

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-740

and a late Delomators

THE PARTY OF THE O

LA-9443-MS

S Los Alamos National Laboratory Los Alamos, New Mexico 87545

An Affirmative Action/Equal Opportunity Employer

5

٤

r

and a start of the start of t

and the second secon

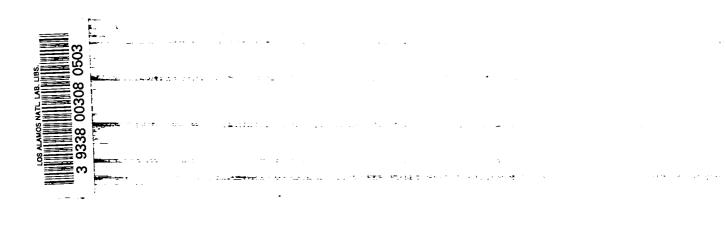
.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

.

LA-9443-MS


UC-45 Issued: October 1982

All-Secondary Explosive Flying-Plate Detonators

۲

Ł

Robert H. Dinegar

LOS ALAMOS Los Alamos National Laboratory Los Alamos, New Mexico 87545

ALL-SECONDARY EXPLOSIVE FLYING-PLATE DETONATORS

by

Robert H. Dinegar

ABSTRACT

PETN and HMX explosives can be ignited by a hot wire. When deflagrated under confinement, they generate gas pressures sufficient to rupture thin aluminum disks. These flying plates reach a velocity high enough to initiate secondary explosives upon impact. The mass and size of the PETN or HMX donor charge can vary considerably, and the igniter will function if the explosive is highly compacted. Short lengths of PETN, HMX, and HNS can be used as acceptor explosives and be initiated to detonation by a flying plate over a wide range of pressing densities. Flyer barrels between 3.5 and 7.0 mm long and with diameters of 2.5 and 3.8 mm have proved satisfactory. Additional tests strongly indicate that an acceptor-charge diameter that is smaller than that of the flying plate is an important condition.

I. INTRODUCTION

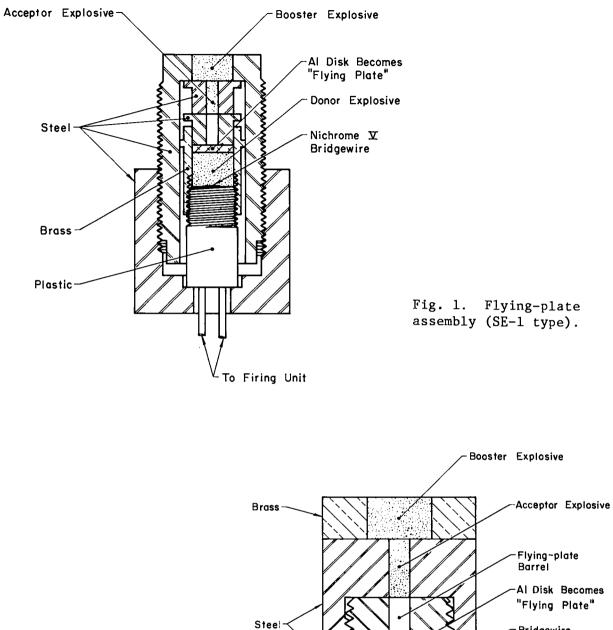
This report centers on experiments utilizing secondary explosives in flyingplate detonators. PETN and HMX were the donor (flying-plate driver) charges. PETN, HMX, HNS, PYX, and TATB were tried as acceptor charges. The mechanical assemblies were of two types, the relatively large SE-1 and the much smaller ER-322.

The SE-1 detonator is shown in Fig. 1. The housing walls are 1.2-mm-thick brass. The bridgewire is Nichrome V (80% nickel and 20% chromium). It is 0.05 mm in diameter and soldered between electrodes that are 1 mm apart in an asbestosfilled diallyphthalate plastic head. The electrical resistance of the assembly is 0.6 Ω . The explosives pressing is loaded into the brass-walled cavity over the bridgewire. The aluminum disk, which is sheared by the gas pressure, is 6061-T6 aluminum material, 0.65 mm thick, 7.6 mm in diameter, and fits over the face of the donor explosive charge. The flyer barrel is 2.5 mm in diameter and 6.4 mm long. The acceptor-charge holder generally measures 2.5 mm in diameter and 6.4 mm in length. The confining material is 303 stainless steel.

