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6Li(t,n)2a AND ®Li(t,n)®Be cROSS SECTIONS
AND RELATIVE REACTION PROBABILITY IN A PLASMA

by

Joseph J. Devaney

ABSTRACT

Because of the high exothermic energy of 6Li(t,n) and
consequent high neutron energy therefrom, there is interest in this
reaction in thermonuclear processes. We review the cross—section
1iterature readily available. We calculate the comparative

Li(n t) reaction probability versus the slowing-down-without-—
reaction probability for pure lithium for various lithium densities
and temperatures, and for tritium energies up to 2.5 MeV.

I. INTRODUCTION

There is interest in the 6Li(t,n) reaction in thermonuclear studies
because of the high exothermic energy: Q = 16.02 MeV to 8Be and
Q = 16.12 MeV to 2a; and because the resulting neutron is produced at high
energies, which allows, then, energetic triton production through the
exothermic reaction 6Li(n,t)l‘He, Q = 4.78 MeV. The question is, can this
process repeat in a sustaining way?* The answer appears, at this time, to be
no (except thermally at extremely high temperatures).

Although the discrepancies in the MeV (t,n) cross section range to as high
as a factor of 10, the cross sections are all much too low (by factors of about
100 to over 10 000) to compete with electronic slowing down of an energetic
triton in lithium. Hadronic slowing down will further decrease the nuclear

reaction probability with lithium, as will, of course, the presence of other

*Suggested by Steve Howe, information supplied by Dale Henderson, Los Alamos,
X-Division, June 7, 1982.



elements in combination with lithium. For lower energy, i.e., thermal tritons,
one is faced with a rather large effective threshold energy in the 100-keV
range, i.e., 06Li(n,t) is about 12 mb at 150-keV triton energy.1

Nevertheless, the potential of the process

6Li +t-+>+>n+at+a

6Li +n+>*t+a

(1)

Otot = 20.90 MeV

is so great that I herewith document my findings for the edification,

criticism, and correction of (and by) others.

IX. CROSS—SECTION SEARCH

In pursuit of the 6Li(t,n)Za, 6Li(t,n)8Be cross sections, I have
checked: the Nuclear Data Sheets? Reaction Lists for 1981 to 1975,
inclusive; Fay Ajzenberg—-Selove's A =9 compilation;3 R. J. Howerton's
37“8;4 J. Rand McNally, Jr., Fusion Reactivity Graphs and Tables;5 Jarmie
and Seagrave, Charged Particle Cross—Section compilation;6 and Gerry Hale's
Data for Fusion Reactions.* Further, I consulted with McNally, Selove,
Howerton, Jarmie, Hale, and with Norman Holden of Brookhaven National
Laboratory. Four sources of MeV cross sections were, thereby,
obtained.l»>7=9 A fifth sourcelO was not used. The 6Li(t,2n)7Be
reaction was ignored because its effective threshold is about 4.5 Mev, 11
Only Ref. 1 (Val'mer et al.) gives angular distributions and total reaction
cross sections. Accordingly, its angular distributions were used for all. 1In
addition, Jarmie and Divend give only thick target yields at 0°. We
unscramble the thick target yields as follows: the probability, p, that a

given triton of energy, EO’ will react during its slowing down in a thick
target of lithium is given by

0
nLiotn(E)
p*f m— dE . (2)
EO

*Information supplied by G. M. Hale, Los Alamos Group T-2, March 198l.
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We use this equation in the approximate form:

o gy - Apr (dE/dx)

3 (3)
tn AE n

Ap/AE is obtained from the thick target yields of Jarmie and Diven (Ref. 8);
nLi for cold solid 1lithium is 4.598 x 1022 atoms/cc (Ref. 12);, and dE/dx is
obtained from Andersen and Ziegler (Ref, 12). Then, as noted above, we use the
angular distributions of Val'mer et al.} to get a total reaction cross

section. The results are given in Table I.

