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FOUNDATIONS OF DECISION ANALYSIS:
A SIMPLIFIED EXPOSITION

by

W. J. Whitty

ABSTRACT

Any evaluation procedure requires the specification of evaluation criteria that are
critical to the achievement of the objective and that are representative of the system
under evaluation. These criteria are expressed numerically as performance measures.
The performance measures usually have dissimilar units, and a problem arises in
finding a2 means of relating them to a common unit of measure. Once related toa
common unit, they can be aggregated to produce a single scalar of overall system worth.
This report presents a simplified exposition of decision analysis, which is a structured
approach for evaluating complex alternatives that provides an overall measure of
system worth. Evaluations are discussed under situations where the evaluator(s) knows
for certain what the outcome will be for any course of action taken and for cases where
the outcome is uncertain but can be estimated. Decision making under certainty is
covered first, including the concepts of “total value,” “value functions,” “weights,” and
“group decisions.” Then, decision making under uncertainty is discussed. Included are
the parallel topics of “total expected utility,” “utility functions,” “scaling constants,”
and “group decisions.” Extensions of the procedures described in this report, including
fuzzy set theory and optimization methods, are discussed briefly.

I. INTRODUCTION

Complex design, evaluation, and selection problems are often characterized by multiple conflicting
objectives, intangible factors, uncertainties, and often several decision makers. The label “decision
analysis” refers to the techniques that provide a prescriptive or normative approach for making
decisions under these conditions.

Decision analysis is a rapidly growing discipline. Within the last two decades, it has been formally
recognized by corporations, governmental bodies, professional societies, and academic institutions. The
subject is not difficult, but, unfortunately, much of the formal mathematical work is difficult to
understand. We present here a simplified exposition of the foundations of decision analysis.

After a brief discussion of some important concepts, we examine decision making when all possible
outcomes are assumed to be known with certainty. Within this topic, we deal with the concepts of “total
value,” “value functions,” “weights,” and “group decisions,” and provide an example. We next examine
decision making under uncertainty. Included in this treatment are the parallel topics of “total expected
utility,” “utility functions,” “scaling constants,” and “group decisions” followed by an example. Finally,
we discuss briefly the application and extensions of the topics included. For examples and additional
explanatory material, see Refs. 1-69.




II. BASIC CONCEPTS

Every evaluation procedure needs.one or more evaluation criteria for comparing characteristics or
attributes of alternatives. Numerous methods have been proposed for selecting a few criteria that are
critical and representative of the system. The criteria represent the major areas of importance and need
to be well defined. These criteria are expressed numerically as performance measures. The performance
measures usually have dissimilar units, and a problem arises in finding a common unit of measure. For
any alternative, the performance measures will be expressed as numbers or expressions representing
levels of performance. However, in many cases, the actual worth of a particular performance level is not
the number itself but a subjective value judgment made by the evaluator. Thus, for different people, the
perceived value may differ.”

There are two categories of multiple-criteria decision problems: decisions under (1) certainty and (2)
uncertainty. For decisions under certainty, the evaluator knows the outcome for each alternative. For
decisions under uncertainty, he knows, or can estimate, a probability distribution for the outcome of
each alternative. In decision problems under certainty, the relationships between levels of performance
and the subjective worths of these levels are usually called value functions. In decision problems under
uncertainty, these relationships are called utility functions. (The term “worth” is used here to designate
the numbers associated with either value or utility.) These transformations of performance levels to
either values or utilities give all performance measures a common unit of measure. Finally, the value or
utility functions can be combined to produce a single scalar of overall system worth.

It is assumed that, for all practical purposes, the set of performance measures adequately represents
the set of criteria and the levels of performance can be specified. In the following sections, we examine
first the case of multiple-criteria decision making under certainty followed by decision making under
uncertainty.

