LA-9893-MS

1

- Alamos National Laboratory is operated by the University of Catifornia for the United States Department of Energy under contract W-7405-ENG-36.

Not to be taken from this room

Estimating the Risks of Cancer Mortality and Genetic Defects Resulting from Exposures to Low Leyels of Ionizing Radiation

DS Alamos National Laboratory Los Alamos, New Mexico 87545 An Affirmative Action/Equal Opportunity Employer

Prepared by Kathy Derouin, Group HSE-8

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

LA-9893-MS

UC-41 Issued: May 1984

Estimating the Risks of Cancer Mortality and Genetic Defects Resulting from Exposures to Low Levels of Ionizing Radiation

Thomas E. Buhl Wayne R. Hansen

LOS ALEMOS Los Alamos National Laboratory Los Alamos, New Mexico 87545

CONTENTS

ABST	RACT.	· · · · · · · · · · · · · · · · · · ·
Ι.	INTR A. B. C. D.	CODUCTION2Scope of This Report2The NEPA Implementation Process: A Brief Description2Use of Health Effects Estimates in NEPA Documents3Contents of the Report4
Π.	CONS DOCL A. B. C. D.	IDERATIONS IN CALCULATING RADIATION RISKS FOR NEPA MENTS. 4 Typical Doses Considered in NEPA Documents 4 Health Effects Resulting from Radiation Exposure 5 Terminology. 6 Calculational Assumptions Used in Estimating 7 Radiation Risks. 7 1. The Dose-Response Model 7 2. Projection of Cancer Risk Beyond the Period of 9 3. Comparability Between Populations. 10 4. Numerical Value of the RBE 11
		5. Stability of Demographic Data
III.	RISK ADVI A.	 ESTIMATION PROCEDURES OF NATIONAL AND INTERNATIONAL SORY GROUPS
		(BEIR Committee)
		of Atomic Radiation (UNSCEAR Committee) 15 3. International Commission on Radiological Pro-
		<pre>tection (ICRP)</pre>
	в.	Measurements (NCRP).19Risks of Somatic Effects Other Than Cancer201. Effects from Irradiation in Utero.202. Nonstochastic Effects22
	ΰ.	Lomparison of Kisk Factors

Ì

-4

IV.	RISK	ESTIMATION METHODOLOGY FOR USE IN U.S. DEPARTMENT	<u> </u>
	OF E	NERGY NEPA DOCUMENTS	27
	Α.	Genetic Disorder from Padiation Exposure	27
		1. First Method	28
		2. Second Method	30
	Β.	Dose-Response Model for Low-LET and High-LET Radiation	31
	С.	Absolute Risk vs Relative Risk in Estimating	
		Incremental Probability of Cancer Mortality	34
	D.	Calculation of the Risk of Cancer Mortality	36
	Ε.	Specification of Dose for Use in the Risk Calculation	39
	F.	Discussion of Risk-Rate Factors	43
		1. All Cancers	43
		2. Bone Cancer	43
		3. Breast Lancer	44
		4. Liver Cancer	44
		5. Inyrold Cancer	44 15
		7 Lung Cancer	45
		8 Risk Factors for High-IFT Radiation	46
	G.	Relating Cancer Incidence to Cancer Mortality	47
	Н.	Risk of Genetic Disorders in Offspring	47
	I.	Risk of Somatic Effects Other Than Cancer	49
		1. Effects from Irradiation in Utero	49
		2. Nonstochastic Effects	50
	J.	Effect of Current Research on Risk Assessment Procedures .	50
۷.	SUMM	1ARY	51
			- 1
VI.	ACKN		51
		· c	5 1
KEFE	.KENCE		21
		APPENDIXES	
		ATTENDIALO	
APPE	NDIX	A. THE COMPUTER PROGRAM REPCAL	55
APPE	NDIX	B. LISTING OF THE COMPUTER PROGRAM REPCAL	62
APPE	ENDIX	C. SAMPLE PROBLEMS AND COMPARISON OF REPCAL RISK	
		ESTIMATES WITH THOSE OF BEIR III	/6

ኤ

TABLES

ĸ

-

•

ન

Ι.	TUMORIGENIC AND MUTAGENIC RISK FACTORS RECOMMENDED BY NATIONAL AND INTERNATIONAL ORGANIZATIONS FOR RADIATION EXPOSURE AT LOW DOSES	24
IIa.	RISK FACTORS (RISK/ABSORBED DOSE) RECOMMENDED FOR USE IN DOE NEPA DOCUMENTS	29
IIb.	RISK FACTORS (RISK/DOSE EQUIVALENT) RECOMMENDED FOR USE IN DOE NEPA DOCUMENTS ASSUMING A QUALITY FACTOR OF 20	32
III.	PARAMETERS USED FOR CALCULATING LIFETIME RISK FACTORS FOR CANCER	35
IV.	PROPORTION DYING IN EACH AGE INTERVAL	4 0
۷.	POPULATION DISTRIBUTION BY AGE AND SEX	41
VI.	AGE- AND SEX-SPECIFIC CANCER MORTALITY RATES	42
VII.	RBE VALUE TO USE FOR OBTAINING LIFETIME RISKS FROM HIGH-LET RADIATION	46
VIII.	RATIOS OF THE LIFETIME RISK OF CANCER MORTALITY TO THE LIFE- TIME RISK OF CANCER INCIDENCE	47
A-I.	STRUCTURE OF INPUT FILE	55
A-II.	DEFINITION OF INPUT PARAMETERS	56
A-III.	INPUT FILES FOR A SAMPLE PROBLEM: CALCULATING THE TOTAL NUMBER OF CANCER DEATHS INDUCED BY A DOSE OF 10 Rads OF LOW-LET RADIATION	58
C-I	OUTPUT FILE FOR THE FIRST SAMPLE PROBLEM	78
C-II.	INPUT FILE FOR THE SECOND SAMPLE PROBLEM: CALCULATION OF THE TOTAL NUMBER OF CANCER DEATHS INDUCED BY CONTINUOUS EXPOSURE OF 1 Rad/Year OF LOW-LET RADIATION	95
C-III.	OUTPUT FILE FOR THE SECOND SAMPLE PROBLEM	97
C-IV.	COMPARISON OF REPCAL AND BEIR III ESTIMATES USING THE LINEAR DOSE-RESPONSE MODEL: CANCERS PER ONE MILLION PERSONS	113

vi

ESTIMATING THE RISKS OF CANCER MORTALITY AND GENETIC DEFECTS RESULTING FROM EXPOSURES TO LOW LEVELS OF IONIZING RADIATION

by

Thomas E. Buhl and Wayne R. Hansen

ABSTRACT

Estimators for calculating the risk of cancer and genetic disorders induced by exposure to ionizing radiation have been recommended by the U.S. National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations, the U.N. Scientific Committee on the Effects of Atomic Radiation, and the International Committee on Radiological Protection. These groups have also considered the risks of somatic effects other than cancer. The U.S. National Council on Radiation Protection and Measurements has discussed risk estimate procedures for radiation-induced health effects.

The recommendations of these national and international advisory committees are summarized and compared in this report. Based on this review, two procedures for risk estimation are presented for use in radiological assessments performed by the U.S. Department of Energy under the National Environmental Policy Act of 1969 (NEPA). In the first procedure, age- and sex-averaged risk estimators calculated with U.S. average demographic statistics would be used with estimates of radiation dose to calculate the projected risk of cancer and genetic disorders that would result from the operation being reviewed under NEPA. If more site-specific risk estimators are needed, and the demographic information is available, a second procedure is described that would involve direct calculation of the risk estimators using recommended risk-rate factors. The computer program REPCAL has been written to perform this calculation and is described in this report.

We have briefly discussed somatic effects other than cancer, such as developmental effects resulting from irradiation in utero and nonstochastic effects that may occur

1

in the dose ranges considered in NEPA documents. No risk estimation procedures are given in this report for these effects because none have been recommended by any of the national and international committees reviewed here.

I. INTRODUCTION

A. Scope of This Report

Under the National Environmental Policy Act of 1969 (NEPA), the Department of Energy (DOE) identifies and assesses environmental impacts from its proposed major actions. An important consideration in assessments of DOE programs involving the use of ionizing radiation is the potential effect on public health.

In this report we will present a method that estimates impacts on health from projected radiation doses from a particular program or facility. This method will allow the DOE decision maker to determine whether a program has a negligible or a significant associated health risk, and it provides a numerical estimate of the risk. In some NEPA documents, several alternatives involving a proposed action are analyzed. Expressing the results of the radiological analysis of each alternative in terms of health effects would help to clarify differences among the alternatives, which may facilitate decision making.

These estimation procedures are proposed so that DOE health risk estimation can be standardized in NEPA documents. Radiation impacts from different proposed actions can be compared more clearly because one element of variability--use of different risk calculations methods--will have been eliminated.

We have used in this report only the recommendations of well-recognized national or international advisory committees. No attempt was made to derive independent risk evaluations.

B. The NEPA Implementation Process: A Brief Description

The NEPA established a national policy for the environment. It also provided for a Council on Environmental Quality (CEQ), whose function was to set up regulations governing policy implementation. The purpose and content of DOE-associated NEPA documentation are governed by the CEQ NEPA Regulations (Council on Environmental Quality 1978), DOE NEPA Guidelines (USDOE 1980b), the DOE Environmental Compliance Guide (USDOE 1981a), DOE Order 5440.1B (USDOE 1982a), and various NEPA-directed Executive Orders. Three basic levels of documentation are included in the DOE NEPAreview process: the Action Description Memorandum (ADM), the Environmental Assessment (EA), and the Environmental Impact Statement (EIS). The ADM is prepared for each proposed action not exempted under the DOE Guideline. The ADM identifies potential areas of environmental concern. If a finding of no significant impact is made in the ADM, the DOE prepares a memorandum to this effect as a file record. No further NEPA documentation is necessary. If it is found that the proposed action has a potential for significant impact, an environmental impact statement (EIS) must be prepared.

If, based on the information in the ADM, DOE is uncertain whether the proposed action will result in significant impact, an EA may be required. The EA contains a more complete analysis of environmental impacts than that in the ADM and includes consideration of alternative courses of action. Based on the information in the EA, the DOE decides if the proposed action results in no significant impact or if an EIS is necessary.

The EIS treats environmental impacts more completely than either the ADM or the EA. Although recent CEQ regulations emphasize a concise EIS (150 or fewer pages of text), the analysis underlying the document is extensive and detailed. All significant impacts must be considered, alternatives to a proposed action must be fully analyzed, and the impacts from each alternative must be evaluated.

Under the NEPA review process, then, an EIS is prepared only if either the ADM or the EA indicates that the proposed action may have significant impact. Preparing an EIS is a complex procedure involving a scoping stage (with participation of affected federal, state, and local agencies and other affected parties), publication of a draft EIS, a period for comment by the public and by other government agencies, and publication of a final EIS culminating in a minimum 30-day public review period. The DOE's final decision regarding the proposed action and its alternatives is published as a Record of Decision. That final document states the rationale for the chosen course of action, including the environmental issues, and it identifies necessary mitigating measures.

C. Use of Health Effects Estimates in NEPA Documents

In view of the wide range of detail required for NEPA documents, two alternate methods of estimating health effects are presented in this report. The first method is simple and direct. Risk factors given in this report are used to predict the lifetime risk of dying of cancer and the risk of genetic disorder in offspring in all subsequent generations as a result of exposure to ionizing radiation. These factors are average values calculated using the age and sex distribution of the U.S. population, the U.S. life tables, U.S. cancer mortality rates, and U.S. age-specific birth rates.

In situations where the characteristics of the population differ significantly from the average U.S. population, a somewhat more complex method using the specific characteristics of the local population may be used if these data are available. For this situation a second method of health risk estimation is presented. Risk-rate coefficients are recommended that can be used with local demographic and health statistics to calculate sitespecific lifetime risk factors. A computer program was written to perform these calculations and is listed in Appendix B of the report.

D. Contents of the Report

Section II presents terminology and calculational models that are discussed in the report. Section III reviews the work that was considered in developing recommendations for lifetime risk factors and risk-rate coefficients. The lifetime risk factors and the genetic risk factors from the U.S. National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations (the BEIR Committee), the United National Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), and the International Commission on Radiological Protection (ICRP) were reviewed, as well as a risk calculation method proposed by the National Council on Radiation Protection and Measurements (NCRP). Tumorigenic and mutagenic risk factors from these organizations were compiled in a common form so that they could be compared.

In Section IV risk factors and risk-rate coefficients are recommended for use in DOE NEPA documents. The calculational methodologies for estimating cancer risk and genetic risk are described in that section.

The final section, Section V, summarizes the recommendations made in the report.

II. CONSIDERATIONS IN CALCULATING RADIATION RISKS FOR NEPA DOCUMENTS

A. Typical Doses Considered in NEPA Documents

Doses from operation of DOE facilities are limited by DOE radiation standards found in DOE Order 5480.1 (USDOE 1980a). Annual doses to any member of the public are not to exceed 500 mrem to the whole body, gonads, or bone marrow, and 1500 mrem to any other organ. Annual doses to a suitable sample of the exposed population are limited to one-third of these limits. In addition to the dose limits, DOE policy requires that actual doses be kept to as small a fraction of the annual dose limits as is reasonably achievable (this is referred to as the ALARA policy). When a dose assessment for a NEPA document is performed, some accident scenarios may involve consideration of doses larger than these dose standards. Dose criteria used to evaluate the suitability of facility siting are given in DOE Order 6430, which is now (October 1983) available only in draft form. For a one-time credible accident, the criteria would be 25 rem to the whole body, 300 rem to the thyroid, 300 rem to the bone surface, and 75 rem to the remaining organs. These criteria apply to the maximum exposed individual located either at the site boundary or onsite at the nearest separate facility (USDOE 1981b). Dose estimates for possible accidents for a proposed DOE operation may range up to these dose criteria.

These accident dose criteria are used as reference values for evaluating the suitability of facility siting. They apply only to accidents. The criteria do not imply the acceptability of doses at these levels, but they provide guidance for siting purposes.

B. Health Effects Resulting from Radiation Exposure

Radiation-induced health effects can be somatic, which occur in the individual receiving the radiation exposure, or genetic, which occur in his or her offspring. Early somatic effects, which can follow the exposure by minutes to weeks, result from high doses of ionizing radiation at high dose rates. These levels are usually not encountered in NEPA documents and are not discussed in this report. Late somatic effects, which usually occur years after the exposure, can be either stochastic, where the probability of injury depends on the dose received, or nonstochastic, where the severity of the effect depends on the dose.

The principal stochastic effect resulting from radiation exposure is induction of cancer. In Section IV, a method of estimating the cancer risks due to radiation is presented.

Other somatic effects include teratogenic effects (which are stochastic) and nonstochastic effects. Teratogenic effects may occur as the result of in utero irradiation of the fetus. These effects include microcephaly, growth impairment, and mental retardation. Nonstochastic effects can range in severity from very mild effects detectable only by sensitive biological testing to severe effects that can be life threatening. As will be discussed later in this report, at the dose levels resulting from routine facility operations that are assessed in NEPA documents, neither widespread teratogenic effects nor nonstochastic effects are expected to occur. In contrast to routine operations, analysis of some accident scenarios may involve consideration of doses in ranges where teratogenic effects and nonstochastic effects are not precluded. However, even these relatively higher accident doses are at the extreme low end of the range of doses where teratogenic effects and nonstochastic effects may occur, so that the importance of these effects is expected to be minimal.

5

Genetic effects resulting from radiation exposure are stochastic. These effects appear as a result of gene mutations or chromosomal aberrations. A method for estimating the risk of genetic disorder in the first generation and in all subsequent generations due to radiation exposure is discussed in Section IV.

C. Terminology

In the discussion of risk calculations, several terms are used in this report with specific meanings. These terms are defined in this section.

• The <u>risk factor</u> is the lifetime risk of radiation-induced cancer mortality per unit of absorbed dose. The risk factors have been averaged over the age and sex distribution of the population receiving the radiation exposure. The unit is rad^{-1} .

Sometimes a risk factor for genetic risk is given. In these cases, the risk factor is the risk of genetic disorder in liveborn offspring in the first generation or in all subsequent generations per unit of absorbed dose. In this case the absorbed dose is the gamete dose, defined below. This risk factor is also expressed in rad^{-1} . The context in which the term appears will clarify whether a somatic or genetic risk factor, or both, are discussed.

• The <u>risk-rate factor</u> is the risk of cancer mortality resulting from the radiation exposure per year per unit absorbed dose. The factor is expressed in rad⁻¹ year⁻¹ and is used in calculating the lifetime risk factor for cancer mortality described above.

• The <u>latent period</u> is the time between the radiation exposure and the appearance of the health effect.

• The <u>expression period</u> or <u>plateau period</u> is the time of an increased relatively uniform risk of cancer mortality resulting from exposure to radiation.

• The <u>relative biological effectiveness (RBE)</u> is the ratio of the absorbed dose of a reference radiation (such as 250 kVp x-rays) needed to produce a given biological effect to the absorbed dose of a particular radiation type (such as alpha or neutron) needed to produce the identical biological effect.

• The <u>quality factor</u> is the quantity used for radiation protection purposes that multiplies the absorbed dose so that radiation of different linear energy transfer (LET) can be expressed in a common term taking into account the different LET-dependent biological effectiveness of each radiation type. • The <u>genetically significant dose</u> is the gonadal dose from all sources of exposure that, if received by every member of the population, would be expected to produce the same total genetic effect on the population as the sum of the individual doses actually received.

• The <u>gamete dose</u> is the dose accumulated by gametes before conception by the population at risk. The procedure used in BEIR III for calculating the gamete dose is described in Section IV.H.

D. Calculational Assumptions Used in Estimating Radiation Risks

Risk estimates, published by the national and international advisory groups reviewed in Section III, are based on the results of epidemiological studies. Use of these estimates entails several assumptions. These assumptions concern the shape of the dose-response relationship, the method for estimating the risk for times longer than the period spanned in the epidemiological study, the comparability between the studied population and the population that is the immediate concern in the NEPA dose assessment, the value of the RBE used to relate risk from low-LET radiation to risk from high-LET radiation, and the variability of demographic statistics used in estimating risk factors.

1. The Dose-Response Model. Epidemiological studies of the effects of radiation exposure typically are designed to observe the incidence or mortality rate of a health effect such as cancer in exposed and control (non-exposed) human populations. Because of the statistical nature of the appearance of these health effects, the highest quality data will usually be obtained from those population sectors receiving the largest radiation dose. At the low-dose levels of most interest in NEPA-related documents, the risk per unit dose is low, usually resulting in so few health effects that any increased effects are difficult or impossible to observe by epidemiological techniques. Alternatively, the sample size theoretically may be increased to improve statistical power. This is limited, however, by the size of the exposed population. For example, Land and Pierce estimate that a sample size of tens of millions of individuals would be needed to measure the carcinogenic effect of 1 rad of whole body radiation if our current estimates of the risk are accepted (Land 1983).

Consequently, the risk of health effects at doses below 5 to 10 rads has never been conclusively observed. The BEIR Committee in its 1980 report states that it is uncertain "as to whether a total dose of, say, 1 rad would have any effect at all" (BEIR III 1980, p. 139), and "it is by no means clear whether dose rates of gamma or x radiation of about 100 mrads/yr are in any way detrimental to exposed people; any somatic effects would be masked by environmental or other factors that produce the same types of health effects as does ionizing radiation." (BEIR III 1980, p. 139). Because health effects are difficult to observe when subjects were only exposed at low doses, health risks potentially caused by low levels of ionizing radiation are estimated by extrapolating risks observed at high doses to the low-dose region. A mathematical relationship giving risk in terms of dose is used to perform the extrapolation. None of the mathematical models commonly used contain a threshold dose of radiation, below which the radiation would be expected to have no adverse effect on health. Until the 1980 BEIR report was published, the most commonly used model assumed a linear nonthreshold relationship between the dose D and the response E,

 $E = aD + E_0$,

where "a" is the risk per unit dose, and E_0 is the number of health effects in the absence of any dose. In its 1980 report, the BEIR Committee considered two additional nonthreshold dose-response models for induction of cancer by low-LET radiation: the linear-quadratic model, in which the response is a sum of a linear and a quadratic term,

 $E = aD + bD^2 + E_0$,

and the quadratic model, in which the response is a quadratic function of the dose,

 $E = bD^2 + E_0$,

where b is a constant.

In summary, epidemiological studies provide estimates of increased risk of cancer induction at relatively high doses where this risk can be more easily observed. In order to obtain estimates of risks at low doses, assumptions are made about the shape of the dose-response curve, and the high-dose risks are extrapolated to the low-dose region.

The question of the slope of the dose response curve and the magnitude of the risk factors may be affected by recent work by Loewe and Mendelsohn (1981) revising the dosimetry of the Japanese atomic bomb survivors. The possible effects this work may have on estimating the risk of radiationinduced cancer are discussed in Section IV.J.

We have elected to recommend the linear no-threshold dose-response model for all radiation types, including low-LET radiation (see Section IV.B). Until the uncertainty noted above in the Japanese atomic bomb survivor epidemiological data is resolved, the more conservative linear model is the most appropriate for long-term projections such as made in environmental documents. We do include a correction to the recommended risk estimate for low doses of low-LET radiation.

The national and international organizations whose recommendations are reviewed in Section III were unanimous in considering that linear extrapolation of risk from low-LET radiation exposure (from the high-dose high-doserate regions to low-dose low-dose-rate regions) tends to overestimate the cancer risk. As noted above, the BEIR Committee proposed using a linearquadratic dose-response model to estimate total cancer risk induced by low-LET radiation. The Committee stated that the quadratic and linear model estimates would bracket the radiation risk, which would be more accurately represented by the intermediate estimates from the linear-quadratic model. For example, the linear-guadratic model produces estimates of total cancer approximately 2.4 times lower at a continuous exposure of 1 rad/year than would be those for the linear model (BEIR III 1980, p. 146). The NCRP developed a Dose Rate Effectiveness Factor (DREF) that would lower the linearly extrapolated estimate of total cancer risk resulting from low-LET radiation by a factor of 2 to 10 for low-dose low-dose-rate exposures (NCRP 1980). UNSCEAR lowered its risk estimate for total cancer induction from 250 x 10^{-6} /rad of low-LET radiation to 100 x 10^{-6} /rad of low-LET radiation for low-dose exposures (UNSCEAR 1977). The leukemia risk was similarly reduced. The UNSCEAR Committee notes that such a value is derived essentially from mortalities induced at doses in excess of 100 rad and thus the value appropriate for much lower dose values, and especially for environmental exposures to radiation, may well be substantially less. The ICRP also warns that risk estimates derived from data involving populations exposed at high doses and high-dose rates could overestimate the risk at low doses and low-dose rates, and they consider these possible overestimates in choosing the risk factors used in their report (ICRP 1977a).

For the choice of models to estimate the risk of genetic disorders, the situation is somewhat different. Only very limited evidence of genetic damage from radiation has been observed in human populations. Risk estimates have been obtained principally from laboratory work with several animal species, particularly with mice. These risk estimates were then used with assumptions about the dose-response relationship to estimate the risk of genetic disorders from radiation at low doses. A linear dose-response model has been used consistently by BEIR, UNSCEAR, and ICRP to estimate genetic risk.

2. Projection of Cancer Risk Beyond the Period of Follow-Up. The majority of the epidemiological studies have not yet followed the individuals in their study populations through their entire lifetimes. When the BEIR III report was being written, the data from Japanese atomic bomb survivor study-one of the most important studies for estimating radiation risks--encompassed only 30 years of observation. For some types of cancer, namely leukemia and bone cancer, no elevated cancer incidence had been observed for several years. This was interpreted as the risk returning to zero in about 25-30 years. An estimate of the total lifetime risk of incurring one of these cancers could be calculated straightforwardly. For many other cancers,

9

however, cancer incidence and mortality had remained elevated above levels found in the control populations. In order to calculate the total lifetime risk of having one of these cancers as a result of radiation exposure, the future risk had to be estimated. The risk was assumed to follow either the absolute risk projection model or the relative risk projection model.

Risk projection using the absolute risk model assumes that absolute risk, which is the difference between the risk of the exposed population and that of the control population, remained constant throughout the expression period. Risk projection with the relative risk model, in contrast, assumes that the ratio of the risk of the exposed population to the control population, as measured during the observation period, was a constant throughout the remaining expression period.

Determining which projection model is preferable may depend on the type of cancer being considered. For example, the BEIR Committee has noted that lung and breast cancer induction may be underestimated by the absolute risk model (BEIR III 1980). However, for many cancers, data are insufficient to indicate which projection model is more appropriate.

<u>3. Comparability Between Populations</u>. The major use of risk estimators in NEPA documents would be to estimate the health impacts of the proposed facility or activity on the surrounding population. This population, which has its own age and sex distribution, would usually be similar to the U.S. population. Even so, populations forming the basis of most epidemiological studies usually differ from the U.S. population in several ways. For example, uranium miner populations have been studied for the effects of radon decay products in inducing lung cancer. This population is composed mainly of males of working age. Exposures occurred while the miners were working in dusty underground mine atmospheres. Cigarette smoking was found to be more widely prevalent among these groups than in the U.S. population as a whole. Thus, there is a question as to what degree the lung cancer risks in this population represent those of a more typical population group.

Similar considerations apply to other groups used in epidemiological studies. The Japanese atomic bomb survivors formed a population group in which males of military age were largely absent, and in which spontaneous incidence rates of many cancers, such as breast cancer or digestive tract cancers, differed significantly from those of the U.S. population. Many epidemiological studies concerned groups that received radiation as a treatment for a specific disease. To what extent the pre-existing disease contributed to elevated cancer rates in many cases is not known.

The BEIR III Committee partially addressed this issue in its relative risk estimate of the number of cancer deaths from a hypothetical radiation exposure in a population group similar to the U.S. population. The Committee used absolute risk-rate coefficients derived from the epidemiological study of these previously exposed populations to calculate relative risk-rate factors. The expected number of cancer deaths (calculated with the absolute risk-rate factors) resulting from radiation exposure that would occur between 10 and 30 years after the exposure was divided by the number of spontaneous cancer deaths during the same time period. (The period of 30 years after the exposure was used because this was the follow-up period for the atomic bomb survivor study, on which the absolute risk-rate factors were based.) Because the risk estimate was for the U.S. population, the spontaneous cancer mortality rate for the U.S. population was used in the relative risk calculation. The calculated ratio was used as the relative risk-rate factor. The number of cancer deaths, then, in the first 30 years after exposure was calculated using the absolute risk-rate factors from the exposed population (the atomic bomb survivors), but the projection was based on the characteristics of the population for whom the risk was calculated. The question remains as to the applicability of the absolute risk-rate factors to populations other than those that were studied.

<u>4. Numerical Value of the RBE</u>. The RBE should be used in converting risk factors for low-LET radiation to those for high-LET radiation. There is no reason why the RBE should be exactly equal to the quality factor. However, at the dose ranges considered in this report, there are very few measurements of the RBE. The quality factor is frequently used as the RBE, and this practice has been followed in this study. Following the ICRP (ICRP 1977a), we have used a quality factor of 20 for alpha radiation. An exception is the RBE for lung cancer, for which a range of values of 8 to 15 was explicitly given in BEIR III report, whose recommendations were used in estimating the risk of radiation-induced lung cancer (see Section IV.F.7). We have also used a maximum value of 10 for the RBE for neutron radiation.

5. Stability of Demographic Data. Age- and sex-averaged risk factors are calculated using demographic data describing the exposed population at a particular time. These data are the population distribution by age and sex, the probability of dying during a particular age interval, cancer mortality rates by age and sex (if the relative risk of cancer is to be calculated), and age-specific birth rates (for estimating the risk of genetic disorders in offspring).

The estimation of the risk factors assumes that the demographic data used in the calculation are relatively constant in time. While this may be true generally, it may not be a particularly good assumption for several parameters. Examples would include increasing lung cancer rates and falling birth rates. Interpretation of estimates of radiation-induced health risks should be made with these uncertainties in mind.

III. RISK ESTIMATION PROCEDURES OF NATIONAL AND INTERNATIONAL ADVISORY GROUPS

A. Risks of Radiation-Induced Cancer and Genetic Disorders

1. U.S. National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations (BEIR Committee)

<u>a. The BEIR I Report</u>. In 1972 the BEIR Committee published their review of the evidence for effects on human health caused by exposure to low levels of ionizing radiation (BEIR I 1972). Because the recommendations of this report have been superseded by the 1980 BEIR report (BEIR III 1980), the BEIR I report will only be briefly discussed here.

Both somatic and genetic effects were considered in the BEIR I report. The linear dose-response model was used for both carcinogenic and mutagenic effects. The principal somatic effect was induction of cancer, but other effects such as the formation of cataracts and impairment of fertility were also included.

The BEIR I report published both absolute and relative risk-rate coefficients for the major cancers induced by radiation. If these rates are used with the estimates of latent period and plateau period given in BEIR I for each cancer type, the total lifetime risk can be calculated that is due to a radiation exposure at any age. The estimate of the annual number of cancer deaths in the United States resulting from continuous exposure to 0.1 rem/year is included in the report (BEIR I 1972, pp. 172-173) and illustrates the calculation procedure.

Four methods of assessing genetic risks were used in BEIR I: comparison with natural background radiation, a doubling dose method, a method based on an estimate of the mutational component in congenital anomalies and constitutional diseases, and a method based on the role of mutations in overall ill health. The BEIR Committee indicated that the above list is in the order of decreasing confidence.

Estimates of genetic disorders were based on a risk relative to the spontaneous mutation rate of 0.005 to 0.05 per rem, or a doubling dose ranging from 20 to 200 rem. Dominant, chromosomal, and recessive genetic disorders would eventually increase in proportion to the mutation rate. Diseases of complex etiology were assumed to have a mutational component between 5% and 50% of the incidence rate. Based on these factors, the BEIR Committee estimated that the equilibrium risk factor for genetic disorder in offspring ranged between 300 and 7500 x 10^{-6} for 5 rem per generation.

A

<u>b.</u> The BEIR III Report. The BEIR Committee in the BEIR III report published in 1980 reviewed its 1972 report and updated its risk estimates based on the most recent epidemiological results. Although most features of the BEIR I were retained, several significant procedural changes were made in BEIR III. The most significant change in BEIR III was the recommendation that the linear-quadratic dose-response model be used to calculate cancer risks from exposure to low-LET radiation. The linear and quadratic dose-response models were also presented, and the BEIR Committee concluded that risk estimates using these two models represent upper and lower bounds, respectively, for the risk, which was best represented by the linear-quadratic model. The linear dose-response model continued to be used by the BEIR Committee for calculating cancer risk from high-LET radiation and for calculating the risk of genetic disorders for both high- and low-LET radiation.

These recommendations of the BEIR Committee were based on radiobiological considerations. Because of statistical considerations noted earlier, epidemiological studies are relatively insensitive to the shape of the doseresponse model in the low-dose region, the areas where the greatest difference between these models would be expected. The use of one model rather than another has not been decided through epidemiological data, but independently through radiobiological research, which has formed the basis of understanding how radiation interacts with human tissue.

Unfortunately, risk-rate coefficients for low-LET radiation used in the linear-quadratic model were supplied by the BEIR Committee only for combined leukemia and bone cancer, and for all other cancers combined. Only linear risk-rate factors were provided for each cancer type singly.

The BEIR III report used a 3-year latent period and a 24-year expression period for leukemia and bone cancer. Risks from other cancers were calculated using a 10-year latent period and an expression period extending for the full lifetime. For <u>in utero</u> exposures, the latent period was taken to be 0 year, and the expression period was 12 years for hematopoietic tumors and 10 years for solid tumors. Most of these values for latent period and expression period represent only small changes from values in the BEIR I report. One notable exception is that BEIR III no longer uses a 30-year expression period in addition to the lifetime expression period for solid cancers as did BEIR I; it only considers a lifetime expression period.

One final procedural difference between BEIR I and BEIR III concerns the calculation of relative risk. In BEIR III explicit relative risk-rate factors usually are not given as they were in the earlier report. A relative risk calculation was performed using the absolute risk-rate factors for all cancers except leukemia and bone cancer; this will be described in Section IV.C. In addition, for this calculation, relative risks to individuals in the 0- to 9-year age group were found to be unreliable, and the relative risks for the 10- to 19-year age group were substituted for them in BEIR III.

More generally, the BEIR Committee tended to give age-specific absolute risk-rate coefficients rather than relative risk-rate coefficients (breast cancer was an exception in that both were given). The BEIR Somatic Effects Subcommittee stated:

"Review of the current data has led the present Subcommittee to conclude that the relative-risk model does not apply generally, but is applicable to the effect of age on cancer incidence for many sites at which cancer is induced by radiation. Thus, age at exposure and at cancer development has emerged as a major determinant of cancer risk from radiation. For this reason, this subject is also considered in some detail; both projection models have been used." (BEIR III 1980, p. 150)

In giving the lower and upper bounds of the risk estimates from the quadratic and linear models, respectively, as well as the central value of the risk estimate from the linear-quadratic model, the BEIR III Committee provided a measure of the uncertainty of these risk projections. At a single exposure of 10 rads, the estimates made with the linear model were 2.2 times larger than were those made with the linear-quadratic model. The linear-quadratic estimates were eight times larger than were the quadratic estimates were eight times larger than were the quadratic estimates. And finally, the estimates made with the relative risk projection model were three times larger than those made with the absolute risk projection model for all three dose-response functions (BEIR III 1980, Table V-2, p. 145).

Estimates of the risk of genetic disorders in BEIR III were calculated using two methods, the indirect relative-mutation-risk method (for equilibrium effects) and a new direct method (for first-generation effects). The relative mutation risk of genetic disorder was revised to 0.004-0.02 per rem, corresponding to a doubling dose of 50 to 250 rem. This method was used for all genetic disorders except chromosomal aberrations. The BEIR Committee estimated the equilibrium rate of chromosomal aberrations from the direct method; the expected number of these aberrations was low and did not appreciably affect the estimate of all genetic disorders at equilibrium. The BEIR III report follows BEIR I in using 5% to 50% for the mutational component in irregularly inherited disorders.

Using the indirect method, the BEIR Committee estimated the total number of genetic disorders at equilibrium from an exposure of 1 rem of low-LET radiation per generation to range from 60 to 1100 per million liveborn offspring. This estimate includes a reduction by a factor of 3 to account for the lesser effectiveness of low-dose-rate low-LET radiation to produce genetic effects (BEIR III 1980, p. 128). This dose-rate effect has not been observed for high-LET radiation, so that the risk of genetic disorder at equilibrium from 1 rem of high-LET radiation per generation would be 180-3300 per million liveborn offspring. A direct method, based on new data giving the incidence of radiationinduced skeletal abnormalities in mice, allows estimation of first generation genetic disorders in man that are due to gene mutations. The risk of chromosomal aberrations from radiation exposure, which the BEIR Committee felt would be dominated by reciprocal translocations, was derived from human and marmoset data. For an exposure of 1 rem, 5 to 65 serious disorders and irregularly inherited disorders, and 0 to 10 disorders from chromosomal aberrations per million liveborn offspring would be expected in the first generation from an exposure of 1 rem. This risk factor took into account the sensitivity of oocytes to radiation, which was estimated to be from 0 to 0.44 of that of spermatogonia for mature and maturing oocytes, and negligible for resting oocytes (BEIR III 1980, p. 118).

As noted above, corrections for dose-rate effects from low-LET radiation were applied in the BEIR III report in the calculation of the risk of genetic disorders. They considered a dose-rate correction for cancer induction by low-LET radiation but it was not adopted. As stated by the BEIR III Committee, "most members of the Committee conclude that it is not now possible to assign a numerical value to any dose-rate factor by which risk estimates obtained in populations exposed to low-LET radiation at relatively high dose rates can be corrected to apply to exposures at low dose rates" (BEIR III 1980, p. 191). The Committee noted that the linear-quadratic model includes some correction for dose rate because the coefficient of the guadratic term depends on dose fractionation.

For high-LET radiation, the Committee did not apply any reduction for dose rate. Because of the reduced effectiveness of body repair mechanisms for high-LET radiation, they recommended the use of the linear dose-response model for both genetic and tumorigenic effects.

2. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR Committee)

<u>a. The 1977 UNSCEAR Report</u>. UNSCEAR published a comprehensive report in 1977 entitled <u>Sources and Effects of Ionizing Radiation</u>, which included a discussion of the health effects of low-level ionizing radiation exposure. The report reviewed recent work in radiation-induced carcinogenesis, genetic disorders, and developmental disorders from <u>in utero</u> exposure. Both tumorigenic and mutagenic effects were calculated with a linear dose-response model.

UNSCEAR published total lifetime risk of cancer mortality (or incidence) resulting from exposure to ionizing radiation. Risk factors were given per unit of absorbed dose (in rads), so that identification of the type of radiation--whether high or low LET--should accompany the risk estimate to make it meaningful.

UNSCEAR explicitly reduced its estimate of total lifetime cancer risk per rad of low-LET radiation from 250 to 300 x 10^{-6} /rad at moderately high doses (100 to several hundred rads) to 100 x 10^{-6} /rad at low doses (doses of a few rads) (UNSCEAR 1977, p. 414, paragraph 318). Risk factors for leukemia, from which the above total cancer risks were estimated, were observed to fall from 50 x 10^{-6} /rad at moderately high doses to 20 x 10^{-6} /rad at low doses.

Dose-rate effects, in addition to the dose magnitude effects discussed above, also were considered (for example, see UNSCEAR 1977, p. 413, paragraph 310 and p. 512, paragraph 646). Low-LET radiation delivered at low dose rates would be expected to result in a lower risk of cancer induction per rad, but UNSCEAR indicated that it would be impossible to quantify this effect for tumorogenesis (UNSCEAR 1977, p. 598, paragraph 183). A dose-rate reduction factor of 3 for low-dose-rate low-dose effects was included in the calculation of risk of mutagenesis from low-LET radiation (UNSCEAR 1977, p. 508, paragraph 611).

The risk of genetic disorders was estimated using a direct method based on research on skeletal abnormalities in mice exposed to radiation (work also used in the BEIR III report that appeared later) and an indirect method using a doubling dose of 100 rads. The UNSCEAR report and the BEIR III report are in good agreement in estimating the risk of genetic disorder. UNSCEAR estimates that low-dose-rate irradiation at the rate of 1 rad per generation would result in 63 genetic disorders per million liveborn offspring in the first generation (compared with 5 to 75 per million in BEIR III) and 185 genetic disorders per million liveborn offspring at equilibrium (compared with 60 to 1100 per million in BEIR III).

b. The 1982 UNSCEAR Report. UNSCEAR issued its report <u>Ionizing</u> Radiation: Sources and Biological Effects in 1982. The report

- 1. did not revise any risk factors for radiation-induced cancer from its 1977 report. UNSCEAR indicated that it is now reviewing models of tumor induction, but that it is postponing publication of its findings until questions concerning the dosimetry of the atomic bomb survivors are settled (UNSCEAR 1982, p. 11, paragraph 52). (See Section IV.J. of this report for a short discussion of the effects the review of this dosimetry may have.)
- 2. reviewed the evidence for nonstochastic risks from radiation exposure. Nonstochastic risks are discussed in Section III.B.2.
- 3. reviewed recent data on the risk of radiation-induced genetic disorders. The Committee concluded that no substantial changes in previous estimates of genetic risks were necessary.

As in the 1977 UNSCEAR report, the risk of genetic disorder was calculated using a direct method (risks for first generation only) and an indirect method (risks for first generation and for equilibrium). The direct method included the estimate that was used in the 1977 UNSCEAR report based on skeletal malformations in the mouse, and also included an estimate based on radiation-induced dominant cataract mutations in male mice. The sensitivity of oocytes to radiation, which had been considered low in the 1977 report and not included in the risk estimates, was quantified in the 1982 report. The oocytes were estimated to have from 0 to 0.44 times the sensitivity of spermatogonia. The UNSCEAR Committee estimated that the risk of genetic disorder in the first generation from dominant mutations induced by low-LET radiation at low-dose rates would be 10 to 20 x 10^{-6} /rad for males and 0 to 0.9 x 10^{-6} /rad for females. The genetic risk from structural chromosomal damage was estimated using human, marmoset, and rhesus monkey data. The estimate of 0.30 to 10×10^{-6} /rad (low LET) for males was similar to the estimates of 2 to 10 x 10^{-6} /rad (low LET) for males in the 1977 UNSCEAR report. The estimate in the 1982 report of 0 to 3 x 10^{-6} /rad (low LET) for females agrees with the statement in the 1977 report that the risk of structural chromosome damage in females was low.

Using the direct method, the UNSCEAR Committee estimated that the total risk of genetic disorder in the first generation would be 10.3 to 30 x 10^{-6} /rad for males and 0 to 12 x 10^{-6} /rad for females. These risk factors apply to irradiation by low-LET radiation at low-dose rates.

The indirect method calculation in the UNSCEAR 1982 report used a doubling dose of 100 rads (low LET) to estimate the risk of radiation-induced genetic disorders in the first generation after exposure and at equilibrium. The equilibrium estimate is 149 per million liveborn offspring at a dose of 1 rad (low LET) per generation. This is only a slight change in the previous estimate of 185 x 10^{-6} /rad in UNSCEAR 1977.

The risk of genetic disorder in offspring in the first generation using the indirect method was estimated to be 21.9×10^{-6} /rad. This slight reduction from the estimate of 63×10^{-6} /rad made in the UNSCEAR 1977 report was based primarily on more recent information that was available for the 1982 report. This estimate, as well as the estimates for first-generation effects made with the direct method, is in agreement with the BEIR III estimate of 5 to 75 x 10^{-6} /rad.