The ER-322 detonator is shown in Fig. 2. The bridgewire material is Tophet C (51% nickel, 15% chromium, 24% iron), 0.05 mm in diameter, and resistance-welded between Fe/Ni alloy electrodes that are 2.4 mm apart and embedded in a compressed-glass header. The resistance was measured as 0.9 Ω . The explosive is loaded on top of the bridgewire in a Lexan charge holder 4.4 mm in diameter and 4.0 mm long. The 6061-T6 aluminum flying-plate thickness was varied between 0.25 mm and 1.00 mm with a diameter of 9.6 mm. It was glued onto the charge holder/header assembly. The flyer barrel had a diameter of 2.5 mm and a length of 7.0 mm. The acceptor-charge holder measures 2.5 mm in diameter and is 7.0 mm long. The confining metal is 303 stainless steel.

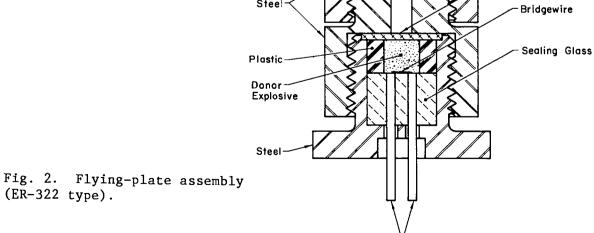
The specific surface (S_0^P) of the explosives differed. The S_0^P value of the PETN* was varied by changing the rate of mixing water with PETN/acetone solutions. The HMX samples** were the beta (β) polymorph material, wet-ground to the desired fineness by 2.5-cm-diam porcelain balls. The small-particlesize (large specific surface) HNS (labelled HNS-1) and the TATB used came from the Pantex Plant of the Silas Mason Co., Inc.⁺ The PYX material was synthesized at Los Alamos.⁺⁺

II. SE-1 FLYING-PLATE SYSTEMS


The successful all-PETN systems consisted of 1.6-g/cm³ density donor charges between 2.5 and 7.0 mm long. The acceptor-charge densities

*PETN = pentaerythritol tetranitrate $(C_5H_8N_4O_{12})$ Trojan Powder Company, 17 North 7th, Allentown, PA 18101.

**HMX = 1,3,5,7-tetranitro-1,3,5,7-tetrazacylooctane (C₄H₈N₈O₈) Holston Defense Corporation, P. O. Box 749, Kingsport, TN 37662.


⁺HNS = 2,2', 4,4', 6,6'-hexanitrostilbene ($C_{14}H_{6}N_{6}O_{6}$) TATB = 2,4,6-trinitro-1,3,5-benzenetriamine ($C_{6}H_{6}N_{6}O_{6}$) Mason and Hanger, Silas Mason Co., Inc., Pantex Plant, P. O. Box 30020, Amarillo, TX 79177.

"PYX = 2,6-bis(picrylamino)-3,5-dinitropyridine (C₁₇H₇N₁₁O₁₆) Michael D. Coburn and Jannie L. Singleton, "Picrylamino-substituted Heterocycles. V. Pyridines (1,2)," J. Heterocycl. Chem. <u>9</u>, 1039 (1972).

٤

ł

varied from 0.8 to 1.2 g/cm³. Their dimensions were 2.1 and 2.5 mm in diameter and 6.4 mm long. The S_o^P of the PETN samples used for donor charges ranged from 3000 to 19000 cm²/g. It ranged from 3000 to 8400 cm²/g in the acceptor.

The successful all-HMX systems consisted of 1.4- and 1.6-g/cm³ donor charges between 2.5 and 7.0 mm long. The acceptor-charge densities varied from 0.8 to 1.4 g/cm³. The charge diameters were 2.5 and 4.1 mm, and the charge lengths were 6.4 mm. The HMX had an S_o^P of 8300 cm²/g.

Both the PETN and the HMX systems used a booster pellet (diameter = 7.6 mm, length = 11.4 mm) of high-density PETN or plastic-bonded RDX (PBX 9407) and a 2024 Dural witness plate. Tables I and II list the combinations that function satisfactorily.

III. ER-322 FLYING-PLATE SYSTEMS

The donor charge of PETN used material with an S_o^P of 3650 cm²/g loaded to a density of 1.6 g/cm³. The charge mass was 100 mg. Three values of the PETN (S_o^P = 3650 cm²/g) acceptor-charge density were investigated--1.0, 1.2, and 1.4 g/cm³. Aluminum (6061-T6) flying plates of thickness 0.5 or 1.0 mm were used. Both flyers initiated the acceptor charges to detonation. The volume of the dent depth in the 19-mm-thick 2024-aluminum witness block appears to become larger as the acceptor-charge density is increased. Assemblies with high-density (1.6-g/cm³) PBX 9407 booster pellets attached to the downstream face of the acceptor charge dented 19-mm-thick 2024-aluminum witness blocks. The booster explosive was confined in a brass ring. Table III lists the combinations that functioned satisfactorily.