II1. DECISION MAKING UNDER CERTAINTY

Assume there are k alternatives, or courses of action, to be evaluated. Let these be designated by A =
{aili = 1,...,k}. Inaddition, there are m criteria that characterize the system, which are designated by
C = {gli = 1,..., m}. Each of these ¢;’s can be further subdivided to produce lower-level subcriteria.
Finally, for each lowest-level subcriterion, a performance measure is specified that measures the degree
to which its associated subcriterion is satisfied. There is no loss of generality if we consider only the
lowest-level criterion involved in the decision problem, with the understanding that many problems
involve more than one level and the system value is aggregated from the lowest to the highest level.
Working at the lowest level and assuming C is the set of subcriteria at that level, we find that the m
performance measures for these subcriteria are represented by X ={X;li = 1, ..., m}. A specific set of
numerical values of the performance measures, referred to as levels of performance, can be displayed in
the vector form x =(X;,X2,...,Xm)-

A. Total Yalue

The total system value can be defined in many ways. An additive model can provide a good
approximation without significantly decreasing the accuracy of the total value.”"-”2 Under general
conditions of independence (to be discussed later) the additive model is completely justified, and the
total system value is

m
V(xlaXZa-"axm) = 2 wjvj(xj) ) (l)
j=1

where vj(x;) is the one-dimensional value of a particular level of performance, x;, and w; is a positive
scaling constant called a weight. The x;’s, vj(x;)’s, and w;’s are numbers. The choice of the range of the wy’s
and v(x;)’s is arbitrary, but it is convenient for them to be



0<w<1, (2)

0 =< v(xy) = 1, for ji=1.,m, 3)
and
m

The system with the largest total system value v(x ) is selected.

Three topics requiring explanation are (1) construction and properties of value functions, (2)
independence, and (3) determination of criteria weights. Each of these will be discussed, the techniques
applied to group decisions, and an example given. However, first let us introduce the concept of a weak
ordering, which will be useful in the following discussions. Assume that C is composed of three criteria:
Cy, €3, and c3. For Eq. (1) to be used, that is, for Eqgs. (2) and (3) to be determined, a weak ordering of the
criteria must be possible. A weak ordering of criteria means that the criteria are comparable and that the
preferences for the criteria are transitive. Also, for Eq. (3) to be valid, we must be able to state in a formal
preference structure the relationship of one performance level to other levels of the same performance
measure. For our three criteria, transitivity means, for example, that paired comparisons may yield ¢, >
€2, C2 > €3, and ¢, > ¢3; where > means “is preferred t0” and gives the ordering c,, ¢, and cs. If the ordering
is transitive, the third comparison need not be made because it is implied by the first two comparisons.
In some cases, an evaluator will be indifferent in preference between criteria. For example, the evaluator
may slightly prefer c, to ¢, or be indifferent in preference between c; and c,, while at the same time
preferring c, to c;. Here, the same ordering would hold as before, and the first comparison would be ¢; >
¢y, where > would be read “is preferred or indifferent to.” That is, criteria can be ranked in order of
preference (importance), and any adjacent criteria may be of equal importance. The weak ordering
requires only the concept of the ordering by >. A preference structure must be established both for
determining the weights and for constructing the value functions.

B. Value Functions
A value function is a preference representation function under certainty.!”> Thus, a value function is a

scalar-valued representation of both the preferences of x; over x{ (assuming level x; is preferred to level
x¥) and the strength of that preference. Mathematically stated, if

x> x¥, (5)
then
Vj(Xj) = Vj(X?) . (6)

Also, ifthe evaluator is indifferent between x; and another level, x;, the values vi(x;) and vj(x;) are equal.
This is stated as

X ~ Xj,
where ~ is read “is indifferent to;” then

vils) = vix) .




A value function reflects the degree to which each performance level contributes to the achievement
of the objective, or to the satisfaction of the criterion. Therefore, value functions can either increase or
decrease as performance levels increase or decrease. Value functions can be represented on an interval
scale because they are unique up to a monotonic transformation. If vi(X;) is a value function for X;, then
so is vi(X;), if for any positive constant, a;,

vi(X)) = avi(X;) + b .

Onan interval scale, adjacent values are separated by a constant arbitrary unit of measurement, and the
ratio of any two intervals is independent of both the unit of measurement and an arbitrary zero point.
Because there is no natural origin, it may be chosen in any convenient manner. If the origin is set to zero,
the least-preferred or worst level of X; is set to zero and the best level to one; then

0 < Vj(Xj) < 1.

