simplicity and accu-

racy, but at the extreme end of the parameter range (T = 100 keV incident

vii




photon energy v' = 1 keV, scattering angle 6 = 180°) the error is as high as
-28%. For mid-range values like 10 to 25 keV, the errors are generally a per-
cent or so but range up to about 8% (25 keV, 180°). The fitted approximation
is generally found to have large errors and is consequently not recommended.
The energy deposited in the electron gas by the Compton scattering of the
photon, i.e., the heating, is only adequately given by the exact expressiom for
all parameters in the ranges 1 < T < 100 keV and 1 < v' < 1000 keV. For low
depositions the heating is the difference between two large quantities. Thus
if one quantity is approximate, orders of magnitude errors can occur. However,
for scattered photon energy v >> T the isotropic approximation does well (0.13%
error for v' = 1000 kev, 6 = 180°, T = 10 keV, v = 790.7 keV; and 2.7% error
for v' = 1000 keV, 6 = 90°, v = 583.5 keV, T = 100 keV). The regular T = 0
Compton also does well for T < 10 keV and v >> T (0.7% for v' = 1000 kev,
6 = 180°, T = 10 keV, v = 790.7 keV; and 0.08% for v' = 1000 keV, 6 = 180°,
T=1keV, v = 795.9 keV)., The fitted approximation is without merit for
heating.

viii



COMPTON SCATTERING OF PHOTONS FROM ELECTRONS IN
THERMAL (MAXWELLIAN) MOTION: ELECTRON HEATING

by

Joseph J. Devaney

ABSTRACT

The Compton differential scattering of photons from a
relativistic Maxwell distribution of electrons is
reviewed. The exact theory and the approximate theories
due to Wienke and Lathrop were verified for application to
particle transport codes. We find that the ordinary (zero
temperature) Klein-Nishina formula can be used up to elec-
tron temperatures of 10 keV if errors of less than 1.6% in
the total cross section and of about 5% or less in the dif-
ferential cross section can be tolerated. Otherwise, for
photons below 1 MeV and temperatures below 100 keV the
Wienke-Lathrop isotropic approximation is recommended.
Were it not for the four integrations effectively required
to use the exact theory, it would be recommended. An
approximate (Cooper and Cummings), simple, accurate, total
cross section as a function of photon energy and electron
temperature is presented.

I, INTRODUCTION

This report critically reviews the exact Compton differential scattering
of a photon from an electron distributed according to a relativistic Maxwell
velocity distribution. We base our study on the form derived by Wienke using
field theoretic methods.l-7 (Particularly Eq. (1) of Ref. 1, whose deriva-
tion is presented in Ref. 2.) Wienke was the first known to this writer to
point out the simplicity and power of deriving the Compton effect for moving
targets.by the coordinate covariant (i.e., invariant in form) techniques of
modern field theory. His derivation is equivalent to,4 but replaced, earlier

methods8 which involved the tedious and obscure making of a Lorentz



transformation to the rest frame of the target electron, applying the Klein-
Nishina Formula, and making a Lorentz transformation back to the laboratory
frame.

We also critically review the Wienke-Lathrop isotropic approximation9
to the exact formula which selectively substitutes electron averages into the
exact formula so obviating integration over the electron momenta and colati-
tude. The electron directions in a Maxwell distribution are, of course,
isotropic, hence the name chosen by Wienke and Lathrop.

We verify the theory for the exact expression and the plausibility argu-
ments for the isotropic expression. We verify in detail numerical comparisons
between the two theories at selected electron temperatures and initial photon
energies. We rewrite the formulas in a form suitable for application, espe-
cially for the Los Alamos National Laboratory Monte Carlo neutron-photon code,
MCNP. 10

As a further approximation, Wienke and Lathrop have reduced the iso-
tropic approximation to a one- or two-parameter fitted approximation,9 which
we also review. As always, the choice between the methods is complexity versus
accuracy and limitations of parameter ranges.

We include a simple, accurate estimate of the total Compton cross sec-
tion. We give the mean scattered photon energy and the mean heating of the
electron gas by the photon scattering. Both quantities are given as a function
of the photon scattering angle, 8; the electron temperature; and the incident
photon energy, v'. We compare these means, v> and H>: as calculated exactly,
as calculated with the Wienke-Lathrop isotropic and one-parameter fitted
approximations, as well as with the unmodified, regular, T = 0, Compton energy
equation results. Recommendations are offered.

Because much of this report is devoted to derivation and verification,
we recommend that a user-oriented reader turn first to the recommendations of
Section XVI, then for differential cross sections, Sections IX to XI as
desired, which give applications together with reference to Figs. 2 through 8,
which show the accuracy of the cross-section approximations. For scattered
photon energies and heating, refer first to Section XV for comparisons and
errors, particularly Fig. 10 and Tables II and I1I, then as desired Sections
XIII to XIV. Refer to the Table of Contents for further guidance.




II. THE EXACT COMPTON SCATTERING OF A PHOTON FROM A RELATIVISTIC MAXWELL

ELECTRON DISTRIBUTION

We will follow the notation and largely the method of Wienkel,9 and
first choose the "natural” system of units in which h = c¢ =1 and kT = T in
keV. Let the incoming photon and electron energies be v' and €', and the
outgoing be v and €, with corresponding electron momenta ;' and ;, and photon
momenta a' and a, respectively. The angle between a' and a shall be 8; q is
oriented relative to some fixed laboratory direction by azimuthal angle eq.
The angle between a' and 3' shall be a' and that between a and ﬁ' shall be «a.
The azimuthal angle between the spherical triangle sides aa' and E'B' shall be
¢. Thus on the surface of a sphere with origin of the vectors a,a', and 3' at
the center of the sphere and intersections labelled on the surface thereof, we

have the spherical triangle shown in Fig. 1.

SPHERICAL
SURFACE

Fig. 1. Angular relations.



The law of cosines applied to the triangle of Fig. 1 gives

cos ¢ = cos o' cos O + sin «' sin 6 cos ¢ . (1

_)
In terms of energy, &, and (vector) momentum, p, the four-vector momentum is

P = [5»-1;] . (2)

Its square is

P-=¢ -p . (3)

Now all four vectors are required to transform (Lorentz transformation) alike,

in particular as the line element

ds = [dt,dX] (4)

so as to keep (ds)2 invariant. Thus P2 is invariant.

_)
In the rest frame p = o, € = m, so that generally for any four-momentum

P of mass m,

P =m"~ . (5)
In particular, for photons, m = o, so that their four-momenta, Q, satisfy

Q2 = 0 (photons) . (6)

Consider now the Compton scattering of four-momenta P' + Q' into P + Q.

Four-momentum is conserved, so
P=P' +Q -Q . (7
The square of Eq. (7) yields

P'Q' = P'Q+Q'Q , (8)




where we have used Eqs. (6) and (5):

P2 - P'2 - m2, Q2 - Q'2 =0 .

