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GENERAL FEATURES OF HUGONIOTS

by

J. D. Johnson

ABSTRACT

From thermodynamics and the Hugoniot jump relations I derive a simple

algebraic equation among the Grüneisen constant γ , bulk modulus Bs , pressure P,

particle velocity Up , and slope s and intercept c of the tangent line to the Us − Up

Hugoniot at Up .  At Up = 0 , s is simply related to  ∂Bs / ∂P)s  and for

10 km /s ~< Up ~< 100 − 200 km /s  there is a very linear region in the Us − Up  curve.  When

dP / dρ = ∞,  s and the curvature are directly given by P, Bs  and γ .  I end with the

excellent confirmation of the linear region in data and with a discussion of shell

structure.
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Introduction

There has been continuing interest in the behavior of shock Hugoniots for high

pressures, in particular for particle velocities greater than 10 km /s .  Data has been obtained

for such mainly through laser and nuclear shock experiments.1-4  These data, plotted either

as shock velocity Us  of a sample material versus Us  of an assumed standard material or as

Us  versus Up  of the sample, are remarkably linear.  Modeling, as represented by the

SESAME database,5 shows the same behavior.  A general understanding of this linearity

and of the Hugoniot as a whole is needed.

Formalism

Rather than go to detailed, complex modeling I use only the Hugoniot jump conditions

and thermodynamics to explain the linear regime.  I assumed I have the hydrodynamic

equation of state P ρ, E( )  and the three Hugoniot relations

P = ρo UsUp (1a)

η = ρ / ρo = Us / Us − Up( ) (1b)

and E = 1
2

P 1 / ρo − 1 / ρ( ).6 (1c)

Starting from an initial point ρo , Po = 0, and Eo = 0 , and solving P ρ, E( ) and (1c) for P ρ( )

one obtains the pressure versus density principal Hugoniot.  Then from (1a) and (1b)

follows the Us − Up  curve.  I proceed by looking at some point 1 on the Hugoniot,

shocking from ρo .  I expand P ρ, E( ) in a double Taylor series in ρ  and E   around point 1

and solve for the Us − Up  Hugoniot near point 1.  Then I differentiate the resulting equation

with respect to Up  and evaluate all variables at point 1 to derive an    exact    relation.  The

resulting equation can be written as

s = 1 + 1
2

γ − x( ) + g (2)
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with g = 1
4

2 + γ + x( ) 1 + 8x Bs / P − γ − 1( ) / 2 + γ + x( )2[ ]
1

2 − 1











  .

Here, x = c / Up , γ = 1
ρ

∂P

∂E


 ρ

, and ρ
P

∂P

∂ρ

 E

= Bs / P − γ ,  where Bs = ρ ∂P

∂ρ





s

.

 The lower case s is the slope of the local tangent line of the Us − Up  curve at Up  and c is the

Up = 0  intercept of the tangent.  All quantities in (2) are on the Hugoniot and thus are to be

thought of as functions of Up  or another Hugoniot variable.  This is a fairly complex

algebraic relation among s, c, Up , γ , P,  and Bs , especially with g, but it is quite manageable

and we can learn from it.

I look at an interesting and useful aside.  From the definition of s,

Us = sUp + c = sdUp + co
o

U p

∫ . (3)

Substitute (2) in (3) for s and differentiate with respect to Up  along the Hugoniot.  One then

obtains a differential equation for c which can be solved to obtain

c = − 1
Up

Up
2

o

U p

∫ γ (1) + 2g 1( )( )dUp   , (4)

and from  (2) s = 1 + γ / 2 − c / 2Up + g .  Either by expanding γ 1( ) and g 1( )  in a Taylor series

around Up  or by integrating by parts, (4) can be re-expressed as

c = 2Up

−1( )nUp
n

n + 2( )!
n=1

∞

∑ γ n( ) + 2g n( )( )  , (5)

where the (n) means n differentiations with respect to Up  along the Hugoniot.
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Orientation

Before I give results from the above let me present the generic behavior of a metal