TABLE I
®L1(t,0) CrROSS SECTIONS
(millibarns)
Et(MeV) Otn(mb)
Jarmie, Diven® Val'mer et al. Crews b Serov, Guzhovskii®

(1963) (1961) (1952) (1962)
0.9 48.6 89.8 7.9 56.8
1.5 44,8 155.9 22.6 77.0
2.1 65.6 324.5 28.2
2.5 67.2

4Based on thick target, 0° yields (Ref. 8).
bEstimated from 90° cross sections for 6Li(t,a)sHe (Ref. 9).
CFrom 0° cross sections.

Note: a, b, and c all use Val'mer et al.l angular distributions.

III. LOW ENERGY OLi(t,n)2a CROSS SECTIONS

Because the (t,n) mirror reaction %Li(3He,p)2a cross section is
apparently known at low energies,5 it is possible to use part of the
Dodder—Hale R-matrix theory* to generate the 6Li(t,n)Za cross section at low

energies. Estimates of time required run to a few weeks.

*Information supplied by G. M. Hale, Los Alamos Group T—-2, June 1982.



IV. PROBABILITY OF AN MeV (t,n) REACTION IN A HOT LITHIUM PLASMA

When a charged particle enters matter, two broad classes of interaction
compete for the fate of the particle: (1) slow down of the particle and
(2) nuclear reactions. [In our energy regime, atomic and molecular
interactions are part of (1).]

For MeV tritons into lithium, the former wins hands down, even at very hot
temperatures. We will substantiate this conclusion by comparing the nuclear
reaction probability (essentially ont) with only part of the stopping power,
the electronic slowing down. There is also hadronic and hadronic-electronic
interference stopping.13 Moreover, we need only include the slowing down in
the lithium itself. Lithium, in a compound or mixture, will give a yet greater
advantage to the slowing down versus nuclear reaction of the triton. We use
the theory of Longmire14 to calculate the electronic stopping power for the
triton by the electrons of 6L1:

— 2.2 4
€ ., YT A (G2) - Aot Loy - 1 )
YEKT m o1
and by the nuclei bLi:
2.2 4
d_Eﬂ 21rZ1Z2e . (_2) . ml (5)
ax "2 E "9 m,
m 2

Here 2, the target, refers to 6Li, namely to electrons in Eq. (4) and to the
611 nucleus in Eq. (5), and 1 refers to the projectile, the triton.
Therefore, n is either the electron or the 611 density. Z refers to the
charge number (Z1 =1, Z2 =1 or 3). E is the projectile (triton) energy, x is
the triton path length, e is the electron charge, kT is the temperature in
energy units, and m is mass. 6y is the minimum scattering angle, which we

give below.



If the test quantity q

2
2Z1Z2e

q= “hv

(6)

where H is Planck's constant divided by 2n, and v is the relative velocity of

particle 1 to 2, satisfies:
q>1 3
then the scattering is classical andl4

2
) 2Z1Z2e
m XDqu

] (classical) .

However, if
q<1 ,
then the minimum scattering angle is given by the uncertainty,14

em = .3X
s

(quantum) |,

where XD is the Debye length of the plasma:

kT

47n e
e

(7

(8)

(9

(10)

(11)

where n, is the electron density and y is the reduced mass u = mlmz/(m1 + mz).

We find that for electrons, q < 1; so we use the quantum result Eq. (1l1) into

Eq. (10) into Eq. (4). For the nucleus 6Li, we find q > 1; so we use the



classical result Eq. (11) into Eq. (8) into Eq. (5). The sum of Egqs. (4)

and (5) gives us the total electronic stopping power.

- (dE) dE)

dE
(E;) dx’electrons dx (12)

electronic nuclei
We calculate the stopping power for the 6.1 densities of 74.92 g/ce
(corresponds to 100 g/cc of DOL1i) and 0.62 g/cc (corresponds to the standard
temperature and pressure density of lithium-6 in D6Li).

