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A DERIVATION OF THE PHYSICAL EQUATIONS SOLVED IN THE
INERTTIAL CONFINEMENT STABILITY CODE DOC

by

Anthony J. Scannapieco and Charles W. Cranfill

ABSTRACT

There now exists an inertial confinement stability
code called DOC, which runs as a postprocessor. DOC
(a code that has evolved from a previous code, PANSY)
is a spherical harmonic linear stability code that in-
t.egrates, in time, a set of Lagrangian perturbation
equations. Effects due to real equations of state,
asymmetric energy deposition, thermal conduction, shock
propagation, and a time—-dependent zeroth-order state
are handled in the code. We present here a detailed
derivation of the physical equations that are solved
in the code.




I. INTRODUCTION

The viability of an inertial confinement fusion target design is depen-
dent upon the fluid stability of that design. The problems faced in obtaining
stability information about a target are copious and, for the most part, have
shown themselves to be analytically intractable.

To consider, in a realistic fashion, the fluid stability of an imploding
fusion pellet, one must deal with, at least, a time-dependent zeroth-order
state, compressible fluid dynamics, real equations of state, thermal conduction,
shocks, and a spherical geometry. Given the above items, which must be consid-
ered, even a linear analytic perturbation analysis is hopeless.

Given the hopelessness of ever obtaining an analytic result and the neces-
sity of understanding the fluid stability of the fusion pellet, a computatiomal
procedure has been employed. The culmination of the computational procedure
is the code DOC.

DOC is a linear stability code that integrates in time a set of perturbed
fluid equations. The necessary information describing the time-dependent
zeroth-order state 1s obtained from any one-dimensional Lagrangian hydro-code by
dumping this information onto disk every hydro timestep. DOC then operates as a

postprocessor on this data.

In this report we are specifically concerned with the physics contained
in DOC. TFor another discussion of the techniques used, we refer the reader
to the paper by McCrory, Morse, and Taggart, '"Growth and Saturation of Insta-
bility of Spherical Implosions Driven by Laser or Charged Particle Beams."l
DOC is an outgrowth of the code PANSY described in the first two sections of
that paper. However, the major differences are that the zeroth-order state
in DOC is obtained, as was stated above, from any one-dimensional Lagrangian
hydro-code, and the thermodynamics in DOC are done for real equations of state
rather than for ideal equations of state. DOC in its present form is a one-
temperature code; however, it will be upgraded to a three-temperature code in the
very near future. A physical viscosity will also be treated in the near future.
This report has been divided into five more sections. Section II des-
cribes the set of fluid moment equations that is being perturbed. The basic
physics contained in DOC is presented in this section. Section III presents
a discussion of the Eulerian and Lagrangian perturbation schemes and the
connection between the two. Section IV presents the Eulerian perturbed moment

equations. In Sec. V the Eulerian perturbation equations are transformed
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to a set of Lagrangian perturbed moment equations. Finally, Section VI special-
izes to a spherically symmetric zeroth-order state, and a spherical harmonic
decomposition of the equations is performed to obtain the set of equations that

are solved in DOC in its present form.

II. THE SET OF EQUATIONS DEFINING THE FLUID FLOW

The implosion of_a fusion pellet can be described by a closed set of fluid
moment equations. The particular set of equations chosen dictates what physics
will be treated in the analysis of the perturbed fluid equations. Since we
are interested in the fluid stability of the pellet, the sét of moment equa-
tions that follow characterize the fluid aspects of the pellet implosion.

The set of moment equations from which the perturbed equations are derived

~is obtained as follows. Start with the equation for the conservation of mass
)
o0 + z. (pv) = 0, (L

where p 1s the density, and v the local average fluid velocity. The local

average position R(t) of a given element of fluid can then be defined in terms

of the local average fluid velocity by

L wv@,0 . )

Next, the equation for the conservation of momentum is employed to calculate

the velocity

p(%‘f + X'YX)= -, S

where P is the sgcalar fluid pressure. The pressure is obtained from a density-

and temperature-based equation of state
F = P(p,T). (4)

To close the system, an equation for the temperature T 1s required.