Expanding the four-momentum products into energy and three-momentum products

by, for example,

SPUSISM T T ()
and then using Fig. 1 to determine that, for example,

p'+q" = p'q’ cos a', (10)

where p' and q' are, of course the magnitude of the 3-momenta 3' and a', we

get finally for Eq. (8)
e'v' — p'v' cos a' = €'v - p'v cos a + vw' - vw' cos 9 , (11

where we have used q'2 = v'2, q2 = v2 for the zero rest mass photons.

The Compton collision, of course, also conserves 3-momentum so that
> > > >
p=p'+q' -q . (12)

If now we square Eq. (12) and use the relation

+n” =€ (13)

plus scalar products determined from Fig. 1 as we did for Eqs. (10) and (11),

we get

2 12 + v2 + v'2 + 2p'v' cos a' - 2p'v cos @ - 2vv' cos 6 . (14)

The Compton cross section for scattering a photon into a direction solid
angle dQ, and into an energy interval dv, from a relativistic Maxwell electron

distribution, f(s'), is given by Wienkel to be



2
dO’ _r_O fd3')'f( ') . m2V . 6 ( ' + v - ) . K (15)
dQdv =~ 2 p tip e'v'e & v & v ’
where
K =

m2 m2 2
g'v'-p'v' cos «' - e'v-p'v cos «

m2 m2
+ 2 g'v'-p'v' cos «' T €'v-p'v cos «a

e'v'-p'v' cos a' e'v-p'v cos «
e'v-p'v cos « g'v'-p'v' cos o'

s (16)

m is the electron rest energy (or mass, c = 1),
and
Ty = e2/mc2 is the classical electron radius.

We integrate over final photon energy in order to remove the
&-function. However, the &-function is not in the form 8(v - v,), where v,
is constant because Eq. (14) shows that € = e(v). We must first use the

identity

-1
é(f(x)) = [g—f{]
%o

from which, using Eq. (14), then differentiating, then substituting
ge+v = g'+v', and then Eq. (11),

é(x—xo) , (17)

E(%,)

el 'y =
8(e + v - ¢ v') T = p" cos &'

5(v - vo) s (18)

for some constant outgoing photon energy, vg.
Substituting in Eq. (15), integrating over v, and replacing v, by v

(i.e., v is now the outgoing photon energy), we get

2
do _ r_o fd3"| £(p') o m2 (V_)z K (19)
dQ 2 P P e'(g' - p' cos a') ‘v' '




Formulas (15) and (16) have been checked by independent calculation by
C. Zemach, Theoretical Division, Los Alamos National Laboratory.* In the
form of Eqs. (19) and (16) the formulas are the same as those of Pauli8 and
Ginzburg and Syrovat-Skiill provided one corrects for the electron motion.
The number of events per unit time are equal to the flux times the density of
electrons times the cross section times the volume. For an electron of

_)
velocity v, the number of events per unit time is increased by the factor

> e' - -1;'° v '
. - \ |
<1 _ V2C)= \ = € p COS « , (20)

C

where again c = 1.

The relativistic Maxwell electron distribution is

o/

EG = () e (21)
or for
€' =m+ K' ., (22)
K' being the electron kinetic energy, then
- -K?
£ = (bmy) L eI L STKYT (23)
where the normalization constant y is given by
- 2TK (n/T) = ZT(EE)I/Z -m/T 1 + 15,T ) + 105,T 2
Y = T@T) = wT() e ) * 71 (ga)
3 4
945, T 31185,T
___3_!.(8_m) +—4—!—(8—m) +] , (24)
where Ky is the modified Bessel function of the second kind and order. We
use
-
co /i, o K /T
2T 2

3 44 2
2 T 105, T 315, T 10395, T
21m T[l + 15(E) + ——{2 8_m) - ——{2 8_m) + ——-{8 ﬁ) ] (25)

which is good for T <K 4 MeV, more accurately, for T < 400 keV.

*Information from C. Zemach, November 1982.



We generally prefer to describe electrons by their kinetic energy, K',

rather than momentum 3', so using €'2 =p'2 + n2 and €' = m + K

2 £y 2
p' " dp' = (XK' + m) « /K'™ + 2mK' dK' ,

also

d33' = p'” dp' dcos a' d¢ .
We put

L =cos 6 ,
thus

dp = -sin 6 d6.

For convenience, define

k 2e'/m=1+(K'/m) ,

K, = m_l (e' - p' cos a') =k - /Kz -~ 1cos a' ,

and

K, = m_l (e' = p' cos a) =k - /Kz -1 cos a .

2
Substituting into the energy equation ((11)] we get simply

- ' -
K Jmv vw'(l - p) + K v .

Substituting into Eq. (16) and with a little rearranging,

K,[(l—p)z_z(l—u)+V"‘1+""2] ,

2 2 KK VK v'k
Kle 172 2 1

and the cross section, Eq. (19), becomes
do

dQ 1

x Ko dp o d cos a' .

r
= _o ' ' '2 ' L] ' [ ] -—1— L]
5 de (K" +m) /K'" + mK' o £(K') » — (

we have

(26)

(27)

(28)

(29)

(30)

(3D

(32)

(33)

(34)



The expressions (32), (33), (34), (25) (or (23) and (24)), and (1) con-
stitute the exact Compton scattering cross section of a photon of energy v'
from a relativistic Maxwell distribution of electrons, f(X'), into the solid
angle dQ = sin 6 d6 d¢q. The ¢—-integration can be carried out analytically,
see Appendix A, but we found the result both too cumbersome and too inaccurate
for practical use. The latter was caused by small differences of very large,
but exact, quantities that our calculator could not handle.

In the limit T + 0, Eq. (34) or Eq. (19) should reduce to the Klein-
Nishina Formula (i.e., Compton for zero velocity electrons). So it does, as we

now show. Observe that the relativistic Maxwellian is normalized such that

ff d33' =1 (35)

and from Eq. (25) for T » O that for K' # 0,f = 0 and for K' = 0, f = », so
that we may write
33,

fd > 8(p') dp' (36)

T>0

because the §-function, 85(x), is defined as

8(x # 0) =o
5(0) = ®
[ 6(x) dx =1 . (37)

Substituting Eq. (36) in Eq. (19), using Eq. (33) and Eqs. (29), (30), and
(31), (i.e., k = 1 =k} =«3), we get the usual Compton energy equation from
Eq. (32).

)

mv' = vw'(l - p) + vm (initially stationary electron) (38)

and the Klein-Nishina FormulalO;12 for unpolarized light,

r2 2
do ' 2
‘do = 20 (v') [v + %W +u ‘1] > (39)

as we should.