3. International Commission on Radiological Protection (ICRP)

In ICRP Publication 26, <u>Recommendations of the International Commission</u> on <u>Radiological Protection</u> (ICRP 1977a), the ICRP presented a method for regulating radiation doses to radiation workers and the public based on limiting risks of somatic and hereditary effects. The dose-limitation procedure was designed to prevent nonstochastic effects (those for which the

17

severity of the effect varies with the dose) and limit stochastic effects (those for which the probability of the effect occurring, rather than its severity, depends on dose). The linear dose-response model for both tumorigenic and mutagenic risks was used in this dose-limitation procedure.

In developing its recommendations for dose limits, the ICRP presented risk estimates for both cancer mortality and genetic disorder resulting from exposure to ionizing radiation. These estimates were chosen for radiation protection purposes and considered to be conservative by the ICRP. The risk factors for cancer mortality are estimates of lifetime risks per unit dose of sufficient accuracy to be applied regardless of age or sex (ICRP 1977a, p. 9).

The ICRP in Publication 27, <u>Problems Involved in Developing an Index of</u> <u>Harm</u> (ICRP 1977b) further discusses risk calculation using these risk factors. The risk of breast cancer mortality is taken to be 50 x 10^{-6} /rem for females and 0 for males (the average, 25 x 10^{-6} /rem,* is given in ICRP Publication 26). The ICRP sums the various organ risk factors to calculate a total lifetime cancer risk of 100 x 10^{-6} /rem for males and 150 x 10^{-6} /rem for females. The average would then be 125 x 10^{-6} /rem. This sex-averaged risk is reduced to 100 x 10^{-6} /rem when the risk is averaged over the ages of the working population, because in exposed older workers, the cancer expression period is necessarily shortened by deaths from other causes.

The ICRP site-specific cancer risk factors quoted in this report are not age-averaged, but instead, they represent the risk when the "full expression period" is available. We infer this from the use of these risk factors in ICRP Publication 27 (ICRP 1977b). However, age averaging reduced the total cancer risk factor by only 20%, and a similar reduction would occur if age averaging were used for the site-specific cancer risk factors. Because of the uncertainties inherent in these risk factors, the ICRP factors are sufficiently close to the age-averaged factors to compare with risk factors recommended by other advisory groups (see Sec. III.C).

To calculate internal exposure, the ICRP uses the 50-year dose commitment in its system for limitation of dose received by intake of radioactive material during a year. The 50-year dose commitment to an organ is the total dose that an organ receives from radionuclide intake during the 50 years following that intake. The total 50-year dose is thus charged against the year that the intake occurred, even though some fraction of that dose may not be incurred for years after that intake. Multiplication of that organ

^{*}Really as 2.5 x 10^{-3} /Sievert. The ICRP presents its risk factors in terms of dose equivalent (units of Sievert or rem) rather than absorbed dose (units of greys or rads) as other advisory bodies have done. To compare the recommendations of the ICRP with those of the other groups, we converted the rem values to rad values using a quality factor of 20.

dose by the organ's weighting factor, which is the proportion of the stochastic risk to that organ to the total risk when the whole body is irradiated uniformly, gives a weighted effective dose. Risk of stochastic effects from this effective dose can then be compared directly with the risk from uniform whole-body radiation.

Use of the 50-year dose commitment to calculate stochastic risk is compatible with the ICRP's risk factors. Because their risk factors are not age dependent, the age at which the dose is received does not affect the risk calculation. It is obvious, however, that exposures to older individuals may never result in a 50-year dose because their life expectancies can be much less than 50 years.

The ICRP considered reductions in risk owing to both low doses and lowdose rates in deriving its risk factors. Many of the risk factors were based on data taken at high doses and high-dose rates. For these factors, the ICRP states, "it is likely that the frequency of effects per unit dose will be lower following exposure to low doses or to doses delivered at low-dose rates, and it may be appropriate, therefore, to reduce these estimates by a factor to allow for the probable difference in risk. The risk factors...have therefore been chosen as far as possible to apply in practice for the purposes of radiation protection." (ICRP 1977a, p. 7).

Risks of serious genetic disorder given by the ICRP are 100×10^{-6} per rem (genetically significant dose) in the first two generations and an amount of the same magnitude in later generations (ICRP 1977a, p. 10). The total risk to all subsequent generations was taken to be 200 x 10^{-6} per rem.

The ICRP also used a risk factor for genetic disorder of 80 x 10^{-6} /rem in all subsequent generations (40 x 10^{-6} /rem for the first two generations) (ICRP 1977a, p. 12). This risk factor has been adjusted for the contribution that a uniform dose to a typical population would make to the genetically significant dose (ICRP 1977b); this is the genetic risk in an exposed population in terms of the gonadal dose to that population rather than the genetically significant dose.

For the purposes of comparison with estimates of risk of genetic disorder taken from the BEIR and UNSCEAR reports, the first risk factor, 200 x 10^{-6} /rem, is appropriate, and will be discussed with risk factors from other advisory bodies in Section III.C.

4. National Council on Radiation Protection and Measurements (NCRP)

The NCRP, in its Report No. 64, <u>Influence of Dose and Its Distribution</u> in Time on Dose-Response Relationships for Low-LET Radiations (NCRP 1980), extensively reviewed the influences of dose magnitude and dose rate on carcinogenic and genetic effects in man. Radiation effects on a wide variety of biological systems, including simple cells, plants, animals, and finally humans were considered by the NCRP.

The NCRP noted that linear extrapolation of cancer risk from low-LET radiation exposure based on data for populations exposed at high doses and high-dose rates could lead to overestimation of risk at low doses and low-dose rates because the effect of biological repair mechanisms would not be taken into account. A Dose-Rate Effectiveness Factor (DREF) was developed to correct overestimates of total cancer risk and risk of genetic disorder resulting from exposure to low-LET radiation at doses of 20 rads or less and dose rates of 5 rads/year or less. For this dose magnitude and dose-rate range, the NCRP estimated that the linear hypothesis would overestimate the total number of tumors or genetic disorders in man by a factor of 2 to 10. The NCRP avoided giving DREFs for individual organs, or a single value for the DREF for all tumors, because of our present limited understanding of tumor formation and the widely different tumor responses to radiation in experimental animals.

Risk factors for selected cancers in humans were reviewed by the NCRP, but no specific factors were recommended for calculating the risk from radiation exposure. Similarly, latent periods and plateau periods were discussed, but no values were recommended for risk calculation for specific cancers. Instead, the report focused on correlating dose magnitude and doserate effects observed in a wide variety of biological systems so that the effects on man for exposure to ionizing radiation at low doses, or at high doses but at low-dose rates could be assessed, and the validity of the linear dose-response model for low-LET radiation could be examined.

B. Risks of Somatic Effects Other Than Cancer

<u>1. Effects from Irradiation in Utero.</u> In utero radiation exposure has been related to an increased risk of death of the conceptus and embryo and of teratogenic effects in animal experiments, and in some cases, in human populations (such as the atomic bomb survivors). The developmental effects include morphological changes (especially microcephaly for humans), functional disabilities (such as mental retardation), and growth impairment. These effects have been principally observed in populations exposed at highradiation doses, although some effects have also been reported at doses as low as a few rads to the embryo.

Although these effects have been documented, the dose-response relationship has not been well defined. None of the organizations (with the exception of the ICRP) whose work is reviewed in this report have developed a method of quantitatively relating the risk of teratogenic effects to the radiation dose. Many questions remain, such as the biological effectiveness of high-LET radiation relative to low-LET radiation.

In its 1977 report, the UNSCEAR Committee stated that, for somatic effects other than cancer, "data applicable to man can only be derived from human epidemiological studies. These studies are, however, not available at present, at least on the scale required and at the low doses of interest. The Committee believes that this point should be particularly emphasized so as to discourage numerical extrapolations not sufficiently justified by present knowledge." (UNSCEAR 1977, p. 707) Data obtained from animal experiments was qualitatively useful, but should not be used to establish a quantitative dose-effect relationship for man because of "(a) the great specificity of the malformations induced at comparable stages in different species and even among different strains of the same species; (b) the species difference in the duration of the foetal period ...; (c) the extremely variable form of the dose-effect relationships in different species." (UNSCEAR 1977, p. 707)

The UNSCEAR Committee did report an incidence rate for man of mental retardation associated with microcephaly of 10^{-3} /rad when irradiation occurred during the period of major organogenesis (9 to 60 days post conception). This incidence rate was measured at doses greater than 50 rads to the fetus, and the Committee warned against extrapolating this rate to the lower dose region (UNSCEAR 1977, p. 682).

In studies of individuals exposed <u>in utero</u> at Hiroshima and Nagasaki, microcephaly was observed at doses as low as 10 to 19 rad (kerma) at Hiroshima, but only at doses above 150 rad (kerma) at Nagasaki. The difference was presumably due to the larger neutron component to the dose at Hiroshima, although this conclusion may be altered by the recent reexamination of the dosimetry at Hiroshima and Nagasaki (UNSCEAR 1977, p. 682) (see Section IV.J). No dose-response relationship was given in the UNSCEAR report based on this data.

The BEIR Committee felt that, for some teratogenic effects where cellkilling effects could be directly measured, such as oocyte killing, "there do not appear to be any clear threshold doses under some conditions. For morphologic malformations, however, a generalized straight-line extrapolation from the results of acute irradiation at high or moderate doses is probably not valid. Because it is unlikely that any perceived developmental abnormality results from damage to a single target, there are probably threshold doses for all such abnormalities." (BEIR III 1980, p. 489.) The BEIR III report states that, at total exposures less than 1 R delivered at exposure rates of 0.01 R/min or less, widespread teratogenic effects would not occur, even though some effects involving single cells could occur (BEIR III 1980, p. 492). The report also states that natural and manmade

21

background radiation is so low that it is not believed to be a factor in the natural occurrence of teratogenic effects (BEIR III 1980, p. 487).

The report in which the ICRP systematically presented its risk factors, ICRP Publication 26, discussed teratogenic effects (ICRP 1977a, p. 13, paragraph 65) but presented no risk factors for those effects. In contrast to BEIR III and UNSCEAR, the ICRP has used a linear dose-response model in developing an index of harm to estimate effects from <u>in utero</u> irradiation in ICRP Publication 27 (ICRP 1977b). Risk factors for these effects were estimated to be 8 x 10^{-3} /rem for intrauterine death for exposures before implantation of the conceptus on the uterine wall and 5 x 10^{-4} /rem for malformation from exposures occurring during major organogenesis.

2. Nonstochastic Effects. Nonstochastic effects were briefly discussed in BEIR I, BEIR III, the 1977 UNSCEAR report, and in ICRP Publication 26. The most thorough treatment was found in the 1982 UNSCEAR report. No organization whose work is reviewed here has proposed a risk calculation procedure for nonstochastic effects in humans.

Nonstochastic effects in general exhibit an effective dose threshold. For doses below this threshold, no nonstochastic effects are expected to occur. In reviewing the reports described above, we have found that dose thresholds are generally well above the range of doses described in Section II.A that would be encountered in NEPA documents.

According to the ICRP, nonstochastic effects are not expected to occur over a lifetime at annual doses below 5 rem for all tissues (ICRP 1977a, p. 25, paragraph 126 and ICRP 1980).

The BEIR III report considered the effects of radiation exposure on the impairment of fertility, formation of cataracts, and aging. Doses less than 400 rads (low-LET radiation) to spermatogonial stem cells were not expected to cause permanent sterility in males. Doses to the ovary in the range of 300 to 400 rads (low-LET radiation) may cause some impairment of fertility in females, but the effect is somewhat dependent on age (BEIR III 1980, p. 499). Data on cataract formation were reported to be sigmoid in shape, with dose thresholds in the range of 20 to 450 rads (low-LET radiation) (BEIR III 1980, p. 500), but only above a dose threshold of 200 rads do vision-impairing cataracts begin to appear. With regard to aging, the BEIR Commitee concluded that "there is no firm evidence that exposure to ionizing radiation causes premature aging in man or that the associated increased incidence of carcinogenesis is due to a general acceleration of aging." (BEIR III 1980, p. 505)

The 1982 UNSCEAR report reviewed in some detail the evidence for nonstochastic effects induced by radiation. The tissues having the lowest thresholds for induction of nonstochastic effects were the reproductive

22

organs, where acute doses as low as 10 rads (low-LET radiation) could cause temporary sterility in males (permanent sterility in males would not occur until acute doses exceeded 200 to 600 rads, and in females until doses exceeded 300 rads), and blood and blood-forming cells, where acute doses as low as 50 to 100 rads may cause some loss of lymphocytes and stem cells from the bone marrow and circulating blood. The UNSCEAR report discusses nonstochastic effects for many organs, including lung, skin, urinary tract, gastrointestinal system, and eye (UNSCEAR 1982, pp. 625-626).

C. Comparison of Risk Factors

Two different approaches were taken by the organizations reviewed here in presenting their risk estimates for cancer. Both UNSCEAR and the ICRP published age- and sex-averaged risk factors, giving the incremental lifetime risk to an individual of dying from a radiation-induced cancer either per unit absorbed dose (UNSCEAR) or per unit dose equivalent (ICRP). The BEIR Committees, in contrast, tended to publish an age- and sex-specific risk rate, giving the annual risk of dying from cancer in terms of age of exposure and elapsed time since the exposure.

The first approach has the advantage of simplicity because the cumulative organ dose to a population in an assessment area leads directly to the estimated number of health effects resulting from that dose by multiplying the cumulative organ dose by the risk factor for that organ. However, if the population-at-risk differed significantly from the population over which the risk factors had been averaged, the estimate of health effects using an age- and sex-averaged risk factor is unlikely to be representative. For example, if the population consisted of male radiation workers of age 25, the risk factor for total cancers from whole-body low-LET radiation is 40% higher than the age- and sex-averaged risk factor. [However, the uncertainties already associated with risk estimates are probably much larger than this (see Section III.A.1.b)].

This difficulty is remedied by using the second approach, which employs risk-rate coefficients for each sex and age group. The enhanced flexibility in this approach, however, is offset by an increased complexity. Input data required to perform this calculation of health effects include the population distribution by age and sex, life tables for each sex, and, if a relative risk projection model is used, cancer mortality rates by age and sex.

In order to compare the risk estimates from BEIR III with those from UNSCEAR and the ICRP, we calculated age- and sex-averaged lifetime risk factors from the BEIR III risk-rate factors when lifetime risk factors were not given. The risk factors recommended by these three groups are listed in Table I for the most important organs of concern. In obtaining the BEIR III lifetime risk factors, we used a life table calculation based on the 1980

TABLE I

TUMORIGENIC AND MUTAGENIC RISK FACTORS RECOMMENDED BY NATIONAL AND INTERNATIONAL ORGANIZATIONS FOR RADIATION EXPOSURE AT LOW DOSES

		Age- and	Sex-Averaged Lifet	ime Risk of	Cancer Mor	tality (Can	cer Deaths/1	Ob Person-rad)	
	Low-LET Radiation				High-LET Radiation				
			BEIR III ^a				BEIR	BEIR III	
			Absolute	Re	elative			Absolute	Relative
	UNSCEAR	ICRP	Risk		Risk	UNSCEAR	ICRPb	Risk	Risk
All cancers	100	100	167	501 (1	Linear)				*-
(whole-body radiation)	(75-175)		77	226 (1	Linear- Ouadratic)				
			10	28 (0	Quadratic)				
Bone ^C	2-5	5	1,4 ^d			20-50	100	2	7 ^d
Lung	25-50	20	100	270		200-450	400	800-1500 e	2200-4000 ^e
Breast	25 ^f	25 ^f	36 ^f	23			500		
Liver	10-15	<10 ^g	15	56		100	<200	300	
Thyroid	5-15	5	26	170			100		
Leukemia	15-25	20	55 (Line	ear)		50-55 ^h	400		
(red marrow dose)			23 (Line	ar-					
			Quad	lratic)					
			3 (Quad	lratic)					

^aThe linear model was used in making these risk estimates, unless otherwise indicated.

^bA quality factor of 20 has been assumed.

^CDose calculated to the bone surface.

^dThe 8EIR III report lists a dose-squared exponential function and a linear function to express the dose-response relation for bone cancers. Only the linear function is given here.

^eThe RBE of alpha radiation for lung cancer is 8-15.

^fThe breast cancer risk for women has been reduced by 50% for the general population.

^gThe ICRP risk for liver cancer was calculated from the risk factor for the "other cancers" category (ICRP 1977a).

^hCalculated from Thorotrast patients.

.

.

ⁱThe first two estimates (10.3-30) x 10^{-b} and (0-12) x 10^{-b} were obtained using the direct method. The third estimate was obtained using the doubling dose method. The quoted risk factors are taken from UNSCEAR (1982), which supersedes UNSCEAR (1977).

,

TABLE	Ι	(cont)
-------	---	--------

	Risk of Ge	enetic Disor	der per 10 ^b Liv	veborn Offspring per rad				
	Low-LET Ra	Low-LET Radiation				High-LET Radiation		
	UNSCEAR	ICRP	BEIR III ^a	UNSCEAR	ICRPb	BEIR III		
First generation	10.3-30 (males) ⁱ 0-12 (females) ⁱ 21.9 (males and females) ⁱ		5-75			300-4500		
First two generations		100			2000			
Equilibrium	149	200	60-1100		4000	3600-66000		

^aThe linear model was used in making these risk estimates, unless otherwise indicated.

^bA quality factor of 20 has been assumed.

^CDose calculated to the bone surface.

^dThe BEIR III report lists a dose-squared exponential function and a linear function to express the dose-response relation for bone cancers. Only the linear function is given here.

^eThe RBE of alpha radiation for lung cancer is 8-15.

^fThe breast cancer risk for women has been reduced by 50% for the general population.

^gThe ICRP risk for liver cancer was calculated from the risk factor for the "other cancers" category (ICRP 1977a).

^hCalculated from Thorotrast patients.

ⁱThe first two estimates (10.3-30) x 10^{-b} and (0-12) x 10^{-b} were obtained using the direct method. The third estimate was obtained using the doubling dose method. The quoted risk factors are taken from UNSCEAR (1982), which supersedes UNSCEAR (1977).

U.S. population distribution by age and sex (U.S. Bureau of the Census 1982) and the U.S. decennial life tables (USNCHS 1975).

The BEIR III lifetime risk factors were calculated assuming a linear dose-response curve for high-LET radiation, and a linear, linear-quadratic, or quadratic dose-response curve for low-LET radiation. This corresponds to the procedure used in the BEIR III report in which the three models were used to present a range of risk estimates. We note that, because the linearquadratic and quadratic models are not linear in dose for low-LET radiation, the risk factors for these two models in Table I are average values per rad and not estimates of risk at 1 rad of dose (BEIR III 1980, p. 212).

Because the report of the BEIR III Committee supersedes previous reports, lifetime risk coefficients were not derived for the BEIR I report.

The reports reviewed here give the risk of genetic disorder per million liveborn offspring for either the first or first two generations and for the equilibrium situation (equilibrium corresponds to the case of a number of succeeding generations, each receiving the same additional radiation exposure to the point where the rate of elimination of mutant genes balances the rate of increase of mutant genes). The BEIR III report points out that the risk of genetic disorder at equilibrium in a single generation is numerically equal to the risk of genetic disorder in all succeeding generations due to a radiation exposure in a single generation (BEIR III 1980, p. 128). Accordingly, the equilibrium estimate has been used in Table I to give the number of genetic disorders in all succeeding generations.

As seen in Table I, the lifetime risk factors for low-LET radiation published by the BEIR Committee, UNSCEAR, and ICRP are in fair agreement. The BEIR III estimate of all cancer fatalities per rad of exposure is larger for the linear model than the estimates of UNSCEAR and ICRP; however, those two organizations deliberately tailored their risk factors for use at low doses, whereas BEIR III did not. A more fair comparison would be between the BEIR III estimate using the linear-quadratic model [(77-228) x 10^{-6} /rad] and the UNSCEAR and ICRP risk factors having a range of (75-175) x 10^{-6} /rad, for which there is good agreement (BEIR III 1980, p. 212, Table V-25). (The same consideration applies also to the lifetime risk factor for leukemia.)

Using risk-rate factors from Appendix A of BEIR III, we calculated the BEIR III thyroid risk factor to be about twice as large as the UNSCEAR factor and five times as large as the ICRP factor. This discrepancy may be due to a difference in changing from an incidence to mortality risk. UNSCEAR gives a lifetime thyroid cancer incidence risk factor of 100 and 300 x 10^{-6} /rad (UNSCEAR 1977, p. 385, paragraph 150). A 3% fatality risk per 25 years was then used to calculate the lifetime thyroid cancer mortality risk of (5-15) x 10^{-6} /rad. The BEIR III thyroid cancer risk factor was calculated using a mortality-to-incidence ratio of 0.19 for thyroid cancer (the average of the

male and female values) given in Table V-15 (BEIR III 1980). This ratio would yield a mortality risk factor approximately 3 times larger than that used in UNSCEAR. Lowering the BEIR III risk factor of 25 x 10^{-6} /rad by a factor of 3 to 8 x 10^{-6} /rad would place it in the range estimated by UNSCEAR.

The risk factor for lung cancer from low-LET radiation is also higher in BEIR III than in either UNSCEAR or ICRP. The BEIR III estimate was calculated for an entire lifetime using the age-specific risk rate coefficients from Appendix A of BEIR III. The UNSCEAR estimate was based on a 40-year followup period for the uranium miner study and a 27- to 29-year followup period for the Japanese atomic bomb survivor study. Although the basis of the ICRP risk factor was not discussed, the ICRP did indicate that its risk factors were chosen to apply for radiation protection, which may mean they were chosen for the doses and dose rates typically found in operational radiation exposure.

Many of these comments also apply to the high-LET radiation risk factors. The risk of liver cancer mortality is 3 times higher in BEIR III than in UNSCEAR; no explanation is offered for this difference, because these risk factor values were taken directly from each report. The BEIR III Committee indicated that previous estimates of liver cancer risk made by several individual authors were three or four times too low for several reasons, including these authors' not considering future risk to surviving patients (BEIR III 1980, p. 375). The Committee did not indicate whether its revisions would also apply to the UNSCEAR risk factor for liver cancer.

- IV. RISK ESTIMATION METHODOLOGY FOR USE IN U.S. DEPARTMENT OF ENERGY NEPA DOCUMENTS
- A. Recommendations for Calculating Risk of Cancer and Genetic Disorder from Radiation Exposure

Recommendations for risk estimation methodology and for risk factor values based on the review of the literature presented in Chapter III are discussed in this section. These recommendations are intended to apply to NEPA-related documents published by the U.S. Department of Energy.

The reports reviewed in Section III to some degree present competing estimates of risk (is it better to use a risk factor from one report instead of from another report?). However, in a larger sense each subsequent report represents a cumulative (rather than competing) effort that includes the results of previous reports. The authors of the more recent reports have benefitted from reviewing the earlier reports and had available both the data on which the earlier reports were based and also data published since the appearance of those earlier reports. The later reports, because they incorporate a larger epidemiological and experimental data base than the earlier ones, were used as the basis for the recommendations presented here.

The BEIR III report was relied on heavily in making these recommendations. Several extensions of the BEIR III report were developed so that the risk calculational methodology could be applied in a wide variety of circumstances. These extensions were consistent with the approach found in BEIR III.

As noted in Section II.C.1., the BEIR Committee expressed considerable uncertainty over just what the health effects at low doses (1 rad or less) of radiation are, or even if there are any at all (see, for example, p. 193, BEIR III 1980). Typical doses discussed in NEPA documents are generally in this low-dose range. In spite of these uncertainties, procedures for estimating health effects at low doses are given here because of the need to directly relate dose estimates to their impact on health so that the potential effects of proposed DOE activities can be presented more clearly and concretely to decision makers. This approach agrees with that of the BEIR Committee. In the BEIR I report, the BEIR Committee stated that "such (risk) estimates... are fraught with uncertainty. However, they are needed as a basis for logical decision making and may serve to stimulate the gaining of data for assessment of comparative hazards from technological options and development, at the same time promoting better public understanding of the issues." (BEIR I 1972, p. 7.) Similarly, in BEIR III, "The Committee recognizes that the scientific basis for making such estimates (for cancer risk from low dose, low-LET radiation) is inadequate, but it also recognizes that policy decisions cannot be reached or regulatory authority exercised without someone's taking a position on the probable cancer risk associated with such radiation." (BEIR III 1980, p. 177.)

Under NEPA, radiation exposures to members of the public, which would occur as a result of a proposed federal action, are evaluated. This evaluation may also include doses to personnel, such as office workers, whose tasks are not connected with the exposure-producing activity. To estimate the health risks resulting from these exposures, either a simple or a more detailed approach may be taken, depending on the population exposed.

1. First Method. If the exposed population is similar to the 1980 U.S. population in that it has a similar life table and age distribution, and similar (if relative risk is used) cancer mortality rates, or if this demographic data is not available for the exposed population,* then age- and sex-averaged lifetime cancer risk factors (Table IIa) calculated for the U.S.

^{*}Use of risk factors averaged by age and sex over the U.S. population would lead to differences of up to a factor of 2 to 3 for the exposed populations with more extreme age and sex distributions. The uncertainties associated with risk estimation (see Sec. III.A.1.b.) may make a more detailed risk calculation unnecessary.

TABLE IIa

RISK FACTORS (RISK/ABSORBED DOSE) RECOMMENDED FOR USE IN DOE NEPA DOCUMENTS (If a population-specific calculation is deemed unnecessary)

		Risk Fa	ctor (x 10 ⁻⁶ /ra	ad)
	Low-LET	Radiation	High-LET Ra	adiation
Cancer Type/Organ	Absolute	Relative	Absolute	Relative
Receiving Dose	<u>Risk</u>	Risk	Risk	Risk
All cancers/whole-body				
radiation	86 ^D	. 270 ^D	1700 ^C	5300 ^C
Bone cancer/bone surface	1.	.4 ^d	2	7 ^d
Lung cancer/lung	100	270	1000 ^e	2700 ^e
Breast cancer/breast	36	23	720	460
Liver cancer/liver	15	56	300	1100
Thyroid cancer/thyroid	26	170	520	. 3400
Leukemia/red marrow	46 ⁰	1	92	0q
Prenatal Exposure				
Hematopoietic tumors/fetus	280	-	280	of ·
Solid tumors/fetus	260 '		260	0'

A. Age-and Sex-Averaged Lifetime Risk^a of Cancer Mortality per rad

8. Risk of Genetic Disorder in Offspring per rad

	Risk Factor (x 10 ⁻⁶ /rad)				
Effects Occurring In	Dose Type	Low-LET Radiation	High-LET Radiation		
First Generation	Gamete	5- 75	300- 4500		
All generations subsequent to exposure	Gamete	60-1100	3600-66000		
First generation	Gonada l	2- 349	130- 2000 ^g		
All generations subsequent	Gonada 1	25- 500 ^g	1500-30000 ^g		

^aSome factors may differ slightly from those given in Table I because of a different population age distribution.

^bIf the dose is greater than or equal to 20 rads from a single exposure, or delivered at a rate greater than or equal to 5 rads/year, these risks should be multiplied by two to become 170 x 10^{-6} /rad (absolute risk) and 530 x 10^{-6} (relative risk).

^CThe factor of two reduction for low-dose, low-dose-rate low-LET radiation was deleted for high-LET radiation. An RBE of 10 was used here in calculating the risk from high-LET radiation, because whole body high-LET radiation would normally involve neutron radiation. If the quality factor of the neutron radiation is known, this should be used as the RBE instead of 10.

^dNo risk projection is necessary for either leukemia or bone cancer. Both absolute and relative risk calculations give the same result.

^eThe risk factor for lung cancer due to exposure to environmental levels of radon and its decay products is taken to be 100 x 10^{-6} /WLM (see Section _IV.F.7).

- ^fThe risk factors for prenatal exposure obviously are not age-averaged. An RBE of 10 was used in calculating the risk from high-LET radiation, since high-LET irradiation of the fetus would normally involve neutron radiation. If the quality factor of the neutron radiation is known, this should be used as the RBE instead of 10. Because the cancer expression periods are short (10-12 years), the absolute and relative risk models give the same result.
- ^gThese risk factors assume that the exposed population has the same agespecific birth rate as the US population (USNCHS 1982) and the same age and sex distribution as the 1981 US population (US Bureau of the Census 1982).

population can be used. This would be a simple and straightforward approach, involving only multiplication of the absorbed dose by the absolute and relative lifetime cancer risk factors to obtain the lower and upper estimates, respectively, for the incremental lifetime risk of dying of cancer as a result of the exposure.

We recommend that the lifetime risk of cancer incidence also be given. This is obtained from the cancer mortality risk calculated here by using the conversion factors given in Section IV.G.

The risk of genetic disorder in the first generation and in all subsequent generations can be estimated in the same manner. The number of genetic disorders per million liveborn offspring per rad of exposure is presented in Table IIa. This risk factor is expressed in terms of the gamete dose. If the population exposed to the radiation is expected to have the same number of offspring as would the typical U.S. population, then the risk factor of genetic disorder in terms of gonadal dose, also presented in Table IIa, may be used directly.

The risk factors in Table IIb were calculated from those in Table IIa for use with dose equivalent (in rem) instead of absorbed dose (in rads). A quality factor of 20 was used to make this calculation for all risk factors except for whole-body radiation. Because whole-body high-LET radiation normally would result from neutron exposure, we used a quality factor of 10 for whole-body exposure.

Risk factors for all cancers from whole-body low-LET radiation exposure and the risk factors for genetic disorders for low-LET radiation include reductions by factors of 2 and 3, respectively, for application at low dose rates. These reductions are not appropriate for the factors for high-LET radiation, which are given separately in the table.

Lastly, the RBE for lung cancer from alpha radiation was stated to range from 8 to 15 by the BEIR III Committee. A value of 10 is used in this report to obtain the high-LET lung cancer risk factor in Table IIa. If a quality factor of 20 is used in a NEPA dose assessment to calculate lung dose, the appropriate risk factor is 50 x 10^{-6} /rem.

2. Second Method. If the exposed population is significantly different from the U.S. population (for example, a group of males of ages 25 to 30 years), the age- and sex-averaged risk factors for cancer given above may not be appropriate. A more detailed risk calculation may be preferable, using age- and sex-specific risk rates if the required demographic information for the exposed population is available. This calculation can be performed with the computer code REPCAL (Risk Estimation Program for CALculating the risk of radiation-induced cancers), which is described in Appendix A and listed in Appendix B. The code requires site-specific population distribution by age
and sex, the proportion dying from all causes in each age interval for each sex, as well as other input data including mortality rates for each cancer of interest (if relative risk is to be used) and dose distribution by year. The required input data are discussed in Appendix A. A sample calculation is presented in Appendix C.

This computer code utilizes the same risk-rate factors used to calculate the lifetime risk factors in Tables IIa and IIb. Except for the risk factors for bone and liver, which were explicitly given in BEIR III, these risk factors are a special case of the application of the code to a population having the same characteristics as the U.S. population.

The algorithms used in the code are discussed in Section IV.D.

As can be seen in Table IIa, the dose for use with the risk factors is the absorbed dose (in rads). Similarly, absorbed dose is used as input to the computer program REPCAL. Absorbed dose, instead of dose equivalent, is used in these calculations to avoid confusion concerning quality factors. [For convenience in Table IIb we have converted the risk factors for use with dose equivalent (in rems) assuming a quality factor of 20.]

In the rest of this section, we will discuss assumptions and specific features of the risk factors and the risk calculational procedure.

B. Dose-Response Model for Low-LET and High-LET Radiation

The linear hypothesis was used to calculate the lifetime risk of cancer mortality and the risk of genetic disorder in offspring for both low-LET and high-LET radiation. This agrees with the procedure used in BEIR III, except for the case of cancer risk from low-LET radiation.

Chapter V of the BEIR III report states that the linear-quadratic model provides the most realistic estimate of the risk of cancer mortality from low-LET radiation (BEIR III 1980). The BEIR Committee was sufficiently uncertain as to the appropriate model that they discussed three models, with the purely linear model and purely quadratic model providing upper and lower bounds on the estimates made with the linear-quadratic model.

Consequently in Chapter V of BEIR III, parameters for all three models are provided for two groups of cancers: (1) leukemia and bone cancer, and (2) all other cancers taken together. The BEIR Committee did not feel that there was sufficient data to present parameters for the linear-quadratic model for specific cancers. Cancers are discussed individually in Appendix A of BEIR III, but only risk factors for the linear model are given. It is, therefore, not possible to calculate the cancer risk using the linear-quadratic model with BEIR III parameters for each cancer type, because these parameters have only been published for two special cases.

TABLE IIb

RISK FACTORS (RISK/DOSE EQUIVALENT) RECOMMENDED FOR USE IN DOE NEPA DOCUMENTS ASSUMING A QUALITY FACTOR OF 20 (If a population-specific calculation is deemed unnecessary)

A. Age-and Sex-Averaged Lifetime Risk of Cancer Mortality per rem

Cancer Type/Organ Receiving Dose	Risk Factor (x 10 ⁻⁶ /rem) Absolute Risk Relative Ris	sk_
All cancers/whole-body radiation	86 (low-LET) a 270 (low-LE1 170 (high-LET) ^b 530 (high-LE	r) ^a ET) ^b
Lung cancer/lung	1.4 100 (low-LET) 270 (low-LET) 50 (high-LET) ^d 130 (high-LE	F) ET)d
Breast cancer/breast Liver cancer/liver	36 23 15 56	
Thyroid cancer/thyroid Leukemia/red marrow	26 170 46 ^C	
Prenatal Exposure		
Hematopoietic tumors/fetus	280 ^e	

Solid tumors/fetus

8. Risk of Genetic Disorder in Offspring per rem

	<u> </u>						
Effects Occurring In	Dose Type	Low-LET Radiation	High-LET Radiation				
First Generation	Gamete	5- 75	15- 225				
All generations subsequent to exposure	Gamete	60-1100	180-3300				
First generation	Gonada l	2- 34 ^f	$6-100^{f}$				
All generations subsequent	Gona da 1	25- 500 [†]	75-1500 [†]				

260^e

^aIf the dose is greater than or equal to 20 rads from a single exposure, or delivered at a rate greater than or equal to 5 rads/year, these risks should be multiplied by two.

^bThe factor of two reduction for low-dose low-dose-rate low-LET radiation was deleted for high-LET radiation. A quality factor of 10 was used here in calculating the risk from high-LET radiation, because whole-body high-LET radiation would normally involve neutron radiation.

^CNo risk projection is necessary for either leukemia or bone cancer. Both absolute and relative risk calculations give the same result. ^dThe risk factor for lung cancer due to exposure to environmental levels of

"The risk factor for lung cancer due to exposure to environmental levels of radon and its decay products is taken to be 100×10^{-6} /WLM (see Section IV.F.7).

^eThe risk factors for prenatal exposure obviously are not age-averaged. An R8E of 10 was used in calculating the risk from high-LET radiation, since high-LET irradiation of the fetus would normally involve neutron radiation. If the quality factor of the neutron radiation is known, this should be used as the R8E instead of 10. Because the cancer expression periods are short (10-12 years), the absolute and relative risk models give the same result.

These risk factors assume that the exposed population has the same agespecific birth rate as the US population (USNCHS 1982), and the same age and sex distribution as the 1981 population (US Bureau of the Census 1982). On the other hand, linear risk-rate factors are available by cancer site in BEIR III, Appendix A. Therefore, risk factors based on the linear model can be calculated using the BEIR III recommended risk-rate factors from Appendix A.

Several issues were considered in choosing the linear model for carcinogenic risk from low-LET radiation. BEIR III notes that, for breast cancer, the dose-response curve does not require a quadratic term, but is well fit by the linear model. In contrast, the dose-response curve for leukemia at Nagasaki appears to have positive curvature, indicating the need for a quadratic term for leukemia.

An additional complication is that the dosimetry at Hiroshima and Nagasaki is now being revised. Although changes in the estimates of low-LET doses may not be significant, the high-LET neutron doses are expected to be reduced significantly. Several authors have indicated that this will allow the data from Hiroshima and Nagasaki to be combined (Loewe 1981). Whether the leukemia dose-response curve will continue to show positive curvature (especially if the Nagasaki data are pooled with the statistically stronger data at Hiroshima), or whether the breast cancer dose-response curve will continue to be linear, remains uncertain.

These considerations have led us to recommend that the linear model be used to estimate the risk of cancers induced by low-LET radiation. The linear hypothesis will probably overestimate the risk of most cancers, but it will be realistic in estimating the risk of breast cancer. The linear model will provide a conservative estimate of the cancer risk from low-LET radiation, which is appropriate in view of the uncertainties in the dosimetry for the Japanese survivors.

In order to reduce the overestimate in the case of total cancer risk from low-LET whole-body radiation, a DREF, as defined by the NCRP, of two is being recommended. This is a conservative value for the value of the DREF because it is the smallest reduction factor of the range of 2 to 10 recommended by the NCRP. In accordance with the recommendations of the NCRP, this DREF would be applied only to the total cancer risk for a single low-LET whole-body radiation dose less than 20 rads, or any low-LET whole-body dose delivered at a dose rate of less than 5 rad/year. The risk factors for all cancers from low-LET radiation in Table IIa, 86 x 10^{-6} /rad and 270 x 10^{-6} /rad, have already been divided by this DREF and are for use for lowdose low-dose-rate radiation. If the dose or dose rate exceeds the values given above, these risk factors should be doubled.

C. Absolute Risk vs Relative Risk in Estimating Incremental Probability of Cancer Mortality

Absolute risk rate factors are given in Chapter V and Appendix A to Chapter V of BEIR III. Most of these factors are age-specific and many are sex-specific. The factors used to calculate radiation-induced cancer risks that are recommended for use in NEPA-related documents are presented in Table III. Values from BEIR III for the latent period and expression period of each cancer type are also given.

As noted earlier, the BEIR III report does not present relative riskrate factors as the BEIR I report did. Instead, relative risk is calculated using the absolute risk-rate factors.* For example, for all cancers except leukemia and bone that result from a single exposure to 10 rads of low-LET radiation in a cohort of 100 000 persons of a given age, the relative risk was estimated by the following procedure:

1. Calculating the number N_{rad} of fatal cancers (other than bone cancer and leukemia) resulting from the radiation exposure that would occur in the cohort during the first 30 years following the exposure. The absolute risk-rate factors and a 10-year latent period were used in the calculation.

2. Estimating the number N_{spon} of fatal cancers (other than bone cancer and leukemia) occurring spontaneously (that is, not induced by radiation) in the cohort from published cancer mortality rates from the 10th to the 30th year following the exposure.

3. Calculating a relative risk-rate factor R by dividing the number of radiation-induced cancer fatalities by the number of spontaneous cancer fatalities, $R = N_{rad}/N_{spon}$.

4. Using this relative risk rate to calculate the expected number of cancers from the 30th year after exposure to the end of the lifetime of the cohort.

5. Adding the number of radiation-induced cancer fatalities occurring during the first 30 years after the exposure (found in No. 1 above) to the number of fatalities occurring after the first 30 years (found in No. 4), to give the total number of cancer fatalities.

6. For this particular example, BEIR III also used age averaging. This simply involved calculating the number of cancer fatalities assuming 100 000

^{*}We have relied to a great extent on the draft paper presented by Mr. Robert Alexander (1982) and on conversations with Dr. Charles Land for a description of the procedure used by the BEIR Committee to calculate relative risk.

TABLE III

.

.

		(Number of fa	Risk-Rate tal cancer:	Factors s/10 ⁶ yea	<u>d</u>	Latent	Expression Period	Ob servati on Period ^a	
Cancer Type	Sex		Age	at Expos	ure		(years)	(years)	(years)
All cancers		0-9	<u>10-19</u>	<u>20-34</u>	<u>35-49</u>	50+			
Leukemia/bone cancer component	M F	3.977 2.542	1.849 1.192	2.596 1.666	1.921 1.237	4.319 2.760	3	24	
All cancers (excluding leukemia/bone component)	M F	1.920 2.576	1.457 1.955	4.327 5.807	5.291 7.102	8.808 11.823	10	' Lifetime	30
Bone	M&F	0	.05 (all ag	ges)			3	24	
Breast	M F	0.0 ^b 0.0 ^c 0.0 ^d 0.0 ^e	(all ages 4.1 ^D 8.7 ^C 0.4 ^d 1.1 ^e) 2.6 ^b 3.4 ^c 0.16 ^d 0.22 ^e	2.6 ^b 3.4 ^c 0.16 ^d 0.22 ^e	2.6 ^b 3.4 ^c 0.16 ^d 0.22 ^e	10	Lifetime	
Liver	M&F	0	.7 (all ag	es)			10	Lifetime	45
Thyroid	M F	0 1	.40 (all ag .2 (all ag	ges) es)			10	Lifetime	30
			(Age at D	iagnosis)	<u>)</u>				
Lung	M&F	0 0 1.5 3.0 7.0	0-14 15-34 35-4 50-6 >65	4 4 9 5			25 17.5 10 10 10	Lifetime Lifetime Lifetime Lifetime Lifetime	25
In utero exposures Hematopoietic tumors	M&F	25	(p	renatal e	exposure)		0	12	
Solid tumors	M&F	28	(р	renatal e	exposure)		0	10	

PARAMETERS USED FOR CALCULATING LIFETIME RISK FACTORS FOR CANCER (low-LET radiation)

^aFor use in calculating the relative risk. ^bAbsolute risk, no cell killing. ^CAbsolute risk, with cell killing. ^dRelative risk (%/rad), no cell killing. ^eRelative risk, (%/rad) with cell killing.

