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DIMENSIONLESS EQUATION OF STATE FOR CONDENSED MEDIA--

NUMERICAL RESULTS FOR SHOCKHEATINGANDFOR

FLOW DEFLECTION BY AN OBLIQUE STATIONARY SHLICK

by

J. M. Walsh

ABSTRACT

A dimensionless equation-of-state formulation causes the
solutions to a few standard problems in shock hydrodynamics to
be somewhat more general than usual. Calculated results are
given for shock heating and for the important problem of flow
deflection by an oblique shock. The results will be useful on
occasion because they can be applied without ”having to resort
to extensive calculations for each new application.

I. INTRODUCTION

It is well known that analytical and even numerica-

dynamics can be generalized if one can utilize a dimens

that leads to material scaling laws.

The present dimensionless formulation (in addition

customary approximations) incorporates the experimental

solutions in fluid

onless equation of state

to making a couple of

shock-wave velocity ver-

sus shock-particle velocity slope, S, in such a way that the various Hugoniot

curves coincide. Further, for part of the discussion, the we~k dependence of

fluid dynamics upon thermal expansion is utilized by assuming that the pertinent

thermodynamic parameter (Grtineisen ratio divided by S) is the same for all mate-

rials. Under this assumption, all equation-of-state surfaces coincide.

Then some hydrodynamic results are more general. For example, a universal

curve is obtained for dimensionless shock heating (i.e., heat deposited by com-

bined shock and rarefaction) as a function of dimensionless shock pressure.

Other results are generalized but not universal. The important problem of flow

deflection by a standing shock front has a (numerical) solution that depends



upon a single material property, namely S. A general discussion is still possi-

ble, but S has to be varied as a parameter in the calculations.

The reported results for shock heating and for flow deflection may be use-

ful because they can be scaled to any suitable material without having to exer-

cise

11.

and

a high speed computer for each new application.

GOVERNING EQUATIONS

For the shock front, one has the usual jump conditions

P - P. =p u u
Osp’

(1 - v/vo)=up/us ,

E - E. = (P + PO)(V - V)/2 ,
0

where E. and P. can be taken to be zero.

The continuous flow between shocks can be taken to be isentropic so that

dE = -PdV .

With this assumpt

(1)

(2) “

(3)

(4)

on one obtains the usua” equations that govern the isentropic

continuous flow of a compressible fluid

a& +HPui) =0
i

and
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dUi

()

aUi
P~ +U. —’I axi

-aP/ax = -Cz ~ ,i i

(6)

where

C2 = (aP/ap)J .

Recall further that a continuous plane wave that propagates into a constant

state (Ul,pl,Pl) is a simple wave within which the particle velocity is given by

the Riemann integral

(7)

Here, the second form of the integral is obtained by using C’ = (aP/aP), and

p = l/v. In either form the integration is to be performed along the isentrope.

III. MATERIAL PROPERTIES

Four properties are needed to characterize a material. These are the ini-

tial density po, the constants Co and S in the empirical relationship

Us=co+su
P

(8)

for shock-wave velocity as a function or shock-particle velocity, and the ther-

modynamic quantity

(aP/aE)v z Py . (9)
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Here, y is Griineisen ratio.

It has long been recognized* that the simple linear relation, Eq. (8), is a

remarkably good analytical fit to the shock-wave data for many materials.

Values of Co and S for a few materials of interest, extracted from Marsh’s com-

pendium, are listed in Table I.

Further, the quantity (aP/aE)v is used only to estimate the generally small

offsets between the experimental Hugoniot curve [the consequence of Eq. (8)] and

neighboring isentropes. It is accurate enough for present purposes to assume

that (aP/aE)v is constant; that is,

PY’PY
00”

Iv. DIMENSIONLESS VARIABLES

Define:

p = PS/p C’ = pressure ,00

q = S(I- V/Vo) = compression ,

e = S2E/C~ = specific internal energy ,

and

u = su/co= mass velocity .

