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ON OBTAINING THE ZERO-TEMPERATURE EQUATION OF STATE
FROM SHOCK DATA

by

B. I. Bennett

ABSTRACT

The Mie-Gruneisen theory of obtaining the
zero—~temperature equation of state from
experimental shock wave data ls reviewed. A study
of certain commonly used forms of the Gruneisen
parameter is made and the resulting equations of
state are presented. These results indicate the
limitations on the use of this procedure and
suggest improvements for the calibration of
pressure measurements in diamond anvil cells.

THE DIFFERENTIAL EQUATION

If experimental data of the pressure and density are available
from shock wave experiments, it is possible, with some assumptions
about the equation of state and the Gruneisen parameter I'y to obtain
the zero—-temperature pressure (P,) and energy (Ec) as a function of
density. These thermodynamic quantities are sometimes referred to as

the "cold curve."

To begin, we assume the equation of state is of the Mie~Gruneisen
form. This wusually requires that thermal excitation of internal
degrees of freedom be small compared with the nuclear motion. With
this assumption, the difference between the pressure on the Hugoniot
(Py) and P, is related by I'(p) to the difference between the energy on
the Hugoniot (EH) and E..



where p is the density of the material in the shocked state. If we now
assume that T is a known function, independent of E, or Iits
derivatives, and recall that P, is related to the density derivative of

E., the above is just a first-order differential equation for Ec'

where
F(p) = [(PH - PI) - PF(EH - EI)] + (PI - pTE7),

where P; and E; are the inital pressure and energy before to the shock.
The restriction that I'(p) be independent of Ec or its derivatives
precludes using this formalism in the Slater,l’2 Dugdale—MacDonald,3 or
"4

"free~volume"" expressions for T(p). These particular expressions
involve derlvatives of the bulk modulus at zero temperature. The
energy difference, Ey - Ej, is related by the Rankine-Hugoniot

equations to the shock pressure using the following expresslon.5

1 1 _ 1
Ey = E; = —(Py + Py)(— - =)
H™PI HY'I ’
2 Py P

where py 1is the initial density of the material. This produces an
inhomogeneous term in the differential equation that |is completely

specified by experimental data and the known function T(p).

F(p) = [Py(p) = P1]8)/9(p) + P18 (p) = T (P)E] ,

with S (p) = 1 ~ nr(p)(_pE.— 1).
I




The solution of this differential equation is straightforward to
obtain, and the resulting expression for E, may be used to give P,, and

the isothermal bulk modulus, (B.).

P ., mp) , ElrD
E.(p) = 0(p){ [ dp ,
: e prlaery 0D
P.(p) = F(p) + pF(p)Ec(p), and

(PH(p) - PI))
2

Be(p) = By(p)S)/5(0) + {(P (p) = Pp) = } r@e) +

+ {(E.(p) = Ep) = (Ey(p) - EI))}{pa%-[pF(p)]}-

The Debye temperature ©(p) is defined here as I'(p) = d(&n ©)/d(&n p).
The quantity BH(p) is the bulk modulus along the Hugoniot; BH(p) =
p{d[Py(p))/dp}.

The only variables that need specification are the thermodynamic
quantities at the 1initial density. E; may be chosen to be zero,
thereby establishing the scale of the internal energy. Py is 1 bar in
most experiments conducted at ambient conditions. To specify the

variable E.(p), we must make a further assumption about the equation of

state.

For example, we might assume the material is a Debye solid. This
is consistent with the original assumption that the material obeys a
Mie—-Gruneisen form for the equation of state. For this case, E. at the

initial density is given by the following expression:

6(py) 3 6 1)
3 x x'3
where D(x) = __.f dx’ ——— , and x = 0/T,
x3 0 eX -1

N, is Avogadro’s number, kg is Boltzman’s constant, and T 1is the

temperature of the material before the shock.




With these assumptions, P., E., and B, are expressed in terms
experimental data. Since the bulk modulus along the Hugoniot (BH) is
not wusually measured, this quantity must be obtained numerically from

the pressures.
USING EXPERIMENTAL DATA

Experimentally, the quantities that are actually measured are the

shock and particle speeds of the material (US and Up)'

pressure, energy, and density are related to these quantities by the

The Hugoniot

following conditions:?

Py -Pr = P1UsUp »

P; U

I *p 1.2
E;, - E; = + U and
H I ?

P1 Us 2P

U

S
p = pgl ) .

Ug - U,

For most materials, the shock speed is nearly a linear function of the
particle speed. Deviation from 1linearity 1is wusually a consequence
either of structural phase transitions with an appreciable volume
change or of electronic excitations. Under these circumstances, the
Mie~Gruneisen assumption is violated. An Interesting discussion of
these types of variation is found in Ref. 6. In what follows, we will
assume the data for shock velocity versus particle velocity can be

represented over some specified range by a quadratic form.

