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Deviatoric Stresses and Plastic Strain Rates in Strong Shock
Waves for Six Metals

by

Davis L. Tonks

ABSTRACT

The strong shock theory of D. C. Wallace [Phys. Rev. B24, 5597 (1981) and Phys. Rev. B24,
5607 (1981)] is used to calculate the shock structure for 1100 Al, 2024 Al, Cu, Fe, Ta, and U.
Emphasis is given to the behavior of plasticity, i.e., average deviatoric stresses, plastic and total
strains, and strain rates, which are given in figures for a number of shock strengths. This informa-
tion will be useful for modeling plasticity in metals under extreme conditions. It was used for part

of the PTW model for mechanical behavior.



I. INTRODUCTION

In recent years Wallace has presented a theory for strong shock waves in metals.!? This the-
ory incorporates both heat flow and plastic flow as dissipative mechanisms. Heat flow is neces-
sary at the beginning of the shock wave to drive the pressure up to values unattainable by elastic
deformation alone. Plastic flow is necessary later on in the shock wave to produce the enormous
amounts of heat to do this.

Weak shocks,>*# on the other hand, require only plastic flow to produce the necessary shock
steepness. since this is less than that achievable by elastic strains alone. The transition between
weak and strong shock waves occurs when the elastic precursor in the weak shock becomes
absorbed into the main shock rise as this steepens with shock strength. This condition is called an
"overdriven” shock wave.

When the strong shock is steady, as is assumed for most experimentally measured strong
shock waves,! the shock velocity can be used to integrate the equations of motion to obtain the
normal stress as a function of the volumetric strain. With this behavior known, the plastic flow
behavior can be deduced from that of the heat flow which is known under strong shock conditions
from rairly reliable extrapolations using solid state physws 2 Since the shock- velocity / particle-
velocity behavior is known experimentally, this means that the plastic flow behavior can be
inferred from the known heat flow behavior, the shock-velocity / particle-velocity behavior, and
the known thermoelastic behavior of the material. The latter is not known as well as one would
like under Mbar shock conditions, but is known well enough to make estimates.

Using this theory, the deviatoric stresses, (deviatoric) plastic strains, and plastic strain rates
can, in principle, be found. The thermoelastic behavior under Mbar shock conditions is not known
well enough to calculate the deviatoric stress contmuously through the shock path, but an estimate
of its average through the shock path can be made.!*2 This estimate is based on the heating effect
of plastic work. The averaged deviatoric stress can then be used to calculate approximate time and
space increments through the shock path from which approximations to the plastic and total strain
rates can be obtained.

The purpose of this report is to carry out the above calculation for six metals: 1100 Al, 2024
Al, Cu, Fe, Ta, and U. The focus here is on the plastic behavior in terms of the average deviatoric
stress, plastic and total strains, and strain rates. These will be reported in figures. The heat flow
and entropy are not so reported but can be reproduced, if needed, using the equations given
herein.

The emphasis here is on the calculational details rather than the general theory which is
described adequately in Refs. 1 and 2. The equations presented here will provide the reader with a
reasonable idea of the general theory, however.

Section II contains an enumeration of the equations that were integrated to obtain the infor-
mation in the figures. Some explanation of their physical basis is given. Section III contains the
results for each metal, together with a listing of the parameters used for each in the calculation.

[



I. Equations Used and the Underlying Physica! Basis

The equauons given here were supplied to the author Ly Wallace.S Most appear in the pub-
lished papers, ' 2 but those involving the linear approximation for the shock velocity-particle
velocity do not.

The integration through the shock path depends on an approximation to the true path in a plot
of the temperature, T, versus the comprcssxon €. The approximate path is pictured in Fig. 1, which
is reproduced from Fig. | of Ref. 2.2 This approximation was found by investigating rigorous
bounds on this path of temperature versus € from the bchavior of various ideal materials, e.g., an
inviscid fluid.! The approximate path is bounded fairly closely by these considerations and
should give realistic results for the present calculations.