HMX explosive is considerably more heat stable than PETN. It has, therefore, potentially a wider range of application in hot-wire detonators. ER-322 flying-plate systems using HMX as the donor explosive were examined in some detail. The donor material had an S_0^P value of 8300 cm²/g and a loading density of 1.6 g/cm³. The dimensions of the acceptor-charge holder were the same as in the PETN experiments. The aluminum flying plates were 0.25, 0.50, 0.75, and 1.00 mm thick. In addition, a flyer design called "Top Hat" was included and found to be quite effective. In this design, 0.2 mm of the overall 1.0-mm flyer fits snugly down inside the flyer barrel forming the "Top Hat."

TABLE I

SE-1 FLYING-PLATE INITIATION OF PETN

Bridgewire Nichrome V Diameter = 0.05 mm Length = 1 mm

1

٩

2

ł

Flying Plate 6061-T6 aluminum 0.65 mm thick Barrel Diameter = 2.5 mm Barrel Length = 6.4 mm Booster Explosives PETN or PBX 9407 Density = 1.6 g/cm³

DONOR			ACCEPTOR			
s_o^P (cm^2/g)	Mass (mg) and Density (g/cm ³)	Diameter and Length (mm)	$\frac{s_o^P}{(cm^2/g)}$	Mass (mg) and Density (g/cm ³)	Diameter and Length (mm)	
3200	512 1.6	7.6 7.0	3200	26.0 0.8	2.5 6.4	
3200	512 1.6	7.6 7.0	3200	32.0 1.0	2.5 6.4	
3200	512 1.6	7.6 7.0	3200	38.0 1.2	2.5 6.4	
3200	278 1.6	7.6 3.8	4900	21.0 1.0	2.1 6.4	
8400	512 1.6	7.6 7.0	8400	26.0 0.8	2.5 6.4	
8400	512 1.6	7.6 7.0	3200	26.0 0.8	2.5 6.4	
8400	512 1.6	7.6 7.0	3200	32.0 1.0	2.5 6.4	
8400	512 1.6	7.6 7.0	3200	38.0 1.2	2.5 6.4	
8400	185 1.6	7.6 2.5	3200	26.0 0.8	2.5 6.4	
18600	512 1.6	7.6 7.0	3200	26.0 0.8	2.5 6.4	
18600	512 1.6	7.6 7.0	3200	32.0 1.0	2.5 6.4	
18600	512 1.6	7.6 7.0	3200	38.0 1.2	2.5 6.4	

.

Bridge				Poostor Evolo	aiwaa	
Nichrome V		Flying P 6061-T6		Booster Explosives PBX 9407		
Diameter = 0.05 mm		0.65 mm thick		Density = 1.6 g/cm^3		
Length = 1			iameter =	Density	1.0 6/ 6	
Dengen	mm	2.1/2.5				
			ength = 6.4 mm			
	DONOR		<u> </u>	ACCEPTOR		
sP	Mass (mg)	Diameter	Р	Mass (mg)	Diameter	
So	and	and	s _o P	and	and	
<u>(cm²/g)</u>	Densiţy	Length		Densiţy	Length	
<u>(cm⁻/g)</u>	<u>(g/cm³)</u>	(mm)	(cm^2/g)	<u>(g/cm³)</u>	(mm)	
8300	512	7.6	8300	26.0	2.5	
	1.6	7.0		0.8	6.4	
8300	512	7.6	8300	32.0	2.5	
	1.6	7.0		1.0	6.4	
8300	512	7.6	8300	38.0	2.5	
	1.6	7.0		1.2	6.4	
8300	278	7.6	8300	38.0	2.5	
	1.6	3.8		1.2	6.4	
8300	185	7.6	8300	21.0	2.5	
	1.6	2.5		1.0	6.4	
8300	185	7.6	8300	66.0	4.1	
	1.6	2.5		0.8	6.4	
8300	185	7.6	8300	83.0	4.1	
	1.6	2.5		1.0	6.4	
8300	185	7.6	8300	100.0	4.1	
	1.6	2.5		1.2	6.4	
8300	185	7.6	8300	116.0	4.1	
	1.6	2.5		1.4	6.4	
8300	454	7.6	8300	66.0	4.1	
	1.4	7.0		0.8	6.4	
8300	454	7.6	8300	83.0	4.1	
	1.4	7.0		1.0	6.4	
8300	454	7.6	8300	100.0	4.1	
	1.4	7.0		1.2	6.4	
8300	454	7.6	8300	116.0	4.1	
	1.4	7.0		1.4	6.4	

