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KINGFISH STRIATIONSAND THE KELVIN-HELMHOLTZINSTABILITY: PART 1

by

James H. Hunter, Jr.

ABSTRACT

The role of the Kelvln-Helmholtz instability in
initiating the formationof the density striationsobserved
in the Kingfish fireball e I i m

are proposed for the velocity shear layer on the sides of
the fireball, each of which includes essential
characteristics of the Kingfish event insofar as the
developmentof Kelvin-Helmholtzinstabilitiesis concerned.
A complete linearanalysis is presented for each model.

I. INTRODUCTION

The photographic records of the Kingfish fireball reveal the presence of

regularly spaced striationsaligned along the magnetic fields on the surface of

the fireball. The striationsappear first,and grow most rapidly, on the sides

of the fireball. They appear dramaticallyat a well-establishedtime after the

detonation. The approximatee-folding time for the instabilityis known.

Detailed numerical simulationsof the rising Kingfish fireball show that,

when the striations appear, positive ions (principally 0+) outside the

fireball,but behind the shock, would be rigidlyattached to the magnetic field

and thereforewould slip past the regions on the fireball where the striations

are observed. Essentially, the slip speed would be that of the rising

fireball,U. Moreover, estimates show that the resulting shear layer would be

thin, having a thicknessconsiderablyless than the separationbetween adjacent

striations. The velocity shear and slip velocity would be greatest on the

sides of the fireballwhere the striationsfirst appear. This suggests that

the striations may be caused (i.e., initiated) by a Kelvin-Helmholtz

instability. On morphological grounds, a Rayleigh-Taylorinstabilityseems



less likely because that instabilitywould be expected to grow most rapidly on

the top of the ffreballwhere the fluid decelerationis greatest.

Our purpose in this report is to review selectedaspects of linear Kelvin-

Helmholtz instability theory in the context of the Kingfish event. In

Section 11, we formulate an idealized problem,which retains the essentfal

ingredientsof the Kingfish event insofar as the development of Kelvin-

Helmholtz instabilities is concerned. In Sections IIIand IV, we consider

carefully two models, each of which can be analyzed in a straightforward

fashion without resorting to

idealized,each of thesemodels

extensive numerical calculations. Although

has a direct bearing on the problem at hand.

II. FORMULATIONOF THE PROBLEM

In this section,we consider the Kelvin-Helmholtzinstability (hereafter,

designatedK-H instability)in a compressible,magnetized fluid. The ideal MHD

equations are

and

dp= ygpdp
dt

——
p dt ‘

(2)

(3)

(4)

where p is the density, ~ the bulk velocity, ~ the magnetic field strength, P

the fluid pressure, and the adiabatic index. The ~ vector represents

additional body forces per unit mass, and the convective derivative

d/dt = 8/8t+ ~ . 1. Because the observed structures are relativelysmall

2



comparedwith the fireball radius, the linearproblem will be formulated in

Cartesian coordinates. In the followingdevelopment,we adopt the conventional

notation of Chandrasekhar.1 The physical situation is illustrated in Fig. 1*

In our problem, the undisturbed magnetic field, bulk velocity,and force

vectors are given by ~ = jB, ~ = ~U(z), and g = -~f, where ~, j, and ~ are unit

vectors in the x, y, and z directionsrespectively. The equilibriumcondition

requires thatD(p + B2/87r)= f, where D = d/dz. In formulating the idealized

problem, f will be zero, meaning that gradientsare allowed only in U(z).

Therefore, in a formal sense, unperturbedpressureequilibriumwill be imposed;

p + B2/8Tr= constant. In reality,gradients exist in P, B, and p, due to the

accelerationof the Earth-s gravity,and to dynamical forces associated with

the rising fireball. Therefore, to apply linearanalysis to the Kingfish

problem, we will use model results to gain insight into the behaviors of

compressible K-H instabilities. In Section 111 we will examine idealized

models in which the undisturbedmedia are in pressure equilibrium.