Hugoniot with only phase transitions with small volume change.  I use our latest Mo

equation of state (solid line in graphs) as an example.5  The structures will seem small but

this is the reality of Us − Up  curves.  I look at three figures.  In Fig. 1 we see the lower

Hugoniot which is given very accurately by two dashed straight lines, one with slope

1.245, the other with 1.196.  There is clearly a break at Up ≅ 5 km/s  .  This is typical for

many materials, as it is usually between 3 and 7 km/s , but the break is a little small because

for Mo the lower slope is close to the upper value of 1.196.  In other materials, such as in

Fig. 4 for iron, the initial slope is larger.  Figure 2 shows the next larger scale with the

same dashed line fit to the upper part of Fig. 1.  From Up ≅ 6 km /s  to over 100 km /s  it is an

excellent fit.  The two chain-dashed lines are straight lines through the origin, the upper

with slope 4/3, the lower with slope 1.228.  The upper is the ideal gas limit which the

physical Hugoniot must ultimately approach.  The lower is the lowest slope tangent line to

the Us − Up  curve that goes through the origin.  In such a circumstance c = 0.  Then from

(1b) ρ  is not varying so the density derivation of P is infinite.  In my example this point on

the Hugoniot is the turnaround point, or point t, and is the maximum density on the

Hugoniot.  In the case of Mo Up,t ≅ 262 km/s .  For stronger shocks c < 0  and the density is

decreasing as Up  increases.  At any point where c = 0,  P  has infinite slope and, since

gt = xt = 0 then from (2) st = 1 + γ t / 2 .  Also from (1b) ρt / ρo = st / (st − 1).  Typically for

many materials ρt / ρo ranges between 5 and 6.2 implying 1.19 ≤ st ≤  1.25 and 0.38 ≤ γ t ≤

0.5.  The slope of the very linear section between Up ≅ 10 , and maybe 100 km/s  or more,

ranges between 1.14 and 1.22.  Fig. 3 shows an even larger scale and indicates the very

slow approach to the ideal gas line of slope 4/3.  The Mo Hugoniot is only approaching the

ideal gas by Up ≅ 2000 km/s .
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Results

Now follows some analysis using my equation.  If one takes the Up → 0  limit of (2),

I obtain the very initial slope and curvature of the Hugoniot as the Taylor series   

Us / co = 1 + soUp / co + e Up / co( )2
....   (One must in all analysis of the formalism carefully

expand all quantities self-consistently.)  After a few thermodynamic manipulations, I obtain

so = 1
4

1 +
∂Bs
∂P



 s












 and e = 0.5ρo

∂ 2Bs

∂ρ∂P


 S

+ so 2 + γ o − so( )












/ 6 . The initial slope is directly given

by the pressure derivative of the bulk modulus at constant entropy and the curvature is

given by the higher constant entropy derivation of the Bs  with γ o first entering the

expansion at this order.  It is common, my Mo is an example, that the Hugoniot out to the

break is very linear. This form for e partially explains why.  The first term and second

terms for e are dimensionless quantities and thus, in magnitude, should lie between one

and ten.  The sign of the first is negative, the second positive with resulting cancellation.

After dividing by six, one expects e to be small with resulting linear Us − Up .  For Nb I

estimate that e = 0.16 .7  The natural variables that follow from the analysis of (2) for the

series are Us / co  and Up / co , where co  is the bulk sound velocity at Up = 0 .  This implies

that the break should occur for Up ~ co .  We will see later that Up = 1.6 co  predicts the break

quite well.

One can do large Up  expansions to find the approach to ideal gas.  If it is assumed

that the Debye-Hückel theory8 describes the very high temperature gas, for large

Up ,    γ ~
2
3

− b / Up
3 ,  b > 0.  Then from (2) s ~

4
3

+ a / U 2
p − 2b / U3

p ,  c ~ −2a / Up + 3b / U 2
p , and

P ~ 12ρoa / ρ / ρo − 4( )  with a > 0 .  The parameter a is given by the sum of cohesive,

ionization, and dissociation energies in going from ambient to T → ∞ .