(lo)

(11)

(12)

(13)

(14)

*R
.0 McQueen and S. P. Marsh, “Equation of State of Nineteen Metallic Elements

from Shock Wave Measurements,” Journal of Applied Physics 31, p. 1253 (1960).
See also a recent compendium of shock-wave data “LASL Shock Hugoniot Data,”
S. P. Marsh, University of California Press (1980).
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The governing equations that were listed as Section II can now be rewritten in

terms of these dimensionless variables. Equation (8) becomes

us
—=(l+IJ) .co (15)

Equations (l), (2), and (3) become (dropping P. and Eo)

p=(l+u)u ,

n=u/(l+u),

and

e = pq/2 .

Solving Eqs. (16) and (17) gives the Hugoniot curve

p.

(l:ll)z ‘

and the expression for u

u = (J=F - 1)/2 ●

Equation (4) becomes

de = pdq .

(16)

(17)

(18)

(19)

(20)

(21)
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Equation (7) becomes

JP
u=ul- m,

P,

and Eqs. (9) and (10) can be combined to give

()~ =yJs33 .

n

(22)

(23)

The new variables cause some of the above equations [Eqs. (16)-(22)] to be

universal in the sense that material properties do not appear explicitly.

Others are less general. Equation (23), for example, involves us with the mate-

rial property f3= ye/S, and the expression for shock wave velocity, Eq. (15),

lacks a factor S that is needed to make it correspond to the mass velocity,

Eq. (14).

Solutions to flow problems obtained from the universal equations only are

applicable to any material by a simple change in scale factors. Solutions from

property-dependent

as parameters. If

problem must be ca”

parameters.

v. DIMENSIONLESS

HEATING

equations, on the other hand, contain the material properties

the latter results are numerical, in particular, the flow

culated for a range of values of the pertinent material

EQUATION OF STATE, ISENTROPES, RIEMANN INTEGRALS, AND SHOCK

Integrating Eq. (23) and using Eqs. (18) and (19) gives the equation of

state

(24)

.
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where

Ph(n)= ~ .
(l-q)’

The differential equatiorl for the family of isentropes is obtained by substi-

tuting Eq. (21) into the

2dp = 2dph + 6(2pdn

derivative of Eq. (24),

- phdq - ndph) Q (25)

Numerical solutions of Eq. (25), to give the isentropes that intersect the

Hugoniot at p = 0.5, 1.0, 1.5, and 2.0, are plotted as Fig. 1. To calculate the

isentropes a value B = 1.3 was used, corresponding to a typical value of this

material property (see Table I).

Riemann integrals, Eq. (22), were also calculated for the isentropes and

are plotted in Fig. 2 (curves of negative slope). Here, pl,ul in Eq. (22) was

taken as the point on the Hugoniot, which is plotted as the curve of positive

slope. Thus, the curves in Fig. 2 correspond to right-going shocks reflected

from free surfaces as left-going rarefactions. The associated specific internal

energies are calculated from Eqs. (18) and (21).

Of frequent interest is the heating caused by combined shock and rarefac-

tion to zero pressure. These results are seen as Fig. 3 where the dimension-

less residual specific internal energy (q = S2E/C~) is plotted versus dimension-

less shock pressure.

The three curves given for q in Fig. 3 are for values B = 1.0, 1.3, and

1.6. Most materials lie within this B range, as do 16 of the 20 materials

listed in Table I. Riemann integrals were also calculated with the varied

values of B but were everywhere affected less than 2% (up to p = 5).

The observed insensitivity to B of the computed results suggests (for the

analysis of shock-hydrodynamic flows involving shocks of a couple megabars or

less, or when accuracy is more important than generality) that an average value

of B, such as B = 1.3, can be used for all materials. For example, a l-Mbar

shock in 2024 aluminum (p. = 2.785 g/cm3, Co = 5.328 x 10’ cm/s, S = 1.338) has
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Antimony

Beryllium

Chromium

Copper

Gold

Lead

Magnesium

Molybdenum

Nickel

Niobium

Palladium

Platinum

Silver

Tantal urn

Thorium

Tungsten

Uranium

Brass

2024 Aluminum

304 Stainless Steel

Fig. 1. Hugoniot and isentropes. Isen-
tropes calculated assuming B=I.3.