This relation comes from the general equation of heat transfer




Tds _ 1 V+[k(p,T)VT] + g(p,T), (5)
dt P p
where s is the entropy per unit mass, «(p,T) is the thermal conductivity, and
éﬂp,T) is any external sources of energy. Note that it has been assumed that K
andlé are known functions of density and temperature. In our calculations K
is chosen to be the Spitzer electron thermal conductivity, and § represents
energy deposition by laser or electron beam sources.

From the first law of thermodynamics

de _Tds P dp (6)
dt dt @ p?%dt °*

Therefore,
Tds (%) dr  [(3) _P27do )
dt (8T> ac t [(80) B’] at °
o] T
Substituting Eq. (7) into Eq. (5) yields
s\ dr , [(3e) _2]do _1V-(VD), g ®)
3T) dt 30 /o ofldat o p*

To close the system of equations the specific internal energy € 1is obtained

from an equation of state

e = e(p,T) . (9)



TABLE I
BASIC FLUID EQUATIONS
d
d—% =v(R, t) (10)
.
—2+ Ve(ow) = 0 (11)
9L , veVv )= -VpP 2
p(ac * ’) - @2
ae> ar [ P (ae) ]gg_+ 1
am ) ar = ol vy “Ve¥VT (1
<3T St 2 " \3p) |at i (13)
+g
P
P = P(p,T) (14)
e = e(p,T) (15)
Kk =«k(p,T) (16)
q = q(p,T) 17)

Our resulting set of equations is displayed in Table I.

III. EULERIAN AND LAGRANGIAN PERTURBATION SCHEMES
In an Eulerian perturbation scheme, the fluid variables are perturbed

about a given position, say I, Thus, the perturbed fluid quantity is given as

¢$i(r_,t) = ¢(zr ) - ¢_(x_,t). (18)



However, in a Lagrangian perturbation scheme the fluid variables are perturbed

about a given fluid element. After the perturbation the fluid element may have

moved to a new position, say R, where

Rt EED). a9)

We define the quantity £ as the "perturbed displacement vector'". The perturbed
fluid quantity, in the Lagrangian scheme, is '

R = R, ) = ¢ (£ st). (20)

The connection between the Eulerian and the Lagrangian perturbed fluid quanti-
ties is then easily obtained by a Taylor-series expansion of ¢$(R,t) about the

position r . Thus,
o

¢(§,t) = ¢(_1_'0’t) + §.20¢0(r0’t), (21)

where we have retained only terms which are linear in the perturbed displacement
vector §. Substituting Eq. (21) into Eq. (20) and using the relationship in
Eq. (18)

BU(RE) = 6z ,t) + BV B (r ,t) (22)

where zo indicates that that operator is defined at the position r-
It is convenient, at this point,to relate the operator V and the operator
%E at the position R to the same operators at the position . The coordinate

and time transformations are defined through the relations

x =R - E®D) (23)

and
t = t. (24)



It can then be easily shown that

V=V —VEV oV — VE-V (25)
and

%% (26)
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We can now turn our attention to the generating equation for §) which is

obtained by subtracting the definition

dr

o
dt Xo(zo’t) (27)
from Eq. (10):
dg L
s - 5,60 L o, a5

The relation between the convective derivatives at the positions R and x, is

obtained from Eqs. (25), (26), and (28)

4 s3 L¥vR®,0)°¥V 29

re -+ (29)
3 =4

=3¢ T Xo(zo’to) Yo T (30)

IV. EULERIAN PERTURBED FLUID EQUATIONS

The Eulerian perturbed fluid equations are obtained by writing all the
variables in Eqs. (10) through (17) in terms of zeroth- plus first-order
components. In what follows, Eulerian perturbation quantities will be indicat-

ed by a subscript 1
$(x »t) = ¢ (z ,t) + ¢, (e »t)s (31)

where ¢1<< ¢o. Next, the equations are split into zeroth- and first-order equa-

tions, where only terms that are linear in the ¢l's are retained in the first-



TABLE 11
ZEROTH-ORDER EQUATTIONS
dr -
—° v (z t) (32)
o
3P0 . - (33)
3t, + Voe(pv) =0
d
oo(gxg"- + xo'Zozo) = 5,5, (34)
3\ dT, _[5 aey | %%
é
+iyg e ur +2°
D o}
P, =P (o ,T)) (36)
EO = EO(DO’TO) (37)
KO = KO(pO’TO) (38)
<.lo = éo(po’To) (39)

order equations. This is possible only because the zeroth-order equations are
satisfied identically with zeroth-order quantities.