The next step in constructing a value function requires that, within the end points or range of X,
enough coordinates be estimated so that a graph can be constructed. By asking qualitative questions, we
can determine the general shape of the value function (linear, concave, reverse-S shaped, and so forth).
Fishburn™ presents some methods for estimating value functions and others for estimating weights. In
one of these methods, the evaluator estimates the value of the performance level midway between the
best and worst levels. This point now separates two intervals; midpoints are estimated for thesein a
similar manner. This subdividing continues until enough points have been established to plot a graph.
Consider v,(X;) as an example. Let x§ = 100 be the worst level and x} = 0 be the best level. Suppose that
questioning has determined that v(X,) is a reverse-S-shaped curve. The midpoint is expressed as

vi(x¥%) = 0.5[v,(100) + v,(0)] = 0.5 ,
and x§ must be specified by the evaluator. It is important to realize that
vi(0) — vi(x§®) = vi(x§%) — vy(100) ,

or that moving from 0 to x}* has the same differential value as moving from x* to 100. For example, let
x§-* = 4] Next, establish the midpoints from 0-41 and 41-100, and so on.

If there is a natural zero, a ratio scale may be formed; that is, b, equals zero. This can be justified if the
value function measures the fractional attainment of an objective. If a performance measure has no
natural or logical upper or lower bound, then a practical operational bound must be specified that
represents the limit of what one might reasonably expect to attain. For more detail on construction of
value functions, see Refs. I, 65, 75, and 76.

The most important assumption related to Eq. (1) is that the performance measures are value (or
preferentially) independent. This justifies using addition to combine the individual value functions.
Loosely speaking, value or preferential independence means that an evaluator’s preferences for a
specific level of one performance measure do not influence his preferences for levels of any other
measure. Although in some cases performance measures can be dependent without affecting results, in
other cases, only by carefully combining some and/or eliminating others, can the total value be
maintained with minimum distortion. Care in defining criteria and performance measures can
eliminate many problems (see, for example, Ref. 77). Precautions taken when the value functions are
being constructed also can significantly minimize the effects of interactions. More theoretical exposi-
tions on independence are given by Fishburn7%7 and by Keeney and Raiffa.!

C. Weights

Finally, we must determine the scaling constants, or weights. We can use several methods for
transforming experts’ judgments into relative weights. In the constant-sum method discussed here,®
100 points are distributed between every pair of criteria at the same level. If P, is the number of points
awarded to ¢; when ¢; is compared with c,, the ratio of points for ¢; and ¢, is given by




. ™ L .
I'jk— P_k, s J,k—l,...,m, J?ek,

where 0 <Pj, <100, and Py; =100 — Pj.

Ifthere are m criteria, m(m — 1)/2 paired evaluations are conducted, even though only m — 1 are
needed to construct the weights. However, we can use all estimates to check for inconsistencies and to
calculate composite scale values. The scale values are given by

m

s; = antilog L 2 i ), j=1L.,m,
m =

where zj, is the log of 1. The s;’s have a geometric mean of 1 and are converted to the normalized form

Because the constant-sum method uses comparisons of all pairs, it can be used to check on transitivity
and to obtain indirect estimates of the weights. For additional discussions on weighting, see Refs. 1, 65,
72, and 81-89; and for additional weighting methods, see Refs. 54 and 90-95. Although some other
authors, including Keeney and Raiffa,' disagree with this method of determining weights, most
weighting methods described in the literature are similar to it.

D. Group Decisions

Equation (1) can be used with one or more evaluators. In many cases, a group of evaluators will be
involved in constructing value functions and determining weights. However, although in this case it is
common to produce group weights and group value functions and use them in Eq. (1), before this can be
done, some form of group consensus must be reached.

A popular method for determining group consensus uses the Kendall Coefficient of Concordance,?
which holds that a significant value for the coefficient suggests probable agreement. According to
Kendall, if there is agreement, the best estimate of the correct group ranking is given by the order of the
sums of the ranks.’” However, other authors disagree with this procedure when certain conditions
hold.®® If there is consensus, the individual weights and value functions are either averaged or developed
by group discussions or Delphi-like techniques.?®!® For more information on group consensus, see
Refs. 101-115.

Not everyone agrees that a group evaluation can be conducted by using one function, such as Eq. (1),
for all evaluators. In a pioneering work in 1951, Arrow!*¢ proposed a set of five reasonable assumptions
that should hold for any scheme that aggregates individual rankings into a group ranking. He proved
that no aggregation scheme was compatible with all five assumptions. These assumptions, along with
the proofthat there is no rule for combining the individual rankings that is consistent with the
assumptions, are known as Arrow’s Impossibility Theorem. Because Arrow considered rankings, no
strengths of individual preference or of interpersonal preference comparisons were included. Keeney!!”
proved that group preferences can be aggregated if value functions and utilities rather than rankings are
used. The group function thus derived by using assumptions analogous to Arrow’s is similar to Eq. (1),
except that m represents the number of evaluators, v; is a value function (under certainty) or a utility
function (under uncertainty) for the j® individual, and w; is a positive scaling constant determined by
examining interpersonal comparisons. A comprehensive discussion of Keeney’s work on the aggrega-
tion of individual preferences is presented in Ref. 1.