ITII. NUMERICAL VERIFICATION OF THE EXACT COMPTON SCATTERING FROM A MAXWELL
DISTRIBUTION
Integration over ¢ in Eq. (34) is possible analytically but is both
complicated and leads to small differences in large quantities (see Appendix
A). Accordingly, we have used Simpson's rule to integrate over ¢, o', and K'
to provide do/d6 vs 6. By symmetry the cross section is independent of bqe
We used angular intervals of 22.,50° and variable electron kinetic energy inter-
vals appropriate to yielding an error of about 1% or less. Our numerical
calculations agree with Wienke and Lathrop? to about 1% or better except at
T =1 keV, v' = 1000 kev, and 6 = 30°, where the agreement was only 3.5%
because of our using a coarse K' interval. We found and checked with Wienke
that his latest communication (Ref. 9, February 15, 1983) has an erroneous
exact curve in Fig. 6. (T = 100 keV, v' = 1 keV); however, we agree with ear-
lier Wienke-Lathrop exact calculations for these parameters. The parameter
sets for which we have numerically checked the Wienke-Lathrop exact angular

distributions are given in Table I.

TABLE I

PARAMETER SETS AT WHICH THE EXACT WIENKE-LATHROP FORMULAS
FOR dc/d0 WERE VERIFIED

INCIDENT
TEMPERATURE PHOTON ENERGY
T (keV) v'(keV) PHOTON SCATTERING ANGLES, 6
100 1 45°, 90°, 100° 135°
100 1000 45°, 90°, 135°
1 1 60°, 140°
1 1000 30°

(As noted, agreement is within the error of our Simpson's rule

approximation error, i.e., = 1% except, 1, 1000, 30°: =~ 3.5%.)

10




Iv, THE WIENKE-LATHROP ISOTROPIC APPROXTMATION FOR THE COMPTON SCATTERING OF

A PHOTON FROM A RELATIVISTIC MAXWELL FLECTRON DISTRIBUTION

The exact Compton formula (34) requires three integrations to provide
the differential scattering cross section do/dQ. It requires four integrations
to provide the total scattering cross section (the fifth integration over bq
is trivial, yielding 2n because of symmetry). Accordingly, an approximate form
of Eq. (34) without such integrations could be quite useful when the errors of
the approximation can be tolerated. We derive the Wienke-Lathrop isotropic
approximation by a plausibility argument. This approximation removes the inte-
gration over p' and a«'. In place of averaging the covariant Compton expression
over a Maxwell spectrum, key parameters are averaged in that expression, an
inexact but reasonable approach leading to a simpler expression.

Because the relativistic Maxwell distribution is isotropic, it is clear

that
{cos a’> =0 , (40)

where the average, < >, is the Maxwell average over X' and «'. The first

approximation then is to replace cos a' by its average
cos a' » <cos a'> = o (41)

so that

sin «' = /1 - cosZa' = 1 (42)

and Eq. (1) becomes
cos @ = sin 6 cos ¢ . (43)
Consequently, by Eq. (30)

Ky =K (44)

11



Since (Eq. (24)) k = €'/m, one might, for example, choose k = <e'>/m,

but Wienke chooses rather to set

NN ST (45)

which he shows and we verify and expand to be

K (n/T)
e'/m = //47 iT .

K (m/T)

~
1

2 3 4

3T T T
- 960(g=) + 4320 () + ] .(46)

/1 + 22 [1 + 20(5=) + 120(%=

8m)

Substituting Eq. (42) into Eq. (31) yields

K, = K = /Kz -1 ¢ (sin 6 cos ¢) . (47)

2

(32) reduces by Eq. (44) to

Y= = K . (48)
e (1-p) + Ko

Remembering that the Maxwell averaging operator,

3+
d’p
fd¢ £ (p")

(i.e., except for ¢) now applies solely to cos a', where it gives zero, and to

<p'>2, where it yields Eqs. (45) and (46), we perform that averaging in
Eq. (19) with K taken to be Eq. (33) to obtain the isotropic approximation for

the differential cross section

12




2 2n
do o 1 f[("—.)z -w® 20 -, v +vK2] do ,  (49)

L
v (KKZ)Z KK, VK, v'k
where ry = e2/mc2 is the classical electron radius, ko is given by Eq. (47),
k by Eq. (46), p = cos 6, and v/v' is given by Eq. (48).

do _ do _ do
dQ ~ sineded¢q ~ 2nsin6d6 (50

because of bq symmetry of the problem. Thus

T

2 2 ' VK
g_gzrg.sirzlefdd) (:_') [(1 "Jl) _2(1_P)+V_K_+_—'_2] . (51)

< (KKZ)Z KKZ v Kz v'k

(o)

The ¢—integration of Eqs. (49) or (51) can be performed analytically, but we
found the result to be small differences of very large quantities leading to
inaccuracies in small computers as well as to be algebraically cumbersome.
Accordingly, we found it simpler to use direct numerical integration by
Simpson's rule. For angles, only 8 intervals gave sufficient accuracy for our
purposes.

The approximation (49) also reduces in the limit T > o to the Klein-
Nishina formulal2,10 for unpolarized light, as it should. 1In Eq. (46) set-
ting T = 0 gives ¥ = 1, which in Eq. (47) then gives k9 = 1, i.e., k7 is

now no longer a function of ¢, and thus yields from Eq. (48)

::_'= 1 (T > 0)

) ’
:1—(1—u)+1

(52)

which is identical to Eq. (38), and from Eq. (49) (with f d¢ = 2n) yields the

unpolarized Klein-Nishina Formula (39)

2
r 2
d ' 2
Bes- G [eneda] o aeo 2

13



Ve NUMERICAL VERIFICATION OF THE WIENKE-LATHROP ISOTROPIC APPROXIMATION OF

COMPTON SCATTERING

We have numerically verified Eq. (51) against the independent calcula-
tions of Wienke and Lathrop.9 We find all points in agreement to within our
error in reading the curves of Wienke and Lathrop and possibly also including
the difference in our use of more terms for x, Eq. (46). We verified the for-
mula (51) for 6 = 30°, 60°, 90°, 120°, and 150° for all parameter sets. In
addition, for T = 100 keV, v' = 1 keV, the differential cross section was veri-
fied at 6 = 80°, 100°, 110°, and 115° because of the peaked behavior of the

approximation near 100° (see Fig. 5).

VI. COMPARISON OF THE WIENKE-LATHROP APPROXIMATION TO THE EXACT COMPTON

SCATTERING OF PHOTONS FROM A MAXWELLIAN ELECTRON GAS

In Figs. 2 through 6 we compare the isotropic approximation versus the
exact differential Compton scattering cross sections, do/d6. T refers to the
electron temperature, and the photon energy is the initial photon energy v'.
The isotropic approximation curves are dashed and are taken from Eq. (51)
(integrated over ¢). The solid curves are the exact curves from Eqs. (34) and
(50) after numerical integration over K', ¢, and ¢'. The Wienke-Lathrop
approximation is a good one except for T large and T >> v'. However, the total
Compton cross section, ¢, is very well represented by the Wienke-Lathrop
approximation. Figs. 7 and 8 show the Compton cross sections integrated over
the photon scattering angle, 6. Again, dashed is the isotropic approximation,
solid the exact. It is evident that the two total cross sections, isotropic
and exact, are nearly indistinguishable up to 100-keV temperature. Figures 2,
3, 6, 7, and 8 are reproduced, by permission, from Ref. 9 (February 15, 1983).
Figures 4 and 5 also contain the Wienke-Lathrop fitted approximation curves

(dot-dash), which we discuss next.