The sets of zeroth—- and first-order equations in Table II are readily obtained.
In Table III, Eqs. (40) through (47) comprise the Eulerian perturbed fluid

equations.



TABLE III
EULERIAN PERTURBED FLUID EQUATIONS

apl
t, * ot (P T Ry = 0
ov ' p
pf =L = - 1
o(ato + Xoo Vv Yl + Xl.v v ) YoPl + po YOPO

dT dT dp
(38) < 1 > (38) o 0 (ae ( 1, v,*Vop
=) la=+ vt J+(S5) =2 = |22 (L&) [+ %R
oT 00 dt0 1l v o oT dt0 p 2 p To dt

pPL
P d
- (1), ]
. P P 1 P Tl dto

o o
1

+ poyo (K ¥,Ty + §,V.T,)
4 0 )

+-—l - L +V xV T
po 002 o -0 o000 o

(40)

(41)

(42) {

(43)
(44)
(45)

(46)

(47)

V. LAGRANGIAN PERTURBED FLUID EQUATIONS

In Table IV we are applying Eq. (22) to each of the variables in Eqs. (40)

through (47), immediately yielding the Lagrangian perturbed fluid equations.
Appendix for algebra.)

(See




TABLE 1V
LAGRANGIAN PERTURBED FLUID EQUATIONS
" =p1r - P, (Y,0B) (48)
g _ .
ae T %y (49)
(o]
dll‘ P ‘
DOEE; _zopl + P, YoPo + zo—:yopo (50)
3 dTl' 3 dTo - Po - 3 dpl N Pl _ ZPO13 . 3 dpo
oT 0 dt oT 1dt p02 op To dto p02 p03 1 op Tl dto
. - 4o Py,
+ 1—20 I:Ko-YoTl + Klono] -—; 'V'o (KoyoTo)
P, o?
- p.°. . .
+ r1q7 1aq, L[V -V Ex VTS
o, Po2 Py
+ V&V (K VT )] (51)
-~ 3P -~ 3 -~
P (——) T,  + (——) p 52)
1 3T ) 1 30} oL (
- 9 - oK -
K, = (—) T.” + (—) 0
1 T 00 1 Plry 1 (53)
- (24 - [24) o~
4 (aT) o (ap) 1 (54)
po To
(), - [ [
oT ol 9T\3T /p |po 93p\dT Jp To 1
M‘_LE -, [3 (o€ .
(a_o,Tl [ST(SQ)T] ooy * | Fol35)e 0% (56)
VI. SPHERICAL ANALYSIS AND HARMONIC DECOMPOSITION

Next, we specialize to the case in which the zeroth-order state of the

fluid system is spherically symmetric.

It will be advantageous, for computa-

tional reasons, to recast our perturbed equations in the following mgnner.

3. _ 1 |3 N
30 =T sin © |55 (otn 08g)+ A

z .

-1l
Q " r

10
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. A 8

£E_¢& e +r09_, (58)

and v, _E8 +vQ+rQ . (59)
o— o—

Operate on Eq. (1;9) with the operator V -

Q
& _ i (60)
Voae ~ Yoy
(o}
(V E) + (V E) = V 'V . (61)
d . - o -
ar, Qor® + Ggve® = Tgy 7, (62)
and finally
o Tg®) =V, v . (63)

[o}

. 2 .
To continue we calculate the time rate of change of T YQ'(X]_ - VOQ):

2, . - 9 -
't_o (r'Vq (‘_’1 - Vo@) = Vo@ * (Xl = Vof))

9 dV1 dvo

Trag de_ ~ dt R - VOQ] - (64)

Using Eqs. (34), (50), and (59) and rearranging terms, we can recast Eq. (64)
as follows.

2 o2
G GV @ - v <= [+ v e@Eve) + Lo D ] -

v

o Q 0=-o0 o

r? 2 2 1 oP
=p—[‘ A £, - 100 Fo+ 1 Fowep)
o “dr  r or

oP

-1y 2.2 _ o0 2,2
"o, [r YaPTCar TR b (65)
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Assuming the spherical nature of the zeroth-order fluid state, Eq. (51)

can be recast as follows.