.

4

persons in the cohort were each of age 0 year, then doing a second calculation assuming that all persons were of age 1 year, then another calculation assuming age 2 years, and so on up to age 109 years. The number of cancers calculated for each age was then multiplied by the fraction of the total population that each age group represented, and the resulting numbers were then added.

As a result of this procedure, for a given cancer type each age of exposure will have a different risk-rate factor. Partly, this is because the absolute risk-rate factors change to some extent with age, but mainly it is because the number of spontaneous fatal cancers generally is not the same for different ages.

Cancer risk estimates made with the relative risk projection model are typically several times larger than those made with the absolute risk projection model. This difference has been offset somewhat in BEIR III by using age-specific absolute risk-rate factors, which allows adjustment of risk rates upward or downward for ages of high or low spontaneous cancer mortality. As a result, the absolute and relative risk projection model results have been brought into closer agreement for some cancer types.

D. Calculation of the Risk of Cancer Mortality

We describe in this section the procedure that was used to calculate the incremental risk of dying of cancer as a result of exposure to radiation. In developing this procedure, we relied heavily on the work of Cook, Bunger, and Barrick (Cook 1978, Bunger 1981), who had used a life table approach to calculating risks of mortality from the increased risks of cancer as well as from other hazards. A slightly modified version of their procedure was used by the BEIR Committee (BEIR III 1980, p. 193). The computer program REPCAL, on which many of the risk estimates in this report are based, uses a similar life table calculation as well as risk-rate factors taken from the BEIR III report.

The advantage of a life table approach is that risk estimates are automatically corrected for competing causes of death. The life table method used by Cook, Bunger, and Barrick was an adaptation of a method used by the National Center for Health Statistics (NCHS).* In this method, a hypothetical cohort of 100 000 individuals, all of the same age, is followed throughout its lifetime. The cohort is assumed to have the same age-specific mortality rates as found in a subject population from observations over a short time period.

_ . . . _

^{*}The NCHS describes two types of life tables, a generation life table and a current life table. The life table described here corresponds to a current life table.

The proportion of individuals q_{χ} reaching a particular age χ that will die before reaching age $\chi + 1$ is calculated using the mortality rate for that age. This proportion is multiplied by the number of individuals ℓ_{χ} reaching age χ to give the expected number of deaths d_{χ} in the cohort at that age, which is then subtracted from ℓ_{χ} to give the number of individuals surviving to the next age group $\chi+1$, or

$$\ell_{\chi} + 1 = \ell_{\chi} - \ell_{\chi} q_{\chi}$$
$$= \ell_{\chi} - d_{\chi}$$

The life table can be modified easily to include the risk of cancer mortality resulting from radiation exposure. The radiation cancer mortality risk $R_{rad,\chi}$, which is estimated for the midpoint of an age interval, needs to be modified to be compatible with q_{χ} , which is estimated for individuals beginning the age interval. Cook <u>et al</u>. describe how this can be done by calculating a reference mortality rate $R_{ref,\chi}$ from q_{χ} ,

$$R_{ref,\chi} = \frac{q_{\chi}}{1 - 0.5q_{\chi}}$$

and calculating a new value q' for q that includes both the natural mortality risk and the radiation-associated cancer mortality risk

$$q'_{\chi} = \frac{R_{ref,\chi}}{1.0 + 0.5 (R_{ref,\chi}^{+} + R_{rad,\chi}^{-})} + \frac{R_{rad,\chi}}{1.0 + 0.5 (R_{ref,\chi}^{+} + R_{rad,\chi}^{-})},$$

= $q'_{ref,\chi} + q'_{rad,\chi}$.

Multiplying by ℓ_{χ} gives the total number of individuals dying from χ to $\chi + 1$,

$$d_{\chi} = q'_{\chi} \ell_{\chi} = q'_{ref,\chi} \ell_{\chi} + q'_{rad,\chi} \ell_{\chi}$$
$$= d_{ref,\chi} + d_{rad,\chi} .$$

The first term $(d_{ref,\chi})$ gives the number in the group surviving to age χ that will die from natural causes during age χ ; the second term $(d_{rad,\chi})$ gives the number dying from radiation-induced cancer during that age. The total number of deaths due to radiation-induced cancer occurring in the cohort is given by summing $d_{rad,\chi}$ over all the ages χ .

The computer code REPCAL is written so that the life table calculation is performed at each age from ages 0 through 109 years. The expected number of cancer fatalities from radiation-induced cancer is calculated for 100 000 individuals exposed at age 0 year, followed by a calculation for 100 000 individuals exposed at age 1 year, and so on to age 109 years. The expected number of radiation-induced cancer deaths in a population of a given age distribution is found by multiplying the number of cancer deaths calculated for each age cohort by the fraction of the population that is in that age group and summing the resulting age-weighted cancer mortality estimates.

REPCAL calculates the risk of cancer to a cohort of individuals all of the <u>same age</u> for each age up to 109 years for both acute and continuous exposure. Different doses may be entered for each year of exposure to account for a varying radiation environment and for increased dose from internal emitters from continuous radionuclide intake.

In contrast to the calculation above for a cohort of individuals all of the <u>same age</u>, the expected number of radiation-induced cancer fatalities in an actual population of individuals of <u>different ages</u> is calculated only for acute exposures, or for exposures lasting less than 1 year, and not for continuous exposure over more than 1 year. The dose to an organ may be over many years, as in the case of the dose to bone resulting from the inhalation of a radionuclide with a long effective half-life in bone. The dose supplied as input to the program is then the annual dose from this radionuclide. But the actual time of exposure to the radionuclide, the time during which the radionuclide is being inhaled, must be 1 year or less. This is because the program treats the population as static and does not take into account new individuals being born into the population, immigration, or emigration (please see Appendix A for a discussion of REPCAL).

The radiation risk rates $R_{rad,\chi}$ used in the risk calculation are based on the BEIR III report. Absolute risk rates are taken directly from that report and are listed in Table III. Relative risk rates are calculated from the absolute risk rates as described in Section IV.B. Relative risk rates based primarily on the atomic bomb survivor data are estimated using a 30-year period after the initial exposure to calculate the number of radiation-induced and spontaneously occurring cancers. However, for many cancer sites such as the lung, the risk rates were determined from data other than that of the atomic bomb survivors. In those cases we used the time interval that corresponded to the follow-up time of the principal epidemiological surveys on which the risk rates were based. The time interval used in the relative risk calculation is shown in Table III for each cancer site.

The recommended lifetime risk factors listed in Tables IIa or IIb have been calculated using this method and the demographic statistics of the reference U.S. population. Exceptions are the lifetime risk factors for bone and liver cancer, which, since they were given explicitly in BEIR III, were taken directly from that report.

The reference life table values used in this calculation, which were supplied by NCHS for 1970 (the last year for which life tables that are complete to age 109 years are available) (USNCHS 1975), are given in Table IV. The population age- and sex-distribution for 1981 used in obtaining the age- and sex-averaged lifetime risk factors are in Table V. This distribution was taken from a report by the U.S. Bureau of the Census (1982). Age-specific cancer mortality rates used to calculate relative risk factors are in Table VI. Mortality rates for lung cancer, breast cancer, liver cancer, and thyroid cancer were calculated from the data published by the U.S. National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) Program (USNCI 1981). The age-specific mortality rates for all cancers except leukemia and bone cancer were taken from Alexander (1982), who had obtained these rates from Dr. Charles Land of the National Cancer Institute.

REPCAL contains the risk-rate coefficients shown in Table III. The U.S. population age distribution (1980 census) and 1969-1971 life table values for q_{χ} are contained in the program in DATA statements. Options are provided as input statements for the user to select the type of risk projection model and the desired dose magnitude and time distribution. The user may also choose to supply his own population age distribution and q_{χ} value for the area surrounding the proposed facility.

E. Specification of Dose for Use in the Risk Calculation

The risk factors and risk-rate factors recommended in Table IIa expressed in terms of risk or risk rate per absorbed dose in rads. Doses used to calculate the risk should consequently be absorbed dose in rads. (For convenience, risk factors in terms of risk-per-dose equivalent are presented in Table IIb, so that dose in rems can be used with these factors.)

The dose to bone should be calculated as the dose to the endosteal tissues, rather than as the dose to the entire skeleton (p. 414, BEIR III 1980). This procedure is in accordance with the practice of the BEIR

TABLE IV

PROPORTION DYING IN EACH AGE INTERVAL

male population

.

age	tq×	age	tqx	age	tqx	age	tqx	age	tqx	age	tqx	age	tqx	age	tq×
- 1	0.00000	13	. 00059	27	.00199	41	.00435	55	.01534	69	.04665	83	. 12770	97	.30135
0	.02245	14	.00084	28	.00198	42	.00473	56	.01676	70	.04991	84	.13663	98	. 31111
1	.00133	15	.00114	29	.00203	43	.00518	57	.01827	71	.05344	85	. 14730	99	. 32017
2	.00094	16	.00142	30	.00210	44	.00568	58	.01987	72	.05740	86	. 15979	100	.32857
3	.00078	17	.00167	31	.00218	45	.00623	59	.02158	73	.06193	87	. 17281	101	.33633
4	.00064	18	.00185	32	.00228	46	. 0068 1	60	.02339	74	.06703	88	. 18521	102	. 34347
5	.00058	19	.00198	33	.00239	47	.00744	61	.02532	75	.07264	89	. 1968 1	103	. 35004
6	.00054	20	.00212	34	.00252	48	.00812	62	.02738	76	.07856	90	. 20839	104	.35606
7	.00051	21	.00226	35	.00268	49	.00887	63	.02960	77	.08462	91	.22122	105	.36157
8	.00046	22	. 00235	36	.00288	50	.00969	64	.03200	78	. 09070	92	.23512	106	.36661
9	.00041	23	.00235	37	.00312	51	.01059	65	.03463	79	.09688	93	.25023	107	. 37 12 1
10	.00036	24	. 00228	38	.00339	52	.01161	66	.03746	80	.10367	94	.26546	108	.37540
11	.00035	25	.00217	39	.00369	53	.01275	67	.04044	81	. 11125	95	. 27962	109	.37922
12	.00042	26	. 00206	40	.00401	54	.01400	68	.04350	82	.11929	96	.29090	110	0.00000

						female	populatio	n							
age	tq×	age	tq×	age	tqx	age	tqx	age	tqx	age	tqx	age	tqx	age	tqx
- 1	0.00000	13	.00033	27	.00086	41	.00251	55	.00768	69	.02407	83	.09419	97	. 26980
0	.01746	14	.00040	28	. 00090	42	.00273	56	.00829	70	.02632	84	. 10275	98	.27996
1	.00116	15	. 00049	29	.00096	43	.00297	57	.00894	71	.02879	85	.11282	99	. 28949
2	.00077	16	. 00058	30	.00102	44	.00325	58	.00962	72	.03165	86	. 12462	100	. 29836
3	.00060	17	.00066	31	.00110	45	.00354	59	.01035	73	.03503	87	. 13685	101	. 30659
4	.00051	18	.00069	32	.00119	46	.00384	60	.01113	74	.03893	88	. 14859	102	.31420
5	.00043	19	.00071	33	.00129	47	.00416	61	.01200	75	.04325	89	. 16006	103	. 32122
6	.00038	20	.00072	34	.00140	48	.00449	62	.01298	76	.04790	90	. 17264	104	.32768
7	.00034	21	.00073	35	.00152	49	.00484	63	.01411	77	.05295	91	. 18718	105	.33361
8	.00031	22	.00075	36	.00165	50	.00523	64	.01538	78	.05840	92	. 20243	106	. 33904
9	.00028	23	.00077	37	.00180	51	.00565	65	.01678	79	.06432	93	.21750	107	. 34401
10	.00026	24	.00079	38	.00197	52	.00611	66	.01832	80	.07097	94	.23186	108	.34855
11	.00025	25	. 0008 1	39	.00215	53	.00660	67	. 02004	81	.07834	95	.24584	109	.35269
12	.00027	26	.00083	40	.00233	54	.00712	68	.02195	82	.08612	96	.25854	110	0.00000

1

4

_ .

40

.

ŧ

ŧ

TABLE V

4

.

POPULATION DISTRIBUTION BY AGE AND SEX

male population

age	number														
- 1	0.	13	1808.	27	2013.	41	1219.	55	1112.	69	715	83	174	97	0
0	1839.	14	1854.	28	1971.	42	1170.	56	1118	70	679	84	155	00	0.
1	1815.	15	1916.	29	1866.	43	1146.	57	1094	71	631	85	706	90	0.
2	1713.	16	2039.	30	1898.	44	1101.	58	1075	72	587	86	700.	100	0.
3	1645.	17	2131.	31	1852.	45	1097	59	1074	73	549	97	0.	100	0.
4	1654.	18	2143.	32	1812.	46	1079	60	1045	74	499	99	0.	101	0.
5	1598.	19	2134.	33	1799.	47	1050.	61	999	75	463	80	0.	102	0.
6	1631.	20	2235.	34	1914	48	1065	62	953	76	400.	90	0.	103	0.
7	1595.	21	2208.	35	1418.	49	1051	63	914	77	370	90	0.	104	0.
8	1659.	22	2178	36	1436	50	1097	64	970	79	3/5.	91	0.	105	0.
9	1722.	23	2153	37	1426	51	1122	65	9/9	70	341.	92	0.	106	0.
10	1903	24	2139	38	1502	52	1102	66	070.	79	292.	93	0.	107	0.
11	1903	25	2080	29	1304	52	1116	67	702	80	287.	94	0.	108	0.
12	1852	26	2066	40	1259	54	1110.	67	793.	81	244.	95	0.	109	0.
		20	2000.	40	1233.	34	1110,	68	/5/.	82	204.	96	0.	110	0.

female population

.

age	number	age	number	age	number	age	number	age	number	àge	number	age	number	age	number
- 1	о.	13	1732.	27	2030.	41	1268.	55	1226.	69	929.	83	347	97	0
0	1752.	14	1778.	28	1989.	42	1220.	56	1242	70	899	84	320	99	0.
1	1734.	15	1839.	29	1886.	43	1197.	57	1225	71	853	85	1656	90	0.
2	1636.	16	1962.	30	1929.	44	1153.	58	1213	72	811	86	1030.	100	0.
3	1572.	17	2048.	31	1884	45	1152.	59	1220	73	778	87	0.	100	0.
4	1579.	18	2077.	32	1850.	46	1134.	60	1194	74	727	88	0.	101	0.
5	1530.	19	2090.	33	1839.	47	1109	61	1149	75	694	89	0.	102	0.
6	1558.	20	2197,	34	1962.	48	1129	62	1105	76	650	<u> </u>	0.	103	0.
7	1524.	21	2176.	35	1460	49	1118	63	1070	77	605	91	0.	104	0.
8	1585.	22	2155.	36	1480.	50	1174	64	1035	78	564	91	0.	105	<u>v</u> .
9	1645.	23	2144.	37	1474	51	1206	65	1023	70	507.	52	<u> </u>	100	0.
10	1817.	24	2145	38	1554	52	1191	66	1023.	, j	5102.	93	0.	107	0.
11	1820.	25	2090.	39	1352	53	1213	67	0024.	80	J 10.	94	0.	108	0.
12	1774	26	2077	40	1309	54	1215	69	992.	01	451.	95	0.	109	0.
		20	2011.	40	1308.	- 54	1213.	08	905.	82	392.	96	0.	110	0.

.

ł.

TABLE VI

	Lung Cancer		Thyroid	Cancer	Liver	Cancer	Breast Cancer	
Age	Males	Females	Males	<u>Females</u>	Males	Females	Males	Females
		0.0537			0.258	0.107		
<59	0.0457	0.0237			0.0457	0.0711		
5-14					0.0613	0.0424		
10-19	0.0812	0.0621			0.0406	0.0207		
15-24	0.0893	0.0883		0.0221	0.201	0.177		0.177
20-29	0.267	0.242			0.219	0.0970		1.41
25-34	1.70	1.11		0.0293	0.209	0.205		6.01
30-39	5.72	3.39	0.0364	0.105	0.510	0.420		13.3
35-44	18.2	10.3	0.114	0.146	0.760	0.475		22.9
40-49	47.4	20.1	0.325	0.414	1.95	0.760		42.6
45-54	85.5	30.8	0.499	0.372	3.10	1.49		61.3
50-59	144.9	51.5	0.414	0.779	6.46	2.22		77.7
55-64	232.5	64.7	1.01	1.47	10.4	4.56		91.0
60-69	324.8	74.1	1.54	2.05	14.1	5.25		102.2
65-74	403.2	71.3	2.07	3.51	18.2	8.82		110.0
70-79	455.4	73.6	3.21	4.38	21.9	10.1		128.2
75-84	402.8	69.4	3.80	5.07	24.0	14.5		143.2
80-	323.5	74.8	4.99	5.51	24.2	16.5		180.9
85+								

AGE- AND SEX-SPECIFIC CANCER MORTALITY RATES (rate per 100 000)

Committee as well as the ICRP (ICRP 1977a, p. 10) and UNSCEAR (UNSCEAR 1977, p. 400).

Following the ICRP, we recommend that the lung dose from all radionuclides but radon (which is discussed below) be mass-averaged over the trachea, bronchi, pulmonary region, and pulmonary lymph nodes (ICRP 1977a, p. 11). The BEIR III report based its lung risk estimate largely on studies of underground miners, Japanese atomic bomb survivors, and British spondylitics. The question of the treatment of the relatively large doses received by the pulmonary lymph nodes after inhalation of insoluble radioaerosols was not an issue in these studies and was not discussed in the BEIR III report. In the absence of specific recommendation concerning the pulmonary lymph nodes, we have elected to follow the ICRP procedure.

The risk factors from Tables IIa or IIb should be multiplied by the 50year dose commitment to give the total lifetime risk. Since these risk factors have been averaged over age, the age at which the dose is received

42

would not affect the risk calculation. Caution should be exercised in interpreting this risk, since the life expectancy of an older individual may prevent his receiving the full 50-year dose. Similarly, competing risks of mortality for an older individual that would be accounted for in a life table calculation may significantly reduce the risk of mortality from a radiationinduced cancer.

Doses for the more detailed risk calculation procedure using the computer program REPCAL can be treated in a more realistic manner. The dose can be entered into the program on a year-by-year basis up to age 109. The temporal distribution of the dose used in the calculation can then more closely resemble the actual distribution of the dose in time.

F. Discussion of Risk-Rate Factors

<u>1. All Cancers</u>. The risk-rate factors (Table III) were taken directly from Table V-17 (p. 204) and Table V-20 (p. 207) of the BEIR III report. These factors are used with the linear model to calculate cancer mortality risks. The linear-quadratic and quadratic models were discussed by the BEIR Committee. Until the uncertainty in the dosimetry for the Japanese atomic bomb survivors (see Section IV.J)--on which much of the work in BEIR III has been based--can be resolved, we recommend the more conservative linear model for use in estimating risks for NEPA documents.

<u>2. Bone Cancer</u>. The risk rate of 0.05×10^{-6} sarcoma/year/person-rad for low-LET radiation is taken directly from Table A-27 (p. 417) of BEIR III. To use this risk-rate factor, the absorbed dose should be calculated to the endosteal cells.

The BEIR Committee also discussed use of a dose-response curve in which the incidence risk rate depended on both the square of the dose and an exponential containing the dose. Evidence for the shape of the dose-response curve for alpha radiation was reviewed by the Committee, which reported that out of eleven studies (of both human and animal populations), the shape was linear in seven studies, concave upward in three studies, and concave downward in one study. The Committee concluded that the shape of the doseresponse curve was uncertain, although it was difficult to exclude a linear component to the alpha-radiation dose response at low doses.

In order to simplify the calculation of the bone cancer risk factor, only the risk-rate factor for the linear model is given in Table III. This factor is based principally on the studies of the effects of radium-224 in humans. If the dose-squared exponential factor were used, the risk estimated to result from low-level radiation would be considerably less than the risk predicted by this linear risk-rate factor. Thus, because the true doseresponse relation is uncertain, we recommend the factor giving the more conservative estimate. <u>3. Breast Cancer</u>. Four different sets of risk-rate factors were given in BEIR III: absolute risk with and without cell killing, and relative risk with and without cell killing (BEIR III 1980, p. 283). The linear doseresponse model was used with all four sets of factors. The factors provide a range of lifetime risk estimates for breast cancer. These factors are incidence risk rates. To obtain mortality risk rates, each incidence risk rate was multiplied by 0.39 (obtained from BEIR III 1980, p. 200, Table V-15). The resulting mortality risk-rate factors are listed in Table III.

The BEIR Committee indicated that the greatest uncertainty concerned the risk due to exposures after menopause. At doses lower than 1 rad, those risks were said to range from 0 (if the risk models did not apply at low doses) to about twice the risk estimated by the relative risk model with cell killing.

The relative risk-rate factors were given explicitly for breast cancer, in contrast to other site-specific cancers discussed in BEIR III. The lifetime risk factors were estimated for this special case by using the quoted relative risk-rate factors directly, rather than by calculating them from the procedure described in Section IV.C.

<u>4. Liver Cancer</u>. The recommended lifetime risk factors (Tables IIa and IIb) and risk-rate factors (Table III) were taken directly from the BEIR III report (BEIR III 1980, pp. 279-280). These factors were based principally on the experience with Thorotrast patients. The BEIR Committee indicated that a linear dose-response relationship was reasonable for alpha-particle radiation, but that for low-LET radiation, the observed relationship has been concave upward. Use of the liver cancer lifetime risk factor and risk-rate factor in Tables IIa or IIb and Table III would then lead to an overestimate of the true risk for low-LET radiation. Because no method of correcting this overestimate was given by the Committee, the factors were taken directly from BEIR III.

5. Thyroid Cancer. Thyroid cancer incidence risk-rate factors were given in Table V-14 of BEIR III (BEIR III 1980, p. 198). Mortality risk-rate factors were not explicitly given in BEIR III (BEIR III 1980, p. 303).

The risk-rate factor for thyroid cancer in males and the factor for thyroid cancer in females have been multiplied by 0.18 and 0.20, respectively, to convert the risks from incidence of thyroid cancer to those of mortality from thyroid cancer. The conversion factors of 0.18 and 0.20 were taken from Table V-15 of BEIR III (BEIR III 1980, p. 200). The resulting risk-rate factors for mortality from thyroid cancer are given in Table III.

The BEIR report discussed the possibility of a lower risk of thyroid cancer from internal radiation from 131 I relative to the risk from external radiation, stating that "what little evidence is available from children

44

treated with iodine-131 for hyperthyroidism does not demonstrate the carcinogenic effect seen with external radiation." (BEIR III 1980, p. 301). However, in giving the risk-rate factors the BEIR report did not distinguish between external radiation and internal radiation from 131 I. Consequently, the factors given in BEIR III should be used with both external and internal radiation.

<u>6. Leukemia</u>. Table V-17 of BEIR III (p. 203) gives age- and sexspecific risk-rate factors for leukemia and bone cancer induced by low-LET radiation for use in the linear model. Age-specific risk coefficients for leukemia alone for use in the linear model are not given in BEIR III. Using the risk rate for bone cancer of $0.05 \times 10^{-6}/\text{yr/person-rad}$ for low-LET radiation, we calculate that bone cancer is never more than 5% of the total and is usually approximately 2%. This small contribution of bone cancer to the total leukemia and bone cancers is small compared with the uncertainties in the risk-rate factors. Therefore, we have used the Table V-17 risk-rate factors to calculate the risks of leukemia (ignoring the small contribution from bone cancer) from exposure to low-LET radiation.

7. Lung Cancer. The lung cancer risk-rate factors were taken from the table given on p. 327 of BEIR III. These factors are somewhat different from other factors in BEIR III in that they apply to the age when the cancer is diagnosed, rather than the age at exposure. They also are expressed in the BEIR III report in terms of dose equivalent instead of the more usual (for BEIR III) absorbed dose.

The age-specific risk coefficients increase with age at diagnosis. As a result, the absolute lifetime risk factor resembles the relative lifetime risk factor, because for the relative risk calculation the lung cancer risk increases as the spontaneous lung cancer rate increases with age.

For Tables I, II, and III, the lung cancer risk must be presented in units of (absorbed dose)⁻¹. The BEIR III report quotes a range of RBE values for alpha radiation of 8 to 15. The BEIR III report gives a conversion of 1 WLM* = 0.4-0.8 rad of alpha radiation, which has a central value of 1 WLM = 0.6 rad. The report also gives 1 WLM = 6 rem for alpha radiation. This would indicate that the RBE would be approximately 10, which is in the range of 8 to 15 quoted above. In view of the uncertainties in arriving at the value of the RBE, an RBE = 10 was felt to be reasonable, and was used to convert the BEIR III risk-rate factors to units of (absorbed dose)⁻¹ for alpha radiation (see Section IV.F.8 below).

^{*}A working level (WL) is any combination of short-lived radon decay product concentrations in one liter of air that will result in the ultimate emission of 1.3 x 10^5 MeV of potential alpha energy. A working level month (WLM) is exposure to 1 WL for 1 working month (170 h).

Risk of lung cancer resulting from exposure to environmental levels of radon and radon decay products is treated as a special case. This risk was considered by Evans (1981) who concluded that the lifetime risk of mortality from lung cancer was at most 100×10^{-6} /WLM. We recommend as a conservative procedure that the maximum value of 100×10^{-6} /WLM be used in evaluating environmental radon and radon decay product exposures. Since no risk-rate factor was given by Evans <u>et al.</u>, a life table calculation is not possible. However, the relatively large uncertainties already associated with these risk estimates suggest that the uncertainties resulting from not performing a life table calculation would not be significant.

<u>8. Risk Factors for High-LET Radiation</u>. Lifetime risk factors from exposure to high-LET radiation can be estimated by first calculating the corresponding lifetime risk factor for low-LET radiation and then multiplying this number by the RBE. Following the recommendations of the ICRP (ICRP 1977a), we recommend that a quality factor (which is assumed to equal an RBE for this report) of 20 be used to make this modification for high-LET radiation. As discussed above (see Section IV.F.7), an RBE of 10 was used for lung cancer.

Recommended values of RBE to use for obtaining high-LET risk factors are given in Table VII.

TABLE VII

RBE VALUE TO USE FOR OBTAINING LIFETIME RISKS FROM HIGH-LET RADIATION^a

Concer Ture (Organ Europed	RBE for Alpha Particles, Multiple-Charged					
Cancer Type/Organ Exposed	Particles					
All cancers/total body						
Bone cancer/bone surface	20					
Breast cancer/breast	20					
Liver cancer/liver	20					
Thyroid cancer/thyroid	20					
Leukemia/red marrow	20					
Lung cancer/lung	10					

^aFor neutrons, the RBE is assumed to equal the energy-dependent value for quality factor given in USDOE (1980a).

G. Relating Cancer Incidence to Cancer Mortality

For some types of cancer, cancer mortality may not provide a complete picture of the impact of the radiation exposure. Relatively high survival rates for some cancers, such as thyroid cancer or breast cancer, would reduce the mortality rates, yet even cancers that are cured would still represent an adverse health impact on the population. As a result, it is recommended that both cancer incidence and mortality be reported in NEPA documents.

Several methods of calculating cancer incidence were reviewed by the BEIR III Committee. The Committee concluded that the most reliable approach to estimating incidence of radiation-induced cancers was to first estimate the mortality risk for a given cancer type and then multiply this risk by the ratio of the spontaneous cancer incidence rate to cancer mortality rate for that cancer type. This method was only used by the BEIR Committee to estimate the risk of incidence of all cancers other than leukemia and bone cancer taken together. However, the method is recommended here for use with individual cancer sites.

Table VIII lists values of the mortality-to-incidence ratio for seven different cancer types. The values for all sites except leukemia and bone cancer were taken from Table V-15 of the BEIR III report. The recommended values for leukemia and bone cancer were inferred to be equal to one from the BEIR III report, which treated incidence of and mortality from these two cancers equivalently (see, for example, Table V-16, p. 203, BEIR III 1980).

H. Risk of Genetic Disorders in Offspring

The risk factors for radiation-induced genetic disorders in offspring are presented in Tables IIa and IIb. As noted earlier, the risk factor taken from BEIR III refers to the gamete dose. Usually the gonadal dose is

TABLE VIII

RATIOS OF THE LIFETIME RISK OF CANCER MORTALITY TO THE LIFETIME RISK OF CANCER INCIDENCE

Cancer Type	Males	Females
All cancers except leukemia		
and bone cancer	0.65	0.50
Bone	1.00	1.00
Breast		0.39
Liver	1.00	1.00
Thyroid	0.18	0.20
Leukemia	1.00	1.00
Lung	0.83	0.75

calculated in dose assessments, so this dose needs to be converted to gamete dose. This can be done using tables published by NCHS giving the average number of children that an individual is expected to have after a given age (USNCHS 1982).

The BEIR III procedure for calculating gamete dose from gonadal dose is to divide the population, by sex, into 5-year age intervals (a finer division is not necessary because the NCHS tables are provided only for 5-year age intervals). The number of each sex in each age interval is then multiplied by the number of children that individuals of each sex in that age interval are expected to have from that age onward. This number, which is the number of gametes that will be passed to the succeeding generation by this group of individuals, is multiplied by the gonadal dose for each age group. This dose is corrected for the relative sensitivities of spermatogonia and immature oocytes by multiplying all doses calculated for males by 0.82 and doses calculated for females by 0.18 (BEIR III 1980, p. 127). The final step is to add the doses that have been calculated for both sexes and all age groups to give the total gamete dose.

This gamete dose is appropriate for use with the risk factors for genetic disorders given in Tables IIa and IIb. For convenience, the conversion from gonadal dose to gamete dose was calculated for a population having the same age-specific birth-rate distribution as given in the NCHS tables. The resulting risk factor, expressed in terms of gonadal dose, is also given in Tables IIa and IIb. If the exposed population has an agespecific birth-rate distribution similar to that in the NCHS tables, this factor may be used directly with the gonadal dose calculated for that population. However, if the population is markedly different, for example, all males 25 to 35 years of age, the gamete dose would have to be calculated from the gonadal dose using the data specific to that population, if available.

We recommend that the risk of serious genetic disorders resulting from a radiation exposure in both the first generation and in all subsequent generations be given in the radiological assessment for a NEPA document. Risk factors from which these risks are calculated are given in Tables IIa or IIb in terms of both gamete dose and gonadal dose.

As noted in Section III.C., the risk of radiation-induced genetic disorders in all subsequent generations from a dose D to a single generation is numerically equal to the genetic risk in a single generation produced by exposing several generations to a dose D per generation until equilibrium has been reached (BEIR III 1980, p. 128). Thus the BEIR III equilibrium genetic risk factor is quoted in Tables IIa and IIb to give the total risk of genetic disorders in all subsequent generations.

The risk factors for genetic disorders from exposure to high-LET radiation are obtained by multiplying those for low-LET radiation by 3 to

remove the reduction for dose-rate effect made for low-LET radiation (Section III.A.1) and by 20 to adjust for the relative biological effectiveness.

I. Risk of Somatic Effects Other Than Cancer

1. Effects from Irradiation in Utero. We have elected to use the BEIR III treatment of teratogenic effects rather than the treatment presented in ICRP Publication 27. Both approaches were described in Section III.B.1. The BEIR III approach was intended as a realistic assessment of the risk of radiation-induced effects from irradiation in utero. The ICRP developed its approach in order to include these effects into an index of harm. This procedure would not necessarily give the best assessment of the risk of these effects.

For NEPA-related documents, doses from any routine operations that may be considered are well within the dose range in which, according to the BEIR Committee, there would be no widespread teratogenic effects. Doses to the public from operations at DOE facilities are limited to 500 mrem/year to whole body, gonads, and bone marrow, and 1500 mrem/year to other organs (US DOE 1980a). Under the DOE regulations of keeping doses to as low a level as reasonably achievable (ALARA), actual doses from DOE operations are considerably lower than these dose limits, usually only a small fraction not only of the dose standards but also of background radiation (see, for example, US DOE 1982b).

Estimated doses resulting from proposed DOE routine operations being evaluated under NEPA would be subject to the same standards. Normally, the DOE dose limits would have to be exceeded before the embryo would receive a dose corresponding to 1-R exposure at an exposure rate greater than 0.01 R/min, the level below which no widespread effects induced by <u>in utero</u> irradiation are expected to appear (BEIR III 1980, p. 492). The ALARA policy would further limit actual doses to levels far below that corresponding to the 1-R level. In addition, the dose resulting from a particular facility's operations is generally distributed over the entire year. The dose received by the embryo during a critical development stage, which is usually during the first trimester of pregnancy, would be proportionately less than the annual dose. Consequently, teratogenic effects would be minimal given the range of doses from routine operations discussed in NEPA documents.

In Section I.D., we noted that assessment in a NEPA document of impacts from a one-time accident may involve consideration of doses above the DOE annual dose limits. These doses could exceed the dose threshold values for teratogenic effects. For these cases, some discussion of these effects in the assessment would be necessary. However, in publications of the national and international advisory bodies reviewed in this report, no recommendations have been made for any dose-response model for these effects, so no procedure to quantify these effects is given here. [The ICRP has proposed a model to •

use in developing an index of harm, but not for use with their other risk factors (see Section III.B.1).]

2. Nonstochastic Effects. We recommend using the 1982 UNSCEAR report in evaluating the occurrence of nonstochastic effects in an exposed population. This report presents a comprehensive review of these effects on an organ-by-organ basis.

Routine doses, which are limited by the DOE standards discussed above, from operations of facilities reviewed in NEPA documents are well below the dose thresholds at which nonstochastic effects may begin to occur. Doses calculated for some accident scenarios may slightly exceed the lowest of the thresholds. In particular, the UNSCEAR Committee reports temporary sterility in males at doses as low as 10 rads. While these effects may not be significant, they should be discussed for the sake of completeness using information presented in the 1982 UNSCEAR report (UNSCEAR 1982).

J. Effect of Current Research on Risk Assessment Procedures

Most of the risk factors and risk rate coefficients recommended in this report are the result of ongoing epidemiological studies. As more data become available with time, estimates of these factors will improve so that there will be a need to continually update the factors given here.

The recalculation of the doses at Hiroshima and Nagasaki could result in a significant revision of the risk factors. This recalculation has resulted in larger gamma-dose values at Hiroshima and slightly lower gammadose values at Nagasaki, and lower neutron doses calculated for both cities. Preliminary results suggest the new dosimetry may show that the neutron component at both cities was not significant, and the data from both cities may be combined to yield pooled estimates of risk and risk-rate factors (Loewe 1981). However, although the free-in-air doses have been recalculated, the impact on the epidemiological results of the atomic bomb survivor study cannot be entirely gauged until several issues have been resolved. In a recent review of the atomic bomb survivor dosimetry, Kerr (1982) concluded that these epidemiological results should be considered tentative until organ dose factors, house-shielding factors, and the energy yield and neutron output of the weapons are revised.

Future epidemiological surveys and the revised dose estimates at Hiroshima and Nagasaki would give improved estimates of the risk and riskrate factors. In addition, with improved statistical accuracy, the shape of the dose-response curve may become better defined. This would improve risk estimation by more clearly identifying models that correlate closely with the epidemiological data.

V. SUMMARY

Factors are recommended that give the risk of genetic disorders in offspring and lifetime risk of cancer mortality averaged over a population with the age and sex distribution of the U.S. population. These recommendations are for populations of similar demographic composition where a detailed risk calculation would not be necessary. This could apply to ADMs, EAs, and even EISs. These recommended risk factors are listed in Tables IIa or IIb.

If demographic data are available, the mutagenic risk and lifetime tumorigenic risk may be calculated individually for situations where the population is significantly different from the U.S. population. Recommended risk-rate factors and genetic risk factors are provided for the cancer mortality and genetic disorder calculations, respectively. These factors are given in Table III. A computer program was written that calculates lifetime risk of mortality from radiation-induced cancer by use of site-specific demographic and population health data. A program listing, description of the required input data, and a sample problem are given in the appendixes.

VI. ACKNOWLEDGMENTS

We have called upon the kind assistance of many scientists in preparing this report. We would like to particularly thank Jacob Fabrikant of the Donner Laboratory of the University of California, Charles Land of the National Cancer Institute, Charles Mays of the University of Utah, and Edward Radford of the University of Pittsburgh for their help in clarifying technical points and answering questions over the static-plagued telephone lines. We gratefully appreciate the painstaking efforts of John Healy, Alan Stoker, and George Voelz of Los Alamos National Laboratory in reviewing the report. Special thanks also go to Kathy Derouin, Mary Lou Keigher, and Lois Schneider for typing the manuscript, and to Sharon Crane for editing the report. We appreciate the effort by Colleen Olinger to prepare the short description of the documentation required to satisfy the National Environmental Policy Act.

REFERENCES

- Alexander 1982: R. E. Alexander, "Instructions in Radiation Risk Calculations," notes prepared for the continuing education course offered by the Health Physics Society at its 1982 annual meeting, Las Vegas, Nevada (June 1982).
- BEIR I 1972: National Research Council, National Academy of Sciences, Advisory Committee on the Biological Effects of Ionizing Radiations, "The Effects on Populations of Exposure to Low Levels of Ionizing Radiation," Washington, D.C. (1972).

- BEIR III 1980: National Research Council, National Academy of Sciences, Committee on the Biological Effects of Ionizing Radiations, "The Effects on Populations of Exposure to Low Levels of Ionizing Radiation: 1980," National Academy Press, Washington, D.C. (1980).
- Bunger 1981: Byron M. Bunger, John R. Cook, and Mary K. Barrick, "Life Table Methodology for Evaluating Radiation Risk: An Application Based on Occupational Exposures," Health Physics 40, 439-455 (April 1981).
- Cook 1978: John R. Cook, Byron M. Bunger, and Mary K. Barrick, "A Computer Code for Cohort Analysis of Increased Risks of Death (CAIRD)," U.S. Environmental Protection Agency report EPA 520/4-78-012 (June 1978).
- Council on Environmental Quality 1978: "National Environmental Policy Act -Regulations," 40 Code of Federal Regulations Parts 1500-1508, Federal Register, Vol. 43, No. 230 (November 29, 1978).
- Evans 1981: R. D. Evans, J. H. Harley, W. Jacobi, A. S. McLean, W. A. Mills, and C. G. Stewart, "Estimate of Risk from Environmental Exposure to Radon-222 and Its Decay Products," Nature 290, 98-100 (March 1981).
- ICRP 1977a: "Recommendations of the International Commission on Radiological Protection," International Commission on Radiological Protection Publication 26, Annals of the ICRP, <u>1</u>, No. 3 (1977).
- ICRP 1977b: "Problems Involved in Developing an Index of Harm," International Commission on Radiological Protection Publication 27, Annals of the ICRP, <u>1</u>, No. 4 (1977).
- Kerr 1982: G. D. Kerr, "Review of Dosimetry for the Atomic Bomb Survivors," Nuclear Safety, 23, No. 5 (September-October 1982).
- Land 1983: Charles E. Land and Don A. Pierce, "Some Statistical Considerations Related to the Estimation of Cancer Risk Following Exposure to Ionizing Radiation," Sixteenth Midyear Topical Meeting of the Health Physics Society, "Epidemiology Applied to Health Physics," U.S. Department of Energy report CONF-830101 (January 1983).
- Loewe 1981: W. E. Loewe and E. Mendelsohn, "Revised Dose Estimates at Hiroshima and Nagasaki," Health Phys. <u>41</u>, 663-666 (October 1981).

- NCRP 1980: "Influence of Dose and its Distribution in Time on Dose-Response Relationships for Low-LET Radiation," National Council on Radiation Protection and Measurements report No. 64 (1980).
- UNSCEAR 1977: "Sources and Effects of Ionizing Radiation," United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations (1977).
- UNSCEAR 1982: "Ionizing Radiation: Sources and Biological Effects," United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations (1982).
- U.S. Bureau of the Census 1982: "Preliminary Estimates of the Population of the United States, by Age, Sex, and Race: 1970 to 1981," U.S. Bureau of the Census, Current Population Reports, Series P-25, No. 917, U.S. Government Printing Office, Washington, D.C. (1982).
- USDOE 1980a: "Environmental Protection, Safety, and Health Protection Program for DOE Operations," U.S. Department of Energy Order 5480.1 (1980).
- USDOE 1980b: "Compliance with the National Environmental Policy Act," Department of Energy Guidelines, 10 Code of Federal Regulations Part 1021, Federal Register, Vol. 45, No. 62 (March 1980).
- USDOE 1981a: "Environmental Compliance Guide," DOE/EV-0132, Department of Energy, Office of Environmental Compliance and Overview, NEPA Affairs Division, Washington, DC (February 1981).
- USDOE 1981b: "General Design Criteria Manual," U.S. Department of Energy Order 6430 draft only (June 1981).
- USDOE 1982a: "Implementation of the National Environmental Policy Act (NEPA)," Department of Energy Order 5440.1B, Washington, D.C. (May 1982).
- USDOE 1982b: "Summary of Annual Environmental Reports for CY 1981: Department of Energy Nuclear Sites," U.S. Department of Energy report DOE/EP-0038/1 (September 1982).
- USNCI 1981: "Cancer Incidence and Mortality in the United States 1973-1977," U.S. National Cancer Institute Monograph No. 57, U.S. Government Printing Office, Washington, D.C. (1981).

