MCNP: Criticality Safety
Benchmark Problems
John C. Wagner
James E. Sisolak
Gresg W. McKinney

MASTER

ERRATA

MCNP: CRITICALITY SAFETY BENCHMARK PROBLEMS
 LA-12415

1. Figure 1 on page 10 :

The dimension of 26.02 cm should be 23.775 cm .
2. Figure 4 on page 16 :

The four metal units in Fig. 4 are beside the four solution units (not inside as the figure may imply), with a separation of 1.557 cm .
3. Figure 9 on page 23:

The regions surrounding the uranyl nitrate solution and indicated as "water" are actually "water vapor."
4. Figure 10 on page 24 :

All references to uranyl "nitrate" should be changed to uranyl "fluoride."
5. Page 25:

All references to uranyl "nitrate" in the description of Problem \#20 should be changed to uranyl "fluoride."
References which could have been cited for Problem \#20 are ORNL-2367 and LA-10860-MS.
In the description of Problem \#21, the atomic ratio of " 1099 " should be " 997 ."
6. TABLE I on page 28:

For case 15 , the results are: $1.0016,0.0011,1.0020,0.0012,0.0,0.2$, and 0.2 .
For case 18 , the results are: $1.0302,0.0013,1.0084,0.0013,2.2,{ }^{*}$, and *.
7. TABLE II on page 29:

For case 1 , the results are: $0.9960,0.0009,0.9996,0.0011,-0.3$, and -0.3 .
For case 15, the results are: $1.0294,0.0010,1.0020,0.0012,2.7$, and 2.9 .
For case 18 , the results are: $1.0670,0.0011,1.0084,0.0013,5.8$, and *.
8. TABLE III on page 31 :

For case 15 , the results are: $1.0016,0.0011,1.0189,0.0012,0.0,1.7,0.2$, and 1.9 .
For case 18 , the results are: $1.0302,0.0013,1.0479,0.0012,2.2,3.9,{ }^{*}$, and ${ }^{*}$.
9. Page 33:

Under the heading Experimental Results, "Ref. 21" should read "Ref. 20."
10. Figure 20 on page 43 :

The reference to uranyl "nitrate" should be changed to uranyl "fluoride."
11. Page 46 :

Reference 21, $\mathbf{1 7}$ should read $\mathbf{7}$.
12. Figure A20 on page 77 :

The reference to uranyl "nitrate" should be changed to uranyl "fluoride."
13. TABLE B1 on page 89 :

For case 15 , the results are: $1.0025,0.0010,1.0020,0.0012,0.0,0.2$, and 0.2 .
For case 18, the results are: $1.0287,0.0013,1.0084,0.0013,2.0,{ }^{*}$, and *.
14. TABLE B2 on page 90 :

For case 1 , the results are: $0.9960,0.0009,0.9996,0.0011,-0.3$, and -0.3 .
For case 15, the results are: $1.0292,0.0010,1.0020,0.0012,2.7$, and 2.9 .
For case 18 , the results are: $1.0670,0.0011,1.0084,0.0013,5.8$, and *.
15. TABLE B3 on page 91:

For case 15 , the results are: $1.0025,0.0010,1.0189,0.0012,0.0,1.7,0.2$, and 1.9 .

MCNP: CRITICALITY SAFETY BENCHMARK PROBLEMS

by
John C. Wagner, James E. Sisolak, and Ciregg W. McKinney

Abstract

This report investigates the suitability of the general purpose Monte Carlo transport code MCNP for criticality safety calculations. The increased use of radiation transport codes for criticality prołlems has produced a greater user and institutional demand for assurances that such codes give correct results. Responding to these requirements for code validation, MCNP has been benchmarked against the KENO standard test set. MCNP results are compared to KENO calculations, as well as experimental results, where available. A comparison of MCNP continuous energy and multigroup results indicates that the continuous energy cross sections are more accurate, and MCNP successfully predicts the experimental results, in some cases better than KENO, within the expected data and statistical uncertainties. This benchmark study demonstrates that MCNP can accurately and efficiently model a relatively broad spectrum of criticality problems.

