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DIMENSIONLESS EQUATION OF STATE FOR CONDENSED MEDIA--
NUMERICAL RESULTS FOR SHOCK HEATING AND FOUR
FLOW DEFLECTION BY AN OBLIQUE STATIONARY SHUCK

by
J. M. Walsh

ABSTRACT

A dimensionless equation-of-state formulation causes the
solutions to a few standard problems in shock hydrodynamics to
be somewhat more general than usual. Calculated results are
given for shock heating and for the important problem of flow
deflection by an oblique shock. The results will be useful on
occasion because they can be applied without "having to resort
to extensive calculations for each new application.

I. INTRODUCTION

It is well known that analytical and even numerical solutions in fluid
dynamics can be generalized if one can utilize a dimensionless equation of state
that leads to material scaling laws.

The present dimensionless formulation (in addition to making a couple of
customary approximations) incorporates the experimental shock-wave velocity ver-
sus shock-particle velocity slope, S, in such a way that the various Hugoniot
curves coincide. Further, for part of the discussion, the weak dependence of
fluid dynamics upon thermal expansion is utilized by assuming that the pertinent
thermodynamic parameter (Griineisen ratio divided by S) is the same for all mate-
rials. Under this assumption, all equation-of-state surfaces coincide.

Then some hydrodynamic results are more general. For example, a universal
curve is obtained for dimensionless shock heating (i.e., heat deposited by com-
bined shock and rarefaction) as a function of dimensionless shock pressure.
Other results are generalized but not universal. The important problem of flow
deflection by a standing shock front has a (numerical) solution that depends




upon a single material property, namely S. A general discussion is still possi-
ble, but S has to be varied as a parameter in the calculations.

The reported results for shock heating and for flow deflection may be use-
ful because they can be scaled to any suitable material without having to exer-
cise a high speed computer for each new application.

II. GOVERNING EQUATIONS
For the shock front, one has the usual jump conditions

P-P =pUU . (1)
(1 - vvg) = U, (2) -
and

E-E, = (P+P )V, -V)/2 , (3)

where E0 and P0 can be taken to be zero.

The continuous flow between shocks can be taken to be isentropic so that
dE = -PdV . (4)

With this assumption one obtains the usual equations that govern the isentropic
continuous flow of a compressible fluid

%%+gax—i-(pU1-)=0 (5)

and



au. ou. . 6
P —L + Ui<__l) = —aP/axi - ¢t > (6)

where

¢’ - (aP/ap)I .

Recall further that a continuous plane wave that propagates into a constant
state (U1’p1’P1) is a simple wave within which the particle velocity is given by

the Riemann integral

P P
U—U1=—f C—gp—=—_P[ AT (7)
1

Py

Here, the second form of the integral is obtained by using c* = (aP/ap)I and

p = 1/V. In either form the integration is to be performed along the isentrope.

III. MATERIAL PROPERTIES
Four properties are needed to characterize a material. These are the ini-
tial density Po> the constants Co and S in the empirical relationship

U_=¢C_ + SU (8)

for shock-wave velocity as a function or shock-particle velocity, and the ther-

modynamic quantity

(aP/aE)V = py (9)




Here, v is Grineisen ratio.

It has long been recognized* that the simple linear relation, Eq. (8), is a
remarkably good analytical fit to the shock-wave data for many materials.

Values of Co and S for a few materials of interest, extracted from Marsh's com-
pendium, are listed in Table I.

Further, the quantity (aP/aE)V is used only to estimate the generally small
offsets between the experimental Hugoniot curve [the consequence of Eq. (8)] and
neighboring isentropes. It is accurate enough for present purposes to assume
that (aP/aE)V is constant; that is,

Y =PY_ . (10)

IV. DIMENSIONLESS VARIABLES

Define:
p = PS/poC; = pressure , (11)
n = S(1 - V/Vo) = compression , (12)
e = SZE/C; = specific internal energy |, (13)
and
u = SU/C, = mass velocity . (14)

*R. G. McQueen and S. P. Marsh, "Equation of State of Nineteen Metallic Elements
from Shock Wave Measurements," Journal of Applied Physics 31, p. 1253 (1960).
See also a recent compendium of shock-wave data "LASL Shock Hugoniot Data,"

S. P. Marsh, University of California Press (1980).
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The governing equations that were listed as Section II can now be rewritten in

terms of these dimensionless variables.