- USNCHS 1975: "United States Life Tables: 1969-71 Volume 1, Number 1," U.S. National Center for Health Statistics, U.S. Department of Health, Education, and Welfare Publication No. (HRA) 75-1150 (May 1975).
- USNCHS 1982: "Vital Statistics of the United States, 1978," Vol. I, U.S. National Center for Health Statistics, U.S. Department of Health and Human Services Publication No. (PHS) 82-1100 (1982).

APPENDIX A

THE COMPUTER PROGRAM REPCAL

I. GENERAL INFORMATION

The computer code REPCAL has been written in FORTRAN IV. It currently runs on a Control Data 7600 computer. A simple problem, such as the calculation of the relative risk coefficients for total cancer (running NORGAN = 2, KORGAN = 22,23) will use approximately 14 seconds CPU time and 100 000 octal words of memory. The CDC 7600 has a 60-bit word size; if the program is to be run on another type of computer, some consideration may have to be given to using double precision variables to reach comparable precision. A listing of the program is provided in Appendix B.

II. INPUT REQUIREMENTS

The structure of the input file is described below in Table A-I. Input variables and parameters appearing in this input file are defined in Table A-II.

TABLE A-I

	Parameter	Number of Cards	Format
	Title	i	10A8
	IFLAG(I),I=1,4	1	411
	IWRITE(I), I=1, 4	1	411
	[(TQX[I,J],I=1,120), J=1,2]*	48	5F12.9
	[(AGEDIS[I,J],I=1,120),J=1,2]*	40	6F10.0
	NUM(I), I=1,2	1	2F10.0
	NORGAN	1	15
	KORGAN,LET,MODEL,NFOLLW	1	415
NORGAN	[(CAN5Y[I,J],I=1,28)J=1,2]	8	7F10.4
TIMES	NINV	1	15
	TIME(I),DOSINV(I),I=1,NINV	NINV	2F10.2
	NTABLE	1	13
	NYEAR(I),I=1,NTABLE	1	1415

STRUCTURE OF INPUT FILE

^{*}Array included in the input deck only if the corresponding value of IFLAG=1.

TABLE A-II

.

leukemia and bone cancer, linear model

Leukemia and bone cancer, linear model

23

24

DEFINITION OF INPUT PARAMETERS

Variable	Definition											
Title	Any des	criptive title up t	o 80 cha	racters in length.								
IFLAG(I) Parameter indicating which set of input data should be used by the program for I=1 and 2. IFLAG=0 mea use the input data given in DATA statements in SUBROUTINE START. IFLAG=1 means use data sets sup by the user. I=1 proportion dying in each age interval for reference life table I=2 population age distribution												
TQX(I,J)	Proport -1 (fema	Proportion dying in each age interval i[from age i= -1 (prenatal) to age i=109] for males (j=1) and females (j=2).										
AGEDIS(I,J) Population distribution by age [from age i=-1 (prenatal) to age i=109] and sex [for males (j=1) and females (j=2)]. The entries for AGEDIS do not have to be normalized; the program adds up to entries for both males and females and normalizes AGEDIS automatically.												
KORGAN	The number identifying the organ at risk.											
	KORGAN	Organ/Cancer Type	KORGAN	Organ/Cancer Type								
	1	Breast	15									
	2	Thyroid	16	Bone								
	3	Lung	17									
	4	Leukemia	18									
	5		19									
	6		20	Hematopoietic cancer from prenatal exposure								
	7		21	Solid cancer from prenatal exposure								
	8	Liver	22	All cancers except								

9

10

Variable	Definition					
KORGAN (cont)	KORGAN	Organ/Cancer Type	KORGAN	Organ/Cancer Type		
	11		25	Leukemia risk from BEIR I		
	12		26	All cancers except leukemia and bone cancer, linear- guadratic model		
	13		27	Leukemia and bone cancer, linear- guadratic model		
	14		28	J		
LET	Radiati high	ion type, low linear linear-energy-trar	-energy- sfer (LE	transfer (LET=1) or T=2).		
MODEL	Risk pr rela	rojection model, abs ative risk model (MC	olute ri: DEL=2).	sk model (MODEL=1) or		
NFOLLW	Number epic rela	of years for which demiological followu ative risk-rate coef	there has p. Used ficients	s been adequate to calculate the		
NINV	Number	of dose intervals.				
CAN5Y(I,J)	Cancer mortality rates in 5-year intervals for age intervals i=1 (0-4 years) up to i=22 (105-109 years) for males (j=1) and females (j=2). This					
	arra calc indi	ay must be supplied culations. Units ar ividuals.	for all e deaths	relative risk per million		
XNUM(I)	Number rece	of males (j=1) and eiving the dose.	females	(j=2) in population		
NORGAN	Number	of organs for which	cancer	risk is calculated.		
TIME(I)	Number	of years in dose in	terval i	•		
DOSINV(I)	Dose ir	n rads received in d	lose inte	rval i.		
NTABLE	Number	of ages for which 1	ife tabl	es are to be printed.		
NYEAR(I)	Startin	ng age for the print	ing of 1	ife table i.		

TABLE A-II (cont)

A listing of the input file for the first example problem discussed in Appendix C is presented in Table A-III. This problem calculates the total risk of dying of cancer as a result of 10 rads of whole body, low-LET radiation (a calculation also performed in BEIR III, p. 204 and p. 207). We have used the linear dose-response model and a relative risk projection model for all cancers except leukemia and bone.

TABLE A-III

INPUT FILES FOR A SAMPLE PROBLEM: CALCULATING THE TOTAL NUMBER OF CANCER DEATHS INDUCED BY A DOSE OF 10 Rads OF LOW-LET RADIATION

		.			
1	single dose	of 10 rads	using relati	ve risk (exce	ept for leukem1a,'bone)
3	1110				
4	0.00000000	-022450000	001330000	000940000	000780000
5	.000640000	-000580000	.000540000	.000510000	.000460000
6	.000410000	-000360000	-000350000	_000420000	.000590000
7	.000840000	.001140000	_001420000	_001670000	.001850000
8	.001980000	-002120000	.002260000	. 002350000	-002350000
9	.002280000	-002170000	-002060000	.001990000	-001980000
10	-002030000	.002100000	.002180000	_002280000	.002390000
11	.002520000	.002680000	_002880000	.003120000	-003390000
12	-003690000	.004010000	.004350000	.004730000	-005180000
13	.005080000	.006230000	.006810000	_007440000	.008120000
15	01400000	015340000	.016760000	018270000	.012750000
16	021580000	023390000	025320000	027380000	019870000
17	032000000	034630000	037460000	040440000	043500000
18	.046650000	.049910000	.053440000	057400000	.061930000
19	.067030000	.072640000	.078560000	.084620000	.090700000
20	.096880000	- 103670000	.111250000	.1 19290000	. 127700000
21	. 136630000	.147300000	159790000	172810000	. 185210000
22	. 1968 10000	.208390000	_221220000	.235120000	.250230000
23	.265460000	.279620000	. 290900000	_ 301350000	-311110000
24	.320170000	.328570000	. 336330000	_ 343470000	. 350040000
25	,356060000	. 36 1570000	- 3666 10000	. 37 12 10000	.375400000
26	.379220000	0.00000000	0.00000000	0.00000000	0.00000000
27	0.00000000	0.000000000	0.00000000	0_000000000	0.00000 0 000
28	0.000000000	.017460000	-001160000	_000770000	.000600000
29	.000510000	.000430000	.000380000	.000340000	-000310000
30	.000280000	.000260000	-000250000	.000270000	.000330000
31	.000400000	.000490000	.000580000	.000660000	.000690000
22	-000710000	.000720000	.000730000	.000750000	.000770000
34	.000790000	-000810000	.000830000		.000900000
35	.001400000	.001520000	001650000	00180000	001290000
36	.002150000	.002330000	002510000	002730000	002970000
37	.003250000	003540000	.003840000	.004160000	004490000
38	.004840000	.005230000	.005650000	.006110000	006600000
39	.007120000	.007680000	.008290000	.008940000	.009620000
40	.010350000	.011130000	.012000000	.012980000	.0 t4 1 10000
41	_015380000	.016780000	.018320000	_020040000	.021950000
42	.024070000	-026320000	.028790000	.031650000	-035030000
43	.038930 0 00	-043250000	.047900000	.052950000	.058400000
44	-064320000	.070970000	.078340000	.086120000	.094190000
45	- 102750000	. 112820000	. 124620000	_ 136850000	- 148590000
40	. 160060000	.1/2640000	. 187 180000	.202430000	- 217500000
47	.231860000	.245840000	- 258540000	-269800000	- 279960000
40	.289490000	222610000	. 306590000	.314200000	.321220000
50	352690000	0.000000000	. 339040000	0 0000000000000000000000000000000000000	. 348550000
51	0.000000000	0.0000000000	0.0000000000000000000000000000000000000		0.000000000
52	0.00000	.01463	.01457 0	1455 014	54 01453
53	.01452	.01451	-01451 0	1450 014	49 01449
54	.01448	.01448	_01447 .0	1446 .014	45 .01443
55	-01440	-01438	.01435 _0	.014	29 .01426
56	.01422	.01419	.01416 .0	1413 _014	10 .01407
57	.01405	.01402	.01399 .0	.013	92 .01389
58	-01385	.01381	_01377 .0	.013	68 .01363
59	.01357	.01351	.01344 .0	1337 _013	.01320
60	.01311	.01301	.01290 .0	.012	65 .01251
61	.01235	.01218	-01201 -0	01182 <u>-011</u>	61 .01139
62	.01115	.01090	.01064 .0	.010	06 .00975
03 61	.00943	.00909	.008/3 .0		99 .00760
0.4	-00/21	.00001	.00041 .0	00233 1002	000010

TABLE A-III (cont).

a

65	.00474	.00432	. 00392	00352	.00315	00278	
66	00244	00212	00182	00154	00129	00106	
67	00086	00069	.00162	.00134	.00123	.00108	
69	.00080	.00008	-00034	.00041	.00031	-00023	
00	.00017	.00012	.00009	-00006	.00004	.00003	
69	.00002	- 0000 1	_00001	- 0000 1	.00000	-00000	
70	.00000	. 00000	. 00000	0.00000	0.00000	0.00000	
71	0_0000	0.00000	0.00000	0.00000	0.00000	0.00000	
72	0. 0 0000	.01320	-01316	.01314	.01313	.01313	
73	.01312	.01311	.01311	.01310	.01310	.01310	
74	.01309	.01309	.01309	01308	01308	01307	
75	01306	01305	01304	01304	01303	01301	
76	01300	01299	01200	01207	01206	01205	
77	01000	01203	.01233	.01297	.01290	-01293	
70	_01294	.01293	.01291	.01290	.01288	.01287	
78	.01285	.01283	101280	.01278	.01275	.01273	
/9	-01269	.01266	-01263	-01259	.01254	.01250	
80	_01245	.01239	.01234	.01227	.01221	.01214	
81	.01206	.01197	.01189	.01179	.01169	-01158	
82	.01147	.01134	.01121	.01107	.01092	.01076	
83	.01059	.01040	101020	. 00999	.00976	.00951	
84	.00925	.00897	.00867	.00835	.00800	.00764	
85	00726	00686	00644	00600	00555	00510	
86	.00464	.00418	00373	00329	00286	00246	
87	00208	00173	00143	.00325	.00280	.00240	
00	.00208	-00173	.00142	.00115	-00091	.00070	
00	.00034	.00040	.00030	.00021	.00015	.00011	
09	.00008	.00005	100004	.00002	.00002	.00001	
90	.00001	.00001	-00000	0.00000	0.00000	0.00000	
91	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
92	1000000.	1000000.					
93	2						
94	22 1	2 30					
95	33.87205	28.82773	24.16823	40.09863	61.77780	90.26943	140.0339
96	260.7323	570.3040	1229.845	2237.891	3669 446	5817 599	8173 591
97	10481.97	13112.09	13112.09	14115.99	14115 99	14115 99	14115 99
98	14115 99			14110100	14110135	14115155	14110.00
ãã	26 55585	21 80022	19 59769	20 64152	20 20106	80 05007	170 5200
100	20.0000	722 05022	10,00709	20.04152	39,20190	80,95097	170-5309
100	6100 000	732.9393	1328.010	2046.024	29/3./04	3954.441	4858.459
101	6190.020	8392.402	8392.402	10608.95	10608.92	10608.92	10608.95
102	10608.92						
103	2	-					
104	1.0	10.0					
105	110.0	0.0					
106	23 1	1 30					
107	2						
108	1.0	10.0					
109	110.0	0.0					
110	2						
111	- 0 10						
	0 10						

In line 2 of the example, IFLAG(1) = 1 and IFLAG(2) = 1. This signals the program to look for the arrays TQX and AGEDIS in the input file. From line 3, IWRITE(1) = 1 and IWRITE(2) = 1, signifying that these arrays should be printed. TQX appears as lines 4-51, and AGEDIS as lines 52-91, in the Input File.

Line 92 tells the program that there are one million males and one million females in the population at risk. These individuals are distributed in age according to the proportions given in AGEDIS.

Line 93 indicates that two cancer types are being considered in this calculation. These are all cancers except leukemia and bone cancer (K = 22) and leukemia and bone cancer (K = 23). Lines 94 and 106 identify these two cancer types and indicate that the risks are to be calculated for low-LET radiation (LET = 1) using the relative risk model (MODEL = 2) for K = 22 and the absolute risk model (MODEL = 1) for K = 23. Age- and sex-specific cancer mortality rates for K = 22 are in lines 95-102.

For K = 22, two dose intervals are to be considered (line 103). They are a 1-year dose of 10 rads (line 104) and a 110-year dose of 0 rad (line 105). Similar dose distribution in time is indicated for K = 23 in lines 107, 108, and 109.

Two life tables are to be printed (line 110), for beginning ages 0 and 10 (line 111).

III. INTERPRETATION OF CALCULATED RESULTS

The computer program REPCAL estimates the lifetime risk of radiationinduced cancer mortality by sex for each age of exposure up to age 109. This is the lifetime risk that a hypothetical cohort of individuals all of the same age would incur if they all simultaneously received the stated radiation dose.

The program also calculates the total number of fatal cancers for all age groups for each sex in a given population resulting from exposure to ionizing radiation. Dividing this estimate by the number of individuals in each population gives the age-averaged lifetime risk of cancer mortality for males and for females. Taking the weighted average by sex of these two risks will then give the age- and sex-averaged lifetime risk of cancer mortality.

Caution should be exercised in interpreting the <u>age-averaged</u> risk calculated by REPCAL. This risk estimate should only apply to 1-year exposures. For external radiation the 1-year exposure also corresponds to a 1-year dose. For internal radiation, the 1-year exposure to radioactive material could result in doses occurring beyond 1 year. For example, inhalation of a radioactive material of class Y lung solubility would result in a lung dose for several years after inhalation. These doses are properly accounted for by entering the dose for each year in DOSINV(I). But the exposure time during which the material was inhaled should not exceed 1 year.

The reason for this limitation is that the changing age structure of the population at risk may invalidate the age-averaging procedure. It is assumed that changes in the population for periods shorter than a year would not be significant. For longer periods, the population would be aging and new members would be born. Immigration and emigration could also change the age distribution. These population dynamics are not taken into account in the program. Consequently, the period when the individual receives the external radiation or is exposed to radioactive material is limited to 1 year for the calculation of the age-averaged risk.

This limitation applies only to the age-averaged risk. The lifetime risk to a cohort of individuals all of the same age can be estimated for exposure periods larger than 1 year. This is the age-specific risk, estimated for each age from birth to the age of 109. It is in contrast to the age-averaged risk, which is the age-weighted average of these agespecific risks. See the two sample problems in Appendix C for an illustration. APPENDIX B

•

•

-

LISTING OF THE COMPUTER PROGRAM REPCAL

```
program repcal (input.output.tape50=1nput.tape55=output)
       real latent, iat(7,27)
dimension surviv(120,2), radxr(120,2), tqxprm(120,2),
     > drisk(120).rskpop(120,2).totmor(27).plt(7.27).rsk(7.27).
> ageint(7).drad(27).hleff(120.27).radrsk(27)
      dimension dtot(120), dref(120), tx(120), ex(120), t1x(120)
dimension dplat(120), dlat(120), dhaz(120)
       common/acom/ xrad(120).xnat(120),r(120,27)
       common/wind/iage(120)
       common/sea/rskrad,latent,plteau,nfollw(27)
     common/indata/aged1s(120,2).tqx(120.2),canrte(120.2.27).
> alet(2),amodel(2),aname(27),gender(2),let(30),korgan(30),
> model(30),xnum(2).dose(120.27).norgan
       common/liftab/ntable,nage(27),nyear(120)
       data itable/0/
                                                 ,8hfemale
       data (gender(i), i=1,2)/8hmale
                                                              1
     data (ageint(1), i=1,7)/8h <0
> .8h35 - 49 .8h50 - 65 .8h >65
data (aname(i).1=1,27)/8hbreast
                                                               ,8h10 - 19 ,8h20 - 34
                                                 .8h 0 - 9
                                                 .8hthyroid .8hlung
                                                                             .8hleukem1a
     > ,8hesophag
      >8hstomach .8hintestin,8hilver
                                               .8hpancreas.8hpharynx .8hsal glnd,
                                g,8hovary .8huterus ,8hbone
.8h1u-hema .8h1u-solid.8hother
                                                                           ,8hsinuess
      >8hparathyr,8hurin org,8hovary
                  .8hsk1n
                                                                           ,8hleu/bone.
      >8hbrain
      >8hlymphoma,8hbeir 1
                                 .8hother
                                               .8hleu/bone/
       call start
       do 950 i=1,120
       1age(i)=i-2
  950 continue
       do 502 ngendr=1,2
       write(55,360)
       wr1te(55,305)
  write(55,350) gender(ngendr)
350 format(1h0,t34,"calculation of cancer r1sks for ",a8,"population")
       wr1te(55.305)
       do 805 1exps=1,111
do 240 k=1,27
       hleff(iexps.k)=0.0
       totmor(k)=0.0
  240 continue
  805 continue
c calculate the risk rate factors for the relative risk model
       do 770 iorg=1.norgan
       k=korgan(lorg)
        if (model(lorg)_eq.1) go to 770
       if (iexps.ne.1) go to 1000
if (k.ne.20.and_k.ne.21) go to 770
       call relfac(lorg.k.ngendr)
       go to 770
 1000 continue
       call relfac(iorg,k,ngendr)
  770 continue
c loop over texps, the age when the radiation exposure begins
        do 800 1exps=1.111
                                                                                           cdb
cdb
        if (iexps_ge.4) stop
        rskcon=0.0
        surv1v(1exps,ngendr)=100000.
        do 210 j=1exps,111
        jage=j-2
        radtot=0.0
        do 201 iorg=1,norgan
        k=korgan(1org)
        radrsk(k)=0.0
   201 continue
        do 220 lorg=1,norgan
```

```
k=korgan(iorg)
      if (iexps.ne.1.and.k.eq.20) go to 220
If (iexps.ne.1.and.k.eq.21) go to 220
      if (model(iorg)_eq.2) go to 701
c-
                                                                    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
С
С
            start calculations for the absolute risk model
С
        C-
      do 200 1=1exps,j
      1f (1exps.eq.1.and.k_eq.20) go to 1020
      1f (1exps.eq.1, and, k, eq. 21) go to 1020
      1f (iexps.eq.1) go to 200
 1020 continue
      1djust=1-1exps+1
      call getrsk(rc, iage(1), jage, k, let(1org), model(1org), ngendr.
     > dose(idjust.k))
      radrsk(k)=radrsk(k)+dose(idjust,k)*rc
      radtot=radtot+dose(1djust,k)*rc
  200 continue
      go to 220
  701 continue
C-
С
С
            start calculations for the relative risk model
С
                    C-
      do 725 1=1exps,j
1f (1exps.eq.1_and.k.eq.20) go to 1030
1f (iexps.eq.1.and.k_eq.21) go to 1030
      1f (iexps.eq.1) go to 725
 1030 continue
       1djust=1-1exps+1
      if (k.ne.1) go to 760
r1ske6=r(1,k)*canrte(j.ngendr.k)*dose(idjust.k)
      1f (i.le.9) latent=20.0
1f (1.ge.10.and.i,le.14) latent=20.0
       1f (1.ge. 15. and. 1. le. 19) latent=15.0
       1f (1.ge.20) latent=10_0
      delta=i-1
      1f (delta.lt.latent) r1ske6=0.0
1f (delta_eq.latent) r1ske6≃r1ske6/2_0
      go to 735
  760 continue
       jd1f=j-1
       if(jdif,lt,nfollw(iorg)) go to 730
       if (jdif.eq.nfollw(lorg)) go to 850
       r1ske6=r(1,k)*canrte(j,ngendr,k)*dose(idjust.k)
      go to 735
  850 continue
     call getrsk(rc.1age(1),jage.k,let(1org),model(1org).ngendr.
> dose(idjust.k))
      r1ske6=(dose(1djust,k)*rc/2.0)+(r(1,k)*canrte(j,ngendr,k)
      > *dose(1djust,k)/2.0)
      go to 735
  730 continue
      call getrsk(rc, lage(i), jage, k, let(iorg), model(lorg), ngendr,
      > dose(1djust,k))
       r1ske6=dose(idjust.k)*rc
  735 continue
       radrsk(k)=radrsk(k)+r1ske6
       radtot=radtot+r1ske6
  725 continue
  220 continue
```

```
c---
       С
с
          use the calculated risks to generate a new life table
С
      C----
      agemor = tqx(j,ngendr)/(1.0-0_5*tqx(j,ngendr))
      tqxprm(j.ngendr)=agemor/(1.0+0.5*(agemor+radtot))
      dref(j)=tqxprm(j,ngendr)*surviv(j,ngendr)
     dtot(j)=dref(j)
      do 230 iorg=1.norgan
      k=korgan(iorg)
      radxr(j.ngendr)=radrsk(k)/(1.0+0.5*(agemor+radtot))
      drad(k)=radxr(j,ngendr)*surviv(j,ngendr)
      dtot(j)=dtot(j)+drad(k)
      hleff(iexps,k)=hleff(1exps,k)+drad(k)
  230 continue
      j1=j+1
      surviv(j1,ngendr)=surv1v(j,ngendr)-dtot(j)
  tlx(j)=(surviv(j1.ngendr)+surviv(j,ngendr))/2.
905 format(/t33.27("-").
 >/" age ".t15."tqx".t26."lx".t36."tdx".t45."drad".t55.
> "dref".t65."tlx".t75."tx".t85."ex")
902 format(1x.2i4.f10.8.f10_0.3f10_3.2f10.0.f10.2)
cdb
      jage=j-2
                                                                     cdb
cdb
      jage1=jage+1
                                                                     cdb
      write(55,911)jage.jage1.tqxprm(j.ngendr).surv1v(j.ngendr).dtot(j).cdb
cdb
cdb > dref(j),drad(22),drad(23),agemor,radtot,radtsk(22),radtsk(23)
c 911 format(1x,214,f10.8,f10.0,4f10.3,4(1x,e11.3))
                                                                     cdb
                                                                     cdb
  210 continue
                    c---
С
          print out the life tables if requested...
С
С
   c--
      do 650 itable=1,ntable
      if (lage(lexps)_ne_nyear(ltable)) go to 650
      1f (1table.gt.1) write(55,360)
      write(55,900) iage(iexps),gender(ngendr)
  900 format(1h0,"life table calculation".//ti0."starting age".t40.i3,
     > //t10, "population", t40, a8, //)
      write(55,901)(aname(korgan(lorg)),lorg=1,norgan)
  901 format(t10, "cancer types", (t40, a8.//))
      write(55,905)
      tx(111)=t1x(111)
      do 652 1=iexps,110
      linv=111-1
      linv1=l1nv+1
      tx(linv)=tlx(llnv)+tx(llnv1)
      ex(linv)=tx(l1nv)/surv1v(linv,ngendr)
  652 continue
      do 654 j=1exps,111
      dradt=dtot(j)-dref(j)
      jage=j-2
      jage1=jage+1
      write(55.902)jage,jage1.tqxprm(j,ngendr),surv1v(j,ngendr),dtot(j).
     > dradt.dref(j),tlx(j),tx(j),ex(j)
  654 continue
  650 continue
  800 continue
      do 810 iexps=1,111
      do 235 lorg=1,norgan
      k=korgan(iorg)
      hleff(iexps,k)=hleff(1exps,k)/100000.
  235 continue
```

```
810 continue
305 format(//1x.120("-"),//)
    do 250 iorg=1.norgan
    k=korgan(1org)
    wr1te(55,360)
360 format(1h1)
    wr1te(55,305)
    write(55.361)aname(k).gender(ngendr)
361 format(1x, "cancer type", t20, a8, //1x, "population", t20, a8)
> 14(/8(1x,14,1x,e10.4)))
    do 815 1exps=1,111
    hleff(1exps,k)=hleff(1exps,k)*agedis(iexps,ngendr)*xnum(ngendr)
    totmor(k)=totmor(k)+hleff(1exps,k)
815 continue
    write(55.306)gender(ngendr),alet(let(iorg))
306 format(//1x, "number of health effects in "
                                                  ,a8,"population "
   >"distributed by age (",a4,"let radiation)")
    wr1te(55,307)
307 format(/1x.8("
                             health"),/8(" group effects"))
                     age
    wr1te(55,330)((1age(1).hleff(1,k),1=j.112,14),j=1,14)
330 format(14(1x,/8(i5.e10.3)))
    wr1te(55,308)
308 format(t112.9(" "))
    wr1te(55,320)gender(ngendr), totmor(k)
320 format(1x,/t53,"total number of health effects to the ",a8,
   >"population",e12.4)
    write(55,305)
250 continue
502 continue
    end
    subroutine start
    dimension time(120).dosinv(120)
    common/indata/aged1s(120,2), tqx(120,2), canrte(120,2,27)
   > alet(2),amodel(2),aname(27),gender(2),let(30).korgan(30),
   > mode1(30),xnum(2),dose(120,27),norgan
    common/llftab/ntable,nage(27),nyear(120)
    common/sea/rskrad,latent,plteau,nfollw(27)
    dimension pop(2), iflag(4), iwrite(4), title(8), disnam(2), ipr(4)
    dimension can5y(28,2)
    data ((aged1s(1,j),1=1,120),j=1,2)/
      0.,1839.,1815.,1713.,1645.,1654.,1598.,1631.,1595.,1659.,
   >1722..1903.,1903.,1852.,1808.,1854.,1916.,2039.,2131.,2143.,
>2134.,2235.,2208.,2178.,2153.,2139.,2080.,2066.,2013.,1971.,
   >1866..1898.,1852.,1812..1799.,1914.,1418.,1436.,1426.,1502.,
   >1304..1259.,1219.,1170.,1146.,1101.,1097.,1079.,1050.,1065..
   >1051.,1097.,1122.,1102.,1116.,1110.,1112.,1118.,1094.,1075.,
   >1074.1045.999.953.914.872.848.834.793.757.
> 715.679.631.587.549.499.463.421.379.341.
     292., 287., 244., 204., 174., 155., 706..
                                                    0.,
                                                           0.,
   >
                                                                  0..
                    0.,
       0.,
             0.,
                           0.,
                                              0.,
                                                            0.,
   >
                                0., 0.,
                                                     0.,
                                                                  0..
                                ŏ., ŭ.,
        0.,
              0.,
                     0..
                           0..
                                        0.,
                                               0..
                                                     0..
   >
                                                                  0..
                                                            0.,
              0.,
                                               0.,
                                                            0..
                                                                  ο.,
   >
        0..
                     0.,
                           0.,
                                                     0.,
        0., 1752., 1734., 1636., 1572., 1579., 1530., 1558., 1524., 1585.,
   >1645., 1817., 1820., 1774., 1732., 1778., 1839., 1962., 2048., 2077.,
   >2090.,2197.,2176.,2155.,2144.,2145.,2090.,2077.,2030.,1989.,
   >1886..1929.,1884..1850.,1839.,1962..1460.,1480.,1474..1554..
   >1352,,1308,,1268,,1220,,1197,,1153,,1152,,1134,,1109,,1129..
   >1118.,1174.,1206.,1191.,1213.,1215.,1226.,1242.,1225.,1213.,
>1220.,1194.,1149.,1105.,1070.,1035.,1023.,1024., 992., 965.,
   > 929., 899., 853., 811., 778., 727., 694., 650., 605., 564.,
> 502., 510., 451., 392., 347., 320., 1656., 0., 0., 0.,
                                                     0.,
```
	> 0.	· · · · ·	0., 0.,	0.,	0.,	0.,	0	0.,	0.,	
	> 0.	., 0.,	0., 0.,	o	0	0	0.,	0.,	0	
	> 0. data	(a) ot(1)	$(0, 0, 0_{-}, 1_{-})/(4h) = 0$	4hh1	o	0.,	0	Ū.,	0.7	
	data	(amodel(i), i=1,2)/8ha	bsolut	e.8hre	lative	./			
	data	(disnam(1),i=1,2)/8hp	rogram	, 8hus	er	/			
	data	(tq×(i,1)),i=1,120)/							
	>	0.00000,	.02245.		-00133	•	. 0009	94.	.00078,	
	>	.00064,	.00058.		-00054	•	0001	51. 42	-00048,	
	\$.00041,	.00030,		.00142	•	.0016	67.	.00185.	
	>	.00198.	.00212.		.00226	-	.002	35.	_00235	
	>	.00228	.00217.		-00206	•	.0019	99.	_00198	
	>	-00203.	-00210.		.00218	•	. 002	28.	.00239.	
	>	.00252.	.00268,		.00288	•	.003	12,	.00339,	
	>	.00369,	.00401.		-00435	•	.004	13, 11	.00518.	•
	Ś	00887	00969		.01059	•	.0110	61.	.01275.	
	>	.01400	.01534.		.01676	•	.018	27,	.01987.	
	>	.02158,	.02339,		.02532	•	.027	38,	.02960,	•
	>	.03200.	.03463.		.03746	.	.040	44.	_04350.	•
	>	-04665.	.04991.		.05344	•	.057	40,	.06193,	•
	>	.06703,	.07264,		.0/856	•	. 084	62, 70	-09070	•
	Ś	13663	. t4730.		. 15979	,	172	23. 81.	. 18521	•
	>	. 19681	.20839.		.22122		_235	12,	. 25023	•
	>	.26546,	.27962.		. 29090).	. 301	35,	.31111,	•
	>	.32017,	.32857.		. 33633	3.	.343	47,	.35004	•
	>	.35606,	.36157.		.36661		.371	21.	.37540	•
	>	.37922,	0.00000,) .	0.000	00,	0.00000	;
	data	(tax(1,2))	1.1 ± 1.120				0.000		0.00000,	
	>	0.00000.	_01746.		.00116	5.	. 000	77.	.00060	•
	>	.00051.	.00043.		.00038	3.	.000	34,	_00031	•
	>	.00028,	.00026,		.00025	5,	.000	27,	.00033	•
	>	.00040.	.00049.		-00058	3,	.000	66,	.00069	•
	~	.00071,	.00072,		.0007.	5 ,	.000	86	.00077	•
	>	.00096.	.00102.		.00110	,,),	.000	19.	.00129	•
	>	.00140.	.00152.		.00165	5,	.001	80,	.00197	•
	>	.00215.	-00233,	,	.0025	1.	.002	73.	-00297	•
	>	.00325,	.00354,	•	.00384	4.	.004	16,	.00449	•
	~	.00484,	.00523,	•	.0056:	э .	000	94	.00860	•
	Ś	.01035.	.01113	•	.01200	.	.012	98.	.01411	•
	>	.01538,	.01678		.0183	2,	.020	04.	.02195	
	>	.02407.	.02632,		.02879	9.	.031	65,	.03503	•
	>	.03893.	.04325.	•	.04790) ,	.052	95.	.05840	•
	~	.06432.	_07097.	•	10/83	4. ว	.086	912. 195	.09419	٠
	Ś	16006	. 17264	•	. 187 1	2. R.	. 202	43.	.21750	•
	>	.23186	.24584	•	2585	4.	.269	80.	.27996	
	>	.28949	_29836.	•	.3065	9,	. 314	20.	. 32 1 2 2	•
	>	.32768,	. 33361,	•	. 3390	4,	_ 344	101.	- 34855	•
	>	.35269.	0.00000	•	0.0000	0.	.0.000	X00.	0.00000	
	data	((canr+	e(1.i.k) i≖1	120)	i≠1.2)	.k=1.2	7)/		0.0000	1
	> 648	0+0-0/					. ,,			
	data	(pop(1),	1=1,2)/ 0.0.0	0.0/						
	read	I(50,9)(ți	tle(1),1=1,8)						
	writ • for-	e(55.9)(t	itle(1),i=1,	R)						
c	a 101.0	at(1088)								
c se	t up c	of the inp	out deck:							

```
С
      number of cards
                                                       format
                                 parameter
С
С
              1
                                   iflag
                                                            4 i
С
                                                            41
              1
                                   iwrite
            (48)
                                                            5f12.9
С
                                   tax
                                  agedis
С
           (40)
                                                            6f10.0
c
                                                            2f10.0
              1
                                  xnum
С
              1
                                  norgan
                                                            15
С
                                  korgan, let, model, nfollw 415
              1
                                                            2f10.0
С
                                  ×num
С
            (8)
                                  can5y
                                                            7f10.4
С
             1
                                  n1nv
                                                            15
С
           n1nv
                                   time.dosinv
                                                            2f10.2
С
                                   ntable
                                                            i3
             1
С
              1
                                  nyear
                                                            1415
С
 the array iflag 1s used to insert user-supplied data to the arrays tqx and agedis. If iflag.ne.1. default values based
С
С
 on united states national average statistics will be used.
С
                                                                 the index
С
 1 for 1flag corresponds to
           (proportion dying in each age interval)
    tqx
С
                                                         for
                                                                 1 = 1
    aged1s (population age distribution)
С
                                                         for
                                                                 1=2
      read(50,10)(1flag(i),1+1,4)
   10 format(4i1)
c if iwrite(i)=1, the array corresponding to the value of 1
c (defined above) will be printed. if iwrite(1).ne.1, no printout
c will be provided.
      read(50,10)(iwrite(1),1=1,4)
      1f(iflag(1).ne.1) go to 20
      read(50,15)((tqx(1,j),1=1,120),j=1,2)
   20 1f(1write(1).eq.1) write(55,115)((tqx(i,j).1=1,120),j=1,2)
  30 1f (1write(2).eq.1) write(55,116)((aged1s(1,j),1=1,120),j=1.2)
   16 format(6f10.0)
  do 3 1=1,2
      do 4 j=1,120
      pop(1)=pop(1)+aged1s(j,1)
    4 continue
    3 continue
      do 1 1=1,2
      do 2 j=1.120
      aged1s(j,1)=aged1s(j,1)/pop(i)
    2 continue
    1 continue
      1f (1write(2).eq.1) write(55,600)(pop(1).1=1,2)
  600 format(/t15, "population totals used to normalize age distribution
>tables"./t40, "males", t55, f10.2, /t40, "females", t55, f10.2)
c read in input information, where
С
С
            dose is the dose in rads,
                      for low let radiation
for high let radiation
С
            let = 1
= 2
c
С
            korgan = cancer type (see subroutine getrsk for listing
С
                               of cancer types)
С
            model = 1 for absolute risk model
С
                    2 for relative risk model
С
            xnum(1) = number of males in population at risk
```

С

```
xnum(2) = number of females in population at risk
С
C
       write(55,402)
  402 format(//120("-"),////120("-").//)
       read(50,501)(xnum(i),1=1,2)
  501 format(2f10.0)
       read(50,602) norgan
       write(55,25)
   25 format(1x,/t5, "health effects calculated for...")
       wr1te(55,502) norgan
  502 format(1x,/t15, "number of target organs", t55, 12/)
       do 606 iorg=1.norgan
       read(50,19) korgan(iorg),let(1org),model(iorg).nfollw(iorg)
    19 format(4i5)
       wr1te(55,22) iorg,alet(let(lorg)),aname(korgan(lorg)),
   > amodel(model(iorg))
22 format(/11x,i5,".)",t20,"let",t55,a4,/t20,"cancer type",t55,a8,
> /t20."risk model",t55.a8/)
       1f (model(iorg).ne.2) go to 750
       read(50.17)((can5y(1,j),1=1,28),j=1,2)
    17 format(7f10.4)
       do 700 j=1,2
canrte(1,j,korgan(1org))=0.0
       do 701 i=1,22
       k1=5*(i-1)+2
       k2=5+1+1
       do 702 k=k1,k2
       canrte(k,j,korgan(iorg))=can5y(1,j)*0.000001
  702 continue
  701 continue
  700 continue
  750 continue
       read(50,602)n1nv
  602 format(15)
       read(50.603)(time(i),dosinv(1).1=1.n1nv)
  603 format(2f10.2)
       nstart=1
       do 604 1=1,ninv
       ntime=t1me(i)
       nstop=nstart+ntime-1
       do 605 1j=nstart,nstop
       dose(1j,korgan(1org))=dos1nv(1)
  605 continue
       nstart=nstart+nt1me
  604 continue
       wr1te(55,35)
    35 format(1x,t20,"dose by time interval:")
    write(55,21)(dosinv(1),time(1),i=1,n1nv)
21 format(1x,t55,f8.5," rads for ",f5.1," years")
40 if (model(10rg).eq.2.and_1write(3).eq_1) write(55,117)
      > ((canrte(1,j,korgan(1org)),1=1,120),j=1,2)
   117 format(/t5, "cancer mortality rates",
> //t5, "male",/12(t5,10f11_8/),//t5, "female",/12(t5,10f11.8/))
cdb write(55,610)(i,korgan(iorg),dose(i,korgan(iorg)),i=1,120)
cd610 format(/1x,"listing of dose"//.120(215,f10.4/))
                                                                                          cdb
                                                                                          cdb
   606 continue
        do 5 1=1,4
        1pr(1)=iflag(i)+1
     5 continue
        wr1te(55,400)
   400 format(/t5, "summary of population characteristics...",/)
        write(55,401)xnum(1).xnum(2).disnam(1pr(1)),disnam(ipr(2))
   40t format(/t15, "number of persons in population:",/t40, "males", t55,
>f8.0,/t40, "females", t55, f8.0,/t15, "population table:", t45, "supplie
```