I can expand around point t and find the curvature.  Letting Us = stUp +  α t Up − Up,t( )2
,

α t  is given by α t = γ 1( )
t

1 + γ t / 2( ) / 2Bs,t / Pt − γ t( ).  It is a good approximation that

α t = γ 1( )
t  / 2 .  Using numbers from the Mo equation of state α t ~ 10−4 s/km  and Us  is well

approximated by the quadratic form for Up − Up,t <~ 100 km/s .
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At this point I already have an argument for the Us − Up  curve to be very linear for

10 <~ Up
<~ 200km / s  or even higher.  There has to be an inflection point between 10 and

262 km/s.  I estimate for Mo from (2) that it is at Up ≅ 125 km/s .  There α  is zero and should

continue for smaller Up  being small and negative. (Think of a Taylor series around the

inflection point.)  Thus the curvature is very small and the curve is close to linear.  I

actually did not even need to estimate α t  because the slow approach of the Up − Up  curve to

the ideal gas behavior implies it is small.

But I can go into more detail with (2).  For that I need the qualitative behavior of γ  and

g as functions of Up  which is obtained from the SESAME database where the relevant

physics comes from either TFD models or the Inferno model.9,10  The two models are

compatible to the level I need and one can see that the predicted features of γ  and g are

physical.  At low Up ,  γ  is high, say 1.5.  For Up  between 3 and 7 km/s , the temperature

between 104 and 3 x 104 K, γ  drops fairly rapidly toward 0.4.  Once Up  is greater than

7 km/s  or so, γ   goes through a very broad minimum with γ 1( ) being very small.

Ultimately, at large Up ,  γ  slowly rises to go to the ideal gas limit of 2/3.  The physics of the

decline of γ  is that the electronic thermal excitations are starting to dominate the equation of

state at the Us − Up  breakpoint.  They pull γ  down below the ideal gas value through the

region the electrons are ionizing.  For small Up , g diverges as 1 / Up  but as Up  increases g is

decreasing so that by Up ≅ 10 km/s,  g ≅ 1 / 6 .  For larger Up , g continues to smartly decrease

because it is proportional to both x  and Bs / P − γ − 1 which are both getting small.  The g is

correspondingly small.

The physics of all this is that for smaller Up <~ 7  km/s the equation of state is dominated

by the zero temperature isotherm and the phonons.  Here g is large.  As Up  increases and

goes through the break the thermal excitations, the electrons, come into play pulling down

g until it can be dropped from the picture.  This allows γ  to determine s and the electrons

are pulling γ  down toward 0.4.  All this causes the break.  Putting this together in (2) or

(4) and (5) I conclude that s is well approximated by s = 1 + γ / 2 for Up  from just above the
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break at 3 − 7 km/s to well above the turnaround. With γ ≅ 0.4,  s ≅ 1.2  for the region between

10 and 100  km/s , which is quite in line with my earlier statement of between 1.14 and

1.22.

Experimental Comparison

All of what I have said fits very well with the detailed modeling that goes into the

SESAME database, both TFD and Inferno.  It also agrees very well with experiments

Figure 4 shows data for iron and two straight line, least-square fits to the upper and lower

portions of the data.  I do not show all the lower data as it then would be too dense; it is

very linear with a fitted slope of 1.553.  The other line, fitted to the upper five points, has a

slope of 1.213, in excellent agreement with all I have said.  The uppermost data point, one

point of the pair next down, and the fourth and sixth points down are absolute

measurements.  The other two high Up  points are measured assuming lead as a standard.

The error bars on the uppermost point are     +     2% in both Up  and Us .  The high Up  data and

some of the low Up  come from the Russian literature.11  The rest of the low data is from the

Los Alamos Shock Compendium.12

I have also looked at Cu, Bi, Sn, Ar, Xe and Al which all show the break with slopes

above it of 1.170, 1.203, 1.162, 1.144, 1.166 and 1.149, respectively.12,13,14  These data

do not go to as high a Up  as that of the iron, but they do strongly support the existence of

the break and the linearity.