E. Example

The concepts discussed above are illustrated in the following evaluation of a volume-reduction
process for radioactive waste. The evaluation criteria are effectiveness, flexibility, availability,
operability, and resource use. Effectiveness is the ability of the process to meet the volume-reduction
objective, and the performance measure for effectiveness is the volume-reduction factor. Flexibility is
the ability of the process to accept a wide range of waste compositions at different processing rates.
Flexibility is determined by how well the process handles waste in the four (subcriteria) categories:
normal components, solids throughput, noncombustibles, and liquid throughput. Normal components
include PVC, paper and rags, polyethylene, rubber, and dense cellulosics. A composite formula relating
the percentage of each component in the feed and the feed rate is used as a performance measure. The
performance measure for solids throughput, for example, is the rated capacity (kg/h) of the unit.
Availability is the frequency with which the process operates satisfactorily and could be directly
measured by calculating the percentage of uptime. However, because engineers are more familiar with
downtime, that measure is used instead. Operability is the level of operational complexity in terms of
equipment, controls, and manpower. The operability performance measure is the minimum number of
parameters that must be controlled for the process to operate and meet all requirements.

Resource use involves the following subcriteria: energy, scarce strategic materials, water, and land.
Performance measures for these subcriteria are expressed according to their degree of use—extensive,
high, moderate, etc. Figure 1 shows the relationships between the top two criteria levels. All Kendall
Coefficients of Concordance were significant at the 0.05 level or better (see Ref. 96 for the meaning of
significance).

Ten process engineers used the constant-sum method to determine weights, which were then
averaged and presented to the group for modification/agreement. The list below shows the average
weights for the final main (upper-level) criteria.

Criterion Weight
Effectiveness 0.35
Flexibility 0.22
Availability 0.20
Operability 0.13
Resource use 0.10

1.00

OVERALL SYSTEM VALUE

|
| | |

EFFECTIVENESS  FLEXIBILITY AVAILABILITY OPERABILITY RESSSUERCE
HANDLING HANDLING SCARCE
oLIDS LIQUID
NORMAL NON — ENERGY  STRATEGIC WATER  LAND
COMPONENTs THROUGHPUT oy pistiges  THROUGHPUT MATERIALS

Fig. 1. Critenia structure.




Each evaluator was asked a series of questions to determine the shapes of the value functions. Then,
each one sketched a curve representing his perception of the value function for each performance
measure. After checking for consistency, the engineers averaged the corresponding value functions to
produce group value functions and presented each to the group for modification/agreement. The final
group value function for the volume reduction factor is shown in Fig. 2.

The evaluation procedure involves determining the specific levels of performance for each alternative
being evaluated, finding the corresponding values from the appropriate value functions, and then
aggregating all values by multiplying by the corresponding weights (see list above) and by adding all
terms.

For example, if the volume reduction of a particular process was 25:1 (performance level for volume-
reduction factor), from Fig. 2 we see that the associated value is 0.74. The list above shows the weight for
effectiveness as 0.35. We derive the total contribution of effectiveness by multiplying (0.35)0.74) =
0.26. If the total value of this process were 0.76, effectiveness contributed approximately 34% of the
total. A thorough discussion of this example can be found in Ref. 65.

IV. DECISION MAKING UNDER UNCERTAINTY

In decisions under certainty, the alternative a; with the largest total value is selected. In decisions
under uncertainty, the alternative a; with the highest expected utility is selected. The results shown in the
previous section need only a few changes to address decision making under uncertainty. As before, we
have A, C, and X representing the sets of alternatives, criteria, and performance measures, respectively.
Also, the vector x_can be specified, but with uncertainty about the individual x;’s.
A. Total Expected Utility

Let the total system’s expected utility be

m
U(X1,X2,...,Xm) = 2 wjui(x;) , (7)
i=1

1.0

UTILITY

04

02

0.0 | 1 | 1
0 10 20 30 40 50

VOLUME-REDUCTION FACTOR

Fig. 2. Group value function for the volume-reduction
factor.