>d by:",/t30,"11fe table".t55.a8./t30."age distribution",t55,a8) c read the number of life tables to be printed and the beginning age for each table. c a maximum of 25 life tables can be printed. read(50.601) ntable 601 format(13) read(50.608)(nyear(1year).1year=1.ntable) 608 format(1415) return end subroutine getrsk(rc.1,j,k,let.m.n,dose) real latent common/sea/rskrad,latent,plteau.nfollw(27) c this subroutine calculates the risk rate at age "j" for cancer type "k" c due to exposure at age "1" to low let radiation (1=1) or high let radiation (1=2), for the absolute risk model (m=1) or relative risk model (m=2). С for males (n=1) or females (n=2). the cancer types are С С С k cancer type k cancer type С С 1 breast 13 urinary organs c c 2 thvrold 14 ovarv з lung 15 uterus and cerv1x uter1 С 4 leukemla 16 bone С 5 esophagus 17 paranasal sinuses с с с and mastold air cells 6 stomach 18 brain 7 Intestine 19 sk1n С and rectum С 8 20 11ver hematopoletic cancer from С prenatal exposure c c 9 21 pancreas solld tumors from prenatal exposure С 10 pharynx, hypo-22 all cancers except leukemia С pharnx.larynx and bone cancer, 1-1 model salivary glands 23 С 11 leukemia and bone, 1-1 model С 12 parathyroid 24 1 ymphoma С c other risk coefficients presented for convenience... С С 25 leukemia risk from beir i С 26 all cancers except leukemia and bone cancer, С lq-l'model С 27 leukemia and bone cancer, lq-1 model rskrad=0.0 1f (k.eq.1) go to 1 (k.eq_2) go to 2 1£ 1f (k.eq.3) go to 3 1f (k.eq.16) go to 16 1f (k.eq.8) go to 8 (k.eq.20) go to 20 (k.eq.21) go to 21 1f 1f 1 f (k.eq.23) go to 23 1 F (k.eq.22) go to 22 1f (k_eq.25) go to 25 1f (k.eq.26) go to 26 1f (k.eq.27) go to 27 rc=0.0 return 1 continue c breast cancer... (p.283. beir 111) c only uses the model for linear risk with no cell killing. to use the c model with cell killing, just substitute the appropriate values of c rskrad from page 283 of beir 111. all risk rate factors have been c multiplied by $\overline{0}.39$ (table v-15, beir 111)to give the mortality risk rate.

```
1f (let.ne.1) wr1te(55,902) let
    902 format(1x, "value for let incorrect", 15)
        if (let.ne.1) stop
         if (n.eq.1) rskrad=0.0
         1f (n.eq_1) go to 100
        if (m_eq.2) go to 101
1f (i.le_9) rskrad=0_0
        1f (1_ge_10, and, i_1e, 19) rskrad=4_1e-06
        if (1_ge.20) rskrad=2.6e-06
        1f (i_le.9) latent=20_0
        if (1.ge.10.and.i.le.14) latent=20.0
if (1.ge.15.and.i.le.19) latent=15.0
        if (i.ge.20) latent=10.0
        plteau=200.0
        go to 100
    101 continue
 c this section supplies the relative risk coefficients given in beir iii
 c (p. 283) directly to subroutine relfac
        1f (i.le.9) rskrad=0.0
        if (i.ge.10_and.i.le.19) rskrad=0.4e-02
        if (1.ge.20) rskrad=0.16e-02
        rc=rskrad
        return
      2 continue
 c thyroid cancer.,. (pp. 303-304.
if (let.ne.1) write(55,902) let
                              (pp. 303-304, beir 111)
        1f (let.ne.1) stop
        1f (n.eq.1) rskrad=0.4e-06
1f (n.eq.2) rskrad=1.2e-06
        latent=10.0
        plteau=200.0
        go to 100
      3 continue
 c lung cancer...
                          (p. 327, beir 111)
 c cancer risk is referenced to the age at diagnosis, here taken to be j.
        1f (j_lt.35) rskrad=0.0
        if (j.ge.35_and.j.le.49) rskrad=1.5e-06
if (j.ge.50.and.j.le.65) rskrad=3.0e-06
        if (j.gt.65) rskrad=7.0e-06
        plteau=200.0
        1f (1.1t.15) latent=25.0
        1f (1.ge.15.and.1.le.34) latent=17.5
1f (1.ge.35) latent=10.0
        go to 100
•
     20 continue
 c hematopoietic cancers from intrauterine exposure(p.452, beir iii)
        latent=0.0
        plteau=12.0
        1f (i.ne.-1) rskrad=0.0
        If (1.ne. -1) go to 100
if (let.eq.1) rskrad=25.0e-06
         if (let.eq.2) rskrad=500_0e-06
        go to 100
     21 continue
 c solid cancers from intrauterine exposure (p.452, beir iii)
        latent=0.0
        plteau=10.0
         1f (1_ne.-1) rskrad=0.0
         if (1_ne.-1) go to 100
        1f (let.eq.1) rskrad=28.0e-06
1f (let.eq.2) rskrad=560.0e-06
        go to 100
     16 continue
 c bone cancer...
                          (p. 417, beir 111)
```

```
1f (let.eq_2) rskrad=1.0e-06
        latent=4.0
       plteau=27.0
     go to 100
8 continue
c liver cancer...
                            (pp.379-380,beir 111)
        1f (let.eq.1) rskrad=0.7e-06
        1f (let.eq.2) rskrad=13.0e-06
        latent=10.0
       plteau=200.0
       go to 100
    27 continue
c calculate the combined risk from leukemia and bone cancer using
c the linear-quadratic model (low let radiation and absolute risk model
c only.)
  if (let.ne.1) write(55.900) let
900 format(/1x,"the linear-quadratic model has been called for non-low
> let radiation. ",/1x."let = ",15," program stopped.")
if (let.ne.1) stop
cdb 1f (m.ne.1) write(55,901) m
cd901 format(/1x, "the leukem1a/bone cancer r1sk model has been called fo
cdb >r non-absolute r1sk,",1x,"model = ",15, "program stopped,")
       1f (m.ne.1) stop
cdb
        latent=3.0
       plteau=24.0
        1f(n.eq.2) go to 600
1f (1.1e.9) a=1.829
        1f (1_le.9) b=0.01575
        1f
            (i.ge.10.and.1.1e.19) a=0.7855
        1f (i.ge.10_and.i_le.19) b=0.006766
        1f (i.ge.20.and.1.le.34) a=1.1380
1f (1.ge.20.and.1.le.34) b=0.009798
        1f (1.ge.35_and.1.le_49) a=0.8511
        1f (1.ge_35.and.1.le.49) b=0.007331
        1f (1_ge.50) a=1.937
        1f (1.ge.50) b=0.01669
        1f (dose.lt.1.1) b=0.0
        rskrad=a*dose + b*(dose**2)
        1f (dose.lt_0.00000001) rskrad=0.0
        1f (dose_lt.0.00000001) go to 215
        rskrad=rskrad/dose
   215 continue
        rskrad=rskrad+1.0e-06
        go to 100
   600 continue
        1f (i.1e.9) a=1.169
1f (1_1e.9) b=0.01007
        if (1.ge.10.and.1.le_19) a=0.5067
if (i.ge.10.and.1.le.19) b=0.004364
        1f (1.ge,20,and,1.le,34) a=0.7301
        1f (1_ge.20.and.1.1e.34) b=0.006289
        1f (1.ge.35.and.1.le.49) a=0.5483
        1f (1.ge.35.and.1.1e.49) b=0.004723
1f (1.ge.50) a=1.238
        1f (1.ge,50) b=0.01047
        1f (dose.lt.1.1) b=0.0
        rskrad=a*dose + b*(dose**2)
        if (dose.lt.0.000000001) rskrad=0.0
1f (dose.lt.0.000000001) go to 210
        rskrad=rskrad/dose
   210 continue
        rskrad=rskrad+1_0e-06
        go to 100
```

1f (let.eq.1) rskrad=0.05e-06

```
c calculate the risk of all cancers except leukemia and bone cancer
c using the linear-quadratic model. low let radiation only.
       latent=10.
       plteau=200.
       1f (n.eq.2) go to 601
1f (i.le.9) a=0.89720
1f (1.le.9) b=0.007728
       if (i.ge.10.and.i_le.19) a=0.6095
       1f (1.ge.10_and_i_le_19) b=0.005250
       1f (i.ge, 20, and 1, 1e, 34) a=1.774
       1f (i.ge.20.and.i.1e.34) b=0.01528
       if (1_ge_35, and 1.1e.49) a=2,278
        if (1.ge,35,and.i.le.49) b=0.01962
       if (i.ge.50) a=3.446
1f (i.ge.50) b=0.02968
       if (dose.lt.1_1) b=0_0
       rskrad=a*dose + b*(dose**2)
       1f (dose.lt.0.00000001) rskrad=0.0
       if (dose_lt.0.00000001) go to 205
rskrad=rskrad/dose
  205 continue
       rskrad=rskrad+1.0e-06
       go to 100
  601 continue
       1f (i_le.9) a=1.1690
        if (1.1e.9) b=0.01007
        if (1.ge_10.and.1_1e.19) a=0.7940
        1f (i.ge. 10.and 1.le. 19) b=0.006839
       1f (1.ge.20.and.1.le.34) a=2.311
1f (1.ge.20.and.1.le.34) b=0.01990
        1f (i.ge_35_and_1,1e.49) a=2_968
        if (i.ge.35.and.1.1e.49) b=0.02556
       1f (i.ge.50) a=4_489
1f (i.ge.50) b=0.03867
        if (dose.lt.1.1) b=0.0
       rskrad=a*dose + b*(dose**2)
        1f (dose.lt.0.00000001) rskrad=0.0
        if (dose.lt.0.00000001) go to 200
       rskrad=rskrad/dose
   200 continue
       rskrad=rskrad+1.0e-06
       go to 100
    25 continue
c this section gives the leukemia risk as calculated from beir i.
                                                                                   it 1s
c used for comparing program results with those of other authors.
       latent=2.0
       plteau=25.0
        1f (i.ge.10) rskrad=1.0e-06
        if (1.1e.9) rskrad=2.0e-06
       go to 100
    22 continue
c calculate the risk of all cancers except leukemia and bone cancer
c using the linear model. low let radiation only. (beir 111, p. 207)
        latent=10.0
       plteau=200.0
        1f (n_1eq_2) go to 605
1f (1_1e_9) a=1,92000
1f (i_2ge_10, and (1_1e_19) a=1,4570
        1f (1.ge.20.and.1.le.34) a=4.327
        1f (1.ge.35.and.1.le.49) a=5.291
        1f (i.ge_50) a=8.808
       rskrad=a
       rskrad=rskrad*1.0e-06
```

26 continue

```
go to 100
  605 continue
      1f (1.1e.9) a=2.57600
      1f (1.ge, 10.and, 1.1e, 19) a=1.9550
      1f (1.ge,20.and.1.le.34) a=5.807
      1f (1,ge,35,and,1,1e,49) a=7.102
      if (1_ge,50) a=11.823
      rskrad=a
      rskrad=rskrad+1.0e-06
      go to 100
   23 continue
c calculate the risk of leukemia and bone cancer
c using the linear model. low let radiation only. (beir 111, p. 204)
      latent=3.0
      plteau=24.0
      1f (n.eq.2) go to 606
      1f (1.1e.9) a=3.97700
      1f (1.ge.10.and.i.le.19) a=1.8490
      1f (1.ge_20.and.1.le_34) a=2.596
       if (1,ge.35,and.1,1e.49) a=1.921
      1f (1_ge,50) a=4.319
      rskrad=a
      rskrad=rskrad+1.0e-06
      go to 100
  606 continue
      1f(1,1e,9) a=2.54200
       1f (1.ge, 10.and, 1.le, 19) a=1, 1920
       1f (1.ge.20.and.1.le.34) a=1.666
      1f (1.ge, 35, and, 1.1e, 49) a=1,237
      1f (1.ge.50) a=2.7600
      rskrad=a
      rskrad=rskrad+1.0e-06
      go to 100
  100 continue
      delta=j=1
       1f (delta.lt.latent) rc=0.0
       1f (delta.eq.latent) rc=rskrad/2.0
      we have to fake this for intrauterine exposures since
С
      no fatal cancers are expected to occur before birth...
c
       1f (k.eq.20.and.delta.eq.latent) rc=0.0
       if (k.eq.21.and.delta.eq.latent) rc=0.0
       1f (delta.gt.latent) rc=rskrad
       span=latent + plteau
       lf (delta.eq.span) rc≃rskrad/2.0
       1f (delta.gt.span) rc≠0.0
       return
       end
       subroutine relfac(lorg.k.ngendr)
       real latent
       common/sea/rskrad,latent.plteau,nfollw(27)
       common/acom/xrad(120).xnat(120).r(120,27)
      common/wind/iage(120)
     common/indata/aged1s(120,2),tqx(120,2).canrte(120,2,27),
> alet(2),amode1(2),aname(27),gender(2).let(30).korgan(30).
      > mode1(30),xnum(2),dose(120,27).norgan
c do initial calculations for the relative risk model
   first generate the relative risk factors as a function of age. calculate
C
   xrad(1), the number of cancer deaths in the fraction of the expression period
С
   that has been observed following
С
   exposure to "dose" rads of radiation at age 1. then calculate xnat(1). the number
С
   of cancer deaths in the nfollw(lorg) years between 1+latent
and 1+nfollw(lorg) years from natural causes.
the risk factor r(1) is the ratio of these two numbers. i.e., r(1)*xrad(1)/xnat(1).
С
C
```

```
C
      do 710 1=1,111
```

```
xrad(i)=0.0
      xnat(i)=0.0
      r(1,k)=0_0
  710 continue
      dosx=1.0
c treat breast cancer as a special case since the relative risk factors
c are explicitly given in beir 111 (p_283).
      1f (k_eq.1) go to 100
do 700 1=1,111
       130=1+nfollw(1org)
       if (130.gt.111) 130±111
       do 705 j=i.130
      jage=j-2
      call getrsk(rc, iage(1), jage, k, let(1org), model(iorg), ngendr.
     > dosx)
       id1f=j-1
      if(idif.lt.latent) go to 705
if (idif.eq.latent) go to 500
if (idif.eq.nfollw(iorg)) go to 500
      xrad(1)=xrad(1)+rc*dosx
      xnat(1)=xnat(i)+canrte(j.ngendr.k)
      go to 705
  500 continue
      xrad(1)=xrad(1)+(rc*dosx)/2.0
       xnat(1)=xnat(1)+canrte(j,ngendr,k)/2.0
  705 continue
       1f (1.ge.101) go to 772
  1f(xnat(i).lt.1.0e-09) wr1te(55,771)1,xnat(1),xrad(1)
771 format(/1x,"check value of xnat",15,2f20,10)
       1f (xnat(i).1t.0.00001) go to 772
       r(1,k)=xrad(1)/xnat(1)
  772 continue
  700 continue
c the risk factors for ages 0-9 next are set equal to the average
c risk factor for 10-19 (beir 111, p.195)
       riskave=0.0
       do 773 1j=12,21
       r1skave=r1skave+r(1j.k)
  773 continue
       r1skave=r1skave/10.
       do 774 1j=1,11
      r(ij.k)=r1skave
  774 continue
      wr1te(55.942)gender(ngendr),aname(k),(iage(1),r(1,k),xrad(1),
      > xnat(1),1=1,120)
  942 format(/1x, "risk factors for relative risk model, "
     > a8, "population"./t10, "for exposure to ".a8,/" age ",
      > "
                           r1sk
                                                 xrad
                                                                        xnat*./
     > 120(i5,3f20.8/))
       return
  100 continue
       do 110 1≖1,111
       jage=200.
       dosx=1.0
       call getrsk(rc, tage(1), jage.k, let(torg).model(iorg).
      > ngendr.dosx)
       r(\bar{1},k)=rc
  110 continue
       end
```

APPENDIX C

SAMPLE PROBLEMS AND COMPARISON OF REPCAL RISK ESTIMATES WITH THOSE OF BEIR III

The program REPCAL was used to calculate risk estimates for several dose scenarios that were also presented in the BEIR III report. The REPCAL input and output files for two of these scenarios are presented here. These two scenarios are

- the calculation of the total number of cancer mortalities from a single exposure of 10 rads using the relative risk model for all cancers except leukemia and bone cancer, and
- the calculation of the total number of cancer mortalities from continuous exposure from birth to 1 rad/year using the absolute risk model for all cancers except leukemia and bone cancer.

The linear no-threshold model was used for both calculations. We followed the BEIR III Committee in using age averaging in the first calculation and in estimating the cancer mortality risk in a cohort of individuals all of the same age in the second calculation.

The input file for the first calculation has been presented in Table A-III. The U.S. age distribution used by the BEIR Committee has been taken from Alexander (1982). The REPCAL output file is shown in Table C-I. The calculated number of cancer deaths (and the line in the output file where this average is found) for a population of 1 000 000 males is

3910 cancers other than leukemia and bone cancer (line 450), and 535 leukemia and bone cancer (line 508),

and for a population of 1 000 000 females

4560 cancers other than leukemia and bone cancer (line 821), and and 363 leukemia and bone cancer (line 879).

The input file for the second calculation is given in Table C-II, and the output file in Table C-III. For this problem the lifetime risk of cancer mortality for a 1-rad/year exposure from birth is calculated. These risks are the entries for age 0 in the table labeled "lifetime risks to individuals from exposure by age" in the output file. The risks expressed as cancer deaths per million individuals and the lines in the output file on which these risks are found are for males 6126 cancers other than leukemia and bone cancer (line 380), and 3587 leukemia and bone cancer (line 438),

and for females,

10 920 cancers other than leukemia and bone cancer (line 751), and 2706 leukemia and bone cancer (line 809).

The other entries in these tables in the output file are the lifetime risks of cancer mortality for the other age cohorts. As noted earlier, the ageaveraged risk factors given here (lines 416, 474, 787, and 845) should not be used if age-averaged risk factors involve exposure times greater than 1 year, because population dynamics have not been accounted for in the program.

In addition to these two calculations, two other calculations were performed using REPCAL that were also presented in BEIR III. The results of these calculations are in Table C-IV for comparison with the BEIR III results. As can be seen in the table, the two sets of calculations are in good agreement and are well within the uncertainty associated with these estimates.

TABLE C-I

OUTPUT FILE FOR THE FIRST SAMPLE PROBLEM

i single dose of 10 rads using relative risk lexcept for leukemia proportion dying in each age interval male 0.000000000 .022450000 .001330000 .000940000 .000780000 .000640000 .000580000 .000540000 .000510000 .000460000 6 .000410000 .000360000 .000350000 .000420000 .000590000 .000840000 .001140000 .001420000 .001670000 .001850000 .001980000 .002120000 .002260000 .002350000 .002350000 .002280000 .002170000 .002060000 .001990000 .001980000 8 .002030000 .002100000 .002180000 .002280000 .002390000 .002520000 .002680000 .002880000 .003690000 .004010000 .004350000 .004730000 .005180000 .005680000 .006230000 .006810000 .003120000 .003390000 9 .006810000 .007440000 .008120000 10 11 12 .008870000 .009690000 .010590000 .011610000 .012750000 .014000000 .015340000 .016760000 .018270000 .019870000 021580000 .023390000 .025320000 .027380000 .029600000 .032000000 .034630000 .037460000 .040440000 .043500000 13 .046650000 .049910000 .053440000 .057400000 .061930000 .067030000 .072640000 .078560000 .084620000 .090700000 095880000 .103670000 .111250000 .119290000 .127700000 .136630000 .147300000 .159790000 .172810000 .185210000 14 15 196810000 .208390000 .221220000 .235120000 .250230000 .265460000 .279620000 .280900000 .301350000 .311110000 16 .320170000 .328570000 .336330000 .343470000 .350040000 .356060000 .361570000 .366610000 .371210000 .375400000 17 18 19 20 female 21 0.00000000 .017460000 .001160000 .000770000 .000600000 .000510000 .000430000 .000380000 .000340000 .000310000 22 .000280000 .000260000 .000250000 .000270000 .000330000 .000400000 .000490000 .000580000 .000660000 .000690000 .000750000 .000770000 .000790000 .000810000 .000860000 .000900000 .000710000 .000720000 .000730000 .000830000 23 .000960000 .001020000 .001100000 .001190000 .001290000 .001400000 .001520000 .001650000 .002150000 .002330000 .002510000 .002730000 .002970000 .003250000 .003540000 .003840000 .001800000 .001970000 24 .004160000 .004490000 25 ,008940000 .009620000 26 27 .004840000 .005230000 .005650000 .006110000 .006600000 .007120000 .007680000 .008290000 .010350000 .011130000 .012000000 .012980000 .014110000 .015380000 .016780000 .018320000 .020040000 .021950000 28 29 .024070000 .026320000 .028790000 .031650000 .035030000 .038930000 .043250000 .047900000 .052950000 .058400000 .064320000 .070970000 .078340000 .086120000 .094190000 .102750000 .112820000 .124620000 .136850000 .148590000 .160060000 .172640000 .187180000 .202430000 .217500000 .231860000 .245840000 .258540000 .269300000 .279960000 30 31 ,289490000 .298360000 .306590000 .314200000 .321220000 .327680000 .333610000 .339040000 .344010000 .348550000 32 33 34 35 36 age distribution by sex 37 38 male 39 0.00000 .01457 .01454 .01452 .01451 .01451 .01450 .01463 .01455 .01453 .01440 .01438 40 .01449 .01449 .01448 .01448 .01447 .01446 .01445 .01443 41 _01435 .01432 .01429 .01426 .01422 .01419 .01416 .01413 .01410 .01407 42 .01405 .01402 .01399 .01396 .01392 .01389 .01385 .01381 .01377 .01373 .01320 43 .01363 .01357 .01351 .01344 .01337 .01329 .01311 .01301 .01368 44 45 .01251 .01235 .01218 .01201 .01182 .01161 .01139 .01277 .01265 .01290 .00943 .00909 .00873 .00838 .01115 .01090 .01064 .01036 .01006 .00975 46 .00799 .00760 .00721 .00681 .00641 .00599 ,00558 .00516 .00474 .00432 47 .00315 .00278 .00244 .00212 .00182 .00154 .00129 .00106 .00392 .00352 .00031 .00023 .00012 .00009 .00006 48 .00086 .00068 .00054 .00041 .00017 49 50 .00004 .00003 .00002 .00001 .00001 00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 51 52 53 female 54 55 .01310 0.00000 .01320 .01316 .01314 .01313 .01313 .01312 .01311 .01311 .01309 .01309 .01309 ,01308 .01307 .01306 .01305 .01308 .01310 .01310 56 57 .01304 .01304 .01303 .01301 .01300 .01299 .01299 .01297 .01296 .01295 .01291 .01290 .01288 .01287 .01285 .01283 .01280 .01278 .01294 .01293 58 .01269 .01266 .01263 .01254 .01250 .01245 .01239 .01275 .01273 .01259 59 .01221 .01214 .01206 .01197 .01189 .01179 .01169 .01158 .01234 .01227 60 .01121 .01020 .00999 .01147 .01134 .01107 .01092 .01076 .01059 .01040 61 .00925 .00897 .00764 .00726 .00686 .00976 .00951 .00867 .00835 .00800 _00246 62 .00600 .00555 .00510 .00464 .00418 .00373 .00329 .00286 .00644 63 .00208 .00173 .00142 .00115 .00091 .00070 .00054 .00040 ,00030 .00021 64 00011 .00008 .00005 .00004 00002 .00002 400001 .00001 .00001 .00015

1

.

.

TABLE C-I (cont)

.

.

65 66	0.00000	0.00000	0.00000	0.00000	0.0	0000	0.00000	0.00000	0.00000	0.00000	0.00000
67 68 69 70 71 72	pop	ulation tot	als used	to normalize males females	age d	istribu 1. 1.	ution tab .00 .00	1es			
73 - 74 75 76											
77 - 78 79 80 81 82	health effect	s calculate	d for								
83	num	ber of targ	jet organs			2					
85											
86 87	1.) let cancer ty	pe		1	ow ther					
88 89		risk mode	it.		r	elative	3				
90		dose by t	ime interv	val:				_			
91 92					1	0.00000) rads fo) rads fo	r 1.0 yea r 110.0 yea	rs rs		
93									_		
95	cancer mortai	ity rates									
96 97	mate 0.00000000	00003387	00003387	00003387	0000	3387	00003387	00002883	00002883	00002883	00002883
98	.00002883	. 00002417	,00002417	.00002417	.0000	2417	00002417	.00004010	.00004010	.00004010	.00004010
99	.00004010	.00006178	.00006178	.00006178	.0000	6178 . 4003	.00006178	.00009027	.00009027	.00009027	.00009027
101	.00026073	.00057030	.00057030	.00057030	.0005	7030	.00057030	.00122985	.00122985	.00122985	.00122985
102	.00122985	-00223789	.00223789	.00223789	.0022	3789	00223789	.00366945	.00366945	.00366945	.00366945
103	.00366945	.00581760	.00581760	.00581760	.0058	1760 . 8197	00581760	.00817359	.00817359	.00817359	.00817359
105	.01311209	.01311209	.01311209	.01311209	.0131	1209	01311209	.01411599	.01411599	.01411599	.01411599
106	.01411599	.01411599	.01411599	.01411599	.0141	1599 .	01411599	.01411599	.01411599	.01411599	.01411599
108	.01411599 0	.00000000 0	.00000000	0.00000000 (2.0000	0000 0.	000000000	0.00000000	0.00000000	0.00000000	0,00000000
109											
110	female										
112	0.00000000	.00002656	.00002656	.00002656	. 0000	2656 .	00002656	.00002190	.00002190	.00002190	.00002190
113	.00002190	.00001859	.00001859	.00001859	. 0000	1859 .	00001859	.00002864	.00002864	.00002864	.00002864
115	.00002864	.00017053	.00017053	.00017053	.0000	7053 .	00003920	.00035552	-00035552	.00035552	.00035552
116	.00035552	,00073296	.00073296	.00073296	_0007	3296	00073296	.00132862	.00132862	.00132862	.00132862
117	.00132862	.00204602	.00204602	.00204602	.0020	4602 .	00204602	.00297376	.00297376	.00297376	.00297376
119	.00485846	.00619002	.00619002	.00619002	.0039	9002	00395444	.00839246	.00839246	.00839246	.00839246
120	.00839246	.00839246	.00839246	.00839246	.0083	9246	00839246	.01060892	.01060892	.01060892	.01060892
121	.01060892	.01060892	.01060892	.01060892	.0106	0892 .	01060892	.01060892	.01060892	.01060892	.01060892
123	.01060892 0	.000000000 0	.00000000	0.00000000 (0.0000	0000 0.	000000000	0.00000000	0.00000000 (0.00000000 (0.00000000
124						•					

79

.

.

,

125						
126	2.) let		low			
127	cancer type		1eu/bone			
128	risk model		absolute			
129						
130	dose by time inte	rval:				
131	•		10.00000 rad	is for	1.0	years
132			0.00000 rad	is for	110.0	years
133						
134	summary of population characteri	stics				
135						
136						
137	number of persons in p	opulation:				
138		males	1000000.			
t39		females	1000000.			
140	population table:	supp11	led by:			
141	life ta	ble	user			
142	age dis	tribution	user			

•

1

,

.

-

•

43											
14											
÷ .											
, -											
, 3											
						ion of ca	ncor risks	for male	nonulati	00	
					carculat		ncer i taka	101 110110	populati	0	
	life	tab	e calculati	Ion							
						•					
i		:	starting age	2		0					
		F	opulation		ma	ite					
			ancer types	5	ot	ther					
					1e	eu/bone					
5	R	ae	tax	1 x	td×	drad	dref	tlx	t×	e×	
	ົ	3 -1	.02245000	100000.	2245 000	0.000	2245.000	98878.	6688551.	66.89	
	1	2	.00133000	97755.	130.014	0.000	130.014	97690.	6589673.	67.41	
	2	3	.00094000	97625.	91.767	0.000	91.767	97579.	6491983.	66.50	
	3	4	.00077999	97533.	78.014	1.939	76.075	97494.	6394404.	65.56	
	4	5	.00063999	97455.	66.245	3.874	62.370	97422.	6296910.	67 66	
	5	6	.00057999	97389.	60.356 56 426	3.8/2	50,484 53 556	97300	6102129	62 70	
	5		.000533339	9/329.	53 475	3 867	49.608	97245	6004829	61.73	
	Ŕ	а С	00045999	97212.	48.585	3.865	44.720	97194.	5907583.	60.77	
	9	10	.00040999	97170.	43.703	3.864	39.839	97148.	5810389.	59.80	
	10	11	.00035999	97126.	39.759	4.794	34.965	97107.	5713241.	58.82	
	11	12	.00034999	97087.	39.703	5.724	33.979	97067.	5616134.	57.85	
	12	13	.00041999	97047.	46.480	5.721	40.759	97024.	5519067.	56.87	
	13	14	.00058998	97000.	62,947	5.718	57.229	96969.	5422043.	55.90	
	14	15	.00083998	96938.	87,139	5./14	81.425	90894. 96799	5225074.	53.98	
	15	16	.00113997	96734	110.114	5,708	137.359	96663	5131388	53.05	
	10	1/	00166995	96591	166.994	5.691	161.303	96508	5034725.	52.12	
	18	19	.00184995	96424	184.060	5.681	178.380	96332.	4938218.	51.21	
	19	20	.00197994	96240.	196.219	5.669	190.550	96142.	4841886.	50.31	
	20	21	.00211994	96044.	209.265	5.658	203.607	95939.	4745743.	49.41	
	21	22	.00225993	95835.	222.225	5.645	216.580	95724.	4649804.	48.52	
	22	23	.00234993	95612.	230.314	5.631	224.683	95497.	4554081.	41.03	
	23	24	.00234993	95382.	229.759	5.618	224,141	95267.	4438383.	40.74	
	24	25	.00227993	95152.	222.546	5,605	210.941	94824	4268275	44.96	
	25	26	.00216994	94930.	200 693	5 580	195.114	94618	4173451	44.06	
	20	20	00203334	94518	191.777	3.690	188.086	94422	4078833	43.15	
	28	29	.00197998	94326	188,572	1.809	186.763	94231.	3984411.	42.24	
	29	30	.00202998	94137.	192.902	1.806	191.097	94041.	3890180	41.32	
	30	31	.00209999	93944.	198,546	1.264	197.282	93845.	3796139.	40.41	
	31	32	.00217999	93746.	205.089	. 724	204.365	93643.	3702294.	39.49	
3	32	33	.00227999	93541.	213.995	.723	213.272	93434.	3608651.	38.58	
4	33	- 34	.00238999	93327.	223.771	.721	223.050	93215.	3313211.	31.01	

.

8

.

.

TABLE C-I (cont)

4

.

205	34	35	.00251999	93103.	235.338	.719	234.618	92985	3422002	36 76
206	35	36	.00267998	92868.	250 219	1 336	248 882	92742	2220017	35 85
207	36	37	00287998	92617	268 068	1 222	166 776	02402	3325017.	33 63
208	27	20	00211008	00340	200.000	1.332	200./30	92483.	3236275.	34.94
200		30	.00311998	92349.	289.400	1.328	288.128	92205.	3143791.	34.04
50a	38	39	.00338998	92060.	313.404	1.323	312.081	91903.	3051587.	33.15
210	39	40	.00368997	91746.	339.861	1.319	338.542	91576	2959684	22.26
211	40	41	.00400994	91407.	369 408	2 873	366 525	01222	2969107	34.20
212	41	42	00434993	91037	708 967	2 961	306.005	51222.	2000107.	31.38
212	42	42	00471007	91037.	390.007	2.001	390.005	90838.	2//6885.	30.50
213			.004/2993	90638.	431,561	2.848	428.712	90423.	2686048.	29.63
214	43	44	.00517992	90207.	470.097	2,834	467.263	89972.	2595625.	28.77
215	44	45	.00567991	89737.	512.515	2.819	509.696	89480.	2505653	27 02
216	45	46	.00622979	89224.	561.889	6 042	555 947	00042	2416172	27.52
217	46	47	00680977	88662	600 771	6.002	502 700	00343.	2410173.	27.08
210	47	40	.0000000777	00002.	009.771	01002	003.769	88357.	2327230,	26.25
210		48	.00/439/5	88052.	661.047	5,959	655.088	87722.	2238873.	25.43
219	48	49	.00811973	87391.	715.506	5.912	709.594	87034.	2151151.	24 62
220	49	50	.00886970	86676.	774.651	5.861	768.789	86289	2064117	22.01
221	50	51	00968940	85901	842 897	10 566	000 700	00205.	2004117.	23.81
222	51	52	01059025	05050	042.037	10.300	032.332	83480.	19//828.	23.02
		52	.01058955	63036.	911,170	10.45/	900.713	84603.	1892349.	22.25
223	32	23	-01160929	84147.	987,229	10.340	976.889	83654.	1807746	21.48
224	53	54	,01274922	83160.	1070.437	10,213	1060.224	82625	1724092	20.73
225	54	55	.01399914	82090.	1159.258	10.075	1149.183	81510	1641469	20.00
226	55	56	.01533846	80930	1257 620	16 275	1241 245	80201	4550050	20.00
227	56	57	01675922	70677	1251 100	10.2/3	1291.343	80301.	1224728.	19.28
226	57	50	04000032	/30/3.	1221,130	16.010	1335,179	78997.	1479656.	18.57
228	21	28	-01826817	78321.	1446.516	15.727	1430.789	77598.	1400659.	17.88
229	58	59	.01986801	76875.	1542.776	15.424	1527.352	76104.	1323061	17 21
230	59	60	.02157784	75332.	1640.606	15, 101	1625 505	74512	1246067	16 66
231	60	61	.02338629	73692	1746 769	22 200	1722 272	71010	1170440	10.00
232	61	62	02521500	71045	1044 474	20.000	1723.372	12010.	11/2440.	15.91
	~		102331358	/ 1943.	1844,174	22.821	1821.353	71023.	1099627.	15.28
233	62	63	.02/3/566	70101.	1941.263	22.213	1919.051	69130.	1028605.	14.67
234	63	64	.02959532	68159.	2038.770	21.573	2017.197	67140.	959475	14 08
235	64	65	.03199494	66121.	2136.426	20.902	2115.524	65052	893335	12 60
236	65	66	03462232	67984	2242 660	10 370	2245 200	63032.	092333.	13.50
227	66	67	02746170	61740	2243.038	20.3/9	2215.280	02862.	827282.	12.93
237	60	~~	.03/431/0	01/40.	2339,631	27.344	2312.287	60571.	764420.	12.38
238	67	68	.04043106	59401.	2427.908	26.268	2401.640	58187.	703849.	11,85
239	68	69	.04349040	56973.	2502.931	25.155	2477.776	55721	645663	11 77
240	69	70	04663972	54470	2564.478	24.011	2540 465	52189	600044	10.00
241	70	71	04989592	51906	2619 167	20,202	2500 075	50500	J03341.	10.83
242	71	22	05242405	40200	2660 000	43.432	2303.013	20236.	536/53.	10.34
242		14	.03342493	49280.	2000.886	27.763	2633.122	47956.	486157.	9.86
243	12	13	.05/38387	46625.	2701.762	26.211	2675.551	45275.	438201.	9,40
244	73	74	.06191263	43924.	2744.068	24.635	2719.434	42552	392927	8 05
245	74	75	.06701125	41180	2782 536	23 035	2759 501	39780	350275	0.50
246	75	76	07261466	38 207	2814 092	26 700	2700 404	35700.	330373.	0.01
247	76	77	07952369	36357.	2014.302	20.708	2/00.194	30330	310587.	8.09
247	70		.0/833268	35582.	2819.109	24,748	2794.361	34173.	273597.	7.69
248	17	78	.08459067	32763.	2794.162	22.715	2771.447	31366.	239424	7.31
249	78	79	.09066866	29969.	2737.949	20.712	2717.237	28600	208059	6 04
250	79	80	.09684663	27231	2655.982	18 750	2637 222	25902	170460	6.50
251	80	81	10362442	24676	1667 670	10.739	2037.223	23903.	1/9439.	0.59
262		01		243/3.	2003.079	10.809	2346.810	23293.	153556.	6.25
202		82	. 11121197	22011.	2462.964	15.049	2447.916	20780.	130263.	5.92
253	82	83	. 11924940	19548.	2344.431	13.308	2331.123	18376.	109483	5.60
254	83	84	.12765673	17204 -	2207.849	11,660	2196, 189	16100	91107	E 20
255	84	85	. 13658392	14996	2058 330	10 115	2048 215	12057	75007	5.30
256	85	86	14724692	12020	1014 274	0.115	2040.213	13301.	/500/.	5.00
267	06	07	4507007	12938.	1914.3/4	9.341	19021033	11981.	61040.	4.72
23/	00	8/	. 139/32/1	11023.	1768.689	7.905	1760.784	10139.	49059.	4.45
258	87	88	. 17274848	9255.	1605.312	6.590	1598.722	8452	38920	4.21
259	88	89	. 18514451	7649.	1421.638	5.410	1416 228	6938	20469	2 00
260	89	90	19674085	6228	1229 614	A 376	1225 220	6643	30403.	3.98
261	90	a i	20021725	4000	1229.014	4.3/6	1223,238	5613.	23530.	3.78
201	50	31	.20031/23	4998.	1044.672	3.490	1041.182	4476.	17917.	3.58
202	91	92	. 22114333	3953.	877.006	2.740	874.266	3515.	13441.	3.40
263	92	93	. 23503915	3076.	725.186	2.116	723.070	2714	9927	3 22
264	93	94	. 25014469	2351	589,743	1,602	588 179	2055	7242	2.23
265	94	95	. 26537028	1761	468 629	1 104	467 439	2030.	7213.	3.07
266	95	96	27962627	1202	300.020	1.191	40/.438	1527.	5156.	2.93
267	06	07	20080212	1293.	362,246	.867	361.379	1112.	3629.	2.81
207	30	3/	• ₹ 9080313	931.	271.235	.620	270.616	795.	2518.	2.71
268	97	98	.30125026	659.	199.064	.436	198.628	560	1723	2.61
								300.		2.01

•

4

TABLE C-I (cont)

ч н

269	98 99 .31100762	460.	143.454	. 303	143.151	389.	1163.	2.53	
220	99 100 32006520	317.	101.613	. 207	101.405	266.	774.	2.44	
270	400 101 33846388	215	70 830	140	70.690	180.	508.	2.36	
2/1	100 101 .32846233	213.	40 620	094	48 545	120	328	2.27	
272	101 102 .33622097	144.	40.035	.034	40.040			2 10	
273	102 103 .34335914	96.	32.937	.062	32.8/5	79.	208.	2.10	
274	103 104 34992746	63.	22.019	.040	21.978	52.	129.	2.06	
275	104 105 25504595	41	14 545	.026	14.519	34.	77.	1.90	
2/5		26	0 602	017	9 486	21	44.	1.67	
.276	105 106 .3614545/	20.	9,000		5.400		22	1 33	
277	106 107 .36649332	17.	6.146	.011	6.136	14.	22.	1.33	
270	107 108 27109219	11	3.939	.007	3,932	9.	9.	.81	
210	107 108 .37103215			004	2 409	5	0	0.00	
279	108 109 .37528117	7.	2.502	.004	2.450	.	<u>.</u>	0.00	
280	109 110 .37910024	4.	1.578	. 003	1.575	3.	3.	0.00	

• •

281 282 life table calculation 283 284 starting age 10 285 286 population ma1e 287 288 289 cancer types other 290 291 292 293 1eu/bone 294 295 296 297 298 299 age tqx 10 11 .00036000 1× tdx drad dref t1x tх ex 100000. 36.000 0.000 36.000 99982. 5878019 58.78 11 .00035000 12 99964. 34,987 0.000 34.987 99947. 5778037. 57.80 300 12 13 .00042000 99929. 41.970 0.000 41.970 99908. 5678091. 56.82 301 13 14 .00059000 99887. 59.856 .923 58.933 99857. 5578183. 55.84 302 303 14 15 15 .00083999 16 .00113999 99827. 85.699 1.845 83.854 99784. 5478326. 54.88 99741. 115.547 1.843 113.704 99684 5378541. 53.92 304 305 16 17 17 .00141999 99626. 143.308 1.841 141.468 99554 5278858. 52.99 18 .00166998 99483. 167.972 1.838 166.134 99399. 5179303. 52.06 306 18 19.00184998 99315. 185.565 1.835 183.730 99222. 5079905. 51.15 307 19 20 .00197998 21 .00211997 99129. 198.105 1.831 196.274 99030. 4980683. 50.24 308 309 20 98931. 212.278 2.547 209.731 98825. 4881653. 49.34 21 22 22 .00225996 98719. 226,361 3.260 223.101 98606. 4782828. 48.45 310 23 .00234996 234.705 98492. 3.252 231.453 98375. 4684222. 47.56 23 24 25 311 24 .00234996 234.146 98258. 3.245 230.902 98141. 4585847. 46.67 25 .00227996 26 .00216996 312 226.727 98023. 3.237 223.490 97910. 4487707. 45.78 313 97797. 215.445 3.230 212.215 97689. 4389797. 44:89 201.014 314 26 27 .00205997 97581. 204.237 3.223 97479. 4292108. 43.98 315 27 28 .00198997 97377. 196.993 195.623 3.216 193.777 97279. 4194628 43.08 316 28 29 .00197997 97180. 3.210 192.413 97082. 4097350. 42.16 317 29 30 30 .00202997 96984. 200.078 3.203 196.875 96884. 4000268 41.25 318 31 .00209997 96784. 206.440 3.196 203.244 96681. 3903383. 40.33 319 31 32 .00217996 96578. 213.726 3.189 210.536 96471. 3806702. 39.42 320 32 33 .00227996 96364. 222.889 3,182 219.707 96253. 3710231. 38.50 321 33 34 .00238996 96141 232.949 3.175 229.774 96025. 3613978. 37.59 322 34 35 35 .00251996 95908. 244.852 3:167 241.685 95786. 3517953. 36.68 3.158 36 .00267996 95664. 259:532 256.374 95534. 3422167. 35.77 324 36 37 .00287995 95404. 277.908 3.149 274.759 95265. 3326633. 34.87 325 37 38 .00311996 95126. 299.052 2,262 296.790 94977. 3231368 33.97 326 38 39 .00338998 94827. 322.841 1.379 321.461 94666. 3136392. 33.07 327 40 .00368997 39 94504. 350.092 1,374 348.718 94329. 32.19 3041726 328 40 41.00400993 94154. 380.790 3.239 377.552 93964. 2947397 31.30 329 41 42 .00434988 93773. 412.990 5.087 407.903 93567. 2853433 30.43 330 42 43 .00472987 93360. 446.646 5.064 441.582 93137. 2759867. 29.56 331 44 .00517986 43 92914. 486.318 5.039 481.280 92671. 2666730. 28.70 332 45 .00567985 44 92427. 529.984 5.011 524.973 2574059. 92162. 27.85 333 45 46 .00622964 91897. 583.228 10.741 572.487 91606. 2481897. 27.01 334 46 47 .00680960 91314. 632.483 10.669 621,813 90998. 2390291. 26.18 335 47 48 .00743957 90682. 685.224 10.592 674.632 90339. 2299293. 25.36 336 48 49 .00811953 89996. 741.237 10.509 730,729 89626. 2208954 24.54 337 338 49 50 .00886948 89255. 802.066 10.418 791.648 88854 2119328. 23.74 50 .00968897 51 88453. 875.798 18.778 857.020 88015. 2030474. 22.96 339 51 52 .01058888 87577. 945.930 18.584 927.346 87104. 1942459 22.18 340 52 53 .01160877 86631. 1024.058 18.374 1005.684 86119. 1855354. 21.42 341 53 54 .01274865 85607 1109.524 18.146 1091.378 85053. 1769235. 20,67 342 54 55 .01399852 84498. 1200.744 17.900 1182,844 83897. 1684182. 19.93 343 55 56 .01533734 83297 1306.467 28.912 1277.556 82644. 1600285. 19.21

•

۹

84

4

,

Þ

*

744	56	57	01675709	81991.	1402.362	28.438	1373.925	81289.	1517641.	18.51
345	57	58	01826683	80588.	1500.022	27.930	1472.092	79838.	1436351.	17.82
346	58	59	01986656	79088.	1598.599	27.388	1571.211	78289.	1356513.	17.15
347	59	60	02157627	77490.	1698.748	26.811	1671.937	76640.	1278224.	16.50
348	60	61	02338359	75791.	1813.796	41.533	1772.263	74884.	1201584.	15.85
349	61	62	02531307	73977.	1913.087	40,499	1872.587	73021.	1126700.	15.23
250	62	67	02737251	72064	2011.984	39.411	1972.573	71058.	1053679.	14.62
251	67	64	02959192	70052	2111.241	38.268	2072.974	68996.	982621.	14.03
252	64	65	03199127	67941.	2210.581	37.069	2173.512	66835.	913625.	13.45
252	65	66	.03461675	65730.	2325.679	50.314	2275.366	64567.	846790.	12.88
254	66	67	03744568	63405.	2422.689	48.464	2374.226	62193.	782222.	12.34
266	67	68	04042457	60982.	2511.705	46.541	2465.164	59726.	720029.	11.81
255	68	60	04348343	58470.	2587.036	44.554	2542.482	57177.	660303.	11.29
257	60	70	04663225	55883.	2648.469	42.515	2605.955	54559.	603126.	10.79
259	70	71	04988570	53235	2 07 492	51.845	2655.646	51881.	548568.	10.30
760	71	72	05341402	50527	2-47.977	49.120	2698.858	49153.	496687.	9.83
260	72	72	05737216	47779	2787.547	46.354	2741.193	46385.	447534.	9.37
261	72	74	06190003	44992	2828.529	43.548	2784.982	43577.	401148.	8.92
262	74	75	06699765	42163	2865.530	40.702	2824.827	40730.	357571.	8.48
262	75	76	07259627	39298	2900 167	47.312	2852.856	37847.	316840.	8.06
264	76	77	07851285	36397	2901.348	43.686	2857.662	34947.	278993.	7.67
265	77	79	08456938	33496	2872.815	40.077	2832.739	32060.	244046.	7.29
266	70	70	00064591	30623	2812.393	36.523	2775.870	29217.	211987.	6.92
267	70	é0	09682241	27811	2725.773	33.062	2692.711	26448.	182770.	6.57
269	60	0.0	10260860	25085	2628.742	29.715	2599.027	23771.	156322.	6.23
260	01	82	11118437	22456	2523 286	26.495	2496.791	21195.	132551.	5.90
309	67	02	11021003	19933	2399 831	23.418	2376.414	18733.	111356.	5.59
370	02	0.4	12762622	17523	2258 186	20.506	2237.680	16404.	92623.	5.28
371	84	25	12655048	15275	2103.590	17.780	2085.810	14223.	76219.	4,99
372	95	96	14720824	13171	1955.351	16.410	1938.941	12194.	61996.	4.71
274	96	07	15969113	11216	1804.986	13.880	1791.107	10314.	49802.	4.44
275	87	88	17270383	9411	1636.894	11.564	1625.330	8593.	39489.	4.20
276	88	89	18509698	7774	1448.466	9.488	1438.979	7050.	30896.	3.97
370	80	90	19669067	6326	1251.881	7.671	1244.210	5700	23846.	3.77
278	90	91	20826446	5074	1062.814	6.113	1056.701	4542.	18146.	3.58
370	<u><u>a</u>1</u>	92	22108769	4011	891.587	4.798	886.789	3565.	13604.	3.39
280	02	07	23498047	3119.	736.710	3.702	733.008	2751.	10039.	3.22
281	07	04	25008278	2787.	598.684	2.804	595.880	2083.	7287.	3.06
201	93	05	26530517	1784	475.398	2.081	473.317	1546.	5204.	2.92
202	94	95	27045925	1309	367 227	1.514	365.713	1125.	3658.	2.80
204	90	07	20072292	941	274 784	1.082	273.702	804.	2533,	2.69
225	97	97	30117788	667	201.538	.762	200.777	566.	1729.	2,59
796	97	90	31093332	465	145.143	. 528	144.615	393.	1163.	2.53
787	90	100	31998915	320	102.744	. 36 1	102.383	269.	774.	2.44
288	100	101	32838534	217	71.574	. 244	71.329	181.	508.	2.36
280	101	102	33614185	146	49.118	. 163	48.955	121.	328.	2.27
290	102	103	34327868	97	33.241	. 108	33.133	80.	208.	2.18
201	102	104	34984579	63	22.208	.070	22.138	52.	129.	2.06
201	104	105	35586318	41	14.661	.045	14.616	34.	77.	1,90
222	105	106	36137080	26	9.573	.029	9.544	22.	44.	1,67
222	100	103	36640864	17	6.188	.018	6.169	14.	22.	1.33
204	107	102	37100669	11	3,963	.012	3,951	9.	9.	.81
393 20F	100	100	37519492		2.516	.007	2.509	5.	ο.	0.00
390	100	110	37901322	, . A	1.585	.005	1.581	3.	3.	0.00
391	109									

•

.