---
IABLE 1

MATERIAL PROPERTIES

Po(9/cl113)

6.7

1.B51

7.117

8.93

19.24

11.35

1.74

10.21

8.874

8.586

11.991

21.42

10.49

16. b54

11.680

lY.224

18.950

8.450

2.785

7. L19b

Co(km/s)

1.983

7.998

5.173

3.940

3.056

2.051

4.492

5.124

4. bU2

4.438

3, Y48

3. 5Y8

3.229

3.414

2,133

4.029

2.487

3.726

5.328

4.569

s
Y. B = Yols

——
1,652 0.60 0.363

1.124 1.16 1.03

1.473 1.19 0.81

1048% 10YY 1,34

1,572 2.97 1.89

1.460 2.77 1.%

1.2b3 1.42 1.12

1.233 1.52 1.23

1.437 1.93 1.34

1.207 1.47 1.22

1.588 2.26 1.42

1.!144 2.4U 1.55

1.595 z.3Li 1.49

1.201 l.bil 1..s3

1.263 1.2b 1.00

1.237 1.54 1.25

1.56 2.20 1.41

1.4’34 2.U4 1.42

1.338 2.00 1.W

1.490 2.17 1.46

poC~(Mbar)

0.263

1.184

1.904

1.386

1.797

0.471

0.351

2.b81

1.879

1.691

1.&!b9

2.773

1.094

1.941

0.!)31

3012U

1.172

1.173

0. 79U

1.648

.



Fig. 2. Dimensionless p versus u curves from the
Hugoniot and isentropes seen in Fig. 1.

I

)

Fig. 3. Shock heating by combined shock
and rarefaction to zero pressure
as a function of shock pressure.



a dimens”

p.

onless shock pressure

Ps
—= 1.692 .

.2
poco

The associated dimensionless shock heating and free surface velocity (see

Figs. 2 and 3) are q = 0.81 and u = 1.843. The last two values in dimensional

form are

qc;
Q=—. 12.87 x 1010 ergs/g

s’

and

Cou
‘fs=T=

7.331 x 105 cm/s .

Had the Table I value of 6 = 1.5 for aluminum been used for accuracy, Q would

have been 8.8% lower, and Ufs would have been only about 0.4% higher.

VI. THE SHOCK DEFLECTION PROBLEM

The shock deflection problem arises frequently as part of a more complex

problem. Examples dre the oblique interaction of a shock with a material

interface, or the collision of two material surfaces with a supersonic phase

velocity.

Let U. (supersonic, horizontally directed) be entry flow velocity to the

stationary shock,and let Uh and Uv be the horizontal and vertical components of

velocity. Figure 4 illustrates this situation and defines variables used in the

10
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u~

/
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Fig. 4. Flow deflection through @ as
caused by a stationary shock.
Shock orientation relative to
U. is given by e.

present problem, and Fig. 5 is the associated shock polar diagram. In Fig. 5,

U. is resolved into its two components normal and tangent to the shock front,

us = U. cos e

and

(26)

Ut = U. sin e (27)

by any point on the (dashed) semicircle. The inner (solid) curve is the shock

polar and is the locus of points attainable by shocks of various inclinations e

and shock-particle velocities U . Now, Eqs. (8) and (26) imply that the equa-
P

tion for shock polar is

U. cos e - Co
up = s ●

(28)
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/--

/

/

/

/

/

U()
Uh

Fig. 5. Shock polar diagram for given entry-flow velocity Uo.

Further, see Fig. 5, the flow deflection angle $ is given by

()us-u$=(90 °-g) -tan-’ u p .
t

(29)

For the discussion below of shock polars, it is convenient to introduce veloci-

ties in units of Uo/S. Thus, the entry-flow velocity U. becomes just S. Shock-

particle velocity becomes

()>3
0

12
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and the equation for shock-particle velocity, Eq. (28), becomes

()~.coso+,
o

(28’)

where M = Llo/Co is the Mach number in the entry flow. The expression for shock

velocity, from Eqs. (8) and (28’), is

()Sus— = s Cos e ,U.

and the expression Ut = ~ becomes

()
Sut
—= Ssin O.U.

Using these last three equations, Eq. (29) for flow deflection becomes

( )@ = (9~0- (3)- tan-’ s Cos ‘S-S~~see+ l/M .