-where uj(x;) is the one-dimensional utility of a particular level of performance, x;, and w; is a positive
scaling constant. Equations (2) and (4) still hold, and

0 =uyx) =<1, for j=1..,m. (8)

Construction and properties of utility functions, independence, and determination of the scaling
constants will be discussed in turn, followed by a discussion of group decisions and an example.

B. Utility Functions

A utility function is a value function, but the opposite is not necessarily true. If we have a value
function, a utility function can be constructed by incorporating the element of uncertainty. Alter-
natively, ifa value function does not exist, the utility function can be derived directly. Most techniques
involve the use of lotteries in questioning the evaluator on preferences for specific levels of perform-
ance.

Assume that the criteria can be weakly ordered and a preference structure can be stated for each X;.
Also, if x; is preferred to xf, then

ui(x;) > y(x?) . 9

Also, when either a set of probabilities (if x; is discrete) or a probability density function (if x; is
continuous) can be associated with x , a utility function can be constructed satisfying Eqs. (8) and (9).
Consider another level, x}. Let x! > x;. Then, u(x}) > u;(x;) > u;(x). However, at some point, an
evaluator would be indifferent between obtaining x; for certain and a lottery L (gamble) with a & chance
at the more preferred x! and a 1 —n chance at the less preferred x{. This lottery is represented
notationally by

Ur, x}(1 — m),xP] .
The indifference relationship is represented by
x ~ Lmx};(1 — m),xf] .

Furthermore, the evaluator would be indifferent between obtaining x/! for certain and the lottery only if
n= 1. Also, he would always prefer a lottery involving x to obtaining x{ with certainty unless 1 =0. The
interpretation of m is the probability of obtaining x}, where high values associated with & will tend to
have the evaluator select the lottery, rather than the certainty of obtaining x;. If x} is the best or highest
level achievable, then uj(x}) = 1, and if x{ is the lowest level, uj(xf) = 0. Now there must be some
intermediate utility uj(x;) for x;. From the above discussion and because u;(x;) must equal the expected
utility of the lottery,

ui(x;) = mu(x}) + (1 — mux?) .
Solving for r, we see that
= Uj(Xj) .

Remember, n is not the probability that x! will occur; it is a lottery ticket suggesting the evaluator’s
preferences for xJ, x;, and x!. (However, for every alternative in A, each performance measure is covered
by a probability distribution.) The utility function can be constructed by repeating the lottery several
times with judiciously chosen levels of performance.

Utility functions are constructed from value functions by a method similar to the one described
above. For example, if vj(x}) = 1, vj(xf) =0, and = is the chance of obtaining vij(x;) in a lottery, then
u] vj(x;)]= = This lottery would be repeated until enough points were available to plot the utility
function.




As with decision under certainty, some type of independence must hold if we are to use an additive
model. Earlier we described preferential or value independence. For decision under uncertainty, we are
concerned additionally with utility independence and additive independence. Assumptions of utility
and additive independence not only simplify the combination of separate utility functions and the
construction of individual utility functions but also can be verified by questioning evaluators when the
individual functions are constructed. Let us consider first utility independence and then additive
independence.

Preferential independence involves tradeoffs among different performance measures, whereas utility
independence involves preferences for lotteries with different performance levels for one performance
measure and fixed levels for other performance measures. Dependence, then, is present when
preferences for lotteries over one or more performance measures depend on levels of other performance
measures.

Let X; represent performance measure i and X;.- represent the remaining performance measures, or
complement of X;. Then X; is utility independent of X;_, provided that preferences for all lotteries on X;
that are defined over the performance levels x;, with the levels of X;_ fixed, are unaffected by the
amounts of x;-. This conclusion implies that the conditional utility function over X;, given X;. fixed at
any value x;, is a positive linear transformation of the conditional utility function of X; for some other
level of X;-. Thus, a conditional utility function is a utility function evaluated over X; with X;_ held
fixed.