TABLE C-I (cont)

398 399 400 401 402 403 404 cancer type other 405 406 population male 407 408 409 lifetime risk to individual from exposure by age 410 . Aii age lifetime age Ai2 group risk risk group risk group 412 group risk group 69 .2718e+03 41 .1401e-02 55 .8855e-03 83 .3201e+04 97 .1763e-05 .4295e+02 .9323e+02 27 413 +1 0. 13 . 1297e-02 70 .2431e+03 .2610e-04 98 .1171e+05 0 .8222e+02 42 56 .8266e+03 84 14 .8393e+02 28 .3864e+02 414 .2119e-04 .8403e+02 15 .7227e-02 29 .3512e+02 43 .1206e~02 57 .7706e+03 71 .2163e+03 85 99 .4717e+06 415 1 . 17 17e+04 .3147e+02 .1125e+02 58 .7172e-03 72 . 1913e+03 86 100 0. 416 2 .8406e-02 16 .6064e+02 30 44 31 .1047e-02 59 .6663e+03 .1682e+03 87 .1395e+04 101 0. .8406e+02 17 .5226e+02 .2795e+02 45 73 417 3 .9724e-03 60 .6177e-03 74 .1469e+03 88 .1136e-04 102 0. .8404e-02 18 .4594e~02 32 .2514e-02 46 418 4 .9054e-03 .9281e-05 47 .5714e+03 75 .1275e-03 89 103 0. 419 5 .8398e+02 19 .4100e+02 33 .2284e+02 61 90 .7598e-05 104 0 420 6 .8389e+02 20 .1050e+01 34 .2093e+02 48 .8447e-03 62 .5270e+03 76 .1100e+03 .8379e+02 21 .8973e+02 35 .2330e+02 49 .7892e-03 63 .4846e-03 77 .9420e+04 91 .6234e+05 105 0. 421 7 106 0. 22 .7838e-02 36 .2112e+02 50 .1229e-02 64 .4442e-03 78 .8015e+04 92 .5130e+05 422 8 .8369e~02 .4057e+03 79 .6771e+04 93 .4234e-05 107 0. .1152e+02 65 423 9 .8358e+02 23 .6961e+02 37 .1931e+02 51 .3498e+05 .5677e+04 .1398e+01 24 .6262e+02 38 .1778e+02 52 .1080e+02 66 .3693e-03 80 94 108 0. 424 10 25 39 .1646e+02 53 .1011e+02 67 .3348e~03 81 .4724e+04 95 . 2875e~05 109 0. 425 .1198e+01 .5533e+02 11 68 .3023e+03 .3902e+04 96 .2314e+05 110 0. .1049e+01 26 .4836e+02 40 . 1520e+02 54 .9470e~03 82 426 12 427 428 429 number of health effects in male population distributed by age (low let radiation) 430 health age health age health age health age health age health health age health age 431 age 432 group effects 433 781e+01 97 159e-03 . 106e+02 .217e+01 434 ~1 0. 13 . 135e+03 27 .606e+02 41 . 190e+02 55 69 83 0 .120e+03 98 435 .121e+03 28 .544e+02 42 . 175e+02 56 .977e+01 70 .185e+01 84 .553e+01 .703e+04 14 .122e+03 . 104e+03 29 .493e+02 43 . 162e+02 57 .895e+01 71 .156e+01 85 .386e~01 99 .189e~04 436 1 15 . 150e+02 58 .817e+01 72 .130e+01 86 .264e+01 100 0. 441e+02 44 437 2 .122e+03 16 .875e+02 30 59 .108e+01 ,180e-01 101 0. 73 87 438 3 . 122e+03 17 .753e+02 31 .391e+02 45 .139e+02 .743e+01 .661e+02 32 .351e+02 46 .128e+02 60 .673e+01 74 .880e+00 88 .120e-01 102 0. 439 . 122e+03 18 4 , 122e+03 47 .119e+02 61 .608e+01 75 .712e+00 89 .798e+02 103 0 440 5 19 .588e+02 33 .318e+02 62 .546e+01 .567e+00 90 .517e+02 104 0. .150e+03 48 .110e+02 76 441 .122e+03 20 34 .291e+02 6 63 .488e+01 77 .447e+00 91 .337e+02 105 0. 35 .323e+02 49 102e+02 442 .122e+03 21 .128e+03 7 .346e+00 64 .210e+02 106 0. 443 8 .121e+03 22 .112e+03 36 .292e+02 50 . 157e+02 .433e+01 78 92 .131e+02 107 0 444 , 121e+03 23 .990e+02 37 .266e+02 51 . 146e+02 65 .383e+01 79 .265e+00 93 q .889e+02 38 .244e+02 52 .135e+02 66 .336e+01 80 .200e+00 94 .805e+03 108 0. 445 .203e+03 10 24 .783e+02 39 .225e+02 53 . 125e+02 67 .292e+01 81 .149e+00 95 .489e-03 109 0. 446 11 .174e+03 25 54 .115e+02 68 .253e+01 82 .108e+00 96 .278e-03 110 0. 40 447 12 . 152e+03 26 .683e+02 .207e+02 448 449 total number of health effects to the male population .3910e+04 450 451 452 453 454 455

٩

.

8

4

4

1

458 457 458 459 _____ 460 461 462 cancer type 1eu/bone 463 464 population male 465 466 467 lifetime risk to individual from exposure by age 468 469 age lifetime risk group risk group risk group 470 group risk group risk group risk group risk group risk 27 .5900e-03 .3894e-03 .6346e-03 .2810e-04 471 -10. 13 .4311e-03 41 55 69 .3298e-03 83 .1110e-03 97 472 0 .9203e-03 14 .4303e-03 28 .5877e-03 42 .3838e-03 56 .6132e-03 70 . 3099e - 03 84 .1005e-03 98 .2612e-04 473 .9402e-03 15 .4296e-03 .5850e-03 .3778e-03 57 .5914e-03 71 .2905e-03 29 43 85 .9063e-04 99 .2430e-04 474 .9402e-03 16 .4289e-03 .5821e-03 .3716e-03 58 .5694e-03 72 30 44 .2716e-03 86 .8164e-04 100 .2256e-04 .2533e-03 475 3 .9397e-03 17 .4283e-03 31 .5789e-03 45 .3650e-03 59 .5472e-03 73 87 .7358e-04 101 .2082e-04 476 .9391e-03 ,4278e-03 .5753e-03 .3581e-03 60 4 18 32 46 .5249e-03 74 .2358e-03 .1893e-04 88 .6634e-04 102 477 5 .9382e-03 19 .4273e-03 33 .5714e-03 47 .3509e-03 61 .5025e-03 75 .2191e-03 89 .5978e-04 103 .1672e-04 478 .9372e-03 20 .59898-03 34 .5671e-03 48 .3433e-03 62 .4800e-03 76 .2032e-03 .5377e-04 .1390e-04 6 90 104 479 .9361e-03 21 .5981e-03 35 .3354e-03 63 .4577e-03 77 .1881e-03 .4163e-03 49 91 .4831e-04 105 . 1002e-04 480 .9349e-03 22 .5973e-03 36 .4125e-03 50 .7355e-03 64 .4355e-03 78 .1737e-03 .4347e-04 8 92 106 .4353e-05 481 .9336e-03 .4085e-03 .7164e-03 65 .4136e-03 .1599e-03 . 3928e-04 Q 23 .5963e-03 37 51 79 93 107 0. 482 10 .4335e-03 24 .5951e-03 38 .4042e-03 52 .6967e-03 66 .3920e-03 80 .1468e-03 94 .3575e-04 108 0. 483 11 .4327e-03 25 .5937e-03 39 .3996e-03 53 .6764e-03 67 .3708e-03 81 .1342e-03 95 .3280e-04 109 0. 484 12 .4319e-03 26 .5920e-03 40 .3946e-03 54 .6557e-03 68 .3501e-03 82 .1223e-03 96 . 3030e-04 110 0. 485 486 487 number of health effects in male population distributed by age (low let radiation) 488 health age health age health age 489 age health age health age health age health age health 490 group effects 491 492 -1 0. 13 .624e+01 27 .832e+01 41 .528e+01 55 .762e+01 69 .263e+01 83 .271e+00 97 .253e-02 0 .135e+02 493 .213e+00 14 .622e+01 28 .827e+01 42 .518e+01 56 .725e+01 70 .236e+01 84 98 .157e-02 494 .137e+02 15 43 57 687e+01 .209e+01 .972e-03 .621e+01 29 .822e+01 .508e+01 71 85 . 165e+00 99 1 495 2 .137e+02 .185e+01 16 .619e+01 30 .816e+01 44 .497e+01 58 .649e+01 72 86 .126e+00 100 .677e-03 496 3 .137e+02 17 .617e+01 31 .810e+01 45 .485e+01 59 .610e+01 73 . 162e+01 87 .949e-01 101 .416e-03 497 4 ,136e+02 18 .615e+01 32 .803e+01 46 .473e+01 60 .572e+01 74 .141e+01 88 .703e-01 102 .189e-03 498 5 .136e+02 19 .613e+01 33 .795e+01 47 .460e+01 .535e+01 75 . 122e+01 89 .514e-01 103 61 . 167e-03 499 .136e+02 .788e+01 6 20 .858e+01 34 48 .447e+01 62 497e+01 76 . 105e+01 90 .366e-01 104 .139e-03 500 .136e+02 21 .855e+01 35 .577e+01 49 .433e+01 63 460e+01 77 .891e+00 91 .261e-01 105 0. 501 .136e+02 22 .852e+01 36 .570e+01 .939e+01 64 425e+01 78 .750e+00 92 .178e+01 106 0. 8 50 502 .135e+02 37 .563e+01 51 65 390e+01 .627e+00 93 .122e-01 107 0. 9 23 .848e+01 .906e+01 79 503 10 .628e+01 24 .844e+01 38 .555e+01 52 .872e+01 66 .356e+01 80 .517e+00 94 .822e-02 108 0. 504 324e+01 11 .627e+01 25 .841e+01 39 67 81 .423e+00 95 .558e-02 109 0. .547e+01 53 .835e+01 505 12 .625e+01 26 .837e+01 40 .538e+01 54 .799e+01 68 .293e+01 82 . 340e+00 96 . 364e-02 110 0. 506 507 508 total number of health effects to the male .5346e+03 population 509 510 511 _____ 512 513

TABLE C-I (cont)

514 515 516								*******		*-**	 * - * * * * * * * * * * * * * *
517 518 519	*****		**********								
520					catculati	on of car	ncer risks	for femal	e populati	on	
522										********	 ******
523 524	******		**********			•••••			•		
525											
526 527	11fe t	tabl	e calculatio	on							
528		5	tarting age		0)					
529 530 531		p	opulation		, fem	ale					
532 533		с	ancer types		oth	er					
534 535 536					1eu	ı/bone					
537 538											
539 540					*********						
541	ag	ge	tqx	1 x	td×	drad	dref	tlx	tx 7445405	8X 74 45	
542	0	1	.01746000	100000.	1746.000	0.000	1746.000	99127.	7346279.	74.77	
543	2	2	.00116000	98254.	75.568	0.000	75.568	98102.	7248082.	73.85	
545	3	4	.00060000	98064.	60.084	1.246	58.838	98034.	7149980.	72.91	
546	4	5	.00050999	98004.	52.472	2.491	49.982	97978.	7051945.	71,96	
547	5	6	.00042999	97952.	44,608	2,489	42.119	97930.	6856038.	70.03	
548	67	7	.00038000	97907.	39,693	2.487	33.275	97850.	6758150.	69.05	
550	8	9	.00031000	97832.	32.814	2.486	30.327	97815.	6660301.	68.08	
551	9	10	.00028000	97799.	29.869	2.486	27.383	97784.	6562485.	67.10	
552	10	11	.00026000	97769.	29,163	3.744	25.419	97725	6366946	65.14	
553	11	12	.00024999	97740.	29.430	5.002	26.381	97695.	6269221.	64.16	
555	13	14	.00032999	97679.	37.232	4.998	32.233	97661.	6171526,	63.18	
556	14	15	.00039999	97642.	44.052	4,996	39.056	97620.	6073866.	62.21	
557	15	16	.00048999	97598.	52.815	4,994	47.822	97514	5878674	60.27	
558	16	17	.00057999	97545.	61.505	4.991	64.337	97449.	5781160.	59.30	
560	18	19	.00068998	97414.	72.198	4.984	67.214	97378.	5683711.	58.35	
561	19	20	.00070998	97342.	74.091	4.980	69.111	97305.	5586333.	57.39	
562	20	21	.00071998	97268.	75.007	4.976	70.031	97230.	5391798	55.48	
563	21	22	.00072998	9/193.	77 804	4.968	72.836	97078.	5294643.	54.52	
565	23	24	.00076998	97039.	79.683	4.964	74.718	96999.	5197565.	53.56	
566	24	25	.00078998	96959.	81.556	4.960	76.596	96919,	5100565.	52.61	
567	25	26	.00080998	96878.	83.425	4.956	78,469	96836. 96752	4906811	50.69	
568	26	27	.00082998	96709	85.289 86.887	4.992	83.168	96666.	4810059.	49.74	
570	28	29	.00089999	96622.	89,447	2,488	86,959	96578.	4713393.	48.78	
571	29	30	.00095999	96533.	95.156	2.485	92.670	96485.	4616815.	47.83	
572	2 30	31	.00101999	96438.	100.107	1.741	98.366	96388. 96284	4423942	45.92	
573	3 31	32	00109999	96338.	115.512	.998	114.514	96173.	4327658.	44.97	
575	5 33	34	.00128999	96115.	124,984	.997	123.988	96053.	4231485.	44.03	

•

•

88

•

. .

4

•

576	34	35	.00139999	95990.	135.381	. 995	134.386	95922	4135433	43 08
577	35	36	.00151998	95855.	147.769	2 072	145 698	95781	4039510	42.00
578	36	37	00164998	95707	159 983	2 068	157 015	95617	2042220	44 94
579	37	29	00179999	96547	174 049	2.000	174 000	55627.	3943/29.	41.21
590	20	20	00106008	05373	100.044	2.003	1/1.983	95460.	3848102.	40.27
500	20	35	.00190998	93373.	189.944	2.061	187.883	95278.	3752642.	39.35
201	39	40	.00214998	95183.	206.698	2.057	204.641	95080.	3657364.	38.42
582	40	41	.00232995	94976.	225.520	4.230	221.290	94864.	3562285.	37.51
583	41	42	.00250994	94751.	242.039	4.220	237.819	94630.	3467421.	36.60
584	42	43	.00272994	94509.	262.212	4.209	258.003	94378.	3372791.	35.69
585	43	44	.00296993	94247.	284.102	4.196	279,906	94105	3278414	74 79
586	44	45	.00324993	93962	309.554	4 183	305 371	93808	3184309	22 00
587	45	46	.00353986	93653	339 074	7 557	221 519	97497	2000502	33.05
588	46	47	00383985	97714	265 920	7 610	750 744	53403.	3090302.	33.00
589	47	49	00415982	02040	204 145	7,520	336.311	93131.	2997018.	32.12
500	40	10	.00413903	52540.	354,145	7.497	380.048	92/51.	2903887.	31.24
390			.00448982	92004.	423.014	7.464	415.550	92342.	2811136.	30.37
231	49	30	.00483980	92131,	453.324	7.429	445.895	91904.	2718794.	29.51
592	50	51	.00522968	91677.	490.825	11,382	479,444	91432.	2626890.	28.65
593	51	52	.00564965	91187.	526.491	11.318	515.173	90923.	2535458.	27.81
594	52	53	.00610962	90660.	565.150	11.250	553.899	90378	2444534	26 96
595	53	54	.00659959	90095.	605.768	11.177	594.590	89792	2354157	26 13
596	54	55	.00711956	89489	648 223	11 099	637 124	89165	2264266	25 20
597	55	56	00767931	88841	698 248	16 010	602 220	00403	2175100	23.30
598	56	57	00828925	88147	746 610	16.010	720 620	00492.	21/3199.	24.48
500	57	EÓ	,00020523	00143.	740.010	13.000	730.638	8///0.	2086708	23.67
399	3/	30	.00893919	8/390.	796.992	15.740	781.252	86998.	1998938.	22.87
600	28	29	.00961913	86599.	848.601	15.591	833.010	86175.	1911940.	22.08
601	29	60	.01034907	85751.	902.872	15.433	887.440	85299.	1825765.	21.29
602	60	61	.01112867	84848.	964.541	20.298	944.243	84366.	1740466.	20.51
603	61	62	.01199857	83883.	1026.537	20.058	1006.479	83370.	1656100.	19.74
604	62	63	.01297845	82857.	1095.155	19.803	1075.352	82309.	1572730.	18.98
605	63	64	.01410831	81762.	1173.048	19.530	1153.518	81175.	1490421	18.23
606	64	65	.01537816	80589.	1258.541	19 237	1239 304	79959	1409246	17 40
607	65	66	01677754	79330	1354 211	22 240	1220 062	70667	1220297	
608	66	67	01831732	77076	1451 142	23.295	1430.302	78033.	1329207.	10.70
600	67	60	01001702	76576.	4555 740	22.034	1420.307	//250.	1250634.	16.04
610	60	60	.02003707	70323.	1000.719	22.390	1533.329	/5/4/.	11/3384.	15.33
610	00	69	.02194679	/4969.	1667.241	21.914	1645.327	74135.	1097637.	14.64
611	69	70	.02406649	73302.	1785.517	21.403	1764.114	72409.	1023502.	13,96
612	70	71	.02631511	71516.	1908.529	26.574	1881.956	70562.	951093.	13.30
613	71	72	.02878466	69608.	2029.464	25.832	2003.632	68593.	880531.	12.65
614	72	73	.03164414	67578.	2163.495	25.043	2138.453	66496.	811938.	12.01
615	73	74	.03502352	65415.	2315.251	24.199	2291.052	64257.	745442	11.40
616	74	75	.03892281	63099.	2479.304	23.297	2456.007	61860.	681185	10 80
617	75	76	.04323920	60620	2651 441	30 276	2621 165	59294	610225	10.22
618	76	77	04788807	57969	2804 891	28 882	2776 008	SCECC	660020	0.22
619	77	70	06202694	55164	2047 614	27.444	2010.000	50000.	500030.	9.00
620	70	70	05233084	53104.	2347.011	27.414	2920.197	53690.	503464.	9,13
624	70	,,,	.03838333	52210.	30/4.540	23.8//	3048.669	50679.	449774.	8.61
021	/9	80	.00430411	49142.	3184.287	24.279	3160.009	47549.	399095.	8.12
622	80	81	.07095253	45957.	3283.417	22.628	3260.789	44316.	351546.	7.65
623	81	82	.07832079	42674.	3363.186	20.931	3342.255	40992.	307230.	7.20
624	82	83	.08609897	39311.	3403.817	19.203	3384.614	37609.	266238.	6.77
625	83	84	.09416709	35907.	3398.717	17.466	3381.250	34208.	228629.	6.37
626	84	85	. 10272512	32508.	3355.151	15.742	3339.409	30831	194422	5 98
627	85	86	. 11278565	29153.	3305.796	17.750	3288.046	27500	163591	5 61
628	86	87	12458230	25847	3235 749	15 679	3220 111	24220	126001	5.01
629	87	88	12690997	22647	3107 047	13.603	3003 455	242231	130091.	3.27
620	00	00	14054563	40504	3000.057	13.352	3093.499	21038.	111851.	4.95
634	00	03	. 14834302	19304.	2908.953	11.650	2897.302	18050	90803.	4.66
631	03	90	10001249	16396.	2005.340	9.851	2655.488	15263.	72753.	4.38
632	90	91	. 1/258911	13930.	2412.408	8.213	2404.195	12724.	57491.	4.13
633	91	92	. 18712526	11518.	2162.000	6.736	2155.264	10437.	44767.	3.89
634	92	93	. 20237130	9356.	1898.763	5,426	1893.337	8406.	34330.	3.67
635	93	94	.21743746	7457.	1625,719	4.288	1621.430	6644	25923	3.48
636	94	95	. 23179387	5831.	1354.981	3.327	1351.654	5154	19279	3.31
637	95	96	.24577043	4476	1102.675	2 533	1100.141	3925	14126	3 16
638	96	97	.25846737	3374	873 867	1 895	871 971	2927	10201	3 03
639	97	98	26972470	2500	675 644	1 205	674 346	2337.	7264	3,02
		55		2 JUU.	010.041	1.333	0/4.240	2102.	/204.	5.91

· .

68

TABLE C-I (cont)

~ • •	00 00 17088131	1824	511.550	1.012	510.537	1568.	5102.	2.80
640	98 99 .27988232	1212	200 594	724	379.869	1122.	3534.	2.69
641	99 100 . 28941012	1313.	380.354	E 1 2	277 986	793	2411	2.59
642	100 101 .29827810	932.	278.498	. 312	277.500	FE 3	16/0	2 49
643	101 102 .30650625	653.	200.650	. 357	200.293	553.	1015.	2.40
644	102 103 31411455	453.	142.484	. 246	142.238	382.	1065.	2.30
645	402 104 22112201	310	99 828	. 168	99.660	260.	684.	2.20
043		211	69 075	114	68.961	176.	423.	2.01
646	104 105 .32/59100	2	47 049	076	47 171	118	248.	1.75
647	105 106 .33352032	141.	4/,240	,070	34 00E	70	120	1 78
648	106 107 .33894916	94.	31.975	.050	31,925	/0.	130.	1.00
649	107 108 34391810	62.	21.429	.033	21.396	51.	51.	. 83
CEO.	109 109 24845714	41.	14.233	.022	14,211	34.	0.	0.00
030	100 109 .34043714	27	9 376	.014	9.362	22.	22.	0.00
160	103 110 *33533051	£ / .	5,5,5					

• •

» 4

4

652										
653	11fe	tab	le calculati	on						
655		:	starting age		1	0				
657		F	population		fe	mate				
659 660			ancer types		ot	her				
661 662										
663 664					1e	u/bone				
665 666										
667					••••	~ • • ~ • • • • • •	*******			
668	ag	je	tq×	1×	tdx	drad	dref	tix	tx	ex
669	10	11	.00026000	100000.	26.000	0.000	26.000	99987.	6605273.	66.05
670	11	12	. 00025000	99974.	24,994	0.000	24,994	99962.	6505286.	65.07
671	12	13	.00027000	99949.	26.986	0.000	26.986	99936.	6405324.	64.09
672	13	14	.00033000	99322.	33.570	. 595	32.974	99905.	6305389.	63.10
673	14	15	.00040000	99888.	41,146	1,190	39.955	99868.	6205484.	62.12
674	15	16	.00049000	99847.	50.115	1.190	48.925	99822.	6105616.	61.15
675	16	17	.00058000	99797.	59.071	1.189	57.882	99768.	6005/93.	60.18
676	17	18	.00066000	99738.	67.015	1.188	65.827	99705.	5906026.	59.22
677	10	19	.00089000	996/1.	31 003	1.100	70 716	99030. 00666	5006321.	50.25
679	20	21	.00071000	99529	73 819	2 158	71 660	99492	5607120	56 34
680	21	22	00072999	99455	75 730	3 129	72 601	99418	5507627	55.38
681	22	23	.00074999	99380	77.660	3.126	74.534	99341	5408210	54.42
682	23	24	.00076999	99302.	79.585	3, 124	76.461	99262.	5308869.	53.46
683	24	25	.00078999	99222.	81.506	3.121	78.384	99182.	5209607.	52.50
684	25	26	.00080999	99141.	83.422	3.119	80.303	99099.	5110425.	51.55
685	26	27	.00082999	99058.	85.332	3.116	82.216	99015.	5011326.	50,59
686	27	28	.00085999	98972.	88.228	3,113	85.115	98928.	4912311.	49.63
687	28	29	.00089999	98884.	92.105	3.110	88.994	98838.	4813383.	48.68
688	29	30	.00095998	98792.	97.946	3.107	94.839	98743.	4714545.	47.72
689	30	31	.00101998	98694.	103.770	3.104	100.666	98642.	4615802.	46.77
690	31	32	.00109998	98590.	111.548	3,101	108.447	98534.	4517160.	45.82
691	32	33	.00118998	984/9.	120.285	3.097	117.188	98418.	4418626.	44.87
692	. 33	34	.00128998	98338.	129.9/4	3.093	120.000	98293.	4320207.	43,92
693	34	33	.001519998	30220.	152 175	2 084	149 091	980130.	4122756	42.50
695	35	27	00164997	97976	164 671	3 079	161 591	97853	4025744	41 11
696	37	38	.00179998	97771	178.477	2.492	175.985	97682	3927891.	40.17
697	38	39	.00196998	97592	194.161	1.906	192.255	97495.	3830210.	39.25
698	39	40	.00214998	97398.	211,306	1.902	209.404	97293.	3732714.	38.32
699	40	41	.00232994	97187.	231.228	4.788	226.440	97071.	3635422.	37.41
700	41	42	.00250990	96956.	251.008	7.659	243.349	96830.	3538350.	36.49
701	42	43	.00272989	96705.	271.632	7.638	263.993	96569.	344 1520.	35.59
702	43	44	.00296988	96433.	294.011	7.616	286.395	96286.	3344951.	34.69
703	44	45	.00324987	96139.	320.031	7.592	312.440	95979.	3248665.	33.79
704	45	46	.00353975	95819.	352.888	13.713	339.175	95643.	3152686.	32.90
705	46	47	.00383973	95466.	380.224	13.660	366.564	95276.	3057044.	32.02
706	47	48	.004 15970	95086.	409.133	13.604	395.529	94881.	2961767.	31,15
707	48	49	.00448968	94677.	438.611	13.543	425.068	94457.	2866886.	30.28
708	49	50	.00483965	94238.	469.338	13.4/8	436.080	94003.	2//2429.	29.42
709	50	21	.00522942	93/69.	511.003	20.04/	490.330	93313.	20/8423.	20.00
710	51	32	.00304938	93230.	506 007	20.001	566 207	92904.	2304912.	21.12
711	52	3J 54	.00010933	92/10.	280.803	20.405	500.39/ 607 949	9241/,	2491920.	20.00
712	53	54	-00711927	92123.	671 603	20.271	651 374	91159	2393311.	25.03
714	55	56	.00767877	90824	726 445	29 030	697 415	90460	2216543	24.40
						20.000				

•

•

.

.

٩

4

7 15	56	57	00828868	90097	775.576	28.789	746.787	89709	2126082	22 60
716	57	58	00893857	89322	826 940	28 532	798 408	88908	2036373	23.00
717	58	59	00961846	88495	879 442	28 258	851 184	88055	1947465	22.00
718	59	60	01034835	87615	934 641	27 967	906 674	87148	1859409	21.01
719	60	61	01112764	86681	1001 328	36 777	964 551	86180	1772261	20.45
720	61	62	01199746	85679	1064 270	36 336	1027 934	85147	1696092	10 69
721	62	63	01297725	84615	1177 079	76 967	1009 071	84049	1600024	19.00
722	67	64	01410701	87481	1212 025	25 266	1177 669	01076	1600934.	10.92
723	64	65	01577674	93369	1200 846	24 820	1265 015	020/0.	1474042	10.17
724	65	66	01677664	80968	1400 279	42 095	1269.015	801618.	1350002.	17.43
725	66	67	01071514	70560	1400.379	41 325	1457 205	30268.	1352393.	16.70
725	67	69	02002480	79060	1490.030	41.325	1457.305	70019.	12/2125.	12.99
727	69	60	02104421	76466	1717 604	70.511	1677 062	77207.	1193307.	15.29
710	60	70	.02194431	70403.	1717.004	39.040	10//.903	/3606.	1116040.	14.60
720	70		.02400377	74747.	1037.403	38.708	1/98.093	73828.	1040434.	13.92
729	- 10		.02031133	72910.	1900.390	48.047	1918.349	/1926.	966606.	13,26
730		12	.028/8053	70943.	2088.476	46,692	2041.783	69899	894679.	12.61
731	/2	/3	.03163960	68855.	2223.789	45.252	2178.537	67743.	824780.	11.98
732	73	/4	.03501851	66631.	2377.032	43.715	2333.317	65442.	757038.	11.36
733	/4	/5	.03891725	64254.	2542.659	42.072	2500.586	62983.	691595.	10.76
734	75	76	.04323085	61711.	2722.488	54.658	2667.830	60350.	628612.	10.19
735	76	17	.04787884	58989.	2876.436	52.122	2824.314	57551.	568262.	9.63
736	77	78	.05292667	56112.	3019.292	49.452	2969.839	54603.	510712.	9.10
737	78	79	.05837434	53093.	3145.932	46.660	3099.272	51520.	456109.	8.59
738	79	80	.06429182	49947.	3254.953	43.762	3211.191	48320.	404589.	8.10
739	80	81	.07093902	46692.	3353.066	40.770	3312.296	45016.	356269.	7.63
740	81	82	.07830593	43339.	3431.406	37.697	3393.708	41623.	311254.	7.18
741	82	83	.08608270	39908.	3469,934	34.572	3435.362	38173.	269630.	6.76
742	83	84	.09414937	36438.	3462.025	31.433	3430.592	34707.	231458.	6.35
743	84	85	. 10270588	32976.	3415.121	28.319	3386.802	31268.	196751.	5.97
744	85	86	. 1 1275909	29561.	3365.145	31.917	3333.228	27878.	165483.	5.60
745	86	87	. 12455314	26195.	3290.834	28.107	3262,728	24550.	137605.	5.25
746	87	88	. 13677706	22905.	3157.244	24.415	3132.829	21326.	113055.	4.94
747	88	89	. 14851130	19747,	2953.628	20,917	2932.711	18271.	91729.	4.65
748	89	90	. 15997575	16794.	2704.273	17.679	2686.595	15442.	73458.	4.37
749	90	91	. 17254975	14089.	2445.868	14.730	2431.138	12867	58017.	4.12
750	91	92	. 18708293	11644.	2190.399	12.077	2178.323	10548	45150.	3.88
751	92	93	. 20232590	9453.	1922.354	9.722	1912.632	8492.	34602.	3.66
752	93	94	.21738909	7531.	1644.809	7.680	1637.128	6708	26109.	3.47
753	94	95	.23174272	5886.	1370.006	5.955	1364.051	5201.	19401.	3.30
754	95	96	. 24571663	4516.	1114.202	4.532	1109.669	3959.	14200.	3.14
755	96	97	.25841120	3402	882.466	3.390	879.076	2961.	10241	3.01
756	97	98	.26966646	2519.	681.888	2.494	679.394	2178	7280	2 89
757	98	99	27982224	1837	515 981	1 808	514 173	1580	5102	2 80
758	99	100	28934834	1322	383 672	1 293	382 379	1130	3534	2.00
759	100	101	29821476	938	280 592	913	279 679	798	2411	2.05
760	101	102	30644147	657	202 046	637	201 409	556	1619	2.35
761	102	103	31404847	455	142 296	470	142 057	204	1065	2,70
762	107	104	32106572	312	100 411	300	100 111	264.	694	2.33
767	104	105	22762222	211	69 440		60 220	202.	407	2.20
764	105	106	33345096	147	47 473	. 202	47 776	177.	423.	2.01
765	105	107	22887800		22 100	. 135	32 020	118.	248.	1./5
766	107	108	34794707	54.	21 507	.090	32.020	18.	130.	1.38
767	100	100	. 34304/03	02.	21.007	.039	21.448	52.	ວ1.	.83
760	108	109		41.	14.2//	.039	14.239	34.	0.	0.00
/08	10.9	110	. 332323/9	27.	9.400	.025	9.375	22.	22.	0.00

•

4

TABLE C-I (cont)

.

.

769 770 771 _____ 772 773 774 775 cancer type other 776 777 population female 778 779 780 lifetime risk to individual from exposure by age 781 age lifetime age lifetime age iifetime age iifetime age lifetime age lifetime age lifetime age lifetime 782 risk group risk group risk group risk group 783 group risk group risk group risk group risk 13 .1017e-01 27 .5934e-02 41 .2611e-02 55 .1820e-02 69 .6097e-03 83 .7519e-04 97 .3872e-05 784 -1 0. . 5436e-02 .2451e-02 . 1704e-02 0 .9323e-02 .9068e-02 56 .5485e-03 .6143e-04 .2526e-05 785 14 28 42 70 84 98 . 1594e-02 15 .7873e-02 .5015e-02 43 .2306e-02 57 71 .4905e-03 85 .4995e-04 786 1 .9478e-02 29 99 .9913e-06 .1491e-02 787 2 .9478e-02 16 .6734e-02 30 .4612e-02 44 .2174e-02 58 72 .4360e-03 86 .4052e-04 100 0. 788 3 .9475e-02 17 .5883e-02 31 .4231e-02 45 . 2038e-02 59 . 1393e-02 73 .3851e-03 87 .3288e-04 101 0. 32 . 3906e-02 . 1899e-02 60 , 1300e-02 74 .3379e-03 .2672e-04 789 4 .9470e-02 18 .5224e-02 46 88 102 0. .4698e-02 47 . 1775e-02 61 75 .9459e-02 19 33 .3626e-02 .1211e-02 .2945e-03 89 .2174e-04 790 5 103 0. , 1663e-02 . 1125e-02 .2548e-03 .1232e-01 34 .3383e-02 48 62 76 90 .1771e-04 104 0. 791 6 .9442e-02 20 35 .3856e-02 . 156 1e-02 . 1042e-02 .2189e-03 .1446e-04 . 1086e-01 49 77 792 7 .9424e-02 21 63 91 105 0. .1185e-04 793 8 .9406e-02 22 .9715e-02 36 .3594e-02 50 .2444e-02 64 .9626e-03 78 . 1867e-03 92 106 0. .9387e-02 .8786e-02 37 . 3363e-02 51 . 2305e-02 65 .8861e-03 79 . 1580e-03 93 .9734e-05 107 0. 794 9 23 . 1327e-03 795 10 .1602e-01 24 .8019e-02 38 .3157e-02 52 .2175e-02 66 .8125e-03 80 94 .7989e-05 108 0. 25 .7256e-02 39 .2973e-02 53 . 2053e-02 67 .7419e-03 81 .1106e-03 95 .6497e-05 109 0. 796 .1344e-01 11 54 . 1937e-02 68 .6742e-03 82 .9148e-04 96 .5159e-05 110 O. 12 .1158e-01 .6529e-02 40 .2790e-02 797 26 798 799 800 number of health effects in female population distributed by age (low let radiation) 801 health age health age health age health age health age health age health 802 age health age 803 group effects 804 805 -1 0. 13 .133e+03 27 .769e+02 41 .331e+02 55 .216e+02 69 .595e+01 83 .349e+00 97 .116e-02 806 0 .123e+03 14 . 119e+03 28 .704e+02 42 .310e+02 56 .201e+02 70 .522e+01 84 .257e+00 98 .530e-03 .649e+02 .291e+02 57 .186e+02 71. .454e+01 85 . 186e+00 99 .149e-03 807 . 125e+03 15 . 103e+03 29 43 1 2 .125e+03 .880e+02 .596e+02 44 .274e+02 58 . 173e+02 72 .391e+01 86 .133e+00 100 0. 808 16 30 .546e+02 45 256e+02 59 160e+02 73 .334e+01 87 .940e-01 101 0. 809 3 .124e+03 17 .768e+02 31 .282e+01 .657e-01 102 0. .504e+02 .147e+02 88 810 4 . 124e+03 18 .682e+02 32 46 .237e+02 60 74 . 124e+03 19 .613e+02 33 .467e+02 47 .221e+02 61 .136e+02 75 .236e+01 89 .452e-01 103 0. 811 5 812 6 . 124e+03 20 .161e+03 34 .435e+02 48 .206e+02 62 .125e+02 76 .195e+01 90 .306e-01 104 0. 35 77 .159e+01 91 . 205e-01 105 0. 813 7 .124e+03 21 .142e+03 . 495e+02 49 . 193e+02 63 .114e+02 .136e-01 .126e+03 .461e+02 50 .300e+02 64 .104e+02 78 .128e+01 92 106 0. 814 .123e+03 36 8 22 .114e+03 37 .430e+02 51 .281e+02 65 .938e+01 79 .102e+01 93 .886e-02 107 0. 8 15 q .123e+03 23 .264e+02 ,796e+00 94 .559e-02 108 0. 816 10 .210e+03 24 .104e+03 38 .404e+02 52 66 .845e+01 80 95 817 .176e+03 25 .943e+02 39 .379e+02 53 .248e+02 67 .757e+01 81 .614e+00 .351e-02 109.0. 11 40 .355e+02 .232e+02 .674e+01 82 .467e+00 96 . 206e-02 110 0. 818 12 .152e+03 26 .847e+02 54 68 819 820 total number of health effects to the female population .4560e+04 821 822 823 824 825 826

827 828 829 830 831 832 833 cancer type 1eu/bone 834 female 835 population 836 837 838 lifetime risk to individual from exposure by age 839 840 age lifetime risk group risk group risk group risk group risk group risk 841 group risk group risk group 41 .2714e+03 55 .5051e+03 69 .2912e+03 95760+04 97 .2295e+04 27 .3880e+Õ3 842 +1 0. 13 .2826e+03 83 843 0 .5946e+03 14 .2824e-03 28 .3871e-03 42 .2695e-03 56 .4936e~03 70 , 274 1e~03 84 .8647e+04 98 .2122e~04 .6049e+03 15 .2822e-03 29 .3860e+03 43 .2674e-03 57 .4813e+03 71 .2573e-03 85 .7782e+04 99 . 1963e~04 844 1 .6052e+03 .28198+03 30 .3849e-03 44 .2652e+03 58 .4683e-03 72 .2407e-03 86 .6990e -04 100 .1810e+04 845 2 16 .3837e-03 45 .2628e+03 59 .4546e-03 73 .2245e+03 87 .6275e+04 101 . 1657e-04 846 3 .6053e+03 17 .2817e+03 31 .5628e+04 . 1493e+04 .4402e+03 88 102 847 4 .6053e+03 18 . 28 15e~03 32 .3824e-03 46 .2602e+03 60 74 .2089e+03 .1304e+04 19 .2812e+03 33 .3810e-03 47 .2575e+03 61 .4252e~03 75 .1938e-03 89 .5040e-04 103 848 5 .6053e+03 34 .3795e-03 .2545e+03 .4095e+03 76 .1793e+03 90 .4507e-04 104 .1069e+04 .6051e+03 .3925e+03 48 62 849 20 6 77 . 1654e+03 91 .4032e+04 105 .7571e+05 .6049e+03 .3920e+03 35 .2806e+03 49 .2513e-03 63 .3934e-03 850 7 21 .3768e-03 . 1521e+03 92 .3619e+04 106 .3211e-05 36 .2793e-03 50 .5528e+03 64 78 851 8 .6046e+03 22 .3915e~03 .3600e-03 107 0. 79 .1395e+03 93 .3265e+04 .6043e+03 23 .3910e-03 37 .2780e+03 51 .5446e-03 65 852 9 .2765e+03 52 .5357e+03 66 .3429e+03 80 .1276e-03 94 .2964e-04 108 0 853 10 .2833e~03 24 .3903e+03 38 .5262e+03 67 .3257e-03 81 .1163e+03 95 .2707e+04 109 0. 854 .2831e+03 25 .3896e+03 39 .2749e+03 53 11 54 .3084e+03 82 . 1057e+03 96 .2487e-04 110 0. 40 .2732e+03 .5160e-03 68 .2829e+03 26 .3888e+03 855 12 856 857 858 number of health effects in female population distributed by age (low let radiation) 859 health age health age health age health age health age health age health 860 health age age 861 group effects 862 .601e+01 .284e+01 ,444e+00 97 .688e-02 .370e+01 27 .503e+01 41 .344e+01 55 69 83 863 13 +1 0, .361e+00 98 .446e+02 785e+01 .369e+01 28 .501e+01 42 .341e+01 56 .582e+01 70 .261e+01 84 864 0 14 .238e+01 85 .290e+00 99 .294e~02 .500e+01 43 . 338e+01 57 .563e+01 71 865 .796e+01 15 .369e+01 29 .216e+01 .230e+00 .199e-02 44 .542e+01 100 ,795e+01 16. .369e+01 30 .498e+01 .334e+01 58 72 86 866 2 .495e+01 45 .330e+01 59 .521e+01 73 . 195e+01 87 .179e+00 101 .133e-02 867 3 .795e+01 17 .368e+01 31 46 .325e+01 60 .499e+01 74 .174e+01 88 .138e+00 102 .746e+03 868 .795e+01 18 .367e+01 32 .493e+01 4 . 155e+01 . 105e+00 103 .521e+03 .794e+01 .491e+01 47 .321e+01 61 .477e+01 75 89 19 .367e+01 33 869 5 48 .315e+01 .453e+01 76 .137e+01 90 .780@+01 104 .214e-03 .488e+01 62 870 6 .793e+01 20 .512e+01 -34 .151e-03 .430e+01 .573e-01 105 871 7 .793e+01 21 .511e+01 35 .361e+01 49 .310e+01 63 77 .120e+01 91 .358e+01 50 .678e+01 64 .405e+01 78 .104e+01 92 .416e+01 106 .321e-04 872 .792e+01 22 .509e+01 36 8 51 .665e+01 65 .381e+01 79 .899e+00 93 .297e+01 107 0. 37 .356e+01 873 9 .792e+01 23 .508e+01 38 .353e+01 52 .650e+01 66 .357e+01 80 .766e+00 94 .207e+01 108 0. 874 10 .371e+01 24 .507e+01 .332e+01 95 .146e+01 109 0. 53 .635e+01 67 81 .645e+00 875 11 .371e+01 25 .506e+01 39 .351e+01 .539e+00 96 .995e+02 110 0. . 370e+01 26 .504e+01 40 .348e+01 54 .618e+01 68 .308e+01 82 876 12 877 878 . 3630e+03 total number of health effects to the female population 879 880 881 883 884

.