VII. WIENKE-LATHROP FITTED APPROXIMATION TO COMPTON SCATTERING

In the event that a poorer approximation (the present version - it could
be made better) than the isotropic is satisfactory, Wienke and Lathrop9 offer
a "fitted approximation” that avoids even the ¢-integration of their isotropic
approximation. However, an adjunct plot or plots or tables of the parameters
<k 1> and <k92> versus T and v' are required. Moreover the isotropic approx-
imation can be integrated analytically, but perhaps uselessly (see Appendix B).
14



In Eq. (34) the functions k] and k) are replaced by the fitting param-
eters <k1> and <k2> and k is taken to be the average (46) independent of K'

so that integration over the Maxwell distribution is trivially performed:

del . (K +m)-/{2+2mK' « £ (K') - d cos a' dp =1 (54)

and we are left with

2
do _ do - 2 . 1 v
W smeds "o 59 % (55)
with now,
s (1 ‘AP)Z 21 - W L <k > LY <Kk y2 (56)
[] b
f <K1>2<K2>2 <K1><K2> \ <K2> \ <K1>
and from Eq. (32),
v <K1>m
(5+) = . (57)

v'(l - p) + <v<2>m

Equations (55), (56), and (57) can now be fitted to exact curves to
determine the parameters <kj> and <k9>, and the resulting values tabulated
or graphed for computational use. Wienke and Lathrop9 have carried out such
a fitting to the total cross section. It is not the most general, however,
because one parameter, <x9>, is fixed, {k9> = k, thus reducing the problem
to a one-parameter fit. They also simplify Eq. (56) by omitting the k-factors

from the last two terms. Their one parameter fit is then of the form

v <K1>m
(V_') ST ey —— (58)
and
Roe | =m0 - vy ‘ (59)
£1 2 2 <k DK v v'
<K1> K 1
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with <k{> given by themd in Fig. 9 (reproduced by permission) so as to

match the total cross section (checked by us at T = 100 keV and 1 kev, and

v' = 1 keV). « 1is given by Eq. (46). Equations (58) and (59) are substituted
in Eq. (55) to get the differential scattering cross section do/d6. As
alleged, this procedure does eliminate integrations, but requires use of a
table or graph, Fig. 9. We have calculated the differential cross section by
this one-parameter fitted cross section for T = 1 keV, v' = 1 keV and found it
indistinguishable from the isotropic for these parameters. However, for

T = 25 keV = v', Fig. 3, and T = 100 keV, v' = 1 keV, Fig. 4, the differences
are appreciable. We label the one-parameter approximation in Figs. 4 and 5 as
"approximate (fitted)."” Especially from Fig. 4 do we conclude that the iso-
tropic approximation is superior at least to the one-parameter fitted approxi-
mation of Eqs. (58), (59), and (55). Of course, one may be able to improve the
fits by the use of additional parameters such as <kp>. But again such use

means additional complication, additional tables.

VIII. THE TOTAL COMPTON SCATTERING CROSS SECTION AT TEMPERATURE T

Following Cooper and Cummings,13 we give a fit to the total Compton
scattering cross section in the range T = 0 to 150 keV and v' in the range 1 to
1000 keV. The accuracy is better than 1%, except at v = 300 keV, T = 150 keV,
where an error of 1.97 appears. At higher temperatures up to 200 keV the error
is 3.7% or less. We numerically verified for T = 10 and 100 keV and for v' =1
to 1000 keV that the difference between this fit and both the Devaney and
Wienke-Lathrop exact total cross sections was less than could be discerned on
the graphs, Figs. 7 and 8 (i.e., < 1%).

For unpolarized light the zotal Compton cross section for electrons

at rest is given by:12,14

g = 21rr2 1+y [ZY(l + v) - an(l + 2y)

c o 3 1 + 2y
Y
+ ;— (1l + 2y) - —1—":—3L (60)
Y (1 + 2v)2
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where

vy £v'/m (m the rest mass energy of the electron)
and

ro = e2/mge?

is the classical electron radius. For low photon energies, y <K< 1, small com-
puters fail to calculate logarithms accurately enough, so that below 10 keV to
an accuracy of six significant figures or better Eq. (60) can be replaced

_en 2, L, 26 2
o, =3 T, (1 2y + 5 Y ) . (61)

The terms outside the bracket constitute the Thomson scattering cross section,
which is, of course, the limit of the Compton cross section at low energy. The
Thomson cross section gives the elastic scattering of a photon by an effec-
tively free electron.

For electrons in thermal Maxwellian motion we correct Eqs. (60) or (61)

by the factor (in brackets)l3

_ _ . 3 v'T
o (v =my,T) = o, [1 47703, ¥ 637.69\;'] (62)

with accuracies noted above. Refer to Figs. 7 and 8 for a plot of Eq. (62) at
T = 10 and 100 keV. Eq. (62) is indistinguishable from the exact curve there,
error A < 1%.

N;te that the use of the Sampson equations,l3 also suggested
earlier,16 is limited to T and v' << 100 keV and they are less accurate
(5 4%) .

IX. APPLICATION TO MONTE CARLO (OR OTHER) CODES: THE EXACT EQUATIONS

The exact differential cross section for the Compton scattering of a
photon of energy v' from a Maxwell gas of electrons at a temperature T is given
by Eqs. (1), (34), (33), (32), and (25) (or (23) and (24)). The scattering is

to photon energy, v, and is in a direction solid angle dQ = sin 6 d6 d¢q and

17



is symmetric in bq- The total scattering cross section (i.e., integrated
over all five variables) is given by Eqs. (60) or (61) and (62). All quanti-
ties possible are in energy units.

The equations give the cross section, or with the total cross section
the relative probability, of a particular event. For example, to determine a
particular scattering (v' > v, 6,6q) by a particular electron (K',a',¢) no
integration of Eq. (34) is required. However, usually a user is interested
(because of oq symmetry) only in do/d6, the differential scattering cross
section of the photon into an angle, 6, and to energy, v. Thus the other four
variables must be integrated over. The succeeding sections give approximate
methods for such integrations.