The first part of the approximate path of T versus € follows that of 4 nonplastic solid, i.e., one
in which only elastic strains and heat conduction occur. This nonplastic-solid path is followe] to
a certain point, called point c, at which plastic flow is assumed to become important. The path of
T versus € from point ¢ to the end of the shock wave is taken to be a straight-linc from point ¢ to
the end point on the Hugoniot, which is known from the experimental shock velocity- parucle
velocity rclation. This straight-line portion is closely bounded as described by Wallace in Ref. 22
Point ¢ and the straight-line portion are dctermined by requiring that the line be tangent to the
nonplastic solid curve at point c.

In Fig. | the approximate shock path used for Pt in Ref. 2 is shown. This path follows the line
labeled nonplastic solid in Fig. 1 until the point labcled by €,. is reached. Thereafter, the path fol-
lows the straight-line indicated by the dashed line in Fig. I. Fig. | also shows the path of an invis-
cid fluid, which is an upper bound, and tne linc whose ordinate is the Hugoniot temperature,
which is also an upper bound.

Thus, the integration up the shock path consists of two stages. The first follows the nonplas-
tic solid and the second follows the straight-line portion where plastic flow is occurring. The first
part is called the (heat) conduction front and the second is called the flow region.

Before listing the equations of the shock path, the medeling of the thermoelastic description
will be described. The product of py, where p is the density and ¥y is the Gruneisen parameter, is
assumed to be constant. Hence, p v, . the value of this product for the initial condition, labeled b5y
a, gives v as a function of p. The ratio of G/B, where G is the shear modulus, and B is the bulk
modulus, is assumed to be constant. This gives G as a function of B. B on the Rayleigh line can be
expressed in the following way when py = p v, is assumed and when the shock velocity, D, is
given by

D = c+sV, (1)

where V is the particle velocity, and ¢ and s are constants:

B =p,yD%(1-€) +p,c*(1-¢€) [1+ (s-7,) €] (1-s€)73, ()

where g, the compression,is 1 —p _/p.
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Fig. 1. Upper and lower bounds on the shock path: temperature versus compression. The

shock path used here is that of the nonplastic solid followed by the dashed line to the
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The assumption that G/B is a constant is made from lack of information. However, it does

seem to give reasonable results most of the time. It gives results more reasonable than those of
another model (not given here) that included temperature and dencity dependences, but produced
negative (unphysical) strain rates. The calculations are rather sensitive in this manner to G.

Wallace's comments on G as a function of T and P, pressure, are as follows.? "G(P.T) 1s diffi-
cult to estimate. The T-dependence of G is small and easy to estimate, but the p-dependence is
large and cannot be estimated for 8p/p >0.1. The only way we will get G (P) is by electronic
structure calculations, in the distant future. In the meantime, our best estimate for G is still G/B =
constant, on the Rayleigh line for overdnven shocks.” Support for this 1s in D. C. Wallace, Phys.
Rev. B24. 5607 (1981), Appendix B. 2

The heat capacity at constant volume, C,_is given by

C, = 3Nk, +IT, 3)

where 3Nk, equals 5.9858 cal/mole K. I'T is the electronic contribution. I is given by:

T(p) = T(py) (Py/ P, (4)

where g is a constant and p, is the density at zero temperature and pressure.

Fp,) = (%2/3) Nk,z,n (€7) . where n (€,) is the density of electronic states at the Fermi
energy for p = p,. gequals 2/3.5/3. and 7/3 for nearly-free-electron metals, d-band metals. and

f-band metal.,. 3Nk, is the lattice contribution to C, and is quite accurate (to 5%).5 Further
commetits by Wallace on the modeling for C,. are as follows: ““The electronic contribution is a
crude approximation, but is the best we can do without extensive electronic structure caiculations
for each metal. 1 estimate it to be accurate to = 40% on the Rayleigh line, for shocks to melting.
Note for most cases, the total C,. will still be quite accurate.

“For Al and Cu. I take n (g;) from *Calculated Electronic Properues of Metals,” by V. L.
Moruzzi. J. F. Janak. and A. R. Wllhams (Pergamon. N. Y., 1978).”