(2) - (@)‘”_% PL_(a_e) ® _Pl__zP_p'_(a_e)' %o
oT podtO anldq) poz ap T4 dtO poz p371 ap 1 dtO

o
L[ e o (2TT), %0 K /5713
Py or dr 2 3r " or or  dr 2 dr\ or

. r r
q p,” 3T )
2 oo i SIS S S S . e —2 8
+ KOVQ T ] to "p2% ) Yo (Yo§ Ko or °r
o) 0 0
STO }
+V E'zo (KO 3¢ er) . . (66)

The last two terms in Eq. (66) can be expanded and put in the following form.

oT aT 2
1oy v _oA) v lko0a )| oz |fyr - 288 3%Exr 2
) 5, (_O_E;V Ko 3r % +V yo< o3¢ er> T p [(er  oar T 2 Vo &r

o \ - o or
T

o 381_3 23TQ, 67
Kogr + %3¢ r2'§;(r Kogr )] (7

The perturbed energy equation then becomes

dT el P - - . -~
(), (), - [ (), Jo e - - ),
oT podt0 oT p1 dt0 002 op To dt0 p p 1 9p 1 t

2 o o
9k 9T. " «k oT. ~ 9k, ” 9T k.~ o7
1 | 1 3 (.2°11 1 %o, "1 3 (2%
+po ar dr (r )+ or (r )

2 ( Er _ 2 8E’r azﬁr 2 )

+_|<OVQ Tl -

We now see that the angular variation only comes through angular divergences,
thus allowing us to replace the thirteen equations, Eqs. (48) through (56), with
the eleven equations that are displayed in Table V.

12



TABLE V
PERTURBED FLUID EQUATIONS

P = -p [———-+ == + (1215)]

d .
ac G® =Ty (g™ - v D

dv ) e '
1r 28r
Po de s [ ar T ( + Oy E)) ]

p

»

P
+ _AI_._7;2
Po T
aP 2
- - 2ly.2p. - - 2 '
odt [rzv (v vn)] !:[VQP1 - 30 R >p

ar,”  rae\ O Po qoe\ Y1 [Br %P5 o -
(QE) w T (3T ® “l\p2 \3).Jat *\p2- 63 ¢
T po- o pl o . T o o]

Y . _ />3 gg) ) ‘ 3fae ) -
(ap)Tl (ar 0/r DOTI + (ap(ap)p P

(69)

(70)

(71)

(72)

(73)

(T4)

(75;

(76)

an

(78)

(79)




At this point we perform a spherical harmonic decomposition of Eqs. (69)
through (79). Since we are now considering only scalar quantities, all per-

turbed quantities can be written as

Vi (x ,0,0,t,) =§nwl"’“‘<ro,co> (0,9 . (80)

Keeping in mind that the effect of the Operator.zgf on the spherical harmonics

is simply

r

z 2(2 + 1
v, vp .- 2L Dym (81)

we can write our Eqs. (69) through (79) in terms of their spherical harmonic

amplitudes. If we define

AR' = vlrﬂ,,m R (82)
2
B = Ei’m ’ (83)
c* = [r?V (v, " - Vo@ll’m , (84)
and . .
D= [9,°81" (85)

we can rewrite our equations as given in Table VI.

Each of the variables with a superscript £ in Eqgs. ®6) through (96) repre-
sents the spherical harmonic amplitude of its respective perturbation variable.
Therefore, all variables are now only a function of ro, to’ and 2. It is
important to note that the equations in Table VI are independent of the m index

of the spherical harmonic.
Equations (86) through (96) displayed in Table VI are the physical equa-

tions that are solved in the code DOC.