I. INTRODUCTION

A. The MCNP Benchmark Project

This document is the third in a series of LANL reports benchmarking the MCNP Monte Carlo ccinputer code. ${ }^{1}$ The first two documents, LA-12196, ${ }^{2}$ and LA-12212, ${ }^{3}$ demonstrate that MCNP accurately models analytic problems and a wide variety of photon and : eLiton experiments. ${ }^{4,5}$ This document demonstrates that MCNP can accurately r.odel experimental criticality problems and produce results consistent with the KENO Monte Carlo criticality code. An additional report published by General Electric Nuclear Energy, "MCNP: Light Water Reactor Critical Benchmarks," ${ }^{6}$ complements this report and demonstrates MCNP's applicability to light water reactors.

For the most part, the two companion reports, LA-12196 and LA-12212, model the same problems chosen to benchmark the COG Monte Carlo code developed at Lawrence Livermore National Laboratory. ${ }^{7}$ The nine criticality problems reported in LA-12212 are the only serious departures from the set chosen for the COG benchmarks. The General Electric Nuclear Energy report, on the other hand, models a unique set of critical systems encompassing various temperatures and fuel types.

This report deals exclusively with criticality and models 25 sample problems used to test the KENC Monte Carlo code. These sample problems constitute the KENO standard benchmark set and represent a relatively wide variety of criticality problems. ${ }^{8}$ The KENO Monte Carlo code was chosen because of its extensive benchmarking against analytical and experimental criticality results. Although the uncertainty in the experimental parameters prohibits code validation to better than about 1% in $k_{e f f}$, the value of $k_{e f f}$ for criticality is considered unacceptable if it deviates more than a few percent from measurements. ${ }^{9}$ It is essential that the computational methods used for nuclear criticality safety purposes be sufficiently accurate that one can be confident of subcriticality when adequate safety margins are applied. In almost all cases presented here, the MCNP calculated results are as good as: or better than, those of KENO and as accurate as could be reasonably expected in a numerical solution.

B. Motivation for Investigation

The reasons for a code validation are numerous. In the past, criticality safety information applicabie to the handling and storage of fissile materials was obtained from critical experiments, nuclear safety guides, and handbooks based on critical experiments or various computer codes. Because critical experiments are costly and require a substartial amount of time, and because many of the critical experimental facilities have been closed, increasing reliance has been placed on computational methods. Presently, the KENO Monte Carlo criticality code is the most, widely accepted and used tool for criticality safety calculations. With the increased reliance on computational methods comes the need and requirement for redundant validation by alternate criticality codes. For MCNP to be accepted by the criticality safety community in this role, it must be able to produce results that are consistent with KENO.
This investigation shows that MCNP can accurately reproduce the KENO results for the standard benchmark set and is an excellent tool for criticality safety calculations, in addition to being a general, multi-purpose Monte Carlo code.

C. Outline

This paper is organized as follows: Section II presents an overview of the MCNP and KENO transport codes used for the benchmark, such as the differences in the MCNP and KENO cross-section libraries. A brief explanation of the common input parameters for both codes is given in Section III, and a brief description of each sample problem is provided in Section IV. Section V contains the benchmarking results, and Section VI discusses various aspects of these results. The conclusions of this investigation are located in Section VII. MCNP input files are presented in Appendix A, giving an unambiguous description of the critical configurations.

II. OVERVIEW OF MCNP/KENO

This benchmark consis'ed of comparing results from KENO V.a installed on a Cray X-MP (CTSS operating system), and from MCNP version 4.2 instalied on a Cray Y-MP (UNICOS operating system). The KENO 25 problem benchmark set provided with the version V.a manual was converted to MCNP input files for
comparison. Although some inputs are designed to demonstrate KFNO V.a features, such as the restart feature, not directly related to calculating $k_{c f j}$, these were also converted to MCNP format to illustrate that many of the sume features are available in MCNP criticality computations.