The linearizationof Equations(l)-(4) is straightforward and has been

outlined in some detail byMiura and Pritchett2 (hereafter,designatedby MP).

They Fourier analyze the linear,dependentvariables. In our notation, this

analysis requires that any perturbed quantity g“ = EO(z)exp[i(k1x+k2y+nt)l.

When f = O, their second-order eigenvalue equation for the total pressure

perturbationis p-* = p- + ~ . ~-/4T, which reduces to

z

Fig. 1. The coordinatesystem used in the calculations. Inhomogeneitiesoccur
in the z direction only.
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(5)

where ~ = (n + klU) and g = 1 - k$@$2. ~ Equation (5), the Alfv6n speed,

~~s and the adiabatic sound speed,c, in the undisturbedmedium are defined by

Vi =B2/(4mp) and C2 = ygp/p. In our problem, the Alfv6n speed in the

relatively tenuous, slipping medium is much greater than either c or U.

Consequently,the Wch number, m = U/fi~+ c2, s a t g w

behave very nearly like an incompressiblefluid. In the incompressiblelimit,

K-H instabilitiesare suppressed2 if U < 2 VA(~ ● ~)/(klB). In ‘he present

problem, in which U/VA << 19 K-H instabilitiescan develop only if ~ is very

nearly orthogonal to ~. Therefore,In the followingdevelopment, we restrict

our attention to the most favorable(transverse)class of models in which the

wave vectors are directed parallel to the undisturbed flows; ~k = Jkl. (We

recall that the Kingfish striations,which correspond to density maxima, are

aligned parallel to ~, an observationwhich would follow if the transversecase

applies.)

In the transversecase the Linear equationsdescribingour problem are

pl$u”= -klP‘*+ i p (DU)W- ,

p@#=iDp-* ,

and

(7)

(8)

$B~= -klBu-+iBDw- . (9)

In these equations, u- and w“ are the velocity perturbationsin the x and z

directionsrespectively,and p“* = p- + (B/4m)B;= C2P4 + (B/4m)B;. Equations

(6) and (9) may be combined to give the result
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+P”’ = -klVzpu” + iV2pt)w- , (lo)

where V2 = q + ~2. Equations (7), (8, and (10) describe forms exactly the

same as their hydrodynamic counterparts ii the sound speed is replaced by V.

Thus , the transverse hydromagnetic problem is formally equivalent to a

hydrodynamic problem with ~ = ~kl. However,, the magnetized medium is less

compressible due to the presence of magnetic pressure.

We eliminate variables in the above system to obtain eigenvalue equations

for both p-* and we. The equation for P“* I:eads

(11)

exactly the MP result when k2 = k3 = 0. ‘le eigenvalue equation for w“ is more

difficult to derive; our result is

2~kl(DU) kl(I’[ ) 2k~(DU)2
{D2 - 2 -k;D+[~ -— ....-+

($2 - k;V2 ) V2 ‘t kzvz)l} < = 0 ● “2)(02 - ~

To recover the incompressible limi, we let V ~ ~. In that Limit,

Equation (12) reduces to

[$(D2 - k!) - kl(D2U)] W“ = ~ , (13)

1 for an in~:ompressible fluid in the absence ofexactly Chandrasekhar”s result

unperturbed density gradients. It should he noted that Equations (11) and (12)

have different forms. Generally speaking, the eigenvalue equations will be

different for the various perturbed quantities when gradients are present in

the undisturbed medium. If U is constant,, Equations (11) and (12) reduce to

the identical forms:
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(D2 - k; +@p”*, W’) = (J ~
~2

(14)

III..THE GENERALIZED GERWIN PROBLEM

In a semina1 paper, Gerwin3 considered the development of K-H

instabilities at the interface between two compressible isotropic fluids having

identical undisturbed densities and pressures, which flow relative to each

other at a constant velocity parallel ~cjthe interface. In this section, we

generalize Gerwin”s problem to inc:1Lld e cases in which the densities in the

media are unequal. The physical probl[*m is illustrated in Fig. 2. We adopt

the convention that P1 < p2. If Ihe media are in approximate pressure

equilibrium, PIV~ = p2v;.