= 2
US = Cy + S Up + R Up'

The quantities C S, and R are coefficients in the U, expansion. The

09 p
compression of the shocked material relative to the Initial density is

given as




2
P . Co + S Up + R Up

PI  Co+ (S-1) U, + R U]

n

In practice, we are interested in specifying a density and obtaining
the cold-curve quantities. The above equation may be solved for Up as
a function, of compression, and then the quadratic form for Ug 1is
evaluated. We then may evaluate the Hugoniot pressure and energy for

use in the equations for the cold-curve quantities.

However, when 11 = 1, or if the coefficient R is nearly zero, the

usual solution for Up as a quadratic form is computationally

unsuitable. Hence, it is convenient to express Up(n) by the following

equations.
U(n) = Upg(ﬂ)
P f(n) °
Coln = 1)

, and

Uoa(M = o=

1

£(n) = {1+ [1 -wm]} ,

~|

where W(n) = éi{ZUpk(n)]z .
o

The quantity Upk(n) is the relationship connecting the particle
velocity to the compression when the coefficient R 1is exactly zero.

Under this condition, f(n) is unity.

If such a quadratic expression is avallable from the data, then
the bulk modulus can be convieniently expressed in terms of the fit
parameters Instead of requiring data for the pressure to be closely
spaced so as to be differentiated numerically. Under this

circumstance, BH can be written as



_ ) ) n )
By(n) = p1Co{2Ug -~ C, + R U }f(2f = 1) [n - s - 1)]% )

This equation implies that U U and f are evaluated at the

s? p’
compression ne

CHOOSING A GRUNEISEN PARAMETER

The procedure given above, along with a model for the motion of
the atoms in the material, enables one to obtain the equation of state
for the material from =zero temperature up to and, in some
circumstances, beyond the temperature reached In the shocked state.
The obvious limitations are the model used for the atomic motion and
whether the material truly obeys the Mie—-Gruneisen form for an equation

of state. The most important limitation is the cholce of T'(p).

The Mie~Gruneisen formalism can produce unphysical results for the
cold curve. This can be seen most directly in the expression for F(p)
and, in particular, that for Sl/2(p)' It is possible for Sl/2(p) to
become negative. When this occurs, F(p) will be negative, thereby
reducing the contribution to E, by the integral, and explicitly giving
a negative contribution to the pressure. The compression at which this

happens depends upon the variation of T'(p).
To know exactly where such a divergence occurs requires a
specified functional form for I'(p). The most commonly used forms all

have this potential. As an example, we will consider the following

expression for T'(p).
T
T'(p) =__I_ s
m

where T; 1is I'(p) at the initial density (i.eey n = 1), and m is an



exponent of 1 assumed to be positive. This simple form is clearly not
adequate for 1large compressions. However, it 1is wused here for
illustration since it encompasses a popular form used by some

experimentalists, namely for m = 1 (or pI' = constant).

We now ask at what value of n for this choice of I'(p) will Sl/2(p)
vanish. Since we are only interested in shock compressed materials,

only values of nn > 1 need be considered. This query reduces to solving

= 2 m
no'—1+T‘—I—no .

We can separate the solutions into three classes: (1) 0 < m <1, (2) m
=1, (3) and m > 1. For class 1, solutions exist for the range of m

implied:

2
l+—< 1, <=,

For class 2, S;/9(n) = 0 when 0, = FI/[FI - 2], and finally, for class

3, no values for n make $;,9 yanigh.

The next item to consider is whether these special points 1lie
within an experimentally reachable compression range. Values for '
span a range of 1/2 to 3.7’8 This gives values of N, on the intervals
{5/3,0} for class 1; and {—1/3,3} for class 2. Present experimental
techniques can produce compressions of nearly threefold. Hence, in
using such data and in selecting a I'(p), care must be taken to avoid

forms that produce these artificial divergences.

Two other forms for T(p) that have enjoyed popular use in
hydrodynamic codes over the past 13 years are SESAME and CHART-D?:



S ) 1m
INC)) —_n_+§_[1 _ﬁ] ,

where m = 1 is the SESAME2? form and m = 2 is the CHART-D form. Again,
neither form 1is appropriate for very large compressions. These
expressions also can cause behavior in the iInferred cold curves similar

to that in the previous discussion.
Finally, there is a model developed by R. G. Cowan at Los Alamos

in 1957 derived from Thomas—Fermi-Dirac theory which has also been in

use for several years.

Cc
Te) = b+ vy

where £(p) = ap/A (A is the atomic weight of the material). The

constants a, b, and ¢ are as follows:
a,gzo.3’

0.6 z1/9 |

o
]

and Z is the atomic number of the material.