“Fe undergoes a transition a — € (bcc to hep) at 300K and 130 kbar. For overdniven shocks,
Fe undergoes two more transitions on the Hugoniot: € =y (hcp to fec) at 2.0 Mbar, and
‘{— liquid at 2.43 Mbar. Hence, Fe is close-packed in all the overdriven shock regime. Since
n(€) is about the same for € and y phases, I ignore the difference. Itake n (€;) at p, from D.
A. Boness J. M. Brown, and A. K. McMahan, Phys. Earth and Planetary Intenors 42, 227
(1986).8

*Ti and U presumably undergo transitions on the Hugoniot to bce before melting. I am not
aware of any information on this. Take n (&;) from the recent work of Olof Eriksson® and also
for Ta.
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The figures to come contain values for melt temperatures under various conditions. The
model used to calculate them is the followmg

Wl

2ym -

T, () = T, (p,,) (p/P,,) > 5)

where T, is the melt temperature, v, p is a special Gruneisen parameter for the melt law, and p_
is the density at melt of the solid at zero pressure. The melt temperature does not figure in the cal-

culations along the shock path (Rayleigh line).

The thermal conductivity K can be taken to be a constant for the conditions here.! Wallace's
comments on the values chosen are as follows:> "x enters only in the time-dependence of the
shock process, which it determmes completely I expect T-dependence of x to be negligible, and
K to increase with p as p to p- 2 See also my shock theory notes, Section N, for more detail.
Since p nearly doubles at melting on the Hugoniot, the p-dependence of x is worth including in
the estimate. Do this by taking, for x = constant, twice the high-temperature value at normal den-
sity; then x should be accurate to within a factor of two for all the shock calculations. Note that,
explicitly, all the thermodynamic coefficients are designed to apply in the region between the
Hugoniot, and the Rayleigh line fer the shock which reaches melting on the Hugoniot.”

The shock path calculations depend on knowing the end point on the Hugoniot. This point is
determined in the liquid approximation, i.e., only pressure is involved, no deviatoric stresses. For
strong shock waves, where the deviatoric stress is small compared to the average stress or pres-
sure, this should be an adequate approximation for the present purposes.

Given P, the pressure on the Hugoniot, one can calculate the quantites D, € o Sp=Sas s
and T}, where § is the entropy, by making use of the following equations:

D = ¢/ (1-Sgp) (6)
2 2
Py =p, e,/ (1-sg,)° @)
o setde
dSy = L H. ®)
T, (1- s£H)
dTy, = 'yaTHde gt T,dS,/C,. 9

The H subscript above refers to the Hugoniot. The last two equations are to be integrated
simultaneously up to the point on the Hugoniot. These equations rely on Eq.(1), the linear shock-
velocity / particle-velocity relation given earlier, and on the jump conditions through the shock
front. 5, is the initial entropy.

The following three equations can be integrated simultaneously to produce the path of the
nonplastic solid. This portion of the shock path is the conduction front. J is the heat current.

4 -
p‘Z) = {D-[l-m 38/ e]}-c2<l+§g)[1+(s—va>e1<1—se) *}desy,  (10)




1 dJ

ds = 'TpaD (11)
1 dJ

dT = y Tde + — . (12)
a C.p,D

Eq. (10) arises from the effects of strains and heat on the average stress (pressure). Eq. (11)
describes the production of entropy due to the heat flux, the only dissipative mechanism of the
nonplastic solid. Eq. (12) describes the change in temperature due to changes in entropy and total
strain. All of these equations are specialized to the Rayleigh line.

The point ¢ on the approximate shock path, where the nonplastic solid behavior ends and the
straight-line portion of the plastic flow region begins, is determined by the solution to the follow-
ing equation:

(13)

g _ Ty-T,
de ]c

where the c subscript denotes quantities evaluated at point c.
In the flow region, the temperature versus € is assumed to have the following behavior:

T(e) =T, +Xe, (14)

where X is (Ty—-T,.) "(¢,—¢.) and T, is T,— Xe_. The following three equations are to be
integrated along the straight-line path:

TdS = C (X-v,T)de (15)
ds = TdS/T (16)
dy = {p,¥,TdS+| (1-©)"" (B+§G) -p,D%]de }/(26) , a7n

where B (€) is given by Eq. (2) and v is the plastic strain.

Eq. (17) is based on the effect of entropy and strain on the pressure along the Rayleigh line.