REFERENCE

1. R. L. McCrory, R. L. Morse, and K. A. Taggart, '"Growth and Saturation of
Instability of Spherical Implosions Driven by Laser or Charged Particle
Beams," Nuclear Science and Engineering 64, 163-176 (1977).
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TABLE VI
PERTURBED SPHERICAL HARMONIC EQUATIONS

2 2
A ) 2 B, 3B )
2
dB 2
ac_ = A (87)
o
a* o .
dto r
2 2
a1 [31’1 . <2ﬁ ‘D 3Po] L P %
dto Po or r or po2 or (89)
ac* e+, o 2% (50)
dt p 1 or
o o
% 2
dr Pr 19 é:z " a'ro) . P _ (a_e) dpy
dt pOZ r2 r “or poz 3p ool dt
P ! P L L ldp
+1 L _ 00 _ € )
2 31 p T1 dt
o Py o
. +.l_ 3Ko 8T12 +.EE.§_ rzaTll . 3K12 STO
% Py r Or r2 or or 9ar or
2
LA a_( 23To) PRI RN
r2 ar \* “or o 2 1 q,
2 9
L. _z_ﬁ_gﬁ+a“32_2(z+1)2
* o Lo 2 r or 2 =——3B
o] r or r2
X K 33(?_ - Z_ali 1_ a_ rZK aT_O
o or r 23r 0 or (91)
= (3 L 3P %
1T (8T T (Sp)Topl (92)
po
L _ [k L oK L
“1 '(ﬁ) T (a_p) Py (93)
po To
. L 2
o' () ¢ (),
W ot 1 (94)
1 aT 00 1 ap To

2 - 2
a_€> i} %T(%)] T, o+ [g_p(g_T)J ) (95)
ol L pJpo 10 1
L 3
_ 193¢ 2 3 (3e P 96
)m = ST( p)T]poTl +[30(30)T:IT0 1 o)

v




APPENDIX

ALGEBRA FOR LAGRANGIAN PERTURBED FLUID EQUATIONS

The Lagrangian perturbation equations are obtained from Eqs. (40) through
(47) by expressing the Eulerian perturbations ¢; in terms of Lagrangian pertur—
bations using Eq. (22). In what follows Lagrangian perturbation quantities are
indicated by a subscript ; and a prime. Making the appropriate substitutions in
Eq. (40) yields

301" 3 (p. [0~ 4 o (Es - Ee -
ato at & -V-opo) * Yo [ea %o + Pt € -V-opo)l’o pO§ YoYo] 0. (b

The last two terms in Eq. (Al) can be rewritten as
W LET P Iv,] = - (T BV p
+p (EVINV v) , (A2)

and

=Vt e Vvl = - p (Y HE v ) - BV v Y P, — P8V v, . (A3)

Substituting Eqs. (A2) and (A3) into Eq. (Al) gives

-~ 80
-a& -_— 8_§ . — L[] __O L3 - - — L[] L3
at ot " YoPo &Y, 5 t Yptlea TV + o V") — (v ¥ )Y o
(o} (o} 0
— @ V) E,oe,v,) — PYo8: Yo, = 0 - (A4)

Using the generating equation for & in terms of the Lagrangian perturbed

velocity v;~ and collecting terms, Eq. (A4) can be recast into the form

. do

dp,” _ B 9 - _ . -

dto 0, dto + p Vev, pVENVY 0. (A5)
However,

Voeva™ . 3 g Ty e

16



c22 (g . . . .

Substituting Eq. (A7) into Eq. (A5) and dividing by Po

5 -
ol - (A8)
(3*—+ @, §)) =0
0
or
iR PR (A9)

Writing p;,” in terms of & now necessitates that we solve the generating equation

for § also. In the Lagrangian formalism
& oy, . (410)

Thus we have, in the Lagrangian perturbation scheme, replaced Eq. (41) with the
two equations, liqs. (A9) and (Al10).
Next, replace the Eulerian perturbation quantities in Eq. (41) by their

Lagrangian counterparts and we obtain the following equation.

| (A B RARFE AR RAREE AT AR RS 22
(Al11)
— et Tgn | I TR+ T E TR — ETpg) 5T E
However,
~(ET Y)Y Y, - @I E T v = - E V)@ T v - (0T DTy, . (AL2)

Substituting Eq. (Al2) and using Eq. (A10) yields, after collecting terms,

dy. P1

=-VP,” +
dt VP P
0

-

. - . 13
0 VP, + T (BT R - EVOTR (a13)

0o

17




The last two terms combine as follows:

(§VP)—(E )V P = gog_yopo s (Al4)

which finally produces the Lagrangian perturbed momentum equation,

- -

dv, P
pO = - V P - (AlS)
dto 0 DO [0}

Before transforming the energy equation, Eq. (42), we immediately see how the
given expressions, Eqs. *(43) through (47), transform. Each is of the form