[

S
C
0

= (1 +u)

Equation (8) becomes

Equations (1), (2), and (3) become (dropping P0 and Eo)

p=(1+uu

n=u/(l + u)
and

e = pn/2 .

b

b

Solving Egs. (16) and (17) gives the Hugoniot curve

and the expression for u

u= (1 +p-1)2

Equation (4) becomes

de = pdn

(15)

(16)

(17)

(18)

(19)

(20)

(21)




Equation (7) becomes

p
us=u, - J{ vdpdn (22)
P,

and Eqs. (9) and (10) can be combined to give
(99) =Y, /S =B . (23)

The new variables cause some of the above equations [Egqs. (16)-(22)] to be
universal in the sense that material properties do not appear explicitly.

Others are less general. Equation (23), for example, involves us with the mate-
rial property B = YO/S, and the expression for shock wave velocity, Eq. (15),
lacks a factor S that is needed to make it correspond to the mass velocity,

Eq. (14).

Solutions to flow problems obtained from the universal equations only are
applicable to any material by a simple change in scale factors. Solutions from
property-dependent equations, on the other hand, contain the material properties
as parameters. If the latter results are numerical, in particular, the flow
problem must be calculated for a range of values of the pertinent material
parameters.

V. DIMENSIONLESS EQUATION OF STATE, ISENTROPES, RIEMANN INTEGRALS, AND SHOCK
HEATING
Integrating Eq. (23) and using Egs. (18) and (19) gives the equation of
state |

npy,(n)
p = pyln) + B(; - 2 ) ’ (24)




where

ph(n) = _”Jl——_;
(1 -n)

The differential equation for the family of isentropes is obtained by substi-
tuting Eq. (21) into the derivative of Eq. (24),

2dp = 2dph + B(Zpdn - Phdn - ndph) . (25)

Numerical solutions of Eq. (25), to give the isentropes that intersect the
Hugoniot at p = 0.5, 1.0, 1.5, and 2.0, are plotted as Fig. 1. To calculate the
isentropes a value B = 1.3 was used, corresponding to a typical value of this
material property (see Table I).

Riemann integrals, Eq. (22), were also calculated for the isentropes and
are plotted in Fig. 2 (curves of negative slope). Here, p,su, in Eq. (22) was
taken as the point on the Hugoniot, which is plotted as the curve of positive
slope. Thus, the curves in Fig. 2 correspond to right-going shocks reflected
from free surfaces as left-going rarefactions. The associated specific internal
energies are calculated from Eqs. (18) and (21).

Of frequent interest is the heating caused by combined shock and rarefac-
tion to zero pressure. These results are seen as Fig. 3 where the dimension-
less residual specific internal energy (q = SZE/C;) is plotted versus dimension-
less shock pressure.

The three curves given for q in Fig. 3 are for values g = 1.0, 1.3, and
l.6. Most materials lie within this g range, as do 16 of the 20 materials
listed in Table I. Riemann integrals were also calculated with the varied
values of B but were everywhere affected less than 2% (up to p = 5).

The observed insensitivity to B of the computed results suggests (for the
analysis of shock-hydrodynamic flows involving shocks of a couple megabars or
less, or when accuracy is more important than generality) that an average value
of B, such as B = 1.3, can be used for all materials. For example, a 1-Mbar
shock in 2024 aluminum (p0 = 2.785 g/cm’, Co = 5,328 x 10° cm/s, S = 1.338) has
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TABLE 1
MATER1AL PRUPERTIES
o (g/cm3) C_(km/s) S Y 8 =v./S » CZ(Mbar)
0 o 0 0 0 0
Ant imony 6.7 1,483 1.652 0.60 0.363 0.263
Beryllium 1.851 7.998 1,124 1,16 1.03 1.184
Chromium 7.117 5.173 1.473 1,19 0.8l 1.904
Copper 8.93 3,940 1.489 1,99 1,34 1.386
Gold 19,24 3.056 1.572 2,917 1.89 1.797
Lead 11,35 2.051 1.460 2,77 1.90 0.4717
Magnesium 1.74 4.492 1,263 1.42 1.12 0.351
Molybdenum 10.21 5.124 1,233 1.52 1.23 2.681
Nickel 8.874 4,602 1.437 1.93 1.34 1.879
Niobium 8.586 4,438 1.207 1.47 1.22 1.691
Palladium 11.991 3.948 1.588 2,26 1.42 1.869
Platinum 21.42 3.598 1.544 2,40 1.55 2.773
Silver 10.49 3.229 1.by5 2.38 1.49 1.094
Tantalum 16.654 3.414 1.201 1.60 1.33 1.941
Thorium 11.680 2,133 1,263 1.26 1.00 0,531
Tungsten 19,224 4,029 1.237 1,54 1.25 3.120
Uranium 18,950 2.487 1.56 2.20 1.41 1.172
8rass 8.450 3.726 1.434 2,04 1.42 1.173
2024 Aluminum 2.785 5.328 1.338 2.00 1.50 0.790
304 Stainless Steel 7.896 4,569 1.490 2,17 1.46 1.648