	TABI	LE II		
SE-1	FLYING-PLATE	INITIATION	OF	HMX

¥

ŧ

TABLE III

ER-322 FLYING-PLATE INITIATION OF PETN

Bridgewire	Flying Plate	Booster Explosive
Tophet C	6061-T6 aluminum	PBX 9407
Diameter = 0.05 mm	0.50 or 1.0 mm thick	Density = 1.6 g/cm^3
Length = 2.4 mm	Barrel Diameter = 2.5 mm	
	Barrel Length = 7.0 mm	

	DONOR			ACCEPTOR	
S _o ^P (cm ² /g)	Mass (mg) and Density (g/cm ³)	Diameter and Length (mm)	$\frac{s_o^P}{(cm^2/g)}$	Mass (mg) and Density (g/cm ³)	Diameter and Length (mm)
3650	100 1.6	4.4 4.0	3650	36.0 1.0	2.5 6.4
3650	100 1.0	4.4 4.0	3650	43.0 1.2	2.5
3650	100 1.6	4.4 4.0	3650	50.0 1.4	2.5 6.4

Flying plates of all thicknesses initiated HMX $(S_0^P = 8300 \text{ cm}^2/\text{g})$ in the acceptor barrel sufficiently to produce only a very small dent in the 2024-aluminum witness block. High-density PBX 9407 booster pellets were not initiated to detonation. This was true for all three values of the acceptor loading density--1.0, 1.2, and 1.4 g/cm³.

When the acceptor charge was HMX of larger particle size $(S_o^P = 3450 \text{ cm}^2/\text{g})$, the output dent in a 2024-aluminum witness block appeared to become deeper with increase in charge density, and all three acceptor densities initiated attached PBX 9407 pellets confined in brass rings. The flyer used was 1.0 mm thick, either flat or "Top Hat" in shape. Those flyers that were 0.25 and 0.50 mm thick did not function satisfactorily.

Of the three other explosives (HNS, PYX, TATB) tried as acceptor charges, only HNS (S_0^P = 12700 cm²/g) intiated PBX 9407 booster pellets to detonation. Table IV gives successful HMX and HNS combinations.

The length and diameter of the flying-plate barrels used to initiate PETN and HMX acceptor charges were varied, and the effect on the initiation of attached booster pellets was studied. The fixtures are designated as modified ER-322 assemblies. The donor charge is identical with that previously described except that Nichrome V wire was the bridgewire instead of Tophet C. The average resistance of these donors was 1.00 Ω with a range of 0.15 Ω . Both the flying plate and the acceptor barrels were slightly more massive assemblies of 303 stainless steel. The thickness of the aluminum flying plates varied between 0.25 and 1.0 mm. The lengths of the flying-plate barrels were 3.5 and 5.0 mm; the two diameters were 2.5 and 3.8 mm. All assemblies functioned satisfactorily with PETN of $3650-cm^2/g$ specific surface. Table V shows these combinations. With HMX as the detonator explosive, both barrel lengths were satisfactory with all flyer thicknesses, if the acceptor diameter is 3.8 mm. Detonators with 2.5-mm-diam acceptor barrels required aluminum flyers of thickness greater than 0.25 mm for proper functioning. Table VI shows these successful results.

IV. DIRECT INITIATION OF LARGE PELLETS

It would be convenient if high-density pellets could be initiated to detonation directly by a flying plate. We have had only very

TABLE IV

ER-322 FLYING-PLATE INITIATION OF HMX AND HNS

Bridgewire Tophet C Diameter = 0.05 mm Length = 2.4 mm

I

¥

Flying Plate 6061-T6 aluminum 1.0 mm-thick "Top Hat" or Flat Barrel Diameter = 2.5 mm Barrel Length = 7.0 mm Booster Explosives PBX 9407 Density = 1.6 g/cm³

.

	HMX DONOR			ACCEPTOR	
S_o^P (cm ² /g)	Mass (mg) and Density <u>(g</u> /cm ³)	Diameter and Length (mm)	$\frac{s_o^P}{(cm^2/g)}$	Mass (mg) and Density (g/cm ³)	Diameter and Length (mm)
				HMX	
8300	100 1.6	4.4 4.0	3450	36.0 1.0	2.5 6.4
8300	100 1.6	4.4 4.0	3450	43.0 1.2	2.5 6.4
8300	100 1.6	4.4 4.0	3450	50.0 1.4	2.5 6.4
				HNS	
8300	100 1.6	4.4 4.0	12700	36.0 1.0	2.5 6.4
8300	100 1.6	4.4 4.0	12700	43.0 1.2	2.5 6.4
8300	100 1.6	4.4 4.0	12700	50.0 1.4	2.5 6.4

TABLE V

FLYING-PLATE INITIATION OF PETN

¥.