A. Sample Problems

1. MCNP

Appendix A contains the MCNP input files for all 25 problems; these are discussed individually in Section IV. In $m \cdot y$ cases there are several equivalent translations of the KENO inputs, all of whin model the same physical system. In these cases, a choice had to be madr whether to specify the geometry using M(NP's repeated structures capability, or to model each geometric unit separai.ely: Many problems were :un with several equivalent seiups; $k_{e f f}$ valuer, calculaied with alternate geometry specifications hal no statistically signifi ant differrnces. The input files in Appendix A do not necessarily use the simplest possible geometry specification but instrad duplicate the geometry features employed in the KENO inputs. Wherever possible, a description of the actual experiment was. ased to verify the geometry specificat:on and results. In addition, all volumes anc matrrial densities calculated by KENO and MCNP were compared to ensure "onsistencv.

MC:NP benchmarks were performed with both version 4.2 (latest publicly released version) and version $4 \mathrm{x}-\mathrm{c}$ (a preliminary version of MCNP4A and the LANL "floor version' at the time of publication). All results presented in Sections V and VI are based upo version 4.2. For each version, three cases were considered:
(1) continuous energy
(2) multigroup (30 energy groups)
(3) continuo! energy with $S(\alpha, \beta)$ thermal scattering

The inputs located in Appendi: A correspond to case 3.

2. KENO

Most of the 25 problems in the KENO V. a^{d} manual model criticality experiments performed at Oak Ridge National Laboratory. KENO results based on these input files appear in Ref. i0. These results were duplicated exactly by running the 25 problem benchmark set on a Cray X-MP. As discussed below, the KENO files were then changed to specify a larger number of histories, and a second set of results
generated. The comparison between MCNP and KENO is based upon this second set of numbers; Ref. 10 served only to verify that KENO was being run properly.

KEN() can be run either "stand-alone" o، as part of the SCALE package. SCALE provides facilities for, among other things, cross-section processing and criticality bearches. MCNP was compared to stand-alone KENO results since a direct comparison between the criticality codes was the emphasis of this benchmark exercise.

B. Cross Sections

1. MCNP

All continuous energy inputs were run with the "recommended" cross-section set (i.e., atomic identifiers ending with $.50 c$, based on ENDF/B-V as processed by the NJOY code). For the nuclides used, these cross section sets are flagged in Appendix G of the MCNP User's Manual, Version 3A, ${ }^{1}$ as the best available data. Multigroup inputs also used ENDF/B-V data, which was accessed by simply adding a single input card ' $\mathbf{M G O P} \mathbf{\prime} \mathbf{F} \mathbf{F} 30$) to the MCNP continuous energy input files. ${ }^{11,12}$ This addition is the only difference between continuous energy and multigroup input files. Muitigroup runs serve two purprses: (1) to benchmark the multigroup feature of MCNP for criticality calculations, and (2) to generate $k_{e f f}$ from a library more comparable to that used by KENO, which does not employ continuous energy cross sections. The MCNP multigroup library has 30 energy groups, whereas the HansenRoach library used by KENO (see below) has 16 groups. ${ }^{13}$

The third set of MCNP results employed the $S(\alpha, \beta)$ treatment to hydrogen cross sections in water and paraffin to account for molecular scattering of thermal neutrons. Since MCNF lacks $\mathrm{S}(\alpha, \beta)$ information for paraffin, polyethylene was used instead, because it is the best available match for paraffin. Although the use of polycthylene as a substitute for paraffin is questionable, it did improve the MCNP results relative to both KENO and experimental values.

All cross sections, including those for $S(\alpha, \beta)$, were taken at a temperature of 300 K . Appendix G of the MCNP User's Manual ${ }^{1}$ contains additional information about MCNP cross sections. Note that the $\mathrm{S}(\alpha, \beta)$ thermal scattering treatment is not available with the MCNP multigroup cross sections.