.

94

TABLE C-II

INPUT FILE FOR THE SECOND SAMPLE PROBLEM: CALCULATION OF THE TOTAL NUMBER OF CANCER DEATHS INDUCED BY CONTINUOUS EXPOSURE OF 1 Rad/Year OF LOW-LET RADIATION

•	calculation	af 1			con	ntek	for		nad	/vean	uei	~~	absolute	niek
2	1100	01 1	Utar	carr	Cel	1156	101		Tau/	year	uan	'9	20301010	TISK
3	1 100													
4	0.000000000	.02	24500	00	- 00	01330	000	. (00094	40000	-00	207	780000	
5	-000640000	- 00	005800	00	-00	00540	000		0005	10000	- 00	004	\$60000	
6	-000410000	-00	03600	00	- 00	00350	000		0004:	20000	. 00	200	590000	
7	.000840000	. 00	011400	00	- 00	01420	000		0016	70000	. 00	218	350000	
8	.001980000	- 00	21200	00	.00	2260	000	•••	0023	50000	.00	223	350000	
9	-002280000	- 00	21700	00	. 00	2060	000	- '	00 1 9 9	90000	.00	219	980000	
10	.002030000	.00	21000	00	- 00	2180	000	•	00228	80000	.00	223	390000	
11	.002520000	.00	26800	00	-00	2880	000	•	00312	20000	- 00	030	390000	
12	-003690000	-00	140100	00	-00	04350	000	•	0047	30000	- 00	ບອ່	180000	
13	.005680000	.00	0623000	00	.00	10810	000	•	00/44	40000	.00	12	750000	
14	-008870000		52400	00	- 0	10350	000	-	0110	70000	.0	100	70000	
16	021580000	- 0	222000	00	-0	10700	000	•	0182		.0	200	500000	
17	032000000	- 01	2323000	00	.0.	27460	000	•	02130	40000	.0	125	500000	
18	046650000	.0.	100100	ññ	.0.	57400	000	- 1	05740	10000	.0	F 10	300000	
19	067030000	.07	26400	ññ	. 0.	78560	000	•	0846	200000	- 0	901	700000	
20	0000888900	10	36700	ññ		11250	ñññ	-	1192	00000	1	27	700000	
21	136630000	14	173000	ñõ	19	59790	000	•	1728	10000	1	85:	210000	
22	. 1968 10000	. 20	083900	ñõ	22	21220	000	-	2351	20000	2	502	230000	
23	.265460000	27	796200	õõ	29	90900	000		3013	50000	.3	11	1 10000	
24	.320170000	. 32	285700	ōō	3	36330	000		3434	70000	. 3	500	040000	
25	.356060000	36	15700	õõ	_ 3(56610	000	-	3712	10000	.3	754	400000	
26	.379220000	0.00	000000	ÕÕ -	0.0	00000	000	ο.	0000	00000	0.0	000	000000	
27	0.000000000	0.00	00000	00	0.0	00000	000	ò.	0000	00000	0.0	000	000000	
28	0.000000000	.0	174600	00	.00	01160	000	-	0007	70000	-0	000	600000	
29	.000510000	.00	004300	00	. 00	00380	000		0003	40000	.0	003	310000	
30	.000280000	- 00	002600	00	- 00	00250	000	-	0002	70000	.0	00	330000	
31	.000400000	.00	004900	00	.00	00580	000		0006	6000 0	.0	000	690000	
32	.000710000	.00	007200	00	.0	00730	000	•	0007	50000	.0	00	770000	
33	.000790000	- 00	008 100	00	.0	00830	000	-	8000	60000	.0	009	900000	
34	.000960000	. 00	010200	00	.0	01100	000	-	0011	90000	- 0	01:	290000	
35	.001400000	.00	015200	00	.00	01650	000	•	0018	00000	-0	019	970000	
36	-002150000	.00	223300	00	.0	02510	0000	•	0027	30000	.0	029	970000	
37	.003250000	.00	035400	00	.0	03840	0000	-	0041	60000	.0	04	490000	
38	.004840000	- 00	152300	00	.0	05650		•	0061	10000	.0	00	600000	
39	.007120000	.00	111200	00	.0	12000	0000	-	0089	40000 90000	-0	14	110000	
40	.015380000	.0	167900	00	.0	18320	0000	•	0129	40000	.0	14	950000	
41	013380000	.0	263200	00	.0	10320 28790	0000	•	0200	50000	.0	25	330000	
43	038930000	- 0.	432500	00	- 0	47900	0000	•	0510	50000	.0	58	400000	
44	.064320000		709700	00	iõ	78340	0000	-	0861	20000	iõ	94	190000	
45	. 102750000	. 1	128200	õõ	1	24620	0000	-	1368	50000	. 1	48	590000	
4G	. 160060000	1	726400	00	1	87180	0000		2024	30000	. 2	17	500000	
47	.231860000	. 24	458400	00	- 2	58540	0000		2698	00000	. 2	79	960000	
48	.289490000	- 2	983600	00	. 3	06590	0000		3142	00000	. 3	21	220000	
49	.327680000	_ 3	336100	00	- 3	39040	0000		3440	10000	. 3	48	550000	
50	. 352690000	0.0	000000	00	0.0	00000	юоо	Ο.	0000	00000	0.0	00	000000	
51	0.00000000	0.0	000000	00	0.0	00000	юоо	Ο.	0000	00000	0.0	00	000000	
52	0.00000	-0	1463	•	014	57	-0	145	5	.014	54		.01453	
53	.01452	.0	1451	٠	014	51	.0	145	50	_014	49		.01449	
54	_01448	.0	1448	•	014	47	-0	144	6	_014	45		.01443	
55	.01440	.0	1438	-	014	35	.0	143	52	.014	₹ 9		-01426	
56	.01422	.0	1419	٠	014	10	.0	141	13 NG	.014	10		.01407	
57	.01405	.0	1402	-	013	33 77	.0	135	20	.013	52 20		01369	
20	-01365	-0	1251	٠	013	1 I A A	-0-	122	27	-013	00 00		01303	
60	01337	.0	1301	•	013	44 40	.0	100	.,	013	23 65		01251	
61	01225	.0	1218	•	012	<u>.</u>	.0	119	ບໍ່	011	61		.01139	
62	.01115	.0	1090	•	010	64	.0	103	36	.010	06		.00975	
63	.00943	ŏ	0909		ÖOR	73	_0	08	88	.007	99		.00760	
64	.00721	.ŏ	0681		006	41	.õ	059	99	.005	58		.00516	

.00474	.00432	. 0 0392	.00352	.00315	.00278
.00244	.00212	.00182	.00154	.00129	.00106
.00086	.00068	-00054	. 0004 1	.00031	.00023
.00017	,00012	.00009	.00006	.00004	.00003
-00002	.00001	.00001	. 0000 1	.00000	.00000
.00000	.00000	. 0 0000	0.0000	0.00000	0.00000
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000	.01320	.01316	.01314	_01313	.01313
-01312	.01311	.01311	.01310	.01310	-01310
_01309	-01309	-01309	-01308	.01308	.01307
.01306	.01305	.01304	. 0 1304	.01303	.01301
.01300	.01299	.01299	.01297	.01296	.01295
_01294	_01293	.01291	.01290	.01288	.01287
.01285	.01283	.01280	.01278	.01275	.01273
.01269	.01266	.01263	.01259	.01254	.01250
.01245	.01239	.01234	.01227	.01221	.01214
.01206	.01197	.01189	.01179	.01169	.01158
.01147	.01134	.01121	.01107	.01092	.01076
.01059	.01040	-01020	-00999	.00976	.00951
. 0 0925	.00897	.00867	.00835	.00800	. 0 0764
.00726	.00686	.00644	.00600	.00555	.00510
.00464	_00418	.00373	.00329	.00286	.00246
.00208	.00173	.00142	.00115	. 0009 1	.0007 0
- 00054	.00040	.00030	- 0002 1	-00015	.00011
.00008	.00005	.00004	.00002	.00002	. 00 00 1
.00001	.00001	.00000	0.00000	0_0000	0.00000
0. 000 00	0.0 0 000	0.00000	0 .00000	0.000 0 0	0.00000
1000000-	1000000.				
2					
22 1	1 30				
1					
110_0	1.0				
23 1	1 30				
1					
110-0	1.0				
2					
0 1 0					
	.00474 .00244 .00086 .00017 .00002 .00000 0.00000 0.00000 .01312 .01309 .01306 .01300 .01294 .01285 .01269 .01245 .01269 .01245 .01269 .01245 .01206 .0147 .01059 .00925 .00726 .00464 .00208 .00054 .00068 .00001 0.00000 1000000 22 1 1 110.0 23 1 110.0 2 0 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE C-III

ı.

٠

OUTPUT FILE FOR THE SECOND SAMPLE PROBLEM

1	calculation of	total cance	er risk for	1 rad/year	using absol	ute				
2 3 4	proportion o	dying in eac	h age inter	val						
5	male									
6	0.000000000	.022450000	.001330000	000940000	.000780000	000640000	000580000	0005.10000	0005 10000	000460000
7	.000410000	.000360000	.000350000	000420000	000590000	000040000	.000380000	.000340000	.000510000	.000460000
8	.001980000	.002120000	002260000	002350000	002350000	.000040000	.001140000	.001420000	.00016700000	.001850000
9	.002030000	.002100000	002180000	002280000	.002330000	.002280000	.002170000	.002060000	.001990000	.001980000
10	.003690000	004010000	004350000	004730000	0023300000	.002520000	.002680000	.002880000	.003120000	.003390000
11	.008870000	0006690000	010590000	011610000	012750000	.003680000	.006230000	.006810000	.007440000	.008120000
12	021580000	023390000	025320000	027380000	029600000	.014000000	.015340000	.016/60000	.018270000	.019870000
13	046650000	049910000	053440000	.02/380000	.029000000	.032000000	-034630000	.037460000	.040440000	.043500000
14	096880000	103670000	111250000	119380000	127700000	.067030000	.072640000	.078560000	.084620000	.090700000
15	196810000	208290000	221220000	119290000	127700000	. 136630000	. 14/300000	. 159/90000	. 172810000	. 1852 10000
16	320170000	228570000	226220000	243470000	. 250230000	. 265460000	.279620000	. 290900000	. 301350000	.311110000
17	3792200000	. 0000000000	. 336330000	. 343470000	. 350040000	. 356060000	. 361570000	.366610000	. 371210000	. 375400000
18	15, 31100000				.0000000000	.00000000000	.00000000000	.0000000000	.0000000000	.000000000
19										
20	female									
21	0.00000000	017460000	001160000	000770000	000000000					
22	0.00000000	000000000	.001160000	.000770000	.000600000	.000510000	.000430000	.000380000	.000340000	+000310000
22	.000280000	.000260000	.000250000	.000270000	.000330000	.000400000	.000490000	.000580000	.000660000	.000690000
23	.000710000	.000720000	.000730000	.000/50000	.000770000	.000790000	.000810000	.000830000	.000860000	.000900000
25	.000360000	.001020000	.001100000	.001190000	.001290000	.001400000	.001520000	.001650000	.001800000	.001970000
25	.002150000	.002330000	.002510000	.002730000	.002970000	.003250000	.003540000	.003840000	.004160000	.004490000
20	.004840000	.005230000	.005650000	.006110000	.006600000	.007120000	.007680000	.008290000	.008940000	.009620000
21	.010350000	,011130000	.012000000	.012980000	.014110000	.015380000	.016780000	.018320000	.020040000	.021950000
20	.024070000	.026320000	.028/90000	.031650000	.035030000	.038930000	.043250000	.047900000	.052950000	.058400000
23	.064320000	.070970000	.078340000	.086120000	. 094 190000	. 102750000	. 112820000	. 124620000	. 136850000	. 148590000
30	. 160060000	.1/2640000	. 187180000	.202430000	. 217500000	.231860000	. 245840000	.259540000	. 269800000	. 279960000
31	. 289490000	. 298360000	. 306590000	.314200000	. 32 12 20000	.327680000	. 3336 10000	. 339040000	. 3440 10000	.348550000
32	. 352690000	.00000000000	.00000000000	·00000000000	.00000000000	.00000000000.	. 00000000000	.0000000000	.0000000000	.000000000
33										
34										
33										
30	age distribu	tion by sex								
20										
38	mate									
39	0.00000	.01463	.01457	.01455	.01454	.01453	.01452	.01451	.01451	.01450
40	.01449	.01449	.01448	.01448	.01447	.01446	.01445	.01443	.01440	.01438
41	.01435	.01432	.01429	.01426	.01422	.01419	.01416	.01413	.01410	.01407
42	.01405	.01402	.01399	.01396	.01392	.01389	.01385	.01381	.01377	.01373
43	.01368	.01363	.01357	.01351	.01344	.01337	.01329	.01320	.01311	.01301
44	.01290	.01277	.01265	.01251	.01235	.01218	.01201	.01182	.01161	.01139
45	.01115	.01090	.01064	.01036	.01006	. 00975	.00943	.00909	. 00873	.00838
46	.00799	.00760	.00721	.00681	.00641	.00599	.00558	.00516	.00474	.00432
47	.00392	. 00352	.00315	.00278	.00244	.00212	.00182	.00154	.00129	.00106
48	.00086	. 00068	.00054	. 0004 1	.00031	. 00023	.00017	.00012	.00009	.00006
49	.00004	.00003	. 00002	.00001	.00001	.00001	0.00000	0,00000	0.00000	0.00000
50	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
51										
52										
53	female									
54	0.00000	.01320	.01316	.01314	.01313	.01313	.01312	.01311	.01311	.01310
55	.01310	.01310	.01309	.01309	.01309	.01308	.01308	.01307	.01306	01305
56	.01304	.01304	.01303	.01301	.01300	.01299	.01299	01297	01296	01295
57	.01294	.01293	.01291	.01290	.01288	.01287	.01285	.01283	01280	.01278
58	.01275	.01273	.01269	.01266	.01263	01259	.01254	.01250	01245	01239
59	.01234	.01227	.01221	.01214	.01206	.01197	.01189	.01179	.01169	01158
60	. 01147	.01134	.01121	.01107	.01092	01076	.01059	.01040	01020	00999
61	.00976	.00951	.00925	.00897	.00867	00835	.00800	.00764	.00726	00686
62	.00644	. 00600	.00555	.00510	.00464	.00418	00373	.00329	.00286	00246
63	.00208	.00173	.00142	.00115	00091	.00070	.00054	00040	00030	00021
64	.00016	.00011	.00008	.00005	.00004	.00002	.00002	.00001	200001	.00001

•

97

. . .

TABLE C-III (cont)

65 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 66 67 68 69 70 population totals used to normalize age distribution tables males females 1.00 1.00 71 . 72 73 •• ****** 74 75 76 78 79 80 81 health effects calculated for ... 82 83 number of target organs 2 84 85 86 1.) 1et 10w 87 cancer type other 88 risk model absolute 89 90 91 dose by time interval: 1.00000 rads for 110.0 years 92 93 2.) 1et low 94 95 96 cancer type leu/bone risk model absolute 97 dose by time interval: 98 1.00000 rads for 110.0 years 99 100 101 summary of population characteristics... 102 103 104 105 106 number of persons in population: males 1000000. females 1000000. population table: supplied by: 107. 11fe table user age distribution 108 user

4

.

4

.

TABLE C-III (cont)

.

109 110										
112 113 114	*******				******		********	******	*********	~~~~*******
115				calculat	lon of ca	incer risks	for male	populat	1011	
116										
118						*********			**********	*********************
119										
120										
121 122	11fe tab	le calculati	Ion							
123 124	:	starting age	2		0					
125 126	r	oopulation		ma	1e					
127				- •	h					
129	t	cancer type:	•	01	ner					
131				1e	u/bone					
132										
134										
135				********	*******	****				
136	age 1	tqx 02245000	100000	tdx 2245 000	drad 0.000	dref 2245 000	t1× 98878	tx 6683193	ex 66 83	
138	1 2	.00133000	97755.	130.014	0.000	130.014	97690.	6584315.	67.36	
139	2 3	.00094000	97625.	91.767	0.000	91.767	97579.	6486625.	66.44	
140	34	.00078000	97533.	76.270	. 194	76.076	97495.	6389046.	65.51	
142	5 6	.00058000	97394	57.456	. 968	56.488	97365.	6194125.	63.60	
143	6 7	.00054000	97337.	53.916	1.355	52.561	97310.	6096760.	62.64	
144	78	.00051000	97283.	51.354	1.741	49.614	97257.	5999451. 5902194	61.67	
146	9 10	.00040999	97184.	42.357	2.512	39.845	97163.	5804986.	59.73	
147	10 11	.00035999	97142.	37.961	2.990	34.971	97123.	5707823.	58.76	
148 149	11 12	.00034999	97104.	37.547	3.562	33.986	97085.	5610699.	57.78	
150	13 14	.00058999	97022.	61.840	4.599	57.241	96991.	54 16570.	55.83	
151	14 15	. 0008 3998	96960.	86.405	4.961	81.444	96917.	5319579.	54.86	
152	15 16	.00113997	96873.	115.753	5.320	110.433	96816.	5222663.	53.91	
154	17 18	.00166995	96615.	167.374	6.032	161.341	96531.	5029161.	52.05	
155	18 19	.00184994	96447.	184.806	6.384	178.421	96355.	4932630.	51.14	
156	19 20	.00197993	96262.	197.327	6.734	190.593	96164.	4836275.	50.24	
158	21 22	.00225991	95854	223.982	7.360	216.623	95742	4644152	48.45	
159	22 23	.00234991	95630.	232.381	7.658	224.722	95514.	4548410.	47.56	
160	23 24	,00234990	95398.	232.166	7.990	224.176	95282.	4452895.	46.68	
161	24 25	.00227990	95166. 94941	225.325	8.356	216,969	95053.	4357613.	45.79	
163	26 27	.00205990	94726.	204.211	9.085	195.126	94624.	4167727.	44.00	
164	27 28	.00198990	94522.	197.350	9.261	188.089	94423.	4073103.	43.09	
165	28 29	.00197990	94324.	196.002	9.249	186.753	94226.	3978681.	42.18	
167	30 31	.00209990	93928.	206.597	9.358	197.239	93825.	3790426.	40.35	
168	31 32	.00217989	93721.	213.915	9.613	204.302	93614.	3696602.	39.44	
169	32 33	.00227988	93507.	223.052	9.866	213.186	93396.	3602987.	38.53	

.

66

. . .

.

+

171	34	35	.00251986	93051.	244.840	10.364	234.476	92929.	3416424.	36.72
172	35	36	.00267985	92806.	259.316	10.609	248.707	92677.	3323495.	35 81
173	36	37	.00287983	92547.	277.371	10.851	266.520	92408.	3230818.	34.91
174	37	38	.00311981	92270.	299.050	11.186	287.864	92120.	3138409.	34.01
175	38	39	.00338979	91971,	323.344	11.583	311.761	91809.	3046289	33.12
176	39	40	.00368976	91647.	350.100	11.943	338.157	91472	2954480.	32.24
177	40	41	.00400973	91297.	378.374	12.296	366.077	91108.	2863008.	31.36
178	41	42	.00434970	90919	408.112	12.642	395.470	90715	2771900	30 49
179	42	43	.00472966	90511.	441.066	12.980	428.085	90290	2681185	29 62
180	43	44	.00517962	90070.	479.836	13.309	466.527	89830	2590895	28 77
181	44	45	00567957	89590	522,460	13 628	508 832	89329	2501065	27 92
182	45	46	00622951	89067	568 825	13 978	554 847	88783	2411776	27 08
183	46	47	.00680945	88499	616.984	14 358	602 627	88190	2772962	26.00
184	47	48	.00743938	87882	668 475	14 690	653 785	87547	20222555	26.23
185	48	49	.00811930	87213	723 084	14 974	708 110	86852	2147216	24.62
186	49	50	.00886922	86490	782 341	15 242	767 099	86099	2060364	27.02
187	50	51	00968912	85708	845 924	15 401	820 422	96295	1074165	23 02
188	51	52	01058902	84862	914 324	15 721	898 607	84405	1000000	23.03
189	52	53	01160890	83947	990 467	15 929	974 579	87462	1004576	24.20
190	57	54	01274975	82057	1077 810	16 211	1067 609	03432.	1804376.	21.50
191	54	55	01200050	02537.	1163.810	16 661	1146 240	81303	1/21124.	20.75
102	55	55	01522840	80720	1264 000	16 977	100.245	80002	1638/03.	20.01
192	55	57	01676819	70466	1234.330	17 166	1230.121	70701	133/402.	19.29
193	50	57	.010/3019	79403.	1340.001	17.100	1437 030	78791.	14//309.	18.59
105	57	50	.01020/9/	76117.	1444,424	17.394	1427.030	77394.	1398518.	17.90
193	50	59	.01960772	76472.	1040.091	17.391	1523.300	75902.	1321124.	17.23
190	33	61	.0213/743	73131.	1030.004	17.744	1021.140	74312.	1247222	16.57
197	60	61	.02338/14	73492.	1/36./53	17.978	1/18.7/5	72624.	11/0910.	15.93
198	61	62	.02531677	/1/56.	1834.902	18.282	1816.620	/0838.	1098286.	15.31
199	62	03	.02/3/63/	69921.	1932.719	18.345	1914,174	68954.	1027448.	14.69
200	63	64	.02959592	6/988.	2030.928	18.762	2012.166	66972.	958494.	14.10
201	65	60	.03199341	63937.	2129.229	18.907	2110.322	64892.	891521.	13.52
202	65	00	.03462485	63828.	2229,003	18.975	2210.028	62713.	826629.	12,95
÷ 203	66	67	.03/45423	61599.	2326.099	18,963	2307.136	60436.	763915.	12.40
204	67	68	.04043358	59273.	2415.476	18.870	2396.606	58065.	703480.	11.87
205	68	69	.04349285	56857.	2491.578	18.696	2472.883	55611.	645415.	11.35
206	69	70	.04664209	54366.	2554.170	18,442	2535.727	53089.	589803.	10.85
207	70	71	.04990128	51811.	2603.571	18.112	2585.459	50510.	536715.	10.36
208	- 71	72	.05343038	49208.	2646.905	17.708	2629.197	47884.	486205.	9.88
209	72	73	.05738938	46561.	2689.335	17.228	2672.107	45216.	438321.	9.41
210	73	/4	.06191823	43872.	2733.127	16.671	2716.456	42505.	393104.	8.96
211	74	75	.06701694	41139.	2773.015	16.037	2756.979	39752.	350599.	8.52
212	75	76	.07262549	38366.	2801.641	15.326	2786.315	36965.	310847.	8.10
213	76	- 77	.07854393	35564.	2807.873	14.546	2793.327	34160.	273882.	7.70
214		/8	.08460234	32756.	2784.904	13.669	2771.235	31364.	239723.	7.32
215	78	79	.09068075	29971.	2730.522	12.719	2717.802	28606.	208359,	6.95
216	/9	80	.09685910	2/241.	2650.250	11.751	2638.498	25915,	179753.	6.60
217	80	81	. 10364729	24590.	2559,497	10,776	2548,721	23311.	153838.	6.26
218	81	82	. 11122526	22031.	2460.184	9.799	2450.385	20801.	130527.	5.92
219	82	83	.11926309	19571.	2342.886	8,829	2334.056	18399.	109726.	5.61
220	83	84	. 12767080	17228.	2207.362	7.880	2199.483	16124.	91327.	5.30
221	84	85	. 13659834	15020.	2058.723	6.960	2051.762	13991.	75203.	5.01
222	85	86	. 14726547	12962.	1914.886	6.078	1908.808	12004.	61212.	4.72
223	86	87	. 15975214	11047.	1769.984	5.234	1764,749	10162.	49208.	4.45
224	87	88	. 17276865	9277.	1607,182	4.439	1602.742	8473.	39046.	4.21
225	88	89	. 18516525	7670.	1423.855	3.707	1420.149	6958.	30573.	3.99
226	89	90	. 19676197	6246.	1231.980	3.049	1228.931	5630.	23615.	3.78
227	90	91	.20833864	5014.	1047.038	2.471	1044.567	4490.	17995.	3.59
228	91	92	. 22116501	3967.	879.280	1.972	877.308	3527.	13495.	3.40
229	92	93	.23506110	3087.	727.293	1.547	725.746	2724.	9968.	3.23
230	93	94	.25016688	2360.	591.631	1.191	590,440	2064.	7244.	3.07
231	94	95	.26539261	1769.	470.259	. 898	469.361	1533.	5180.	2.93
232	95	96	.27954854	1298.	363.600	. 664	362.936	1116.	3646.	2,81
233	95	97	.29082505	935.	272.314	.482	271.833	799.	2530.	2.71
234	97	98	. 30127170	662.	199,901	. 344	199.556	562.	1731.	2.61

.

100

•

4

TABLE C-III (cont)

4

4

235	98 99 .3110284	7 462.	144.087	. 242	143.844	390.	1169.	2.53
236	99 100 . 3200853	7 318.	102.081	. 168	101.913	267.	778.	2.44
237	100 101 .3284823	7 216.	71.170	. 115	71.055	181.	511.	2.36
238	101 102 .3362394	9 145.	48.881	. 078	48.802	121.	330.	2,28
239	102 103 .3433767	1 96.	33.106	.052	33.054	80.	210.	2.18
240	103 104 .3499440	3 63.	22.135	.035	22.101	52.	130.	2.06
241	104 105 .3559614	5 41.	14.624	.023	14,601	34.	78.	1.90
242	105 106 .3614689	5 26.	9.556	.015	9,541	22.	44.	1.67
243	106 107 .3665065	4 17.	6.181	.010	6.172	14.	22.	1.33
244	107 108 .3711042	1 11.	3.961	. 006	3.955	9.	9.	. 8 1
245	108 109 .3752919	57.	2.517	.004	2.513	5.	ο.	0.00
246	109 110 .3791097	54.	1.587	. 002	1.585	3.	3.	0.00

, i

247 248 life table calculation 249 250 starting age 10 251 252 population male 253 254 255 cancer types other 256 257 258 259 1eu/bone 260 261 262 ***************************** 263 264 dref age tax 1 . tdv drad +1 x t x ex 58.83 10 11 .00036000 100000. 5882813. 36.000 0.000 36.000 99982. 265 11 12 .00035000 99964. 34.987 0.000 34.987 99947. 5782831. 57.85 266 12 13 .00042000 99929. 41.970 0.000 41.970 99908. 5682884. 56.87 267 13 14 .00059000 99887. 59.026 .092 58.933 99858. 5582976. 55.89 268 14 15 15 .00084000 99828. 84.132 .277 83.855 99786. 5483118. 54.93 16 .00114000 269 99744. 114.169 .461 113.708 99687. 5383333. 53.97 270 16 17 .00142000 99630. 142.118 .644 141.474 99559. 5283646. 53.03 271 17 18 .00166999 99488. 166.971 .827 166.144 99404. 5184087. 52.11 272 18 19 .00184999 99321. 184.751 1.009 183.742 99228. 5084683. 51.19 197.478 1.190 273 19 20 .00197999 99136. 196.288 99037. 4985455 50.29 .00211998 1.443 211.190 209.748 274 20 98938. 98833. 4886418. 49.39 21 275 .00225998 1.765 21 22 98727. 224.887 223.121 98615. 4787585. 48.49 276 22 23 .00234998 98502. 233.565 2.087 231.478 98386. 4688970. 47.60 277 23 24 .00234997 98269. 233.371 2.443 230.929 98152. 4590584. 46.71 24 25 .00227997 226.351 4492432. 278 98035. 2.834 223.517 97922. 45.82 25 26 .00216996 279 26 97809. 215.466 3.224 97701. 43945 10. 44.93 212.242 280 27 .00205996 97594. 204.651 97491. 4296809. 3.612 201.039 44.03 281 27 28 .00198996 97389. 197.799 3.999 193.800 97290. 4199318. 43.12 282 28 29 .00197996 97191. 196.818 4.384 192.434 97093. 4102028. 42.21 4004935. 3908041. 283 29 30 .00202995 96994. 201.661 4,768 196.894 96893. 41.29 284 30 31 .00209994 96793. 208.547 5.288 203.259 96688. 40.38 285 31 32 .00217993 96584. 216.491 5.945 210.547 96476. 3811353. 39.46 286 32 33 .00227992 96368. 226.308 6.597 219.711 96254. 3714877. 38.55 33 34 34 35 7.246 3618623. .00238991 237.015 96023. 287 96141. 229.769 37.64 288 .00251990 95904. 3522600 249.560 241.669 95779. 36.73 7.891 289 35 36 .00267988 95655. 264.874 8.531 256.343 95522. 3426820. 35.82 290 36 37 .00287986 95390. 283.875 9.166 274.710 95248. 3331298 34.92 291 37 38 .00311984 95106. 9.707 296.715 94953. 3236050 306.422 34.03 292 38 39 .00338982 94800. 331.476 10.123 321.353 94634. 3141098. 33.13 40 .00368979 41 .00400977 293 39 94468. 359.068 3046464. 32.25 348.568 94289. 2952175. 294 40 94109. 388.227 10.872 377.355 93915. 31.37 295 41 42 .00434974 93721. 418.898 11.237 407.661 93511. 2858260. 30.50 296 42 43 .00472971 93302. 452.884 11.594 441.290 93075. 2764749. 29.63 492.869 2671674. 28.77 297 43 44 .00517967 92849. 11.942 480.927 92603. 92088. 298 92356. 44 45 .00567962 12,281 524.548 27.93 299 45 .00622957 571.995 2486983. 46 91819. 584,648 12.653 91527. 27.09 300 46 47 .00680951 91235. 634.320 13.056 621.263 90917. 2395456. 26.26 301 .00743945 90600. 13.412 674.017 90257. 2304539. 47 48 687.428 25.44 302 303 304 305 13.719 2214282. 2124741. 48 49 .00811938 89913. 743.756 730.037 89541. 24.63 50 .00886930 804.878 49 89169. 14.010 790.868 88767. 23.83 50 .00968922 2035974. 870.464 87929. 51 88364. 14.283 856.181 23.04 51 52 .01058912 87494. 941.020 14.538 926.482 87023. 1948045. 22.26 306 307 52 53 .01160901 86553. 1019.563 14.771 1004.792 86043. 1861022. 21.50 53 54 .01274888 85533. 1105.535 15.083 1090.452 84980. 1774979. 20.75 308 54 55 .01399872 84428. 83829. 1181.879 1689999. 1197.346 15.467 20.02 55 56 .01533854 309 1276.632 83230. 1292.448 15.816 82584. 1606170. 19.30

.

÷

.
te .

.

				04039	1200 273	16 129	1373.144	81243.	1523586.	18.59
310	56	57 .	01675835	81938.	1309.273	16 403	1471.473	79805.	1442342.	17.91
311	57	58 .	01826814	80349.	1507 408	16 636	1570.772	78267.	1362538.	17.23
312	58	59 .	01986791	79001.	1600 610	16 826	1671.693	76629.	1284271.	16.58
313	59	60	02157766	//4/3.	1000.315	17 101	1772 407	74890.	1207642.	15.94
314	60	61	02338736	/5/85.	1789.300	17 450	1873.340	73050.	1132752.	15.31
315	61	62	.02531701	/3995.	1090.790	17 759	1973.978	71109.	1059702.	14.70
316	62	63	.02737663	72105.	1991.730	18 023	2075 071	69066.	988593.	14.10
317	63	64	.02959620	70113.	2093.094	10 212	2176 338	66922.	919527.	13.52
318	64	65	.03199572	68020.	2194.002	10.21.1	2279 207	64676.	852604.	12.95
319	65	66	.03462518	65825.	2297.534	10.327	2379 400	62329.	787928.	12.40
320	66	67	.03745459	63528.	2397.760	10.300	2471 720	59885.	725599.	11.87
321	67	68	.04043394	61130.	2490.032	10.311	2550 436	57355.	665714	11.35
322	68	69	.04349326	58640,	2508.017	17 970	2615 302	54755.	608359.	10.85
323	69	70	.04664252	560/1.	2633.272	17 601	2666 645	52096	553604.	10.36
324	70	71	.04990174	53438.	2684,320	17 216	2711 809	49389.	501509.	9.88
325	71	72	.05343088	50754.	2729.125	16 974	2756 120	46638.	452120.	9.41
326	72	73	.05738992	48024.	2772,994	10.074	2901 017	43842	405482.	8.96
327	73	74	.06191881	45251.	2818.271	10.334	2001.317	41003	361639.	8.52
328	74	75	.06701756	42433.	2859.524	15./54	2043.705	38129.	320636	8.10
329	75	76	.07262616	39574.	2889.161	15.0//	20/4,004	25227	282507.	7.70
330	76	77	.07854466	36685.	2895.701	14.328	2001.373	22252	247270.	7.32
331	77	78	.08460312	33789.	2872.119	13.479	2030.035	29509	214917	6.95
332	78	79	.09068158	30917.	2816.129	12.004	2803.373	25305.	185409	6.60
333	79	80	.09685999	28101.	2733.430	11.609	2/21.021	24047	158675	6.26
334	80	81	. 10364823	25367.	2639.913	10.654	2029.239	21469	134628	5.92
335	81	82	. 11122627	22727.	2537.561	9.696	2527.804	10091	113169	5.61
336	82	83	. 11926417	20190.	2416.648	8.744	2407.903	16626	94188	5.30
337	83	84	. 12767194	17773.	2276:925	7.810	2269.115	14434	77557	5.00
338	84	85	. 13659956	15496.	2123.663	6.904	2116.759	14434.	67112	4.72
339	85	86	. 14726677	13372.	1975.347	6.033	1969.314	12303.	50734	4.45
340	86	87	. 15975355	11397.	1825.923	5.199	1820.724	0740	40250	4 21
341	87	88	. 17277017	9571.	1658.023	4.412	1653.610	7470	21508	3,98
342	88	89	. 18516686	7913.	1468.937	3.686	1465.250	FROD	24220	3 78
343	89	90	. 19676367	6444.	1271.018	3.034	1267.984	2609.	19521	3 58
344	90	91	. 208 34044	5173.	1080.243	2.461	1077.783	4033.	12898	3 39
345	91	92	. 22116690	4093.	907.187	1.965	905.222	3039.	10248	3 22
346	92	93	.23506309	3186.	750.394	1.542	748.852	2011.	7479	3.05
347	93	94	. 250 168 98	2435.	610.438	1.188	609.250	2130.	5209	2 91
348	94	95	. 26539482	1825.	485.220	. 896	484.324	1302.	2725	2 78
349	95	96	. 27955084	1340.	375.176	.663	374.514	1132.	2573	2 67
350	96	97	.29082743	965.	280,990	. 48 1	280.509	500	1749	2 56
351	97	98	.30127416	684.	206.274	. 344	205,930	380.	1169	2 53
352	98	99	31103099	477.	148.684	.242	148.442	403.	779	2 44
353	99	100	32008795	329.	105.341	. 168	105.172	276.	//O. E11	2.75
354	100	101	32848501	223.	73.444	. 1 15	73.328	187.	311.	2.30
355	101	102	33624217	150.	50.443	.078	50.365	125.	330.	2.20
356	102	103	34337944	99.	34.165	.052	34.113	82.	210.	2.10
357	103	104	34994680	65.	22.844	.035	22.809	54.	130.	1 90
358	104	105	35596426	42.	15.093	.023	15.070	35.	/8.	1.50
259	105	106	36147180	27.	9.862	.015	9.847	22.		1 77
360	106	107	36650942	17.	6.380	.010	6.370	14.	~~~.	1.33
361	107	108	37110711	11.	4.089	.006	4.082	<u>a</u> .	9.	0.00
262	108	109	37529487	7.	2.598	. 004	2,594	<u>6</u> .	ų.	0.00
362	109	110	37911270	4.	1.638	.002	1.636	3.	3.	0.00
303	109									

-

,

*

TABLE C-III (cont)