For simplicity, consider the two performance measures X; and X,. If u(x;,x;) is a utility function and
X, is utility independent of X,, preferences for lotteries on X; and X, do not depend on the particular
level of X, say x,. Therefore,

u(x,xz) = a + bu(x;,x9 (10)

for all x; and x,, where 2 and b are constants and b > 0. If, in addition, X; is utility independent of X,
they are called mutually utility independent. If X; and X, are mutually utility independent,

u(xp,x2) = u(xxy) + u(xp,x3) + Ku(x),x)u(x,x9) (11)

for some constant K.
Another representation of Eq. (11), given as Eq. (13), is obtained by setting

ux$,x§) = 0 and (12)
u(xi,x}) = 1
and using Eq. (10) and some algebraic manipulation, and assuming mutual utility independence.
u(xy,x2) = kjuy(x)) + koua(xz) + kppui(xpux(xz) - (13)
Because
ux) = w(x) =0, and  wxi) = uxd) =1,

and because utility functions are unique up to a positive linear transformation,

u(xp,x3) = kjuy(xp) , and (14)

u(x,x2) = kaux(xz) . (15)
Also,

ky = u(x}ix9) , ky = u(xd,x}) , ki, =1—k — k;, and

K = kp/(kiks) ,
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where k, and k; are positive scaling constants. The proof or derivation of Eq. (13) is straightforward and
can be found in Ref. 1.

Mutual utility independence is a necessary but not a sufficient condition for additive utility
independence. Additive utility independence, however, does imply mutual utility independence. If, for
X:and X, preferences over the two lotteries

L][O.S,(X],Xz)', 0.5,()(?,)(8)] and
Ly[0.5,(x;,x9); 0.5,(x},x2)]

depend only on their marginal probability distributions and not on their joint distribution, X, and X,
are additive independent. If X, and X; are additive independent, the evaluator is indifferent between L;
and L, because they have the same marginal probability distribution. Because of the indifference
between L; and L,, their associated expected utilities are equal or

0.5u(x;,x2) + 0.5u(x§,x9) = 0.5u(x;,x3) + 0.5u(x),x;) .
From Eqgs. (12), (14), and (15), we find
u(xp,Xxz2) = kyug(xy) + kaua(xy) , (16)

with k; and k, as before.

Equation (13) is the same as Eq. (16) except for the last term in Eq. (13). Therefore, if X, and X, are
mutually utility independent, the utility function u(x;,x;) can be expressed either as an additive function
when K =0 or as a multiplicative function when K # 0. (The above discussion is based on Refs. 1 and
79.)

The results shown to hold for the two performance measures X; and X; can be demonstrated to hold
for X; and X;-. These results will be stated without much discussion.

The pair of performance measures X; and X; is said to be preferentially independent of X;;—, where
X~ is the complement of Xj;, if the preference order for the pair x;, x; with x;;— fixed does not depend on
the fixed x;-. If X; is mutually utility independent of X;—, and X; and X; are preferentially independent,
u(x) must be either the additive form or the multiplicative form. The additive form is

m
U(Xp XgpeXm) =, Kili(X) (17)
i=1

with

where k; = w; from Eq. (7). The multiplicative form is

m
1 4+ Ku(xg,Xze Xg) = H[l + Kku(xy)] , (18)
i=1
with
Sk, <1, and —1<K<O.




IfK=0inEq.(18)orif Zk;= 1, Eq. (18) reduces to Eq. (17). Setting all X;’s to their best levels in Eq.
(18) produces

L+ K=J10+ Ko, (19)

i=1

which can be solved for K. Equation (17) corresponds to Eq. (7), and Eq. (18) is 2 new form. (The above
discussion was based on Refs. | and 118-120.)

C. Scaling Constants

The scaling constants, k;, are determined by asking the evaluator to compare a performance measure
at its best level and all the others at their worst levels with a lottery with all performance measures at
their best levels with probability of occurrence (under the lottery) m or with all performance measures at
their worst levels with probability of occurrence 1 — n. The objective is to find the value of & where the
evaluator is indifferent between the lottery and the certainty case. This is stated as finding ; so that the
evaluator is indifferent between

0 0 5 0
(xla-"axi—laxllax?'f'la-"axm)

and the lottery L{m,x}; (1 — m;),x?], where x{ (;=0,1) is the vector of performance levels. The expected
utility of the lottery is equal to the utility of the certainty case or

u(xhxd) = muixl) + (1 — muilxf) . (20)
Substituting for u(x!) and u(x?), we find

uxtx) = m ,
but

u(xtx) = ki (21)
from Eq. (17) or (18). Assume the ks are ranked and the largest, say k;, is determined as described

above. The remaining k;’s can be related to the largest scaling constant ki, by questioning the evaluator
about preferences for a level of X,, say x;, and a level of X, say x;, so that he is indifferent between

(xi,x9,x§-) and (xf,%j,x§-) . (22)
Therefore,
kiui(x) = kuy(x) . (23)

Ifx;=x}/(i=1andj=2),we ﬁnd k, = kju(x}), where u,(x}) is easily found for x; if u;(X,) is available.
Next, another level of X, say xj, is selected and a comparison of preferences is conducted with x} (j = 3)
so that the evaluator is indifferent between (x7,x3,x%;-) and (x9,x},x%;-). Therefore, ky = k,u;(x1). We
proceed in this manner until all k;’s are determined.