"The simplest application of Monte Carlo is the evaluation of inte-
grals.”l7 1In fact, highly multi-dimensional integrals are likely to be effi-
ciently solved by Monte Carlo methods .10 "Every Monte Carlo computation that
leads to quantitative results may be regarded as estimating the value of a mul-
tiple integral.”18 Thus, the above equations are amenable to formal solution
by Monte Carlo methods. The equivalent Monte Carlo particle transport meth-
0ds10 may also be employed. At first inspection one might imagine sampling
for electron kinetic energy, K', from the Maxwell distribution, Eq. (25) (or
(23) plus (24)), and for the isotropic spherical directions a' and ¢, then
applying these to Eq. (33) and (34) as well as to (32) to determine probabili-
ties. The actual detailed applications of Monte Carlo to the exact equations

are beyond the scope of this work.

X. APPLICATION TO MONTE CARLO (OR OTHER) CODES: THE WIENKE-LATHROP ISO-

TROPIC APPROXIMATION

If the accuracy of Wienke-Lathrop isotropic approximation is satisfac-
tory, see for example, Figs. 1 to 7 for a comparison of it with the exact scat-
tering cross section, then considerable simplification in the formulas can be
achieved. Note from the figures that for temperatures well below 100 keV, say
25 keV or lower, the isotropic cross section does very well. Note further that
the total cross section is extremely well represented by the approximation, as
Figs. 7 and 8 show. Thus, if a problem is insensitive to angular distribu-
tions, indeed if fore and aft symmetry only is required, then the isotropic
approximation is good even up to 100-keV temperature. Also note that Figs. 2,

3, 5, and 6 show extreme behavior so that Fig. 5, the worst, describes a rare
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event out of a large totality for most problems. Thus, the isotropic approxi-
mation may well be the practical means of choice for most Monte Carlo calcula-
tions. It involves only one integration over é, and in fact not even that for
the integrals can be integrated analytically (done in Appendix B). Unfortu-
nately, the result involves small differences of very large quantities for some
of our parameters and considerable complexity so this author recommends rather
numerical or other (e.g., Monte Carlo) quadrature. The accuracy even with
intervals as large as 22.5° appears good so that numerical methods can give
good accuracy and reasonable calculational efficiency. The total Compton cross
section is given by Eqs. (60) or (61) and (62). The differential isotropic
cross section is given by Eqs. (51), (48), (47), and (46).

XI. APPLICATION TO MONTE CARLO (OR OTHER) CODES: THE WLENKE-LATHROP FITTED
APPROXTMATION
If a somewhat poorer approximation than the isotropic is tolerable, the
Wienke-Lathrop fitted approximation is perhaps the simplest to use. See
Figs. 4 and 5 for comparisons of the three cross sections: exact, isotropic,
and fitted. In place of integration over ¢, a graph or table is required. The
particular one-parameter fit to the total cross section suggested by Wienke and
Lathropd yields the differential cross section (55) with K¢ given in
Eq. (59) and (v/v') given in Eq. (58). The parameter <k> is obtained in
Fig. 8. The total Compton cross section is given by Eqs. (60) or (61) and
(62).

XII. THE MEAN SCATTERED PHOTON ENERGY, HEATING: THE EXACT THEORY

From Eq. (32) the exact scattered photon energy is

v = V'Kl [XLSEE:—El + KZ] R (63)

with k| and k9 given by Eqs. (30), (31), and (1). The energy deposition

in, or heating H of, the electron gas by the photon is, of course,

H=v' - v . (64)
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We will calculate the mean heating of a relativistic Maxwell electron gas by
the Compton scattering of a photon, v', through the angle, 6. Using the same

notation as in Appendix A, we define

R ¢K2 -1 cos a' cos 6 (65)

[V
"

b= - /Kz -1 sin «' sin 6 (66)

= (v'/w( - (67)

(¢]
1

where

cos 6.

b
By Eq. (30) and (1)

Ky =2 + b cos ¢ , (68)

and by Eq. (31)

K, =K - VKZ -1 cos a' . (69)

1

Eq. (29) gives

k =1+ (=) . (70)

We average Eq. (64) over the relativistic Maxwell distribution (25). We first

integrate over the azimuthal angle ¢; our equation is, using Eq. (Al0),

T
BN P |
<H>d> v n[c+a+bcos¢ (71
o

<D, =v'|1l - . (72)
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Let

cos a'

m
»

and define

Az k" -1 (Note A>0, see Eq. (70))

= —20/k% - 1 (c +x)

>+
"

c2 + 2ck + K2u2 + 1 - uz .

Q
m

Then our average over the angle of elevation, a', is given by

1
' _lf(K"/Kz -1 x) dx

<H>¢,x =y 1 5 >
-1 YAx" + Bx + C
with solution
— T 1
<> =v' |l -p-——(k - plc +«))
¢,X 2
2k ~- 1

c+k + /Kz -1
c +k - /Kz -1

X fn

] .

(73)

(74)

(75)

(76)

(77)

(78)

Finally, we integrate over electron kinetic energy, K', or in terms of ¢ from

Eq. (70),
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c+k + /Kz— 1

c +k - /Kz‘ 1

X fn Iy (79)

where we simply write H> for the full Maxwellian average. We evaluate the
integral (79) numerically. By Eq. (64) and the distributive law of integration

over addition,
w=v' -0 . (80)

Eqs. (79) and (80) give the exact mean electron heating and scattered photon
energy, v', scattered through an angle 6, after impacting on a relativistic
Maxwell electron gas.

Results of the exact heating calculations using Eq. (79) are found in
Table III. Selected results of the exact scattered photon energy (Eq. (80))
are found in Figs. 10a, b, and c. The exact results are compared with the
isotropic and fitted approximations of Wienke and Lathrop,9 and with the

unmodified T = O Compton energy equation.

XIII. THE MEAN SCATTERED PHOTON ENERGY, HEATING: THE WIENKE-LATHROP ISOTROPIC
APPROXTMATION

For the isotropic approximation, Eq. (48) gives the scattered photon

energy

v = v'i/Qﬁl-(l -u) + Kz] R (81)

where ¢ is given now by Eq. (46):
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2 3 A
~ / 3T T T\ T I
k=Yl += [1 +20(5=) + 120(5;) - 960(57) + 4320(g7) + ] (82)

and ., by Eq. (47):

2
K, = K - /Kz -1 ¢ (sin 6 cos ¢) . (83)

2

The isotropic approximation heating, Hp, is

- ' = u? - K
HI SVTVEY []' c +k + e cos ¢] (84)

using Eq. (67) and defining

e = - /Kz - 1sin6 . (85)

The mean heating is given by the average over the azimuthal angle ¢:

U

= - K
I I'¢ n[d¢[1 c+v<+ecos¢] (86)

(o)

o]
\4
]
N
[ ]
\4
[

using again Eq. (AlQ), with solution

HD> = v [:1 - K ] , (87)
e + 02 - (2 - D - w2

where p = cos 9.