Ideally, MCNP multigroup results should have been based upon the HansenRoach library, to enatle a more direct comparison with KENO; however, at the time of this writing, an acceptable library does not exist in a form suitable for MCNP. ${ }^{13}$

All MCNP $k_{e f f}$ values reported herein used the covariance-weighted combined $k_{\text {eff }}$ estimator. MCNP generates the following estimates of $k_{e f f}$: collision, absorption, track length, and covariance-weighted combinations of the first three (collision/absorption, absorption/track length, track length/collision, and collision/absorption/track length). The last covariance-weighted combination is quoted in this report, because it is the most widely used estimator in the absence of other information and because it incorporates all the $k_{e f f}$ estimates generated by MCNP. MCNP provides correlation coefficients to help choose the optimal estimator. Although the optimal estimator is problem dependent, a single estimator was used for the benchmark to eliminate ambiguity.

2. KENO

Several cross-section libraries in the AMPX format are available for use with the SCALE package; however, only the Hansen-Roach 16 group library can be used if KENO is run stand-alone. Aside from the group structure, there is an important difference between the MCNP and Hansen-Roach multigroup cross sections. The Hansen-Roach library contains several entries for each isotofe, differentiated by a σ_{p} (potential scattering cross section) value. When selecting cross sections for isotopes in a mixture, it is necessary to calculate σ_{p} for that mixture and choose the corresponding cross section from the Hansen-Roach library. Note that σ_{p} will be different for each resonance absorber in the mixture. This treatment accounts for resonance self-shielding (reduced absorption at lower energy resonances caused by a dip in the neutron energy spectrum that is produced by a strong higher energy resonance) and is described in Ref. 14.

Several KENO input files employ the σ_{p} adjusted U^{235} and U^{238} cross sections, whereas MCNP multigroup cross sections, as processed by NJOY, are based on an infinitely dilute absorber approximation ($\sigma_{p}=\infty$).

III. GENERAL INPUT PARAMETERS

Every effort was made to reproduce the KENO input files as closely as possible. In particular, the number of particles per cycle and the number of cycles sampled are consistent. As a result, the variances of the KENO and MCNP results were of the same order of magnitude ($\approx 0.3 \%$).

A. MCNP

All MCNP input files share the following common features:
MODE n: mode card
Neutron transport only was considered; in particular, photon production was ignored, since the benchmark comparison involved only $k_{e f f}$ values. KENO will not track photons. If desired, however, photon production could be included with MCNP.

M n [isotope] [isotope fraction]: material card
The number densities for all isotopes were taken directly from the KENO inputs. These were added together and the total number density entered on the cell cards. The values on the material cards are isotope fractions which sum to 1.0 .

MTn [material]: $\mathrm{S}(\alpha, \beta)$ material card
Input files for continuous energy and continuous energy with $\mathrm{S}(\alpha, \beta)$ thermal scattering differ only by the presence of MTn card(s). Here, n corresponds to the material card, Mn. which contains water or paraffin. As noted, the $\mathrm{S}(\alpha, \beta)$ treatment was applied only to hydrogenous materials. For water, the material specification is LWTR.01T; for paraffin, it is POLY.01T (polyethylene).

F4:n: tally card
While computing $k_{e f f}$, MCNP tallied the average flux in the fissile cells. In addition to providing insight into the problem, this tally duplicated the flux calculations performed by KENO on some of the sample problems. The energy bins used for this tally were chosen to match the Hansen-Koach group structure used in the KENO runs.

KCODE 30001.0202004500 0: criticality card
Each KCODE cycle consisted of approximately 3000 neutrons (the exact number varied slightly from cycle to cycle) started at source points determined in the previous cycle. The initial guess for $k_{\text {eff }}$ for all problems was 1.0. In most cases, the computed value was near 1.0 , and for the few exceptions, notably problems 6 and 9, a guess of unity proved sufficient. Results were based on 200 total cycles, the first 20 of which were skipped before tallying began (to ensure that the source distribution had stabilized). The only exception to the above is problem 11, which is a restart using data from cycle 50 of problem 10 (see Section IV). Originally, the
problems were run with 50 cycles, of which the first 10 were skipped. Extended calculations were performed to verify the stability of $k_{c f f}$.