When the above calculation is finished, (t), the average value of the deviatoric stress (calcu-
lated according to the heating effect of plastic work) can be evaluated as follows:2

H
(J./p,) D+ j TdS
c

= 18
<T> (Vc"'VH)\l’H (18)




where V_+ V; equals (2-¢_.-¢€,)/p,.

Using (t), approximate time and space increments can be calculated through the plastic flow
region. These can then be used to obtain approximate plastic and total strain rates. This proce-
dure can be accomplished using the following equation:

dZ = (-x)dT/[(1-¢)J], (19)

which is Eq. (14) from Ref. 2. Here, dZ is the Lagrangian spatial increment. From Eq. (14) (this
document), dT can be re-expressed as Xde. The time increment can be obtained from dZ by
dividing it by the shock velocity, D. To evaluate the above expression (19), J is needed. J can be
approximately obtained in the flow region by integrating the following modified version of Eq. (5)
from Ref. 2, in which <1> is substituted for T:

dJ/(p, D) ~TdS- (V .+ Vp) <t>dvy, 20)

where V_ and V/, are the specific volumes at point ¢ and on the the Hugoniot, respectively. The
approximate plastic strain rate that can be obtained from the above equation can be averaged
numerically to obtain an average strain rate.

This numerical averaging was done with both plastic strain and compression used for the
weight of averaging to produce two versions of the average plastic strain rate through the plastic
flow region: () v and (), (In the approximate shock path used here, no plastic flow occurs in
the conduction front region.)

A rough value of the average plastic strain rate is given by

paDz Jc/paD] (1 —SH) \I"H

(o = _[ Ky AW (e, -e) 2 2

where AW stands for the atomic weight in gm/mole. This relation can be obtained from the aver-
age of  with respect to €, shown below, by applying certain approximations.
H

W) = [ude/ (ey-¢e) . (22)

Equation (21) can be obtained from the above by the following steps. First, replace V in the
integrand by dy /dt. Then substitute for dt the form — (xXde) / (D (1 —¢€)J) described above.
Then, in this expression, replace J by J /2, its approximate average through the path of integration.
Next, replace 1-¢ by its approximate average, (1-¢,), and finally, replace ﬂ" dy/de by
W,/ (E,—¢€.).



The units intended for use in all of the above equations are the following. cm/ps for D; Mbar
for stress: cal/mole K for entropy; Kelvin for temperature; cal/mole for dJ/ (p D) ; and cal/s.cm
for xX. When these units are used, \y comes out in units of 10!2 /s, which will ‘be used in the fig-

ures.

II. Results

Fig. 2 for Pt is reproduced here from Ref. 2 to show typical results through the shock front for
the temperature, entropy, 1. <t>, and W a function of € for a shock strength of 0.5 Mbar. The ver-
tical line labeled &, divides the (heat) conduction front from the plastic flow region. T can be cal-
culated in the former but only its average can be obtained in the latter, as mentioned previously.
Plastic flow is assumed to occur only in the flow region.

The remaining figures are arranged for the display and interpretation of the average deviatoric
stress <T>, obtained by the heat of plastic work. This quantity is, in effect, averaged with respect
to plastic strain through the plastic region. The other quantities are given to help understand the
conditions under which <> arose. For consistency, they should also be averages through the plas-
tic flow region. However, in preliminary calculations, when the quantities G, P. T. and T, were
average d with respect to y and €, the results differed by only a few percent from the values taken
at the point along the shock path where one-half of the final plastic strain is achieved. Based on
this similarity. for simplicity. all quantities given to help interpret <t> are taken at this point,
labeled by d. They can be considered to be very good approximations to averages through the
plastic flow icgion. Hugoniot pressures and total strains are also given in figures to show what
shock strengths are involved.

As described earlier, the plastic strain rate was averaged three different ways. The first two,
yielding <>, and <y>, involve averaging approximate strain rate values through the shock
front using total and plastic strains as weighting factors. These two versions are seen in the
remaining figures to be similar. The third way prcduced <Vy>, of Eq. (21), which is an approxi-
mate version of <\>_. In the figures, this version is seen to depart from the other two for weaker
shock waves. All three of these versions depend upon using <t> in place of 7 itself in Eq. (20)
describing dissipation, since T itself cannot be calculated with sufficient accuracy.