Eqs. (87), (70), (67), and (82) give the mean heating in the isotropic
approximation of a photon of energy v' Compton scattered through an angle 8,
(up = cos 6), by a Maxwellian electron gas at a temperature T. The correspon-

ding mean scattered photon energy, v>, is from Eq. (80):

Vi = v' - HI> . (88)
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X1V, THE MEAN SCATTERED PHOTON ENERGY, HEATING: THE WIFNKE-LATHROP ONE-
PARAMETER FITTED APPROXIMATION

Equation (58) gives the one-parameter, i.e., <« 1>, fitted approxima-
tion of Wienke and Lathrop.? <k1> 1is found in Fig. 9 and k is given by
Eq. (82) or (46).

<k,>

’ (89)

where as before (Eq. (67)),

= (v'/m) « (1L -p) . (90)

(¢]
1

The fitted heating is then

<K1>
HF = v -y =y [1 s K] . (91)

Equations (89), (91), (90), and (82) together with Fig. 9 give the one-param-
eter fitted approximation to the heating and scattered photon energy of a

photon of energy v' incident on a Maxwell gas of electrons at temperature T.

Xxv. COMPARISONS OF THE MEAN SCATTERED PHOTON ENERGY AND THE MEAN HEATING AS
GIVEN BY THE EXACT, THE ISOTROPIC APPROXIMATION, AMD THE FITTED APPROXI-
MATION THEORIES

A. Scattered Photon Energy

The ability of the Wienke-Lathrop isotropic approximation to give accu-
rately the mean Compton scattered photon energy corresponds to its ability to
give accurately the differential cross section: both are accurate for T small
and then for v' large compared to T. Figure 10 shows a comparison of the mean
scattered photon energies at the higher temperatures of 100 and 25 keV. For
the lower temperatures of 10 keV, the isotropic is in error at most only 3.8%,
and for l-keV temperature in error only at most 0.39% (both at 6 = 180°,

v' = 1). The same plots of these temperatures would fail to show significant
differences with the two theories and so were omitted. Because of the dis-

placed 0 in Figs. 9a, b, and ¢, the differences between exact and approximate
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are emphasized. The worst scattered photon energy error, as noted, is in

Fig. 9c for T large, namely 100 keV, and for v' << T, namely v' = 1 keV, at

0 = 180° where the error of the isotropic is -28%. Again, as noted in Sec-
tion X, incident photon energy near v' = 1 keV when Tglactron = 100 keV is

not likely in the totality of problems to be a large fraction of incident pho-
tons, so that examination of usual problems reveals that the somewhat large
errors of v' =1 keV and T = 100 keV usually play but a small role. Thus, the
isotropic approximation is certainly a useful approximation in the ranges
0<T< 100 kev, 1 < v' < 1000 kev.

Up to 10 keV, however, the ordinary, T = 0, Compton equation (Ref. 1,
Eq. (38)) is adequate. 1Its error is less than 4% at 10 keV (-3.8% or less
absolutely) and less than 0.4% at 1 keV (-0.39% or less absolutely).

On the other hand the fitted approximation values for the scattered pho-
ton energy are simply poor (except at low temperature, but T = 0 Compton is
better) and for the most part exceed the ranges of Figs. 10a, b, and c. The
fitted approximation errors relative to the exact results are given in
Table II. The ordinary T = O Compton energy equation (Eq. (38)) is superior to
fitted energy equation (Eq. (58)) at all incident photon energies up to
T = 100 keV. In fact at T = 100 keV the T = 0 errors are 2 to 29%.

TABLE II

THE ONE-PARAMETER FITTED APPROXIMATION ERRORS IN THE SCATTERED
PHOTON ENERGY IN (PERCENT)

100 - —v(exact) + v(fitted))
v(exact) :
incident photon energy in kevV.

[Error T is electron temperature (keV), v' is

Photon Scattering Angle, 6: 0° 45° 90° 135° 180°
T=1, v' =1 1.6% 1.5 1.3 1.3 1.2
T=1,v' = 1000 -2.2 —2.2 —~2.2 -2.3 -2.3
T=10, v' =1 11.2% 10.5 9.0 7.5 7.0
T =10, v' = 10 10.5 9.9 8.5 7.1 6.5
T=10, v' = 20 10.2 9.6 8.2 7.0 6.5
T =10, v' = 100 8.4 7.9 6.8 6.1 5.8
T =10, v* = 1000 4.6 4.7 4.3 4.1 4.1
T =25, v' = 25 19.5% 17.9 14.3 11.2 10.0
T =100, v' =1 52.9% 44.3 27.2 13.7 9.2
T = 100, v' = 10 51.1 42.8 26.5 13.6 9.6
T = 100, v' = 100 41.8 35.6 24.9 17.7 15.4
T = 100, v' = 1000 39.4 41.1 38.5 36.3 35.6
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The fitted approximation for the cross section is, however, the simplest alge-
braically, although one must append Fig. 9 or a table thereof. We recommend
use of the standard Compton energy equation (Eq. (38)) if the fitted approxima-
tion is used. Note that a two (or more) parameter fitted approximation could
be constructed with the expectation of greater accuracy. Again one would
require yet another additional graph or table.

B. Heating

Because the energy deposited in the electron gas by the scattering of
the photon is often the small difference of relatively large numbers, approxi-
mate results are bound to give very poor heating numbers (see Table III). In
short, for accurate mean heating of an electron gas by Compton scattering at
all parameter values, the exact theory must be used. Note that the greatest
error in the isotropic heating occurs for the least heating, so that for many
problems the worst discrepancies of Table III overstate the total heating error
by a considerable amount. It is clear from Table III that the best heating
numbers (although very poor for incident photon energies near the electron
temperature), are given by the isotropic approximation, next best T = O

Compton, and the fitted heating numbers are essentially useless.

XVI. RECOMMENDATIONS

In the spirit of the founding fathers of Monte Carlo particle transport,
E. D. Cashwell and C. J. Everett, one should always use the best and most
precise physics that is practicable. There is also a very real, very pragmatic
further reason to do so. Sooner or later every code and every theory will be
used beyond the domain originally intended by the creators. Here, use of the
exact theory is suitable for any parameter range provided only that one rememb-
ers that the Compton effect is not the only photon process (photo-electric,
pair production, etc., exist and can be dominant) and that the electron distri-
bution specifically considered is the Maxwellian. (The reader may substitute
his own normalized distribution, £(p') in Eq. (19) or £(K') in Eq. (34) if
desired.) In contrast, the isotropic approximation is appropriate for a
limited range: 0 < T < 100 keV and 1 < v' < 1000 keV. Indeed, as Fig. 4
shows, significant departure from the exact angular distribution begins for
T = 100 keV and v' = 1 keV, although in most calculations the total effect will

be small (see the discussion in Section X).
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MEAN ENERGY DEPOSITION OR HEATING, H>, OF A MAXWELL ELECTRON GAS