Ł

4

à

IN

MODIFIED ER-322 ASSEMBLIES

Bridgewire	Donor	Booster Explosive
Nichrome V	$S_{0}^{P} = 8300 \text{ cm}^{2}/\text{g}$	PETN 7
Diameter = 0.05 mm	o = 8500 cm /g	Density = 1.6 g/cm ³
Length = 2.4 mm	Mass = 100 mg $_{\tau}$	
-	Density = 1.6 g/cm ³	
	Diameter = 4.4 mm	
	Length = 4.0 mm	

FLYING PLATE				ACCEPTOR			
6061-T6 Aluminum Thickness (mm)	Ba Diameter (mm)	rrel Length (mm)		$\frac{s_o^P}{(cm^2/g)}$	Mass (mg) and Density (g/cm ³)	Diameter and Length (mm)	
0.25	2.5 and 3.	8 3.5 and	5.0	3650	36.0 1.0	2.5 7.0	
0.50	2.5 and 3.	.8 3.5 and	5.0	3650	36.0 1.0	2.5 7.0	
0.75	2.5 and 3.	.8 3.5 and	5.0	3650	36.0 1.0	2.5 7.0	
1.00	2.5 and 3.	.8 3.5 and	5.0	3650	36.0 1.0	2.5 7.0	

TABLE VI

FLYING-PLATE INITIATION OF HMX

IN

MODIFIED ER-322 ASSEMBLIES

Bridgewire Nichrome V Diameter = 0.05 mm Length = 2.4 mm

>

 $\frac{\text{Donor}}{\text{S}_{0}^{P} = 8300 \text{ cm}^{2}/\text{g}}$ Mass = 100 mg $\text{Density = 1.6 g/cm}^{3}$ Diameter = 4.4 mm Length = 4.0 mm

Booster Explosive PBX 9407 Density = 1.6 g/cm³

FLYING	<u></u>	ACCEPTOR			
6061-T6 aluminu Thickness (mm)	m Barr Diameter (mm)	el Length (mm)	s_o^P (cm ² /g)	Mass(mg) and Density (g/cm ³)	Diameter and Length (mm)
0.25	3.8	3.5 and 5.0	3450	36.0 1.0	2.5 7.0
0.50	2.5 and 3.8	3.5 and 5.0	3450	36.0 1.0	2.5 7.0
0.75	2.5 and 3.8	3.5 and 5.0	3450	36.0 1.0	2.5 7.0
1.00	2.5 and 3.8	3.5 and 5.0	3450	36.0 1.0	2.5 7.0

limited success in achieving the elimination of the small-diameter acceptor-explosive intermediate charge. Using HMX ($S_o^P = 8300 \text{ cm}^2/\text{g}$) donors and 1.0-mm-thick "Top Hat" flying plates in our ER-322 assembly, we found the following:

(1) PETN pellets of 1.3-g/cm³ density and 7.6 mm in diameter x 5.0 mm long can be initiated to detonation whether the pellet is confined in brass rings or not. The confined pellets gave significantly deeper dents in the 2024-aluminum witness block. ł

(2) PETN and HMX pellets of this size and compacted to a density of 1.6 g/cm^3 are not initiated to detonation by the flying plate, whether they are confined in brass or not.

It appears that the acceptor-charge/flying-plate diameter ratio as well as both the density and confinement of acceptor charge all contribute significantly to achieving detonation.

Printed in the United States of America Available from National Technical Information Service US Department of Commerce \$285 Port Royal Road Springfield, VA 22161

•, •

.

Microfiche (A01)

Page Range	NTIS Price Code						
001-025	A02	151-175	A08	301-325	 A14	451-475	A 20
026-050	A03	176-200	A 09	316-350	A15	476-500	A21
051 075	A04	201-225	A 10	351-375	A 16	501-525	A22
076-100	A05	226-250	A11	376 400	A17	526-550	A23
101-125	A06	251-275	A12	401-425	AIS	551-575	A24
126-150	A07	276-300	AI3	426-450	A19	576-600	A25
						601 up*	A99

1

*Contact NTIS for a price quote.

.

ź

1 Sec. 17.

JOŜ A S Jai CHOCKE ASKS

÷.

ġ • 5 . e ; . 1

6.7×9 2. 13 F S,