In the figures, the label log<dy/dt> on the y-axis is used to denote these three averages.
Table 1 gives the values of physical parameters used to generate the remaining figures.

The y, - value used for Fe (2.5) in the strong shock condition is the upper bound suggested by
Brown and McQueen.!3 This Y-value is close to that of the liquid state, whose y-value is
expected to be approximately that of the close-packed phases of Fe shocked above the transition
to the € -phase at 130 kbar. When the value 1.7, the lower bound of Brown and McQueen, was
used in the calculation, negative strain rates resulted due to the temperature at point ¢ (at the end
of the conduction-front portion) being already higher than that on the Hugoniot. The slope of the
temperature versus € plot was negative for the plastic flow regime. This indicates that 1.7 is too
low for strong shock waves.

The values used for G/B are those under ambient conditions. At first sight, values pertaining
to high compressions and temperatures might seem more appropriate. However, it is very impor-
tant in the calculation to accurately calculate the (initial) thermal conduction portion of the shock
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path to get an accurate temperature at point ¢, where the plastic flow portion begins. This temper-
ature value, together with the temperature on the Hugoniot, determine the plastic flow. It is the G/
B behavior closer to ambient conditions that is important for the conduction front and for the tem-
perature at point c. When values for G/B appropriate for strong compressions, i.e., lower values,
were tried in the calculation, negative plastic strain rates resulted due to T_ being already higher

than the temperature on the Hugoniot. .

Quantity 1100 Al | 2024 Al | Cu Fe Ta U
AW (gm/mole) | 27.0 270 | 6354 | 5585 | 180948 | 23804 |
c(cmALs) 0.5386'! | 0.5328!2 | 0.3933!! | 0.3955!3 | 0.3293!! | 0.24874
s 1.339!1 | 1.338!12 | 1.50!! 1.580'3 | 1.307!! | 220
Po (gm/em’) 271311 2785 |8.93310 |[7.8710 [1675'0 |19.07

Y 2.0 2.0 2.0 2.513 1.7 2.1

G/B 0.34 0.34 0.35 0.5 0.36 0.75

po (gm/cm’) 273410 [ 273410 90210 [79210 16810 |192
T(po) 2.3 2.3 1.6 11.3 6.8 12.4
(lO'4 cal/moIeKz)

g 2/3% 2/36 2/3% 5136 5136 7736

Psm (gm/cm’) 254210 | 254210 (844010 |7.25410 [153 17.5
Tn(Psm) (K) 933.0!" {933.0'0 [1357.0'0 | 1809.0'0 | 3287.0'0 | 1407.0
Yo 2210 2210 2,010 1.7'0 1.6'0 2.1

K (cal/s cm K) 1.1 1.0 1.8 0.2 0.3 0.2

Table 1: Material Parameters Used in Calculation Through Shock Front. p,, is at zero temperature
and pressure. The initial temperature for the shock front calculation was taken to be 20°3K. All
unreferenced values are private communications from D. C. Wallace.

To assess the sensitivity of the results to the values of G/B and 7, these values were varied
about the standard values in Table 1. Changing G/B by 10% produced the variation in <t>/G4 of
5 to 10% and prnduced the variation in log <\>,, of a few percent. An exception occured for Cu
for the strongest shock calculated, for which the 10% change in G/B produced a 4% variation in
<\>,. Changing Y by 10% produced the variation in <t>/G, of 2 through 4%, except for Fe
and Ta for which the 10% change in y produced the variation in <t>/G, of 5 through 10%. The
10% change in y produced for most materials the variation in log <>, of only a few percent,
except for Cu for the strongest shock calculated, for which this quantity varied by 7%.
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Table 2 gives values of €, and Py, the compression and pressure at the overdriven threshold,
where the strong shock theory breaks down. From this table, the reader can judge how closely the
overdriven threshold has been approached in the figures. Except for Cu and Ta, it was not
approached very closely.

Quantity 1100 Al | 2024A1 | cCu Fe Ta U
& 0127 0127 |0.116 |0.143 |0.136 |0.133
P, (Mbar) 0.146 [0146 |0235 [02903 |0366 |0314

Table 2: €, and P, the compression and pressure at the overdriven threshold for the six metals.