Referring to Eq. (2) or (3), we see that if the quantity (l/nLi)(dE/dx)
is large compared to the quantity otnAE, then the probability Ap of the (t,n)
reaction in that energy interval, AE, is low. Accordingly, so that the reader
may judge for himself, these quantities are given in Table II for two
densities, four energies, and five temperatures. The second-order effect of

temperature on otn is ignored in Table II.

It can be seen from Table II that in every case, even at 20 keV, the ratio
nLiotnAEt/(dEt/dx) is less than 0.004 (and is as low as 0.00008) so that the
probability of an 6Li(n,t) reaction given by Eq. (2) is less than 1% at
20 keV and much less than 1% at lower temperatures, even just including
electronic slowing down of lithium alone. Therefore, we conclude that, except
in an extremely high temperature thermonuclear reaction, say for temperatures,
T~~ 150 keV roughly, the process of Eq. (1) cannot be sustained because the
overwhelming probable fate of the energetic triton from 6Li(n,t)l‘He is to

be slowed down to thermal energies without nuclear reaction.



TABLE II

-1 6
Comparison of o, AE . Versus oy, (dE, .. /dx), ;. erontc total 1% Pure 'Li

(in HeVz- ca )(otn are the Jarmie and Diven derived values in Table I)

Po1s ™ 74,92g/cc

2
E, = 0.9 MeV, AEt = 0.9 MeV, © nAEt = 4.4(-26)MeV - cm

t

T(keV) 1 2 5 10 20

n-l(dEt/dx)(MeV - cmz) 1.24(-22)  5.8(-23) 2.3(-23) 1.36(-23) 9.8(-24)

. 2
Et = 1.5 MeV, AEt = 0.6 MeV, thAEt = 2.7(-26)MeV - cm

T(keV) 1 2 5 10 20

n—l(dEt/dx)(MeV - cm2) 1.56(-22) 6.7(-22) 2.5(-23) 1.29(-23) 7.9(-24)

. 2
Et = 2,1 Mev, AEt = 0.6 MeV, thAEt = 3,9(-26)MeV - cm

T(keV) 1 2 5 10 20

n—l(dEt/dx)(MeV - cmz) 1.83(-22) 8.2(-23) 2.8(-23) 1.33(-23) 7.4(-24)

2
Et = 2,5 Mev, AEt = 0.4 MeV, o nAEt = 2,7(-26)MeV cm

t

T(keV) 1 2 5 10 20

n—l(dEt/dx)(MeV - cm?') 1.99(-22) 8.8(-23) 3.0(-23) 1.38(-23) 7.2(-24)

Py - 0-628/cc

2
Et =-0.9 MeV, AEt = 0.9 Mev, © nAEt = 4,4(-26)MeV - cm

t

T(keV) 1 2 5 10 20

n—l(dEt/dx)(MeV - cmz) 2.2(-22) 9.3(-23) 3.3(-23) 1.81(-23) 1.2(-23)

2
Et 1.5 Mev, AEt = 1.5 MeV, thAEt = 2.7(-26)MeV - cm

T(keV) 1 2 5 10 20

n—l(dEt/dx)(MeV - cn?)  2.8(-22) 1.15(=22) 3.7(-23) 1.77¢-23)  1.0(-23)

2
Et 2.1 Mev, AEt = 0.6 MeV, thAEt = 3.9(-26)MeV - cm

T(keV) 1 2 5 10 20

n—l(dEt/dx)(MeV - en?)  3.3(-22)  1.34(-22)  4.2(-23)  1.86(-23)  9.6(-24)

2
E, = 2.5 MeV, AE_ = 0.4 MeV, o, AE = 2.7(~26)MeV - cm

t

T(keV) 1 2 5 10 20

n—l(dEt/dx)(MeV - en®)  3.6(-22)  1.45(-22)  4.5(-23)  1.94(=23)  9.6(-24)
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