In each medium, the tota1. ~rtssure perturbation must satisfy

Equation (14). Since U is either ~on.stant or zero, the $“s are constant in

both media. Consequently, the solutiow f Equation (14) are of the form

expt(qz) , where ~’ - k; + ~2/V2 = O rf (n + k1u)2/(k~V~) and n2/(k~V~) ~ 1,

then

z Medium 1

t

P=PI +
=n+klu

~.iu

‘+:)’’+’’2=”12
P=P2

I
I

V*=VA22+C*2‘V**

(15a)

Fig. 2. The genera lize~iGerwin problem.
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and

~2 l/2
qz = *1 (1 - —) ●

V$
(15b)

&

The signs associated with q1,2 follow from the requirement thet the

perturbetions must vanish as z + f=. [If $/,2/(k~V~,2)> 0, then the ql,2

values will be imaginary. In that event, only outgoing waves can be allowed as

z + t=. Such cases do not concern us in the present application.]

By definition, the linear z velocity,w-, and z displacement,z., are

related by

it$z”=w” . (16)

Combining Equations (8) and (16), we obtain the expression

pI$2Z”= Dp-* = qp-* , (17)

a result that holds for both regions 1 and 2. Hence, at the interfaceof these

respectiveregions,we may write

and

(18a)

(18b)

where subscript i denotes the interface. At the interface,the continuity

conditionsare

7



and

(19a)

Equations (15a,b), (18a,b), and (19a,b) may be combined,

definitionsof $1,2, to yield the desired dispersionrelation

p2n2 -pl(n+klU)2
.

[l- - = [1 -
(n + klU)2 112

(k~vf)
1

(19b)

along With the

(20)

We note in passing that the general dispersionrelation for the hydrodynamic

version of this problem reads

p2n2 -pl(n+ kUcos6)2
(21)

~k;:J1’2-
(

(k2c~)

where e is the a between the wave vector ~=~kl +~k2 and ~. Thus, to

recover the general hydrodynamicresult, we replace V1,2 with C1,2, kl with kj

and U with Ucosflin Equation (20).

When we define the dimensionless quantities x = n/(k1V1)3 a = P1/P2j

b = (V1/V2)2, and Mach number m = U/Vl, Equation (20) becomes

\2a(x + mz 2

[1 - (x+ Ol)z]llz= (1 -:x2)l/2 “
(22)



Equation (22) is

terms,we obtain

(1 - a2b)x6

of 6th order in x. After squaringboth sides,and rearranging

+ 2m(l - 2a2b)x5+ (m2 - 6a2bm2+ a2 - 1)X4

+4ma2(l - bm2)x3 - m2a2(bm2 - 6)< +&2m3x+a2m4 =0 . (23)

Equation (23) has only one complex conjugate pair of roots, which also

satisfies Equation (22). These roots, which represent the K-H modes, may be

written as x = xr ? ixi. The growing mode has the negative sign, and its

growth rate is y = xiklV1 = Xikl(U/m).

In the incompressiblelimit (m = O), the roots of Equation (20) are

where a= P1/(pl +P2)0 The ratio of oscillatoryfrequency,u, to growth rate

y is (l)/y= (P1/p2)W The most rapid growth occurs when a= 1/2, correspond-

ing to a = 1. In this case, Equation (20) can be expanded easily in powers of

m to gauge the influenceof compressibilityon the growth rates. Thus, we

obtain

(25)

It is evident that compressibilityreduces the unstable growth rates, which is

to be expected on physical grounds. Whenm= 0.01, the complex growth rate

calculatedfrom Equation (25) is identical to the corresponding numerical

solution of Equation (23) to nine significant figures;when m= 0.20, the

results agree to four significant figures; when m = 1.00, the growth rate

predictedby Equation (25) is low by .-7.5%.