=[9 Ay e (A16)
wl (ﬂ Tl + (ap To 1 .
(o}

Once again,using Eq. (22) yields

b - eve = (B @ -evr) +(3h) e - BT (a17)
o To
However, if (o = Wo(p ,T ), then
T + Vo (A18)
- ) s 13,
and
. - [3¢
£1, - (58] @510 + {55 @0 419
Substituting Eq. (A19) into Eq. (Al7), we find that
v =32 1o+ (3Y e 2
1 aT oo 1 3plp, 1 . (A20)

18




Therefore, the Lagrangian equations corresponding to the Eulerian relationships
Eqs. (43) through (47), are obtained by replacing all Eulerian perturbation quan-
tities by their Lagrangian counterparts. The procedure yields

P (g_g pT T+ 3—2) 7 (A21)
= 5] T (g_';),ropl' ; (A22)
&1‘2(%%)0 Tf*(%%,r 7 s (A23)
(g_fr: ;1 =(8T aTH Tl,*(—( ” (A24)

and )
§—§)T1 - {sels] )poTl' + (sl ) LA (a25)

At this point we turn our attention to the transformation of the perturbed

Eulerian energy equation, Eq. (42). Transforming the Eulerian perturbed variables
as before yields

9€ dT1‘
T F"_@VT)*V T, - ELYS) “ )
po
dT i
. ae) . “.
- g_yo(aT po)dt ( ? ( ) )( (Q-Yopo) +'Yj Yopo
Pl‘ §..YOP0 ZPO PO
—(§'V v ).-Yopo + 5 7 = 0 > - pjp + Zp 3(8-2000)
00 o 0 0 °
- dp
de wv[€) e +lyg. g 3T
- {30 . + (§_ go)(ap)To dt + B—_Ye (KO‘V'OTI + Kl -—V-o o)

19



-

1 P
- o Voelx V(&Y T) + (B°Y k)Y T d - B;IVO.KOVOTO
-V o 1’ &Va, o°
(==00)y . 1 (= ~070) 1
* oK YT P - -5 q, (A26)
0 .0 0
. E 5.
p 2 q,
It can easily be shown that
q dy_  dg
E (_g_-_vowo) = (&V) a + E.yoq,'o - (&°V A ) yowo - (A27)

and

-1
__Vo.[KoYo(gfyoTo) + (gfyoKo)yoTO] B B;(gfyo)[yb.Kobeo]

0o~0 O

-1
p_o[_v_oo(gog kK VT) (A28)

+ Yo§ 3_ Yo(KoYoTo)]

Substituting Eqs. (A27) and (A28) into (A26), and making use of the zeroth-order
Eq. (35) and Eq. (Al10) yields, after collecting terms, the perturbed Lagrangian

energy equation

-
-

P dp ~ P~ P dp
( ( o _|_ o _ 3_6) __L_+_Lz__2_o§p'_£) _o
2
oT dt aT dt Py 3p hpg dt0 Py P, 1 3p dto
T1
l » ‘ p‘ 1 g
+ =V [k VT " + K T ] - ———V Kk VT + — q
p_—o 0-0 -0 0-00 p
0 . o) o)
3_1; 1.
- P, % B;{yo.(yog.KoyoTo) * YogzvoKoYoTo)]'(Azg)

We now have a complete set of Lagranglan perturbed fluid equations, which
are displayed in Table 1IV.
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001925
026950
0519075
076-100
101125

4,00
4,50
5.25
6,00
6.50

Pinted in the Uniled Slates of America. Availuhke from
Nalionsl Technical Information Service
U'S Departnient of Commerce

126-150
151175
176-200
201225
226-250

1.25
8.00
9.00
9.25
9.50

5285 Purt Royal Road
Siwinglicld, VA 22161

Miwofiche $3.00

251275
176-300
3014325
326.350
1514375

10.75
11.00
1178
1200
12,50

376400
401425
426450
451475
476500

Hote: Add $2.50 loe cacli addilional 1 epipe inssemenl fram 601 pages up,

13.00
13,25
1400
14.50
1500

501528
5260550
5514575
576600
601-up

15.25
15.50
16.25
16.50