If Tk;= 1, Eq. (17) is used; otherwise, Eq. (18) is used. When Eq. (18) is appropriate, Eq. (19) can be
solved iteratively until K converges. If 1 < Xk;, then —1 <K <0; and if Zk; < 1, then 0 < K.! The
additive form of the utility function given by Eq. (17) holds when additive independence conditions
exist for X. Additive independence involves indifference between lotteries, whereas utility in-
dependence involves indifference between a lottery and its certainty equivalent. The multiplicative
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form given by Eq. (18) holds when mutual utility independence conditions exist for X. Remember that
additive utility independence implies mutual utility independence. This leads to some interesting
interpretations of K. According to Keeney''? and Keeney and Raiffa,’ K indicates how the amount of
one performance measure affects the value of another performance measure. For the two performance
measures X; and X,, they can be either substitutes when K < 0 or complements when 0 < K. When K=
0 there is no interaction of preferences between X; and X;. Selection of either Eq. (17) or Eq. (18) for use
with an actual problem depends on K. Procedures for choosing the correct value of K are presented in
Ref. 1.

It isimportant to check the consistency of the individual conditional utility functions and the scaling
constants.™!?! Checking consistency is not difficult; many procedures to facilitate this are apparent from
the above discussion. For example, the procedures for selecting the correct K along with Eq. (19) are one
consistency check on K. Another example of consistency checking is that the k; should be ordered
identically to the preference ordering of X. However, k; does not indicate the degree of relative
importance of X; to any X;. For a thorough discussion on checking consistency, see Ref. 1.

D. Group Decisions

Finally, we consider the aggregation of n individuals’ utilities. Two possibilities can occur that apply
to group aggregation of value functions as well as of utility functions. In one case, one final decision-
maker (evaluator) combines the utility functions of either a supporting staff or a group of experts. In the
other case, the final utility function will be determined for a group of individuals. The group decision
problem is more interesting because of differences in preferences and related probabilities. However, in
this survey, we assume that individual and group utility functions can be constructed.

Equation (17) with m = n can be considered to be the group utility function with the ky’s acting as
positive scaling constants and u; as the utility function for the i individual. The multiplicative form
given by Eq. (18) has a corresponding group utility function with the same substitutions as mentioned
above for Eq. (17). For single evaluators, the k;’s would result from the evaluators’ interpersonal
comparisons of their individual preferences. If a group decision is involved, the assessment of the k;’s is
difficult. One method of determining the scaling constants in the group situation would be to set up
some arbitration scheme that would lead to a set of constants agreeable to each group member.
However, the conditional utility functions (or value functions), u;, can be assessed by each individual in
the group. Independence assumptions similar to those for one evaluator are required for the group
decision problem.

For more on group decisions, see Refs. 1,43, 46, 56, 73, 117,and 122-127. For two other points of
view on individual and group evaluations, see Refs. 128 and 129, respectively.

E. Example

Consider the example given in Sec. III as a hypothetical utility problem. Assume that the ranking of
the main criteria is as indicated in the list in Sec. IIL.E. Also consider a realistic upper bound for the
volume-reduction factor to be 50 giving u;(50)= 1. Likewise, u;(0)= 0. The utility function, u(x,), was
assessed directly by using certainty equivalents. First we determined the central point, that is, the
certainty equivalent x93 for the lottery producing either x§ = 0 or x} = 50, each with a probability of 0.5.
The remaining points were found by determining the certainty equivalents for the midpoints of the two
intervals produced by the first lottery. This process was repeated until enough points were available to
plot the utility function. The hypothetical utility function is shown in Fig. 3.