The growth rates of the unstible K-H modes are shown in Fig. 3 for

Gerwin-s case; a = b = 1, where we have defined n E ~iy + W. These solutions

can be derived analyticallybecause Equation (23) reduces to a quintic, having

one root x5 = -m/2. The remaining quartic equation can be solved

algebraically. As noted by ~rwin,3 K-H instabilitiescan occur only when
—

m < 48. AS pl/p2 diminishes,the K-H growth rates usually become smaller.
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Moreover, unless V2/V2 is very large, the range of m values over which these

instabilitiescan arise shrinksas well. This behavior is illustrated in

Fig. 4. The curves represent models for which the undisturbedmedia are

constrainedby the condition plV~ = p2V~. If v~/c2 >> 1, C21V~ >> 1, or

Yg = 2, this conditionamounts to requiring that regions 1 and 2 be in pressure

equilibrium. [Strictly speaking, pressure equilibrium requires that

pl(cf/yg+v~l/2) = p2(c~/yg+ V~2/2)o] Cases conforming to the unphysical

condition,PIV1 = P2V2, are depicted in Fig. 5. If this condition of “momentum

equilibrium” is met, the growth rates remain relativelylarge as pl/p2 becomes

small. In physical terms, the ratio of the “thermal” energy density of the

fluid in region 1 to that in region 2 =V1/V2 = p2/pl. Consequently,ample

energy is always available to drive the K-H instabilities. Figure 6 shows the

normalized maximum rates (and corresponding Mach numbers) for “pressure

equilibrium”models (plV~ = P2V~) as a functionof density contrast. Clearly,

the growth rates of K-H instabilities diminish as the density contrast

increasesfor reasonablephysicalmodels. Unlike the case for small m [in

which (J)/y= (P~/p2)1/2], the ratios of the corresponding oscillatory

frequencies to these maximum growth rates are u/yin- 1.

INCOMPRESSIBLEMODELS WITH LINEAR SHEAR LAYERS

While the models of Section 111 have the virtue of Including

compressibility, they suffer from the shortcoming of imposinga velocity

discontinuitybetween regions 1 and 2. Since shear viscositywas not included

in thesemodels, the shorter the Fourier wavelength,the more rapid will be the

K-H growth rate. However, if K-H instabilities are responsible for the

Kingfish striations, the observations show that a preferredwavelength is

excited. As is the case when shear viscosity is present, the existence of a

finite shear layer in a velocity profile will selecta favored wavelengthfor

which the K-H growth rate is a maximum. From a physical viewpoint, shear

viscosity and velocity shear are related. If a discontinuousvelocity profile

is imposed upon a viscous fluid, then subsequentlya shear layer will develop

in the fluid through the action of shear viscosity. (Indeed,a linearvelocity

profile can be maintained in the presence of any constant coefficientof shear

viscosity.)

For models having uniform, undisturbed densities, both MP2 and

Chandrasekharlhave shown that incompressibleK-H instabilities experience a

10
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maximum growth rate when kla N 1, where a is the characteristic thicknessof

the shear layer. When compressibilityis included,MP find that the optimal

value of kla decreases with increasingMach number. In theirmodels, which

employeda hyperbolic tangentvelocity profile, K-H instabilities can occur

only if m < 2. (Recall that, for the discontinuousvelocity profile,m < @_.)

As we would expect, the MP growth rates become smalleras m‘1 diminishes(i.e.,

as compressibility becomes more important). Unfortunately,in the present

context, the MP models do not allow for density stratification. However, a

model that includesboth velocity shear and density layering is illustratedin

Fig. 7.