tropes calculated assuming g=1.3.




1.0 Su/Cq

Fig. 2. Dimensionless p versus u curves from the
Hugoniot and isentropes seen in Fig. 1.

Fig. 3. Shock heating by combined shock
and rarefaction to zero pressure
as a function of shock pressure.
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a dimensfonless shock pressure

p == 1.692 .

The associated dimensionless shock heating and free surface velocity (see
Figs. 2 and 3) are q = 0.81 and u = 1.843., The last two values in dimensional
form are

Q = —=2 = 12.87 x 10"° ergs/g

and

cu

=9 _ s
UfS = 7.331 x 10 c¢cm/s .

Had the Table I value of B = 1.5 for aluminum been used for accuracy, Q would

have been 8.8% lower, and Uf would have been only about 0.4% higher.

S
VI. THE SHOCK DEFLECTION PROBLEM

The shock deflection problem arises frequently as part of a more complex
problem, Examples dare the oblique interaction of a shock with a material
interface, or the collision of two material surfaces with a supersonic phase
velocity.

Let U0 (supersonic, horizontally directed) be entry flow velocity to the

stationary shock,and let U_ and UV be the horizontal and vertical components of

h
velocity. Figure 4 illustrates this situation and defines variables used in the

10



Fig. 4. Flow deflection through ¢ as
caused by a stationary shock.
Shock orientation relative to
U_ is given by o,

]
present problem, and Fig. 5 is the associated shock polar diagram. In Fig. 5,

U0 is resolved into its two components normal and tangent to the shock front,

[
"

U. cos 6 (26)

and

[
]

U, sin ® (27)

by any point on the (dashed) semicircle. The inner (solid) curve is the shock

polar and is the locus of points attainable by shocks of various inclinations 6
and shock-particle velocities Up. Now, Eqs. (8) and (26) imply that the equa-

tion for shock polar is

y = -0 . (28)

11




Uh
Fig. 5. Shock polar diagram for given entry-flow velocity Uo'
Further, see Fig. 5, the flow deflection angle ¢ is given by
u. -u
o= (90° - 9) - tan™ (—EU———E) . (29)
t

For the discussion below of shock polars,it is convenient to introduce veloci-

ties in units of UO/S. Thus, the entry-flow velocity U0 becomes just S. Shock-
particle velocity becomes

(SU )
P} >
U

0

12




and the equation for shock-particle velocity, Eq. (28), becomes

SU '
<§—£> =cos 6 - I/M | (28')

o

where M = UO/C0 is the Mach number in the entry flow. The expression for shock
velocity, from Eqs. (8) and (28'), is

SUS
et S Scose ,
0

2 2
‘/Uo - US becomes

o))
>3
o
t
=
1]
]
>
©
=3
3]
wn
wn
-
o
>
(o=
ct
]

Using these last three equations, Eq. (29) for flow deflection becomes

- °o -1 S cos & - cos 6+ 1/M ,
$ = (90 6) - tan ( S Sin o ) . (29')

From Eqs. (16), (17), (18), and (28'), and noting that u in the earlier equa- -
tions is just

)

o

13




we have

p = M* cos” & - M cos @ s (30)
n=1-(-—L1 _ (31)
M cos © ’
and
e=(Mcoso - 1)/2 . (32)

Thus, the shock strength (p, n, or e) is a maximum [M(M-1), (M-1)/M, or
(M-1)%/2]1 at © = 0 and decreases with increasing © to zero at © = cos '(1/M) at
which minimum value of 6 the shock is just a sound wave.