I look now to the break and define it by the intersection of the linear fits to the higher

and lower portions of the Us − Up .  In Fig. 5 I plot the location of the break as a function of

co  for Al, Fe, Cu, Sn, Bi, Ar, and Xe, going down from the highest points to the lowest.

The solid curve is a fit with a straight line through the origin; the slope is 1.6.

There are data on N2 , a molecular system, which show a break and also there is

modeling showing a negative γ  in the dissociation region.14,15  I am pushing a little to

compare here but the slope above the break is 0.985 and γ =-0.03.  The dissociation pulls
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the γ  down lower than ionization.

Shell Structure

I now discuss the effect of shell structure on the Hugoniot above the break.  Here shell

structure enters in two ways.  One is through the variation in ρo  in going through the

periodic table.  This in particular varies the location of the turnaround point.  But I do not

want to focus on this.  I look to the shell structure from the thermal part of the equation of

state.  I obtain upper bounds on the variation of γ  and g due to shell structure from

Inferno.  I see no shell structure in Bs / P − γ , and, as this is a density derivative, this makes

sense.  So I drop g from the equations and I can argue that this is a conservative

approximation for the size of the variation in s.  For Al and higher atomic numbers the

maximum variation in γ   is     +     0.1, with a functional form that is quadratic in   lnUp  and a

width guided by Inferno.

From (2) the variation in s is ∆s = ∆γ − ∆c / Up( ) / 2 .  From (4) I have ∆c  in terms of

∆γ 1( ) .  So one finds the variation in s, but what is of interest  is ∆Us  which is an integral of

∆s .  Carrying all this out I find that for the     +     0.1 in γ ,  Us  varies by     +     2%, quite in line with

what is seen in full SESAME equations of state based on Inferno.  These are conservative

approximations and this is a maximum variation at an    exact    Up .  It will be extremely

difficult to see shell structure above the break.  If one goes to the P ρ( ) Hugoniot and looks

in the neighborhood of the turnaround, the small wiggles in Us  are amplified by the

presence of the singularity and appear large.  But experiments are not known that can

measure P and ρ  directly, so this is not relevant.

Summary

I have presented a number of results.  First is (2) which relates Hugoniot variables and

thermodynamic quantities.  From it I have expansions of the Hugoniot for Up → 0,  Up → ∞ ,

and Up  at turnaround.  From simple features of the equation of state the linear region above

the break is understood and the slope and location of the break are estimated.  The pertur-



9

bation of thermal shell structure is quantified.

I have focused in this paper on elemental metals and certainly I feel the ideas are valid

there. (I am not referring here to the exact results, such as (2), but to the approximate.) For

all other substances, if one is high enough up the Hugoniot that all molecules are

dissociated, then all should be applicable.  Further down, the details of my picture will be

altered for molecular systems and insulators.  An example here is the N2.  Furthermore,

below the break where the thermal no longer dominates, phase transitions with larger

volume change introduce structure.  Also, for the alkali metals there are shell structure

affects for small Up .  But even with these caveats I have a very powerful overview.
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Fig. 1. Mo Hugoniot - lower portion around break.  The solid line is the Mo Hugoniot.

The two dashed lines are straight line fits to the two linear portions of the

Hugoniot.



Fig. 2. Mo Hugoniot - Up  out to turnaround.  The dashed line is from the fit above the

break.  It shows that the straightness of the solid Hugoniot curve persists to quite

high Up .



Fig. 3. Mo Hugoniot - a still larger view with the turnaround point and the slow

approach to ideal gas.  Curves are the same as Fig. 2.



Fig. 4. Fe Hugoniot data.  We see clearly the linearity of the upper data and a well

defined break.



Fig. 5 Breakpoint as a function of co .



Los
N A T I O N A L L A B O R A T O R Y

Alamos
Los Alamos, New Mexico 87545

Los
N A T I O N A L L A B O R A T O R Y

Alamos

Los N A T I O N A L L A B O R A T O R YAlamos LOS ALAMOS,  NEW MEXICO 87545


	ABSTRACT
	Introduction
	Formalism
	Orientation
	Results
	Experimental Comparison
	Shell Structure
	Summary
	Acknowledgment
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5