From Eqs. (16), (17), (18), and (28’), and noting that

tions is just

(29’)

u in the earlier equa- s

()U=MSU

i+
9

0



we have

p= M2cos2e-Mcose ,

()

1~=1-
Mcose ‘

and

e = (M cos e - 1)2/2 .

(30)

(31)

(32)

Thus, the shock strength (p, n, or e) is a maximum [M(M-1), (M-1)/M, or

(M-1)2/2] ate = O and decreases with increasing to zero at e = COS-’(l/M) at

which minimum value of e the shock is just a sound wave.

The family of shock polars, for various values of the entry-flow Mach num-

ber M, is plotted as Fig. 6. The polar for M = ~ is the semicircle

see Eq. (28’), with diameter extending from (S-1,0.) to (S,0.). A polar for any

given M = M is obtained by offsetting (toward S,0.) each point on the semicir-1
cle by an amount l/M1.

The maximum possible flow deflection O, for given M and S, is the point

which the polar is tangent to the straight line from the origin. Three loci

such critical points, for selected (S = 1.2, S = 1.4, and S = 1.6) values of

are plotted on Fig. 6 as dashed lines. [These critical points W[

numerically by maximizing the expression for $, Eq. (29’).]

Because the shock is oblique the exit flow may be subsonic,

supersonic. At 9 = O, the shock is normal so the exit flow is c“

re obtained

at

of

s,

sonic, or

early subsonic.
●

14



s“.
T

Shock P.l. r for . Lwrtic.lar entry flow M.ch

number M=.OKO. Thesfmdedarea is deplc!ed

below for severe! value. of M.

s>

Uo

0.6

0.5

0.4

0.3

0.2

0-l

,0
;

Fig. 6. Eight shock polars for varied values of the entry-flow Mach
number. All velocities are in units U /S. The three dashed
curves (for S = 1.2, 1.4, and 1.6) are”loci of the maximum-
deflection critical angle $max. The points plotted as x’s and
labelled Cl.,, C,.G, and C,., (for S = 1.2, 1.4, and 1.6) are
the points of sonic exit flow. Values of o are written beside
critical points and sonic points.

At the other end [e - arc cos (l/M)] of the polar,the flow remains supersonic

across the (zero strength) shock. In between there is a point of exactly sonic

flow. Here, then (see Fig. 5)

()C2=U;+US-U2
P

15



or, equivalently

where the dimensionless sound speed a is given by

2 _ S2C2
a

c; “

This last expression, using C2 = (ap/ap)J, p = I/V, and Eqs. (12), (21), and

(25), becomes

(s-rl)2 .

(33)

(34)

(35)

Equating the right sides of Eqs. (33) and (35), and using Eq. (31) to eliminate

~, 9ives one an equation for e at the sonic point as a function of M and the two

material properties 6 and S. Once this e is known, the other quantities associ-

ated with the sonic point are easily determined from Eqs. (28’), (29’), and

(30)-(32). Sonic points have been calculated using B = 1.5 and three values (S

= 1.2, S = 1.4, and S = 1.6) of the parameter S. These sonic points are plotted

as x’s on the polar diagrams in Fig. 6 and are labelled C102, C and C ,
1.4’ 106

respectively. It is seen there that the sonic points lie to the right of the

correspondingly critical angle in each case. Thus, for given flow deflection 0,

the strong shock solution is characterized by subsonic exit flow in each case,

while the weak shock solution may have either subsonic or supersonic exit flow.

.