The family of shock polars, for various values of the entry-flow Mach num-
ber M, is plotted as Fig. 6. The polar for M = » is the semicircle

SU
<p>-cose ,
(0]

see Eq. (28'), with diameter extending from (S-1,0.) to (S,0.). A polar for any

[

given M = M1 is obtained by offsetting (toward S,0.) each point on the semicir-
cle by an amount 1/M1.

The maximum possible flow deflection ¢, for given M and S, is the point at
which the polar is tangent to the straight line from the origin. Three loci of
such critical points, for selected (S = 1.2, S = 1.4, and S = 1.6) values of S,
are plotted on Fig. 6 as dashed lines. [These critical points were obtained
numerically by maximizing the expression for ¢, Eq. (29').]

Because the shock is oblique the exit flow may be subsonic, sonic, or
supersonic. At © = 0, the shock is normal so the exit flow is clearly subsonic.

14
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0,0 Sel 3 Uo o

Shock polor lor o porticulor enlry ltow Moch
aumber M*u,/Co. The shoded orea is depicled
below for several volues of M.

Yo

Fig. 6. Eight shock polars for varied values of the entry-flow Mach
number. All velocities are in units U_/S. The three dashed
curves (for S = 1.2, 1.4, and 1.6) are loci of the maximum-
deflection critical angle ¢pax. The points plotted as x's and
labelled C,.,, C,,,, and C,,¢ (for S = 1.2, 1.4, and 1.6) are
the points of sonic exit flow. Values of ¢ are written beside
critical points and sonic points.

At the other end [e - arc cos (1/M)] of the polar,the flow remains supersonic

across the (zero strength) shock. In between there is a point of exactly sonic
flow. Here, then (see Fig. 5)

15




or, equivalently

a’ = Mz[(s sin 6)2 + <S cos 6 - (cos e - %))2 > (33)

where the dimensionless sound speed a is given by

a = . (34)

This last expression, using C* = (ap/ap)I, p = 1/V, and Egs. (12), (21), and
(25), becomes

al = [D_*"l_'_%ﬂ_z_] (s -n)* . (35)
(1 -n)

Equating the right sides of Eqs. (33) and (35), and using Eq. (31) to eliminate
n, gives one an equation for © at the sonic point as a function of M and the two
material properties B and S. Once this © is known, the other quantities associ-
ated with the sonic point are easily determined from Eqs. (28'), (29'), and
(30)-(32). Sonic points have been calculated using 8 = 1.5 and three values (S
= 1.2, S=1.4, and S = 1.6) of the parameter S. These sonic points are plotted
as x's on the polar diagrams in Fig. 6 and are labelled Cl , C , and Cl

’
2 led

LX 3
respectively. It is seen there that the sonic points lie to the right of the

correspondingly critical angle in each case. Thus, for given flow deflection ¢,
the strong shock solution is characterized by subsonic exit flow in each case,
while the weak shock solution may have either subsonic or supersonic exit flow.

16




VII. PROBLEM EXAMPLES INVOLVING SHOCK DEFLECTION

As a simple example, consider two copper plates (po = 8,93 g/cms, Co
= 3,94 x 10° cm/s, S = 1.489, see Table I) that impact at a 20° included angle,
each with velocity 3 x 105 cm/s normal to its free surface. For this situation,
the collapse phase velocity (units cgs) is 3 x 105/sin 10° = 1,727 x 106, the
incoming stream velocity is 3 x 105/tan 10° = 1,701 x 106, and the entry-flow

Mach number 1is

. 6
M=y e, = 2O x10 Ly

0 3.94 x 10°

Equation (29') for these values becomes

1.489 cos 6 - cos © + o.2315>

10 =907 -8 - tan ( 1,489 sin ©

with numerical solution e = 59.5°, Equations (30)-(32) then give p = 2.615, n
= 0.544, and e = 0,711, The shock pressure

P=-20%p = 2.43 Mbar

is, as expected, somewhat higher than the 2.25 Mbar for head-on impact of
the same plates. From Fig. 6 it is apparent (using & = 59,5° and M = 4, and

comparing with the plotted sonic points) that the flow behind the present shocks
is supersonic in the steady state of coordinate system.