Figures 3 through 7 show calculated results for 1100Al. All but Figure 7 involve (t) and
<dy/dr>, which are averages through the plastic flow region, and involve quantities labeled
with a d-subscript, which are good approximations to averages through the plastic flow region, as
discussed earlier. <T>/G is presented since T is commonly recognized to scale with G. Figure
7 gives part of the Hugoniot to show the final strength of the shock waves from which the other
quantities were taken. The shock strengths of Fig. 7 are the same ones used in Figs. 3 through 6.
The same is true for the corresponding figures for the other materials.

The iemperature plots show that the calculations were extended up to the paint where melting
occurred at the point of half-final plastic strain. Melting occurred sooner than this on the Hugo-
niot, of course.

Figures 8 through 12 show corresponding results for 2024 Al. They strongly resemble those
for 1100 Al, since the physical properties of the two are similar.

Figures 13 through 18 show results for copper. Note in Fig. 13 that the estimate for log
taken from Eq. (21) departs, for the weaker shock waves near the overdriven threshold, signifi-
cantly from the two numerical averages. This shows that the estimate of Eq. (21) departs from the
other estimates near the overdriven threshold, where the general theory breaks down.

Figure 18 has log scales on both axes to show that <dy/dr> and <t> /G 4 roughly obey a
power law. The five square symbols lower down are data of Clifton et al.!’ from pressure-shear
plate-impact experiments. Note that these data and the calculated strong shock points seem to
approximately follow a power law. This feature offers a way of modeling both sets of data points.

Figures 19 through 23 show results for iron. Note that the estimate (21) for log { departs
radically from the two numerical averages for the lowest shock pressure, which is somewhat
close, but not right on top of, the overdriven threshold. The value for v, for iron under ambient
conditions produced unphysical results in the calculation. The value apprOpnate to close-packed
phases was used, which is close to that of the liquid. Since iron undergoes phase transitions to
close-packed phases at the shock strengths calculated here, the close-packed value is the appropri-
ate one. The error analysis did not show large sensitivity when variations about this value were
made.

12



Shock Results for 1100 Aluminum
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Fig. 3. Average (through shock path) plastic strain rate versus average deviatoric stress divided by
Gq for various shock strengths for 1100 Al. The squares, triangles, and circles correspond to strain
rates averaged using Eq. (21), averaged numerically using the volumetric strain, and using the

plastic strain, respectively.
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Fig. 4. Plastic strains (circles) and volumetric strains (squares) at the point of half-total plastic
strain along the shock path plotted versus the pressure at this point for 1100 Al.
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Fig. 5. The shear modulus (circles) and the bulk modulus (squares) at the point of half-total plastic
strain plotted versus the pressure at this point for 1100 Al.
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Fig. 6. The melt temperature (circles) and temperature (squares) at the point of half-final plastic
strain plotted versus the pressure at this point for 1100 Al.
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Shock Results for 2024 Aluminum
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Fig. 8. Average plastic strain rate versus average deviatoric stress divid. .| b G, for various shock
strengths for 2024 Al. Averages are through the shock path. The square s, triangles. and circles

correspond to strain rates averaged using Eq. (21), using the volumetric strain, and using the plas-

tic strain, respectively.
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Fig. 10. Tke shear modulus (circles) and the bulk modulus (squares) at the point of half-final plas-
tic strain plotted versus the pressure at this point for 2024 Al.
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Fig. 11. The melt temperature (circles) and temperature (squares) at the point of half-final plastic
strain plotted versus the pressure at this point for 2024 Al.
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Fig. 12. Hugoniot pressure plotted versus volumetric strain for the same shock waves used to gen-
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18



Shock Results for Copper
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Fig. 13. Average plastic strain rate versus average deviatoric stress divided by G4 for various
shock strengths for Cu. Averages are through the shock path. The squares, triangles, and circles

correspond to strain rates averaged using Eq. (21), averaged numerically using the volumetric
strain, and using the plastic strain, respectively.
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Fig. 14. Plastic strains (circles) and volumetric strains (squares) at the point of half-total plastic
strain along the shock path plotted versus the pressure at this point for Cu.
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Fig. 15. The shear modulus (circles) and the bulk modulus (squares) at the point of half-final plas-
tic strain plotted versus the pressure at this point for Cu. These quantities are very good approxi-
mations to averages through the shock path with respect to plastic or volumetric strain.
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Fig. 16. The calculated melt temperature (circles) and temperature (squares) at the point of half-
final plastic strain plotted versus the pressure at this point for Cu.
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to generate he earlier figures for Cu.
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Fig. 18. Average plastic strain rates plotted versus average deviatoric stresses divided by G4 for

Cu. Averages are through the shock path. The five pluses are pressure-shear data. The other

points are the same as those of Fig. 13.