Each of the above forms for T'(p) can be used, within the
limitations mentioned about divergent solutions, to compute cold
curves., To avold the divergences, as the solutions are obtained for
B., we stop when the derivative of B, becomes negative. This precursor

tells us when we are nearing the limiting compression.

T This form was devised by J. F. Barnes, Los Alamos Scientific
Laboratory, c.a. 1970,




COMPARISON WITH BANDSTRUCTURE RESULTS

To assess the quality of the final result, an independent source
for the cold curve is required. The most reliable theoretical method
available is from electronic bandstructure calculations, which are
quantum mechanical solutions that explicitly account for the crystal

structure of the material.

The three materials chosen for comparison were aluminum, copper,
and molybdenum. These materials have available extensive bandstructure
calculations of the cold curve.PsCsd Moreover, a great number of shock
measurements have been made on them over the years, and aluminum and
molybdenum are used as impedence-matching standards for shock
measurements on other materials.l0 Copper and molybdenum
room-temperature lsotherms are used as standards to calibrate the shift
Iin ruby fluorescence as a function of pressure in static experiments

using the diamond anvil cell.ll

For each of these materials and for each T (p) models discussed,
the cold curves were obtained. Only linear fits to the shock data were
used so R is zero. The following table summarizes the parameters used

for the calculations.

b Provided by A. K. McMahan. These are APW calculations for fcc
aluminum using the Hedin-Lundqvist exchange-correlation potential.

€ Provided by R. C. Albers, A. K. McMahan, and J. E. Muller.
These are APW calculations for fcc copper using the Hedin-Lundqvist
exchange—correlation potential.

d provided by Re C. Albers. These are LMTO calculations for bece

molybdenum using the von Barth~Hedin exchange-correlation potential.
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Al Cu Mo

o (g/cm3) 2.698 8.934 10.220
C, (km/s) 5.333 3.910 5.124
S 1.356 1.510 1.233
r; 2.15 1.99 1.57
1.477¢  1.319¢  1.416€
0(py) (K) 420.0 344,5 440.0

412,.4¢ 683.2¢ 452,5¢

€ I'; and 0(py) are provided by the Cowen model.

The results of these calculations are shown In Figs. 1 - 3., The
range of densities shown approximates that discussed above to avoid
divergences. The actual cutoff densities for the calculations are
given In the table below. Graphical information beyond these densities
are extrapolations based upon a simple approximation to Thomas—-Fermi

theory and should not be considered accurate.

Cutoff Densities for the ' Models

p(g/cmd)
AL [ Mo
SESAME 4.3 18.6 17.1
Cowan 4,7 19.3 15.4
pl' = const, 6.9 18.9 21.3

The points marked with crosses in Figs., 1-3 are the band theoretic

results from McMahan, Albers, and Muller.

Three general observations can be extracted from these results:
l. All models for I'(p) give about the same results for pressures

up to approximately half the value of the bulk modulus at the
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initial density. For the materials considered this means

aluminum, 350 kbar, copper, 650 kbar, and molybdenum, 1.3 Mbar.

2. For pressures below those mentioned, the procedures give

fairly good agreement with the band theoretic results.

3. For pressures above those mentioned, the models are

unpredictable and do not yield a reliable cold curve.

Near zero pressure, the band theoretic results have some
uncertainty caused by the sensitivity to the choice of the
exchange—correlation potential. However, at compressions higher than
the zero pressure density this sensitivity becomes less important. The

following observations ignore what happens at zero pressure.

For aluminum and molybdenum, there 1is a systematic trend of
producing pressures that are about 10% too high. The copper results,

when compared with the band theoretic pressures, are about 2% low.

The discrepancy in molybdenum affects the calibration of the ruby
fluorescence pressure gauge. The room~temperature isotherm for
molybdenum used in the calibration was derived from the Hugoniot data
using the pl' = constant model.10 There were slight differences in the
choices of parameters for the calculation but the results of Ref. 10

and this work are essentially the same.

Examination of Fig. 3 of Ref. 11, shows a systematic trend for
molybdenum to have pressures higher than those of the other calibration
materials for the same shift in wavelength. If the room—-temperature
jsotherm had been computed using the band theoretic cold curve, this
deviation would have been corrected. Since the final calibration was
based upon a least squares fit of wavelength shift vs pressure for
copper, molybdenum, silver, and palladium, of which molybdenum
represented about 25% of the data, it is not clear how much the fit
would be changed. However, band theoretic calculations are needed for

silver and palladium. With these cold curves, a complete set of




room—~temperature isotherms could be obtained and the fit recalculated.

This will be the topic of a forthcoming article.
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