.
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VII. PROBLEMEXAMPLESINVOLVING SHOCK DEFLECTION

As a simple example, consider two copper plates (p. = 8.93 g/cm3, Co

= 3.94 x 105 cm/s, S = 1.489, see Table I) that impact at a 20° included angle,

each with velocity 3 x 10s cm/s normal to its free surface. For this situation,

the collapse phase velocity (units cgs) is 3 x 10’/sin 10° = 1.727 x 106, the

incoming stream velocity is 3 x 10s/tan 10° = 1.701 x 106, and the entry-flow

Mach number is

M = Uo/Co = 1“701 x l!’ = 4.32 .
3.94 x 10

Equation (29’) for these values becomes

10 = 90° - e - tan-’
(
1.489 cos e - cos e + 0.2315

1.489 sin e )

with numerics solution e = 59.5°. Equations (30)-(32) then give p = 2.615, q

= 0.544, and e = 0.711. The shock pressure

pot;
p._

s p = 2.43 Mbar

is, as expected, somewhat higher than the 2.25 Mbar for head-on impact of

the same plates. From Fig. 6 it is apparent (using (3= 59.5° and M ~ 4, and

comparing with the plotted sonic points) that the flow behind the present shocks

is supersonic in the steady state of coordinate system.

The more general impact problem (asymmetric, and/or different materials)

also involves the problem of flow deflection by shock and can be treated in

much the same manner if an ideal slipstream is assumed to exist across the

interface. Here the incoming stream velocities are, in general, different.

Boundary conditions at the interface are pressure equality and common flow

17



direction. Thus, if 40 is the angle between the colliding surfaces, and @l(p)

and $2(P) are deflections of the two streams, then

+,(P) = +0 - $2(P) .

The solution of this equation usually requires calculating $l(P) and $,(P) for

several

If

a shock

reached

values of P by the method given in the preceding paragraph.

@o is increasing (consider a flat plate impacting a sphere), one obtains

pressure that increases as the impact progresses until a critical $0 is

above which angle shock deflection of the impinging streams (totaling

$.) is no longer possible. Thereafter, theimpact process is more complicated

with jetting occurring into the cavity between the colliding surfaces.

As another example, consider a shock of given (dimensionless) pressure p

that arrives at a free surface or at an interface with a material of lower shock

impedance. For interaction angle A (see Fig. 7) that is sufficiently small, one

has the well-known situation in which the shock is completely unperturbed until

it arrives at the surface (or interface) and the pressure is relieved by a

Prandtl-Meyer expansion. Our interest here is in determining the critical angle

Ac , separating this simple situation from the one that occurs at larger A, where

the shock is attenuated by rarefaction from the free surface as it approaches

the latter. Because p is fixed, Eq. (30) implies an M versus f3locus

p.

that COU”

relative

Mcose(Mcos e-1)

d be plotted in the shock polar plane (Fig. 6) where its position,

to the sonic points, is then evident. Doing this for a shock strength

p = 2 shows intersection with the sonic locus (for S = 1.4, B = 1.3) at e = 36°,

M = 2.5. Thus, noting that A = !lO”- e, the critical value Ac for p = 2 is seen

to be 54°.

Figure 7 is a plot of Ac for a wide range of p. The solid line is for S

= 1.4, and the dashed curves are

held constant at 1.5. Nearly all

= 0.1 to p = 10 where Ac = 60° t

for S = 1.2 and S = 1.6. In all cases, B was

experiments with explosives are in the range p

10°.
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\
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x~:’=’=’
“,/

20=1 t I I
0.001 0.010 0.100~ 1.000 10.00

Fig. 7. Region of Prandtl-Meyer reflection at small A
and shock attenuation region at large A.

Two other problems will be mentioned. The problem of shock reflection

(either regular or Mach reflection) in condensed materials involves the consid-

eration of doubly shocked states. Shock polars for the deflection of a previ-

ously shocked (arbitrary shock strength) state could obviously be constructed,

but we have not considered that problem here.

Finally, the problem of a detonation wave that sweeps along a metal HE

interface (variable angle of interaction) is of some interest. In this case the

pertinent states ahead (the undetonated HE, the Chapman-Jouguet state of the HE,

and the initial state of the metal) are few and fixed, and there is hope of an

orderly and quantitative description of the phenomena involved. Considerable

progress in this direction has, indeed, been made by Sternberg and Piacesi* and

more recently by Melvin Thieme in unpublished calculations at Los Alamos. In

our next discussion, we will consider this problem further and give calculated

results for some HE-metal interactions of current interest.

~M. Sternberg and D. Piacesi, “Interaction of Oblique Detonation Waves with
Iron,” Physics of Fluids ~, No. 7, 1307-1351 (JJly 1966).
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