The more general impact problem (asymmetric, and/or different materials)
also involves the problem of flow deflection by shock and can be treated in
much the same manner if an ideal slipstream is assumed to exist across the
interface. Here the incoming stream velocities are, in general, different.
Boundary conditions at the interface are pressure equality and common flow

17




direction., Thus, if ¢0 is the angle between the colliding surfaces, and ¢1(P)
and ¢2(P) are deflections of tne two streams, then

0,(P) = o5 - 0,(P) .

The solution of this equation usually requires cdlculating ¢1(P) and ¢2(P) for
several values of P by the method given in the preceding paragraph.

If % is increasing (consider a flat plate impacting a sphere), one obtains
a shock pressure that increases as the impact progresses until a critical % is
reached above which angle shock deflection of the impinging streams (totaling
¢0) is no longer possible. Thereafter, the impact process is more complicated
with jetting occurring into the cavity between the colliding surfaces.

As another example, consider a shock of given (dimensionless) pressure p
that arrives at a free surface or at an interface with a material of lower shock
impedance. For interaction angle A (see Fig. 7) that is sufficiently small, one
has the well-known situation in which the shock is completely unperturbed until
it arrives at the surface (or interface) and the pressure is relieved by a
Prandtl-Meyer expansion. Our interest here is in determining the critical angle
Ac’ separating this simple situation from the one that occurs at larger A, where
the shock is attenuated by rarefaction from the free surface as it approaches

the latter. Because p is fixed, Eq. (30) implies an M versus 6 locus
p=Mcos o (Mcos 6-1)

that could be plotted in the shock polar plane (Fig. 6) where its position,
relative to the sonic points, is then evident. Doing this for a shock strength
p = 2 shows intersection with the sonic locus (for S = 1.4, g = 1.3) at o = 36°,
M = 2.5. Thus, noting that A = 90° - 6, the critical value AC for p = 2 is seen
to be 54°,

Figure 7 is a plot of AC for a wide range of p. The solid line is for $S
= 1.4, and the dashed curves are for S = 1.2 and S = 1.6. In all cases, B was
held constant at 1.5, Nearly all experiments with explosives are in the range p
= 0.1 to p = 10 where AC = 60° * 10°,

18
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Fig. 7. Region of Prandtl-Meyer reflection at small A
and shock attenuation region at large A.

Two other problems will be mentioned. The problem of shock reflection
(either regular or Mach reflection) in condensed materials involves the consid-
eration of doubly shocked states. Shock polars for the deflection of a previ-
ously shocked (arbitrary shock strength) state could obviously be constructed,
but we have not considered that problem here.

Finally, the problem of a detonation wave that sweeps along a metal HE
interface (variable angle of interaction) is of some interest. In this case the
pertinent states ahead (the undetonated HE, the Chapman-Jouguet state of the HE,
and the initial state of the metal) are few and fixed, and there is hope of an
orderly and quantitative description of the phenomena involved. Considerable
progress in this direction has, indeed, been made by Sternberg and Piacesi* and
more recently by Melvin Thieme in unpublished calculations at Los Alamos. In
our next discussion, we will consider this problem further and give calculated

results for some HE-metal interactions of current interest.

*H. M. Sternberg and D. Piacesi, "Interaction of Oblique Detonation Waves with
Iron," Physics of Fluids 9, No. 7, 1307-1351 (July 1966).

19




Printed in the United States of America
Available from
National Technical Inf fon Service
US Department of Commerce
5285 Port Royat Road

Springfield, VA 22161

Microfiche (AO1)

NTIS NTIS NTIS NTIS
Page Range Price Code Page Range Price Code Page Range Price Code Page Range Price Code

001-025 A02 151-178 A08 301-325 Al4 451475 A20
026-050 A03 176-200 A9 326-350 AlS 476-500 A2l
051-075 A04 201-225 Al0 351-378 Al6 501-525 A22
076100 A0S 226-250 All 376-400 A17 526-550 A23
101-125 A06 251-275 Al2 401-425 Al8 551-575 A24
126-150 A07 276-300 Al3 426-450 Al9 576-600 A2S
601-up® A99

*Contact NTIS for a price quote.



I el i g LI e acaint el s,y

e p— X e e ?

e geqete¥ Y3 ARl ety
=c f"*;\vf;“ For

He & & L

ke yis

¥, Lo
Yy :
ISP T80 .».“x..-.,* S

. .__; ’_.Q'E :u}:‘ .‘!’.A ;‘ ‘. \ n >

0S Alamos