TABLE II1

AT A TEMPERATURE, T, BY A PHOTON OF INITIAL ENEEGY, v',
COMPTON SCATTERED THROUCH AN ANGLE 0

[:]
T v' 1%

(keV) | (keV) Theory 0 22.5° 450 67.5° 90° 112.5° 135° 157.5° 180°

1 1 Exact 0 -2.68(-7) ~7.89(-7) -8.94(-7) 1.58(-8) 2.03(-6) 4.61(-6) 6.78(-6) 7.62(-6)
Isotropic 0 -2.81(-4) ~8.96(-4) -1.30(-3) -9.81(-4) 1.98(-4) 1.87(-3) 3.32(-3) 3.89(-3)
Fitted -1.6(-2) -1.58(-2) -1,54(-2) =1,47(-2) =1.40(-2) =-1.32(-2) -1.26(-2) -1.22(-2) -1.20(-2)
T = 0 Compton 0 +1.49(-4) 5.73(-4) 1,21(-3) -1.95(-3) 2.70(-3) 3,33(-3) 3.75(-3) 3.90(-3)

1 1000 Exact 0 129.4 363.7 546 .4 661.1 729.5 769.0 789,6 795.9
Isotropic 0 129.0 363.3 546.1 661.0 729.5 769.1 789.6 796.0
Fitted 22.1 148.6 377.7 556.4 668.7 735.6 774.2 794.3 800.5
T = 0 Compton 0 129.6 364.3 547.1 661.8 730.2 769.6 790.2 796.5

10 1 Exact 0 -1.36(-2) -5.21(-3) =-1,10(-2) -1.77(-2) =2.45(-2) =3.02(-2) ~3,40(-2) -3.53(-2)
Isotropic 0 =4.13(-3) -1.43(-2) =2.45(-2) -2.83(-2) -2.29(-2) -1.15(-2) -5.90(-4) +3.78(-3)
Fitted -.112 -.111 -.111 -.110 -.109 -.109 -.108 -.108 -.107
T = 0 Compton 0 +1.49(~4) 5.73(-4) 1.21(-3) 1.95(-3) 2.70(-3) 3.33(-3) 3.75(-3) 3.90(-3)

10 10 Exact 0 =2.57(-4) =7.43(-4) -7.96(-4) +1.37(-4) 2.10(-3) 4.54(-3) 6.56(-3) 7.34(-3)
Isotropic 0 -2.82(-2) -9.05(-2) -.132 -.100 +1.82(-2) <179 314 2366
Fitted -1.05 -1.04 -.993 -.926 -.848 -0.771 =707 -.664 -.649
T = 0 Compton 4] 1.49(-2) 5.70(-2) 0.119 0.192 0.264 323 363 377

10 20 Exact 0 +2.89(-2) A11 .235 .380 «525 648 730 .758
Isotropic 4] =2.72(-2) ~-6.68(-2) -2,10(-2) +.191 .558 973 1.29 1.41
Fitted -2.04 -1.98 -1.80 -1.54 -1.23 -.940 -.698 -.539 -.484
T = 0 Compton 0 +5.94(-2) 227 472 2753 1.03 1.25 1.40 1.45

10 100 Exact 0 1.31 4.85 9.69 14.81 19.37 22.87 25.05 25.78
Isotropic 4] 1.02 4.01 8.66 14.18 19.54 23.85 26.59 27.53
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TABLE II1I(cont)

MEAN ENERGY DEPOSITION OR HEATING, H>, OF A MAXWELL ELECTRON GAS
AT A TEMPERATURE, T, BY A PHOTON OF INITIAL ENERGY, v°',
COMPTON SCATTERED THROUGH AN ANGLE 6

[:]
T v' n
(keV) (keV) Theory 0 22.5° 45° 67.5° 90° 112.5° 135° 157.5° 180°
Fitted -8.35 -6.81 ~2.64 +3.02 8.94 14.18 18,18 20.65 21.48
T = 0 Compton 0 1.47 5.42 10.8 16.4 21,3 25.0 27.4 28.1
10 1000 Exact 0 127.1 358.1 539.5 654 .4 723.3 763.3 784.2 790.7
Isotropic 0 123.5 353.6 537.3 653.9 723.7 764,1 785.1 791.7
Fitted -45.5 +86.6 328.2 518.7 639.4 711.7 753.6 775.4 782.1
T = 0 Compton 4} 129.6 364.3 547.1 661.8 730.2 769.6 790,2 796.5
25 25 Exact 0 ~3.77(-3) ~1.05(-2) -1.02(-2) +4.68(-3) 3.36(-2) 6.81(-2) 9,57(-2) +106
Isotropic 0 -.175 -.572 -.846 -.639 +.101 1,05 1,80 2.08
Fitted -4.86 =4.76 -4.47 -4,05 -3.57 -3.10 -2.72 =2,47 -2.38
100 1 Exact 0 -1.54(-2) -5.90(-2) -.124 -.201 -.277 -.342 -.385 -.400
Isotropic 0 -3,67(-2) -.145 -:296 -.378 -.294 -.142 -3.38(-2) +2.83(-3)
Fitted -.529 =¢529 -:528 -.528 -.527 -.526 -.525 -.525 -.525
100 10 Exact 0 -.537 -1.78 -2,94 =3.40
Isotropic 0 -.356 —-1.39 -2.79 =3.46 -2,57 -1,11 -7.32(-2) +.276
Fitted -5.11 -5.,10 —5.05 -4.98 -4.90 -4 .82 -4,76 -4,71 =4.70
100 100 Exact 0 -.413 +.604 3.03 4.23
Isotropic 4} =249 -8,68 -13.52 -9.96 +1.16 12,43 19.66 22,07
Fitted -41,8 -40,3 -36.1 -30.4 -24.17 -18.55 -14.16 -11.41 -10.47
100 1000 |Exact 0 104.4 301.6 468.9 583.5 656.6 700,7 724.3 731.7
Isotropic 0 70.5 247.0 432.6 568.2 653.8 704.4 730.9 739.1
Fitted =394,2 -258.5 14.6 256.2 423,0 528.7 592.1 625.7 636,2




I feel the ultimate reliability of a theory used in ranges unexpected by
the author is a very strong argument for physical and mathematical rigour as
I've indicated above. Not fully in contrast is the fact that much data, many
theories, and the significance of the results alike do not warrant great accu-
racy. In short, many calculations err in using needless precision.

In view of the foregoing considerations, I recommend the ordinary Klein-
Nishina Formula and the T = O Compton energy equation for most problems up to
an electron temperature of 10 keV. The formula and equation are already in
MCNP and other Los Alamos Monte Carlo codes. One may then expect accuracies of
better than 1.5% in the total Compton cross section [from Eq. (62), maximum
v' = 1000 keV] and about 5% or better in the differential cross section. The
error in the scattered photon energy is 4% or better. For higher accuracies or
for special results, such as photon energy upscatter or heating, one should use
the full temperature dependent theories. Even as high as T = 25 keV, the error
of the total Compton (Klein-Nishina) cross section is 3.6% or less (maximum
v' = 1000 keV) and of the differential cross section is of the order of or less
than 10%. (Specifically, at T = 25 keV, v' = 25 keV, the differential cross-
section errors are +5.8% at 6 = 45°, +8% at 90°, and -0.9% at 135°.) For scat-
tered photon energy the error is 0.4% (22.5°) to 8.5% (180°). At l-keV temper-
ature the error of the total Klein-Nishina cross section drops to 0.15%

(v' = 1000 keV) or less, and the error of the Klein-Nishina differential cross
section is 0.5Z or less. The error in the scattered photon energy ranges from
0.015 to 0.39%.