To evaluate the scaling constants, the hypothetical evaluator was asked at what point (probability) he
would be indifferent between X; being at its best level (50) and all other performance measures being at
their worst levels and a lottery with all performance measures at their best levels or all at their worst
levels. This situation is given symbolically by Eq. (20). Assume this probability is 0.4 for the volume-
reduction factor. Then from Eq. (21), k, = 0.4. Next, the evaluator was asked at what levels of the
performance measures X, and X, would he be indifferent between x} and x§ together and x§ and x}
together with all other performance measures at their worst levels. This situation is given by Eq. (22).
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Fig. 3. Hypothetical utility function for the volume-re-
duction factor.

Also, we assigned x3 = x} so that Eq. (23) could be used. Here X, represents the percentage of downtime,
and x} = 5% with u,(5%) = 1. Also, x3 = 80% with u;(80%) = 0. The evaluator was searching for x; with
80% of downtime and for 0 with 5% of downtime where he would be indifferent between these
consequences. Assume he picked a volume-reduction factor of 20(x; = 20). From Fig. 3, u;(20)=0.58.
Therefore, from Eq. (23) and the conditions specified above, k, = (0.4)(0.58) = 0.23. For the complete
example, 15 scaling constants are required for the additive utility function given by Eq. (17). We
assume, from questioning evaluators, that additive utility independence holds. The complete specifi-
cation of the total additive utility function is produced by repeating the steps illustrated above until all
the individual utility functions and scaling constants are determined. Then the total utility is combined
using Eq. (17) by multiplying the appropriate individual utility functions and scaling constants and
summing all the resultng terms.

Assume the total utility for a particular process that has a volume-reduction factor of 25 is 0.84. From
Fig. 3, u;(25)=0.75. The total contribution of effectiveness is (0.4)(0.75) = 0.3, or approximately 36% of
the total utility.

V. APPLICATION AND EXTENSIONS

Operational considerations dictate that a decision-making procedure be relatively easy to understand
and explain, easy to implement, economical, reasonably stable against small errors in estimates, and
easy to modify slightly, if necessary. The decision analysis techniques presented here satisfy all of these
considerations, are well developed theoretically, and are used in a wide range of operational settings.

A primary benefit of the procedure is that it helps structure a complex evaluation in a systematic way.
The arrangement of the criteria and performance measures in a hierarchical structure allows a visual
representation of the complex evaluation process. The evaluator can observe at a glance the structural
relationships among all components. This visualization can be very important at the early stages of an
evaluation and can aid in restructuring the problem, if necessary. Visualization is also important when
more than one evaluator is involved. Furthermore, additional alternatives can be synthesized during
evaluation. The graphic structure will allow the evaluator to feel comfortable with the evaluation. Ifhe
does not feel comfortable, this also is valid information, indicating that something is wrong. The
evaluation procedure, if not completely satisfactory, at least forces the evaluator to clarify and quantify
factors important to the overall decision. One of the primary benefits of the procedure is that a
systematic approach can be taken to quantify the problem, which in turn allows the evaluator to
examine his or her choices and to communicate the rationale used.
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Pursuing all the steps described above is often unnecessary; at some point, it may be obvious that
further analysis is unnecessary. After the objectives, criteria, performance measures, and performance
levels are identified, one or two systems may be clearly superior to (dominate) all others. Many inferior
alternatives can also be eliminated in a preliminary screening of design alternatives by using a simple
deterministic model. The remaining analysis could focus on areas where more refined information is
required.

Extensions to the procedures described in this section for multiple-criteria decision problems include
fuzzy set theory'3*!3 to account for the imprecision or ill-defined nature of some problem components,
and optimization methods'*!* for the generation of efficient solutions when the number of criteria or
number of alternatives is large. The performance measures, preference relations, weights, and value
(utility) functions can be fuzzy. The rank ordering of the alternatives can also be fuzzy.'*!3! Some of this
fuzziness may be due to the imprecision that involves almost all real-world problems, causing
evaluators to balk at providing precise estimates of weights, probabilities, or utilities,'3? although they
may be willing to state them in terms of linguistic values, such as “moderately important,” “very
important,” and so forth.'* These linguistic values could be mapped as fuzzy numbers on the closed
interval{0,1]. In group-decision problems, consensus can be examined by fuzzy group-preference
relations.!*> An added advantage of using fuzzy set theory is that sensitivity analysis is automatically
included in the calculations.!¥>!33 Fuzzy calculus can also be applied to multiple-criteria optimization
methods.'* More information on multiple-criteria optimization, fuzzy applications, and other ex-
tensions can be found in international conference proceedings given in Refs. 141-154.
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