364 365 366 367 368 369 370 cancer type other 371 372 population male 373 374 375 lifetime risk to individual from exposure by age 376 377 age lifetime 378 group risk 69 .1501e+03 97 .2809e+06 13 ,5084e+02 27 .3665e+02 `**4**1 .2002e+02 55 .8081e+03 83 . 1037e+04 +1 0. 379 1289e+03 .5021e+02 42 . 1902e+02 56 .7323e+03 70 84 .8222e+05 98 . 1496e-06 0 .6126e+02 .3531e+02 380 14 28 .1101e+03 85 .6499e+05 99 .4718e+07 381 .6157e-02 15 .4961e+02 29 .3400e+02 43 .1808e~02 57 .6618e+03 71 .9345e-04 .5137e-05 100 0. .5964e+03 86 .6057e+02 .4903e+02 30 .3273e+02 44 .1718e+02 58 72 382 2 16 31 45 .1632e+02 59 .5359e+03 73 .7885e~04 87 .4069e-05 101 0. .5956e+02 17 .4848e+02 .3150e-02 383 3 .47990+03 .4796e+02 32 .3031e-02 46 .1552e+02 60 74 .6612e+04 88 .3233e-05 102 0. 384 .5856e+02 18 75 89 . 2574e-05 103 0. .4746e+02 47 .1476e~02 61 .4284e+03 .5513e-04 385 5 .5757e+02 19 33 .2916e+02 . 1404e-02 .3811e+03 .4569e+04 90 .2049e-05 104 0. 34 48 62 76 386 .5659e+02 20 .4697e+02 .2805e-02 6 .1337e+02 .3377e-03 77 . 3765e+04 91 . 1628e-05 105 0. .5563e+02 .4539e+02 35 .2698e~02 49 63 387 21 .1290e+05 388 .5468e+02 22 .4385e+02 36 .2570e-02 50 .1274e~02 64 .2982e-03 78 . 3084e+04 92 106 0. 8 .1169e+02 .2622e+03 79 .2510e+04 93 . 1015e-05 107 0. 389 .5375e-02 23 .4234e+02 37 .2446e+02 51 65 q .2030e+04 94 .7890e~06 108 0. .4087e+02 .2328e+02 52 .1070e+02 66 .2296e+03 80 38 390 10 .5283e-02 24 109 0. 53 .9766e+03 67 .2002e-03 81 .1631e+04 95 .5978e+06 391 11 .5215e+02 25 .3943e-02 39 .2214e+02 .1304e-04 96 .4307e+06 110 0. .8895e+03 .1737e+03 392 12 .5149e+02 26 .3803e+02 40 .2106e+02 54 68 82 393 394 population distributed by age (low let radiation) 395 number of health effects in male 396 health age health age health health age health age health age health age 397 health age age 398 group effects 399 .517e+02 . 253e+04 .272e+02 .971e+01 .120e+01 83 .253e+01 97 .736e+02 41 55 69 400 ~1 0. 13 27 . 174e-01 .497e+02 42 .257e+02 56 .866e+01 70 .980e+00 84 98 .898e+05 401 0 .896e+02 14 .726e+02 28 .118e-01 .794e+00 99 . 1899+05 .768e+01 85 402 1 .897e+02 15 .717e+02 29 .478e+02 43 .243e+02 57 71 100 0. .459e+02 44 .230e+02 58 .679e+01 72 .636e+00 86 .791e~02 403 2 .881e+02 16 .708e+02 30 404 .217++02 .598e+01 73 .505e+00 87 .525e-02 101 0 .86Ge+02 17 31 .441e+02 45 59 .698e+02 3 .423e+02 .396e+00 88 .343e+02 102 0. 18 46 .205e+02 60 .523e+01 74 .851e+02 .690e+02 32 .456e+01 75 .308e+00 89 .221e+02 103 0. 19 47 .193e+02 61 406 5 .836e+02 .681e+02 33 .406e+02 .236e+00 .139e+02 104 0. .395e+01 76 90 407 6 .821e+02 20 .673e+02 34 . 390e+02 48 .183e+02 62 408 .807e+02 21 .649e+02 35 .374e+02 49 .172e+02 63 .340e+01 77 .178e+00 91 .879e-03 105 0 7 22 . 163e+02 .291e+01 78 .133++00 92 .529e+03 106 0 .355e+02 50 64 409 8 .793e+02 .625e+02 36 .984e-01 107 0. .148e+02 65 .247e+01 79 93 .315e-03 37 .337e+02 51 410 .779e+02 23 .602e+02 q .134e+02 .209e+01 80 .715e+01 94 .181e-03 108 0. 411 10 .766e+02 24 .580e+02 38 .320e+02 52 66 .121e+02 109 0. . 175e+01 81 .514e-01 95 . 102=+03 412 11 .755e+02 25 .558e+02 39 . 303e+02 53 67 .287e+02 54 .108e+02 68 . 146e+01 82 .362e+01 96 .517e-04 110 0. 413 12 .746e+02 26 .537e+02 40 414 415 . 2883e+04 total number of health effects to the male population 416 417 418 419 420 421

4

¢

422 423 424 425 ------426 427 leu/bone 428 cancer type 429 430 population mate 431 432 433 lifetime risk to individual from exposure by age 434 age lifetime 435 risk group risk group risk group p r1sk group 41 .1327e-02 risk group 436 group risk group risk group risk . 1973e-02 69 .2395e-03 97 .7574e-05 55 .7709e-03 83 .4613e-04 437 -1 0. 13 .2630e-02 27 438 0.3587e-02 14 .2589e-02 28 . 1918e-02 42 .1294e-02 56 .7185e-03 70 . 2167e-03 84 .4015e-04 98 . 68 19e - 05 439 .3576e-02 15 .2548e-02 29 . 1863e-02 43 .1261e-02 57 .6685e-03 71 . 1954e-03 85 .3487e-04 99 .6107e-05 1 440 2 .3487e-02 .2508e-02 30 . 1809e-02 44 . 1230e-02 58 .6208e-03 72 , 1758e-03 86 .3027e-04 100 .5409e-05 16 441 .3397e-02 17 .2469e-02 31 .1755e-02 45 . 1200e-02 59 .5753e-03 73 . 1577e-03 87 .2631e-04 101 .4695e-05 3 .1701e-02 .5321e-03 .1171e-02 60 74 . 1411e-03 88 .2291e-04 102 39370-05 442 4 .3306e-02 18 .2430e-02 32 46 . 1647e-02 .1143e-02 .4912e-03 .1260e-03 . 1997e-04 .3112e-05 33 47 61 75 89 103 443 5 .3215e-02 19 .2392e-02 444 6 .3123e-02 20 .23548-02 34 . 1594e-02 48 .1116e-02 62 .4525e-03 76 .1122e-03 90 .1742e-04 104 .2214e-05 .4159e-03 . 1280e-05 445 .3032e-02 21 .2300e-02 35 .1541e-02 49 .1091e-02 63 77 .9974e-04 91 .1521e-04 105 .2245e-02 36 .1504e-02 . 1067e-02 .3814e-03 78 .8842e-04 92 .1333e-04 106 .4353e-06 446 8 .2940e-02 22 50 64 .2191e-02 ,1467e-02 .1175e-04 2848e-02 37 51 . 1003e-02 65 .3491e-03 79 .7814e-04 93 107 0. 447 23 9 , 1043e-04 .2756e-02 .2137e-02 38 .1431e-02 .9418e-03 66 .3188e-03 80 .6881e-04 94 108 0. 448 10 24 52 67 81 95 .9332e-05 109 0. 449 11 .2714e-02 25 .2083e-02 39 .1396e-02 53 .8825e-03 .2905e-03 .6039e-04 450 .2672e-02 26 . 2028e-02 40 .1361e-02 54 .8255e-03 68 .2641e-03 82 .5286e-04 96 .8401e-05 110 0. 12 451 452 453 number of health effects in male population distributed by age (low let radiation) 454 455 health age health age health ∋ge health age health age health age health age health age 456 group effects 457 .278e+02 41 .180e+02 55 .926e+01 69 .191e+01 83 .113e+00 97 .682e-03 458 -1 0. 13 .381e+02 27 0 .525e+02 . 166e+01 .851e-01 .409e · 03 469 14 374e+02 28 . 270e+02 42 . 175e+02 56 .849e+01 70 84 98 . 170e+02 85 .262e+02 .77Ge+01 .141e+01 2448-03 460 .521e+02 15 .368e+02 29 43 57 71 .63Ge-01 99 461 .507e+02 .362e+02 30 .254e+02 44 .164e+02 58 .707e+01 72 .120e+01 86 .466e-01 100 . 162e-03 2 16 462 .494e+02 17 .356e+02 31 .245e+02 45 . 159e+02 59 .641e+01 73 .101e+01 87 .339e-01 101 939e-04 3 32 .580e+01 74 .845e+00 88 .243e-01 102 .394e-04 463 .480e+02 18 .349e+02 .237e+02 46 . 155e+02 60 33 .229e+02 47 . 150e+02 .523e+01 75 .703e+00 89 . 172e-01 103 .311e-04 464 .343e+02 61 5 .467e+02 19 .221e+02 48 .145e+02 .469e+01 76 .579e+00 90 .118e-01 104 .221e-04 465 .453e+02 20 .337e+02 34 62 6 .418e+01 77 466 .440e+02 21 .329e+02 35 .213e+02 49 .141e+02 63 .473e+00 91 .822e-02 105 0. 467 .426e+02 .320e+02 36 .208e+02 50 . 136e+02 64 .372e+01 78 .382e+00 92 .547e-02 106 0. 22 468 .413e+02 23 .312e+02 37 _202e+02 51 .127e+02 65 .323e+01 79 .3069+00 93 .364e-02 107 0. 9 469 10 .399e+02 24 .303e+02 38 . 196e+02 52 .118e+02 66 .290e+01 80 .242e+00 94 .240e-02 108 0. . 191e+02 53 .109e+02 67 .254e+01 81 . 190++00 95 .159e-02 109 0. 39 470 11 .393e+02 25 .295e+02 96 110 0. . 101e+02 .221e+01 82 .147e+00 .1018-02 471 12 .387e+02 26 .287e+02 40 . 185e+02 54 68 472 473 population 474 total number of health effects to the male . 1669e+04 475 476 _____ 477 478 479

TABLE C-III (cont)

480 481 482 483 484 485 486 calculation of cancer risks for female population 487 488 489 490 491 492 life table calculation 493 494 starting age 0 495 496 population female 497 498 499 cancer types other 500 501 502 503 504 leu/bone 505 506 507 508 509 age tqx 1× tdx drad dref t1x t 🖬 ex 74.35 .01746000 0 1 100000. 1746.000 7434906. 0.000 1746.000 99127. 1 2 .00116000 98254. 113.975 0.000 113.975 98197. 7335779. 74.66 510 .00077000 2 3 98140. 75.568 0.000 75.568 98102. 7237582. 73.75 511 3 .00060000 4 98064. 58.963 . 125 58.839 98035. 7139479. 72.80 512 4 5 5.00051000 98005. 50.356 . 374 49.983 97980. 7041444. 71.85 513 .00043000 6 97955. 42.743 .622 42.121 97934. 6943464. 70.88 514 6 7 .00038000 97912. 38.078 .871 6845530 37.207 97893. 69.91 515 7 8 .00034000 97874. 34.396 1.119 33.277 97857. 6747637. 68.94 516 8 .00031000 9 97840. 31.698 1.368 30.330 97824. 6649780. 67.97 517 9 10 .00028000 97808. 29.002 1.616 27.386 97794. 6551956. 66.99 518 10 11 .00026000 97779. 27.412 97766. 1.990 25.422 6454162. 66.01 519 11 12 .00025000 97752. 26.927 2.489 24.438 97738. 6356397 65.03 520 13 .00027000 12 97725. 29.374 2.989 26.385 97710. 6258658 64.04 521 13 14 .00032999 97696. 35.661 3.422 32.239 97678. 6160948. 63.06 15 .00039999 16 .00048999 522 97660. 42.852 3.788 39.063 97638. 6063270. 62.09 523 15 97617. 51.986 4.154 47.831 97591. 5965632. 61.11 524 16 17 .00057999 97565. 61.106 4.519 56.586 97534. 5868041. 60.14 525 17 18 .00065998 97504. 69.235 4.884 64.351 97469. 5770506 59.18 526 18 19.00068998 97435. 72.475 5.247 67.228 97398. 5673037. 58.22 527 19 20.00070998 97362. 74.735 5.610 69.125 97325. 5575639. 57.27 528 20 21 .00071998 97287. 75.987 70.045 5.942 97249. 5478314. 56.31 529 21 22 .00072998 97211. 77.205 6.243 70.962 97173. 5381064 55.35 530 22 23 .00074997 97134. 79.392 6.543 72.848 97095. 5283892. 54.40 531 532 24 .00076997 25 .00078997 23 97055. 81.596 6.866 74.730 97014. 5186797. 53.44 24 96973. 83.817 7.211 76,606 96931. 5089783 52.49 533 25 26 .00080997 96889. 86.033 7.556 78.477 96846. 4992852. 51.53 534 26 27 .00082997 88.243 91,291 96803. 7.899 80.344 96759. 4896005. 50.58 535 27 28 .00085996 96715. 8.119 83.172 96670. 4799246. 49.62 .00089996 536 28 23 29 .00089996 30 .00095996 96624. 95.173 8.216 86.958 96576. 4702576. 48.67 537 96529. 100.975 8.311 92.664 96478. 4606000. 47.72 4509522 538 30 31 .00101995 96428. 106.944 8.592 98.352 96374. 46.77 539 31 32 .00109995 96321. 115.005 9.057 105.948 96263. 4413147. 45.82 540 32 33 .00118994 96206. 123.999 9.520 114,479 96144. 4346884 44,87 541 33 34 .00128993 96082. 133,919 9.980 123.939 96015. 4220740. 43.93

4

*

.

•

.

542	34	35	00139992	95948	144.758	10.438	134.320	95876.	4124726.	42.99
542	25	26	00151991	95803	156 507	10 894	145 612	95725	4028850	42.05
543	30	22	.00151551	0547	160 164	11 247	157 909	95562	3932125	41 12
244	20	37	.00104990	05477	103.104	11 061	171 849	95286	2837563	40 19
545	37	30	.00179909	95477.	103.709	12 414	107 716	95194	2742177	30 27
340	38	39	.00196987	93294.	2(0.131	12.414	204 427	04095	2646094	29.25
547	39	40	.00214385	93094.	217.380	12.943	204.437	94903.	3040304.	30.33
548	40	41	.00232983	94876.	234.513	13.467	221.046	94/39.	3221333	37.44
549	41	42	.00250981	94642.	251.518	13.985	237.533	94516.	3457240.	36.53
550	42	43	.00272979	94390.	272.163	14,498	257.665	94254.	3362724.	35.63
551	43	44	.00296976	94118.	294.513	15.004	279.508	93971.	3268470.	34.73
552	44	45	.00324973	93824.	320.405	15.503	304.901	93663.	3174499.	33.83
553	45	46	00353970	93503	347.027	16.055	330.973	93330.	3080836.	32.95
554	46	47	00383966	93156	374 345	16.657	357.687	92969.	2987506.	32.07
555	47	10	00415961	02792	403 163	17 227	385 936	92580	2894537	31.20
555		40	.00413901	01770	422 604	17 764	414 740	92162	2801957	30 33
220	40	49	.00440937	92379.	462.004	10.200	444 075	04744	2700705	20 47
557	49	50	.00483952	91946.	403.200	18.290	444,973	91714.	2709799.	29.47
558	50	51	.00523946	91483.	497.209	18.803	4/8,406	91234.	2618080.	28.02
559	51	52	.00564940	90986.	533.317	19.302	514,014	90/19.	2526846.	21.11
560	52	53	. 006 109 33	90452.	572.389	19,786	552.603	90166.	2436127.	26.93
56 1	53	54	.00659925	89880.	613.463	20.322	593,140	89573.	2345961.	26.10
562	54	55	.00711917	89266.	656.410	20.907	635,503	88938.	2256388.	25.28
563	55	56	.00767907	89610.	701.913	21.471	680,443	88259.	2167449.	24.46
564	56	57	00828896	87908	750.679	22.012	728.667	87533.	2079190.	23.65
ECE	57	50	00897884	97157	801 614	22 527	779 087	86757	1991658	22.85
565	57	50	.00053004	06766	967 640	22 017	830 632	85929	1904901	22 06
200	20	29	.00901072	86330.	000 304	23.017	004 016	95049	1919072	21 27
26/	23	60	.01034858	83302.	908.304	23.470	044 206	04444	1010972.	20 50
568	60	61	.01112841	84594.	965.503	24.107	941.390	84111,	1733924.	20.00
569	61	62	.01199821	83628.	1028.286	24.895	1003, 391	83114.	1649813,	19.73
570	62	63	.01297798	82600.	1097.637	25.654	1071.983	82051,	1266633.	18.97
571	63	64	.01410772	81502.	1176.192	26.378	1149.814	80914.	1484647.	18.22
572	64	65	.01537741	80326.	1262.255	27.045	1235.210	79695.	1403733.	17.48
573	65	66	.01677707	79064.	1354.109	27.647	1326.462	78387.	1324038.	16.75
574	66	67	01831668	77710.	1451.567	28.179	1423.387	76984.	1245651.	16.03
575	67	68	02003624	76258	1556.566	28.636	1527.930	75480.	1168667.	15.33
676	69	60	02194574	74702	1668 396	29 010	1639.385	73868.	1093187.	14.63
570	60	70	02406517	72022	1786 855	20 205	1757 561	72140	1019319	13 96
577	09		.02400317	73033.	1004 304	20 492	1974 920	70294	947179	13 29
5/8	/0	11	.02631433	/124/.	1904.304	29.403	1075 027	60230	076005	12 65
579	11	12	.028/8386	69342.	2025.508	29.3/1	1993.937	00329.	070003.	12.03
580	72	73	.03164305	67317.	2159.656	29.550	2130.106	66237.	808333.	12.01
581	73	74	.03502210	65157.	2311.343	29.406	2281.936	64001.	/42318.	11.39
582	74	75	.03892098	62846.	2475.145	29.129	2446.016	61608.	678317,	10.79
583	75	76	.04323972	60371.	2639.114	28,708	2610.406	59051.	616709.	10.22
584	76	77	.04788833	57731.	2792.802	28.140	2764,662	56335.	557658.	9.66
585	77	78	.05293680	54939.	2935.658	27.382	2908.276	53471.	501323.	9.13
586	78	79	.05838515	52003.	3062.645	26.443	3036.202	50472.	447852,	8.61
587	79	80	06430333	48940	3172.396	25.369	3147.027	47354.	397380.	8.12
588	80	81	07095126	45768	3271 458	24.165	3247.294	44132.	350026.	7.65
500		0.	07071005	42496	2251 115	22 834	3328 280	40821	305894	7.20
309	01	02	.0/031093	20146	2201 670	21 201	3370 278	37450	265073	6 77
290	82	83	.0800904/	39143.	3391.070	40.050	2266 706	34060	227624	6 77
291	83	84	.09416384	33/34.	3380.304	19.000	3300.700	34000.	102562	5.00
592	84	85	. 10272102	32367.	3343.045	18.239	3324.785	30090.	193303.	3.90
593	85	86	.11278772	29024.	3290.171	16.610	3273.561	2/3/9.	162868.	5.01
594	86	87	. 12458387	25734.	3220.952	14.920	3206.032	24123.	135489.	5.26
595	87	88	. 13680983	22513.	3093.211	13.215	3079.996	20966,	111365.	4.95
596	88	89	. 14854585	19420.	2896.265	11.540	2884.725	17972.	90399,	4.65
597	89	90	. 16001187	16523.	2653.893	9.938	2643.955	15197,	72427.	4.38
598	90	91	. 17258751	13870	2402.154	8.435	2393.720	12669.	57231.	4.13
599	91	92	18712254	11467	2152.859	7.041	2145.818	10391.	44562.	3.89
600	92	93	20236730	9315	1890.738	5.770	1884.968	8369	34171	3.67
601	07	04	21743205	7424	1618 824	4 679	1614 197	66 1A	25802	3.48
602	53	05	12170604	FROF	1340 189	7 660	1245 520	5120	19187	3.31
602	34	30	.231/0094	3003.	1007 000	2.030	1095 075	2907	14057	3 15
603	20	30	.243/018/	4430.	097.908	2.032	067 000	3507.	10150	3 03
604	96	9/	.23843/10	3338.	870.035	2,133	001.002	2923.	70130.	2.02
605	97	98	.26971267	2488	6/2.028	1.011	0/1.018	2152.	1221,	2.90

.

107

2

.

•

٠

606	98	99	. 27986849	1815.	509.223	1.187	508.037	1561.	5076.	2.80
607	99 1	100	.28939444	1306.	378.825	.862	377.962	1117.	3515.	2.69
608	100 1	101	.29826052	927.	277.172	.618	276.554	789.	2398.	2.59
609	101 1	02	. 30648674	650.	199.669	. 438	199.232	550.	16 10.	2.48
610	102 1	103	.31409309	450.	141.768	. 307	141.461	379.	1059.	2.35
611	103 1	104	. 32 1 10956	309.	99.311	. 2 1 2	99.098	259.	680.	2.20
612	104 1	105	. 327566 15	209.	68.706	. 145	68.560	175.	421.	2,01
613	105 1	106	.33349286	141.	46.987	.099	46.888	117.	246.	1.75
614	106 1	107	.33891968	94.	31.793	.066	31.726	78.	129.	1.38
615	107 1	08	, 34388660	62.	21.302	.044	21.258	51.	51.	. 83
616	108 1	09	.34842361	41.	14.146	.029	14.116	33.	ο.	0.00
617	109 1	10	. 35256072	26.	9,316	,019	9.297	22.	22.	0.00

•

•

▶ 1

,

618									
619	11fe tab	le calculati	on						
621		starting age	•	1	0				
622				60					
623		population		re	mare				
625									
626		cancer types	5	ot	her				
628									
629				1e	u/bone				
630									
632									
633					*******				
634	age	tq×	100000	tdx 26,000	drad 0.000	26 000	t1x 99987	tx 6608713	ex 66 09
636	11 12	.00025000	99974.	24,994	0.000	24.994	99962.	6508726.	65.10
637	12 13	.00027000	99949.	26.986	0.000	26.986	99936.	6408765.	64.12
638	13 14	.00033000	99922.	33.034	.060	32.974	99906.	6308829.	63.14
640	15 16	.00049000	99849.	49,223	. 297	48.926	99824.	6109055.	61.18
641	16 17	.00058000	99800.	58.300	.416	57.884	99770.	6009230.	60.21
642	17 18	.00066000	99741.	66.364	. 535	65.829 68.776	99708.	5909460. 5809752	59.25
644	19 20	.00071000	99606.	71.491	. 771	70.720	99570.	5710112.	57.33
645	20 21	.00072000	99534.	72.651	. 987	71.664	99498.	5610542.	56.37
646	21 22	.00073000	99461.	73.905	1.299	72.606	99424.	5511044.	55.41
648	23 24	.00076999	99311.	78.414	1.945	76.469	99272.	5312270.	53.49
649	24 25	.00078999	99233.	80.696	2.303	78.393	99193.	5212998.	52.53
650	25 26	.00080999	99152.	82.972	2.660	80.312	99111.	5113806.	51.58
652	27 28	.00085999	98984.	88.497	3,372	85.125	98940.	4915668.	49.66
653	28 29	.00089998	98896.	92.731	3.727	89.004	98849.	4816728.	48.71
654	29 30	.00095998	98803.	98,929	4.081	94.849	98753.	4717879.	47,75
656	31 32	.00109997	98599.	113.810	5,355	108.455	98542.	4520475.	45.85
657	32 33	.00118996	98485.	123.277	6.084	117.193	98423.	4421933.	44.90
658	33 34	.00128996	98361.	133.692	6.811	126.882	98295.	4323510.	43.96
660	35 36	.00151994	98083.	157.335	8,255	149.079	98004	4127060.	42.08
661	36 37	.00164992	97925.	170.542	8.973	161.569	97840.	4029056.	41.14
662	37 38	.00179991	97755.	185.578	9,628	175.950	97662.	3931216.	40.22
664	39 40	.00214988	97367.	220.074	10.747	209.327	97257.	3736086.	38.37
665	40 41	.00232986	97147.	237.628	11,290	226.339	97028.	3638829.	37.46
666	41 42	.00250985	96909.	255.054	11.827	243.227	96782.	3541801.	36.55
668	43 44	.00296980	96378.	299.109	12.886	286.223	96228.	3348503	34.74
669	44 45	.00324977	96079.	325.640	13,405	312,234	95916.	3252275,	33.85
670	45 46	.00353974	95753.	352.921	13.979	338.941	95577.	3156359.	32.96
672	47 48	.00415967	95019.	410,449	15.200	395.249	94814.	2965572	31.21
673	48 49	.00448963	94609.	440.521	15.762	424.758	94389.	2870758.	30.34
674	49 50	.00483958	94168.	472.048	16.313	455.735	93932,	2776370	29.48
676	51 52	.00564947	93189.	543.848	17.377	526.471	92918.	2588995.	27.78
677	52 53	.00610941	92646	583.897	17.887	566.010	92354.	2496077.	26.94
678	53 54	.00659934	92062.	625.999	18,452	607.546	91749,	2403723.	26.11
680	55 56	.00767917	90766	716.670	19.665	697.005	90407	2220874	24.47

1.

-

681	56	- 57	.00828907	90049.	766.661	20.238	746 423	99666	2420467	
682	57	58	.00893896	89282.	818.879	20 788	798 091	00070	2130467.	23.66
683	58	59	.00961884	88463.	872.228	21 311	850 916	880073.	2040801.	22.86
684	59	60	.01034871	87591	928 264	21 807	906 467	00027.	1951928.	22.06
685	60	61	.01112856	86663	986 911	21.007	900.437	8/12/.	1863901.	21.28
686	61	62	01199837	85676	1051 205	22.4//	904.434	86170.	1776773.	20.50
687	62	63	01207016	04676	1430 204	23.311	1027.973	85150.	1690604.	19.73
688	67	64	01410700	04023.	1122.391	24.118	1098,273	84064.	1605453.	18.97
690	64	66	0150750	83502.	1202.934	24.891	1178.043	82901.	1521390.	18.22
600	04	60	.01537761	82299.	1291.175	25.606	1265.569	81654,	1438489.	17.48
0.90	03	00	.016///28	81008.	1385.357	26.258	1359.099	80316.	1356835.	16.75
031	66	6/	,01831691	79623.	1485.288	26.842	1458.446	78880.	1276519	16 03
692	67	68	.02003649	78138.	1592.955	27.350	1565,605	77341	1197639	15 22
693	68	69	.02194602	76545.	1707.628	27.777	1679.851	75691	1120208	14 64
694	69	70	.02406548	74837.	1829.104	28.114	1800.990	73027	1044607	13.04
695	70	71	.02631489	73008.	1949.554	28.357	1921 197	72022	070604	13.90
696	71	72	.02878423	71058.	2073.861	28.500	2045 262	72033.	970084.	13.30
697	72	73	.03164345	68985	2211 442	20 522	2043.302	/0021.	898651,	12,65
698	73	74	03502254	66773	2267 010	20.333	2182.910	6/8/9.	828630.	12.01
699	74	75	03892147	64406	25357.010	20.44/	2338.364	65590.	760751.	11.39
700	75	76	04724026	61071	2333.006	28.226	2506.780	63139.	695161.	10.79
701	76	77	047999020	50460	2703.185	27.863	2675.322	60520.	632023.	10.22
702	77	70	.04/08893	59168,	2860,841	27.353	2833.488	57737.	571503.	9,66
702	70	70	.03293/4/	56307.	3007.406	26.652	2980.754	54803.	513766.	9,12
704	10	79	.05838588	53300.	3137.718	25.770	3111.948	51731.	458962.	8.61
704	/9	80	.06430413	50162.	3250.373	24.752	3225.620	48537.	407232.	8.12
705	80	81	.07095215	46912.	3352.080	23.604	3328.477	45236.	358695	7.65
706	81	82	.07831992	43559.	3433.904	22.328	3411.576	41843	313459	7 20
707	82	83	.08609753	40126.	3475.652	20.938	3454.714	38388	271617	6 77
708	83	84	.09416500	36650	3470.598	19.457	3451 141	74016	2222220	0.77
709	84	85	+ 10272227	33179	3426.164	17.907	3408 257	21466	233229.	0.30
710	85	86	. 11278909	29753.	3372.138	16 305	2255 922	38067	150314.	5.98
711	86	87	. 12458538	26381	3301 350	14 669	3333.833	28067.	100848.	5.61
712	87	88	.13681147	23080	3170 561	12 005	3467 666	24/30.	138781.	5.26
713	88	89	. 14854762	19909	2968 810	11 257	3137.300	21494.	114051.	4.94
714	89	90	16001376	16940	2300.010	11.357	2957.453	18425.	92556.	4.65
715	90	91	17258954	14330	2462 600	9.787	2/10.684	15580.	74131.	4.38
716	91	92	19712472	11757	2402.309	8.313	2454.196	12989.	58551.	4.12
717	92	02	20125054	0550	2207.033	6.945	2200.088	10654.	45563.	3.88
719	02	53	21240455	9000.	1938.386	5.695	1932.691	8581.	34909.	3.66
710	53	34	.21/43433	7612.	1659.675	4.581	1655.094	6782.	26328.	3.46
710	94	93	.231/8958	5952.	1383.283	3.616	1379.668	5261.	19546.	3.28
720	95	30	.24576465	4569.	1125.689	2.801	1122.888	4006.	14285.	3 13
/21	96	97	.25846000	3443.	892.078	2.131	889.947	2997.	10279	2 99
/22	97	98	.26971568	2551.	689.691	1.595	688.096	2206	7282	2.55
723	98	99	. 27987159	1861.	522.157	1.176	520.981	1600	5076	2.00
724	99	100	.28939763	1339.	388.458	855	387 603	1145	3070.	2.00
725	100	101	.29826379	951	284.228	613	287 615	1145.	3313.	2.69
726	101	102	.30649008	667	204.759	4 35	203.013	609. Ec.	2398.	2,59
727	102	103	.31409649	462	145.385	304	145 004	304.	1610.	2.48
728	103	104	.32111303	317	101 849		143.001	389.	1059.	2.35
729	104	105	.32756968	215	70 467	. 2 1 1	101.637	266.	680.	2.20
730	105	106	.33349644	44	49 100	. 145	/0.318	179.	421.	2.01
731	106	107	33803370	144.	48.190	.098	48.091	120.	246.	1.75
732	107	100	24200000	90.	32.008	.066	32.541	80.	129.	1.38
777	100	100	-34369026	63.	21.849	.044	21.805	52.	51.	.83
774	100	110	.34842/32	42.	14.509	.029	14.480	34.	o.	0.00
134	109	110	. 33256445	27.	9.556	.019	9.536	22.	22.	0.00

1

110

٠.

735 736 737 ------738 739 740 741 cancer type other 742 743 population female 744 745 746 lifetime risk to individual from exposure by age 747 748 age ilfetime age ilfetime age lifetime age lifetime age lifetime age lifetime age lifetime age lifetime risk group risk group risk group risk group risk group risk 749 group risk group risk group 55 .1870e-02 41 .4152e-02 69 .3828e-03 83 .2658e-04 97 .6239e-06 27 .6962e-02 13 .9300e-02 750 -1 0. .1711e-02 .3240e-06 56 70 .3298e-03 84 .2104e-04 98 0 .1092e-01 .9201e-02 28 .6741e-02 42 .3976e-02 751 14 .9914e-07 .2824e-03 .1661e-04 85 99 .1094e-01 15 .9104e-02 29 .6526e-02 43 .3806e-02 57 .1561e-02 71 752 4 .1309e-04 .9011e-02 .3643e-02 58 . 1420e-02 72 .2403e-03 86 100 0. . 1079e-01 30 .6316e-02 44 753 2 16 .1287e-02 73 . 203 1e - 03 87 .1032e ·04 101 0. .6112e-02 45 .3487e-02 59 .8920e-02 31 754 3 . 1064e-01 17 .8149e-05 102 0. .3337e-02 60 .1162e-02 74 . 1706e-03 88 755 4 .1049e-01 18 .8831e-02 32 .5913e-02 46 .1424e-03 89 .6433e-05 103 0. . 1046e-02 75 756 5 . 1034e-01 19 .8744e-02 33 .5720e-02 47 .3194e-02 61 .5070e-05 104 0 .1180e-03 90 .8660e-02 34 .5533e-02 48 . 3057e-02 62 .9371e-03 76 20 757 6 1019e-01 35 .5352e-02 49 . 2927e-02 63 .8363e-03 77 .9720e-04 91 .3986e-05 105 0. 758 7 . 1004e-01 21 .8401e-02 .5135e-02 .2803e-02 .7432e-03 78 .7951e-04 92 .3125e-05 106 0. 759 8 .9894e-02 22 .8148e-02 36 50 64 .2433e-05 107 0. .6574e-03 79 .6462e-04 93 23 .7900e-02 37 .4925e-02 51 .2598e-02 65 760 9 .9751e-02 , 1865e-05 108 0. 38 .4721e-02 52 .2402e-02 66 .5787e-03 80 .5218e-04 94 24 .1667e-02 761 10 .9610e-02 .1388e-05 .7420e-02 39 .4525e-02 53 .2215e-02 67 .5069e-03 81 .4188e-04 95 109 0. 9505e-02 25 762 11 68 .4417e-03 82 .3344e-04 96 .9786e-06 110 0. 54 .2038e-02 763 12 .9401e-02 26 .7188e-02 40 .4335e-02 764 765 766 number of health effects in female population distributed by age (low let radiation) 767 health age health age health age health health age health age 768 age health age health age 769 group effects 770 .222e+02 .374e+01 97 187e-03 123e+00 13 . 122e+03 .902e+02 41 .527e+02 55 69 83 27 771 -1 0. .680e-04 . 120e+03 .873e+02 42 .503e+02 56 .202e+02 70 .314e+01 84 .880e-01 89 0 .144e+03 28 772 14 57 .182e+02 71 .261e+01 85 .619e-01 99 . 149e-04 773 . 144e+03 15 .119e+03 29 .844e+02 43 .481e+02 1 . 164e+02 .216e+01 86 .431e-01 100 0. .459e+02 72 . 118e+03 30 .817e+02 44 58 774 2 . 142e+03 16 .176e+01 87 .295e-01 101 0. 31 ,789e+02 45 .437e+02 59 .148e+02 73 775 . 140e+03 17 .116e+03 3 . 138e+03 18 .115e+03 .763e+02 46 .417e+02 60 .132e+02 74 . 142e+01 88 .200e-01 102 0. 776 32 4 61 ,117e+02 75 .114e+01 89 .134e-01 103 0. .737e+02 47 .398e+02 777 5 . 136e+03 19 .114e+03 33 .877e-02 104 0. .104e+02 76 .902e+00 90 48 .379e+02 62 778 . 134e+03 20 .113e+03 34 .712e+02 6 .913e+01 77 .706e+00 91 .566e-02 105 0. . 109e+03 35 .688e+02 49 .361e+02 63 779 7 . 132e+03 21 .545e+00 .359e-02 106 0. . 130e+03 22 .106e+03 36 .659e+02 50 .344e+02 64 .800e+01 78 92 780 я .696e+01 79 .416e+00 93 .221e-02 107 0 .630e+02 51 .317e+02 65 781 9 .128e+03 23 .103e+03 37 66 .602e+01 80 .313e+00 94 .131e-02 108 0. .603e+02 .292e+02 782 126e+03 24 .995e+02 38 52 10 .232e+00 95 .749e-03 109 0. 39 .577e+02 53 .267e+02 67 .517e+01 81 783 .124e+03 25 .964e+02 11 . 39 1e - 03 96 110 0. .244e+02 68 .441e+01 82 .171e+00 784 . 123e+03 26 .932e+02 40 .552e+02 54 12 785 786 total number of health effects to the female population .5028e+04 787 788 789 _____ 790 791 792

...

[[[

793 794 795 796 797 798 1eu/bone 799 cancer type 800 801 population female. 802 803 804 lifetime risk to individual from exposure by age 805 806 age lifetime risk group risk group risk group risk group risk group r 1sk r1sk group .2082e+02 27 807 group risk group 97 .6567e-05 .1631e+02 41 .1188e+02 55 .7469e-03 69 . 2460e-03 83 .4435e+04 13 808 +1 0. .5851e+05 .2222e-03 .3839e~04 98 .1164e+02 56 .70199+03 70 84 0 .2706e-02 .2054e+02 28 .1594e+02 42 14 809 85 .3314e+04 99 .5178e-05 , 1141e-02 .6581e-03 71 .2001e-03 .2027e+02 .1557e+02 57 43 1 .2694e+02 15 29 810 .1795e+03 .4525e+05 .1520e+02 72 86 .2859e+04 100 .2000e-02 44 .1117e-02 58 .6156e+03 30 .2637e+02 16 811 2 . 1606e+03 .2467e+04 .3868e-05 . 1095e~02 87 101 31 45 59 .5744e-03 73 .1973e+02 812 3 .2579e+02 17 102 .3188e-05 .2131e-04 . 1447e+02 .1072e-02 .5345e+03 74 .1431e-03 88 46 60 813 4 .2520e+02 18 .1946e+02 32 . 1050e+02 .1272e+03 89 ,1842e-04 103 .2472e+05 61 .4961e+03 75 47 .2461e+02 19 . 1920e~02 33 .1411e-02 814 5 .1127e-03 .1593e+04 104 .1722e+05 . 1029e~02 62 :4591e-03 76 90 20 . 1893e~02 34 ,1375e+02 48 .2402e+02 815 6 105 .9711e+06 .9955e+04 91 .1381e+04 .4237e+03 77 .1856e+02 35 .1339e+02 49 .1008e+02 63 7 .2343e+02 21 816 . 1203e+04 106 .3211e+06 .1313e-02 .8765e+04 92 36 50 .9880e-03 64 .3899e-03 78 .1818e+02 817 8 .2283e-02 22 . 1055e+04 107 0. .1288e+02 51 .9379e+03 65 .3578e+03 79 .7693e+04 93 .1781e+02 .2224e+02 23 37 818 9 .9305e+05 108 0. .3273e+03 80 .6731e+04 94 . 1743e-02 38 .1262e+02 52 .8886e-03 66 10 .2164e+02 24 819 . 2985e-03 81 .5872e+04 95 .8254e+05 109 0. 67 .1237e+02 53 .8403e-03 11 .2137e+02 25 .1706e+02 39 820 82 .5110e+04 96 .7356e-05 110 0. .1213e+02 54 .7931e-03 68 .2714e+03 .1669e+02 40 26 821 12 .2109e+02 822 823 824 number of health effects in female population distributed by age (low let radiation) 825 health health age 826 age 827 group effects 828 .888e+01 . 206e+00 97 .197e-02 .272e+02 41 .151e+02 55 69 .240e+01 83 13 27 .211e+02 +1 0. 829 .828e+01 .160e+00 98 .123e+02 70 .211e+01 84 ,147e+02 0 .357e+02 ,269e+02 28 .206e+02 42 56 830 14 .124e+00 99 .777e+03 .185e+01 85 .202e+02 43 .144e+02 57 .769e+01 71 831 1 . 355e+02 15 .265e+02 29 100 .498e+03 . 197e+02 44 , 14 1e+02 58 .713e+01 72 .161e+01 86 .941e+01 .346e+02 16 .261e+02 30 832 2 .309e+03 .137e+02 101 59 .659e+01 73 .139e+01 87 .706e~01 17 .258e+02 31 . 192e+02 45 3 .339e+02 833 .159e+03 74 .120e+01 88 .524e-01 102 60 .606e+01 32 . 187e+02 46 .134e+02 4 .331e+02 18 .254e+02 834 .131e+02 75 . 102e+01 89 .383e~01 103 .989e~04 . 182e+02 47 61 .556e+01 . 323e+02 .250e+02 33 19 835 5 .344e-04 .276e+01 104 .861e+00 90 .247e+02 . 177e+02 48 .128e+02 62 .508e+01 76 34 836 6 .315e+02 20 196e-01 105 . 194e+04 .463e+01 91 .172e+02 63 77 .723e+00 35 49 .124e+02 837 7 .307e+02 21 .242e+02 .321e+05 . 12 19+02 78 .601e+00 92 .138e~01 106 . 168e+02 50 64 .420e+01 838 8 .299e+02 22 .237e+02 36 107 0. .495e+00 93 .960e+02 51 .115e+02 65 .379e+01 79 .291e+02 23 .231e+02 37 . 165e+02 839 9 .651e+02 108 0. .340e+01 80 .404e+00 94 .254e+02 24 .226e+02 38 .161e+02 52 . 108e+02 66 840 10 .326e+00 95 .446e+02 109 0. 39 .158e+02 53 .101e+02 67 .304e+01 81 .222e+02 841 11 .280e+02 25 .294e-02 110 0. 96 54 .949e+01 68 .271e+01 82 .261e+00 . 154e+02 842 .276=+02 26 .216e+02 40 12 843 844 total number of health effects to the female population .1279e+04 845 846 847 848 849 850

112

1.

TABLE C-IV

:

Ŷ

2

7

*

COMPARISON OF REPCAL AND BEIR III ESTIMATES USING THE LINEAR DOSE-RESPONSE MODEL: CANCERS PER ONE MILLION PERSONS

		Ma	ale	F	emale
		REPCAL	BEIR III	REPCAL	BEIR III
I.	10 rad, single exposure				
	A. Leukemia/Bone Cancer B. All Other Cancers	535	566	363	384
	Absolute risk	917	919	1472	1473
	Relative risk	3910	4226	4560	4852
II.	1 Rad/Year Continuous Exposure	•			
	A. Leukemia/Bone Cancer B. All Other Cancers	3587	3568	2706	2709
	Absolute risk	6126	5827	10920	10400
	Relative risk	25760	22080	33390	29030

☆U.S. GOVERNMENT PRINTING OFFICE:1984-776-026 7 4070

Printed in the United States of America Available from National Technical Information Service US Department of Commerce 5285 Port Royal Road Springfield, VA 22161

Microfiche (A01)

Page Range	NTIS Price Code						
001 025	A02	151-175	A08	301-325	A14	451 475	A20
026-050	A03	176-200	A09	326-350	A 15	476-500	A21
051-075	A04	201-225	A10	351-375	A 16	501-525	A 22
076-100	A05	226-250	A11	376-400	A17	526-550	A 23
101-125	A06	251-275	A12	401-425	A18	551 575	A 24
126-150	A07	276 300	A13	426-450	A19	576-600	A25
						601-up*	A 99

*Contact NTIS for a price quote.

.

2

-

LOS ALANOS TEPCAT L'BRARY UJH - 6 1084 RECEIVED