For higher temperatures (than say 10 keV or so), greater accuracies, or
better specific detail, we recommend the exact equations as summarized in Sec-
tions IX and XII. This recommendation is only made with the proviso that an
efficient cross—-section computational algorithm can be found. Otherwise we
recommend the Wienke-Lathrop isotropic approximation summarized in Sections X
and XIII with numerical integration over ¢ for the cross section. Such approx-
imation should be limited to 0 < T < 100 keV and 1 < v' < 1000 keV, (but use
Klein-Nishina below about 10-keV temperature). Formally, as we've shown, both
the exact and the isotropic reduce to the Klein-Nishina for T » O.

The fitted approximation is not recommended. Its complexity is not suf-

ficiently less than the isotropic to justify the larger errors it introduces.
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For heating, only the exact theory will do. Except only for v' >> T
will the isotropic approximation yield a good or even fair approximation. The
regular T = O Compton equation requires both T < 10 keV and v >> T in order to
yield fair to good heating numbers.
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APPENDIX A

$—INTEGRATION OF THE EXACT COMPTON DIFFERENTIAL CROSS SECTION

We rewrite Eq. (34) in the form

d rc2> ) sing'
A de' « (K" +m) * /K'% + 2mK' + £(K') - ?(Lda' . I,(Al)

dQ 2 1

where I is the ¢-integral which we shall analytically evaluate,

IEfd¢-(:—,)K. (A2)
Substituting Eq. (1) into Eq. (32) we get

Kn = K — VKZ -~ 1 cos a' cos 6 - JKZ - 1 sin a' sin 6 cos ¢ . (A3)

2

For convenience define

acz k- /Kz - 1 cos a' cos 8 (A4)
b= - VKZ - 1 sin a' sin 6 (A5)

= (v'/m)(1 - p) (A6)

(¢]
1

as before p = cos 6. Then

K, =a+becos ¢ , (A7)

2

[V

and by Eq. (32)

K

v 1 K

K

1 1

vUOVT T C+a+b cos o = 37 + b cos o (a8)
— (1 - p) +x
m 2
where we have defined
a' z=c+a=(v"/m)(l -p) +« - K2 -1 cos a' cos 6§ . (A9)

Observe that
40




2% T
f (function of cos 8) do = 2 f (function of cos 0) do . (Al10)
o

(o)

Substituting Eqs. (Al0), (A8), (A6), and (33) into Eq. (A2), we have

2

i K 2 2 c +x K
1=2 [ do « (=L y| Gow 20 = 24 —2 | (a1
c +k 2 2 K K K c +«k
5 2 Kl Koy 172 2 2

Expanding in partial fractions and collecting terms of the same ¢ dependence

gives
)
A A A A B
1=2fd¢ 1 + 2 + 3 - 142 s (A12)
CFXy (e +r)? (e +r)d K2 (2
o 2 2 2
where
- 2 w2 2 (1 - )
A = .ggl;:Jil_ - _1.4._.;L_______ (Al13)
1 3 c 2
L C Cc
r 2 2. (1 - p)
A -w 1 2
A, = 5 + S + K] (Al4)
- Cc
_ 2 3
A3 = CKl/(C + Kz) (Al5)
B, = (1-w/e? . (Al6)
Defining
)
I(n,a,b) zf d¢ , (A17)
(a+b cos ¢)n

0
we have in Eq. (Al2) the five integrals

I(l)a')b)) I(2,a',b), 1(3)3')b)) I(l)a)b)) and I(Z,a,b).
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Evaluating these integrals with the help of tables,l8

s LA

I(l,a',b) s I(l)a)b) = .
a'2 - b2 /az - b2
' - na' - na
I(2,a )b) ) ) 3/2 ’ I(Z,a,b) ) ) 3/2
(a'” - b)) (a” - b9)
2 2
. _ _m(2a'” + b7)
I1(3,a',b) ) ) 5/2
2(a'” - bY)
so that
A a'A (2a'% + b2)A A
1 2 3 1
I =2n + + -
53 2 2.3/2 2 2./2 52
a'“ - b (a'” - b") 2(a'” - bY) a- -b
N aB2
2 2 3/2 ’
(a® - b%)

Eq. (A21) together with Eq. (Al) is our desired solution.

Using Eqs. (A4) to (A6) to evaluate Eqs. (Al3) to (Al6), we get

2 2
3 VK AVIR'S

A1 - 2 9 - 171 + lml

v!'o(l - ) m

m 2
Ay = Gr *+xy)

V'Ki
A3=_ (1_u)
2
- 1

B2 (m/v')

32 - b2 =1+ (Kz - 1)(u2 + cosza') - 2¢p cos o /Kz -1
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(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)




a'? - b2 =1 - (Kz - 1)(u2 + cos2 a') - 2xp cos a' Kz -1

+ %L (1 -yp) [ZK—2¢K2 - 1pcos a' + ﬁl (1 - u)] . (A27)

0f course, by Eq. (30)

K, = K = VKZ -1 cos a' . (A28)

1

The complexity of the above algebra is such that we found it easier to evaluate
the ¢-integral numerically by Simpson's rule. We found the interval number
n = 8 to be adequate to reproduce the Wienke-Lathrop results of Figs. 2, 3, 4,

and 5 to roughly the accuracy of reading the graphs.

APPENDIX B

$—INTEGRATION OF THE ISOTROPIC APPROXITMATION COMPTON DIFFERENTIAL CROSS SECTION

Using Eqs. (Al0), (A6), and (48) into Eq. (49), we must evaluate

r2 n 2
__o 1 a-w 2(1 - )
do/dQ = 7 fdd’ (c + %) 2 2 o
2 K K 2
o 2
(C + Kk ) K
+ 2 + +2 . (B1)
Koy c +x,
Comparing Eq. (Bl) with Eq. (All), we see that
2 2
%o %o
do/dQ = I (with k, » k) = J , (B2)
2 1 2
4nk b4
defining J:
J = I(with Ky K) . (B3)
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Eq. (B2) is our result where J is then given literally by Eq. (A21) but the

constants in Eq. (A21) are those of Eqs. (A22) through (A24) with k; replaced
by k and those of Eqs. (A25) through (A27) additionally.

Again, we found the above algebra complicated so we carried out our

¢—-integration numerically by Simpson's rule.
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