We will consider only the incompressiblecase because (1) the growth rates

are greatest in that limit and (2) the incompressibleproblem can be solved
1 does not treat theexactly and straightforwardly. Although Chandrasekhar

density layering in enough detail for our application,he does provide an

excellent outline of the solution to this problem (p. 487). For all three

regions in Fig. 7, the differentialequation for w- simplifies to

(26)

Therefore, the solutions in the respectiveregions are

z

t

IR p=pl, U C

(27a)

Z
~ L R p=p2, Ux

Z
Region p=p3, ‘ C

Y

Fig. 7. The three-layermodel with linearvelocity shear.



-klz klz
w; = A. e + B. e 9

and

klz
‘3 = B e s

(27b)

(27c)

where A, Ao, Bo, and B are constints. At the interface(i) between regions 1

and 2, the followingcondition1 holds:

U.
pl(n + kluo)Dw~i - p2(n+k1Uo)Dw~i +2k1p2(y) w~i= O . (28)

Moreover, the displacements

-i w~f

‘ii = (n + kluo) = ‘;i

must be continuous

-i ‘ii
= (n+klUo) “

Consequently,at the interface,

at the interface;

(29)

‘ii = % “

Using Eqs. (27a),

A. -kla

~e ‘-

(30) I

(27b), (28), and (30), we obtain

2U0
[~- (n + klUo) - ~(n + klUo)]

●

2U
[+ + (n+ klUo) - ~ (n + kluo)]

(31)

The interfacebetween regions 2 and 3 may be treated similarly,yieldtng

14



(32)

We define the following dimensionless quantities: rl = p~lp2, r3 = P3~P2P

K = kla, and y = n/klUo. in these variables, Equations (31) and (32) may be

combined to form the quadratic equation

[(1 +r~)(l +r3) - (1 -r~)(l -r~e”2Kl Y2 -~(r3 - rl)(l - e-2K)Y

For the uniform medium (rl = rz = 1’ ,

Y = ~K- 1 [(K- 1)2 -e-2 KJ1/2 ,

(33)

(34)

a result originally due to RayLeigh (se[ reference 1). In this case, if

instabilities exist they contain no osc~llatory component in the calculational

frame. Instabilities exist if e‘2K > (k . 1), implying that K < Kc = 1.278465.

In order to demonstrate the connect.~lonbetween this three - layer problem

and the incompressible, discontinuous ca.’e,we let K ~ O in Equation (33),

meaning that the shear layer is arlttrarily thin in comparison with the

perturbation wavelength. The resulting ~ouation is

Letting rl = rjl, Equation (35) may be rwwritten as

Y2 - 2(1 -2a) +1 =0,
r

(35)

(36)
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where

a = pl/(pl +- p3) .

Hence,

Y =(1- 2a) t 2ia1/2 fl(- (37)

With respect to a rest frame in medium 3 (the fireball),

n= -aklU t ifa(l - a) klU , (38)

where U = U1 - U3 = 2U0. ‘rhis expression is identical with Eq. (24), the

complex growth rate for an incompressible fluid with velocity discontinuity U.

The growth rates for the constint density case with linear velocity shear

are shown in Fig. 8. The quantity Yi(K) is the magnitude of the imaginary part

of dimensionless angular frequency y Al SO shown in Fig. 8 is the more

conventional, normalized growth rate,2 ya/U = y(K)K/2. Our solutions for this

quantity are close to the MP so~utions for the hyperbolic tangent velocity

profile (shown in their Fig. 3). Graphs of ya/U for four different

representa tive mode 1s are shown in Figs. 9-L2. The dashed lines on these

figures show the incompressible, dismntfnuous growth rates. As -S the case

with our previous models, the growth rates diminish

density contrast. Also, the wavenumber at which the

decreases slowly With increasing ‘density contrast.

rapidly with increasing

growth is most rapid

Figure 13 depicts the

maximum growth rate, as well as the mrresponding values of Kj as a function of

total density contrast, p3/pl, for models kving pl/p2 = P2/P3. With respect

to a rest frame in region 3, the frequencies of oscillation are comparable to

their corresponding maximum growth rates.
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