21



Shock Results for Iron
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Fig. 19. Average plastic strain rate versus average deviatoric stress divided by G, for various
shock strengths for Fe. Averages are through the shock path. The squares, triangles, and circles
correspond to strain rates averaged using Eq. (21), using the volumetric strain, and using the plas-
tic strain, respe:tively.
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Fig. 20.  Plastic strains (circles) and volumetric strains (squares) at the point of half-total plastic
strain along the shock path plotted versus the pressure at this point for Fe.
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Fig. 21. The shear modulus (circles) and the bulk modulus (squares) at the point of half-final plas-
tic strain plotted versus the pressure at this point for Fe.
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Fig. 22.  The calculated melt temperature (circles) and temperature (squares) at the point of
half-final plastic strain plotted versus the pressure at this point for Fe.
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Fig. 23. Hugoniot pressure plotted versus volumetric strain for Fe for the same shock waves used
to generate the earlier figures for Fe.



Shock Results for Tantalum
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Fig. 24. Average plastic strain rate versus average deviatoric stress divided by G, for various
shock strengths for Ta. Averages are through the shock path. The squares, triangles, and circles
correspond to strain rates averaged using Eq. (21), using the volumetric strain, and using the plas-
tic strain, respectively.
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Fig. 25. Plastic strains (circles) and volumetric strains (squares) at the point of half-total plastic
strain along the shock path plotted versus the pressure at this point for Ta.



Fig. 26. The shear modulus (circles) and the bulk modulus (squares) at the point of half-final plas-
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Fig. 28. Hugoniut pressure plotted versus volumetric strain for the same shock waves used to
generate the earlier figures for Ta.
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Shock Results for Uranium
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Fig. 29.
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Average plastic strain rate versus average deviatoric stress divided by G4 for various

shock strengths for U. Averages are through the shock path. The squares, triangles,
and circles correspond to strain rates averaged using Eq. (21), using the volumetric
strain, and using the plastic strain. respectively.
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Fig. 30. Plastic strains (circles) and volumetric strains (squares) at the point of half-total plastic

strain along the shock path plotted versus the pressure at this point for U.
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Fig. 31. The shear modulus (circles) and the bulk modulus (squares) at the point of half-final plas-
tic strain plotted versus the pressure at this point for U.
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Fig. 32. The calculated melt temperature (circles) and temperature (squares) at the point of half-
final plastic strain plotted versus the pressure at this point for U.
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Fig. 33. Hugoniot pressure plotted versus volumetric strain for the same shock waves used to
generate the earlier figures for U.
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Fig. 34. Average plastic strain rate «‘i’)v) versus average deviatoric stress divided by G4 for
* various shock strengths for the six metals. Averages are through the shock path using the plastic
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Figures 24 through 28 show results for tantalum. These were somewhat sensitive to varia-
tions in vy but not enough to warrant concern.

Figures 29 through 33 show results for uranium. These results were fairly robust against vari-
ations in physical parameters in the calculation.

Figure 34 shows <> plotted versus <1>/G; for all the metals together. This plot shows
the degree of universality exhibited by these quantites.

II1. Conclusions

Calculated results using Wallace's strong shock theory are given in this document for a variety
of metals. The results are not as firm as one would wish due to lack of complete knowledge of
thermoelasticity at megabar pressures. However. the underlying theory is sound and the error
analysis shows acceptable sensitivity to the thermoelastic modeling. These two features. coupled
with the opportunity of obtaining for the first time a glimpse of strain-rate plasticity effects under
these extreme conditions, justifies this effort to make these results more widely available.
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