SDEF [parameters vary]: source definition cara'
With an SDEF card, a Watt fission spectrum and an initial source distribution (uniform in each fissile cell) could be specified. A uniform source was used instead of the KSRC card to mimic KENO; as a default, KENO employs a uniform initial source in any cell containing fissionable material. Two exceptions were made (problems 13 and 16), as discussed below. If E is the neutrois energy in MeV and $p(E) d E$ is the probability of a neutron being born in the range $d E$ about E, then the Watt fission spectrum is:

$$
p(E)=C \exp (-E / a) \sinh (b E)^{1 / 2}
$$

where

$$
a=0.965 \mathrm{MeV} ; b=2.29 \mathrm{MeV}^{-1} .
$$

These particular values for a and b do not appear in the input files, since they are MCNP defaults; C is a normalization constant. MCNP uses the Watt spectrum by default if the initial source is specified on a KSRC card, but a KSRC card cannot provide a volumetric source.

MGOPT F 30: multigrcup option card
Input files for continuous energy and multigroup differ only by the presence of this card, which selects the MCNP 30 group cross-section library.

PRDMP $\mathbf{j} \mathbf{j} \mathbf{1} \mathbf{j}$: print and dump cycle card
The prdmp card was added to produce an mctal file for future reference. A plot of $k_{e f f}$ vs. cycle can be generated from this file using mcplot.

PRINT: print card
This card simply generates full output for later reference.
With few exceptions, explained in Section IV, little effort was invested in the use of variance reduction techniques, since the focus of this benchmark exercise was on accuracy not speed. When properly used, of course, variance reduction will not produce statistically significant changes in $k_{e f f}$.

B. KENO

Most of the KENO benchmark input. files use defaults for the number of cycles (103), the number of cycles to skip before tallying (3), and the number of particles per cycle (300). These values produced large variances and, more importantly, 3 cycles were insufficient to converge the fission source. Therefore, KENO was rerun with the same parameters used in the MCNP input files (3000 particles per cycle and 200 cycles, of which the first 20 are skipped - see subsection III.A above). Note that in the KENO nomenclature, a cycle is referred to as a generation.

As noted above KENO uses a uniform source in each fissile cell for the first cycle. A uniform source is not always a good approximation, but it was adequate for all of the sample problems. Both MCNP and KENO provide for the entry of arbitrary initial sources; the choice of a uniform volume source was simply a matter of convenience. Several runs have verified that, with the above parameters, the converged value for $k_{e f f}$ is insensitive to the initial source distribution.

IV. BENCHMARK PROBLEM DESCRIPTION

This section contains a brief description of each of the 25 sample problems that make up the KENO standard benchmark set. For clarity, the title of each sample problem is taken directly from the KENO V.a manual. The purpose of these sample problems for KENO was twofold: (1) to benchmark the code against criticality experiments and (2) to demonstrate various options of the KENO code. The interested reader can find the associated input data in Appendix D of Ref. 8.

Sample Problem \#1-2C8 Bare

This problem is a simple unreflected 2 x 2 x 2 array of 93.2% enrished uranium metal cylinders as described in Ref. 15. Figure 1 shows the critical experiment. The cylinders exhibit a surface separation of 2.244 cm in the x and y directions and 2.245 cm in the z direction, and are 10.765 cm in height and 11.496 cm in diameter. The cylinders and the cuboids in which they are contained are referred to as 2 C units. The entire array of 2 C units is referred to as a 2 C 8 unit.

This problem was utilized by KENO to demonstrate the array data card. Therefore, the repeated structures capability of MCNP was employed in the input for this problem.

Fig. 1. Critical 2C8 Bare Assembly

Sample Problem \#2 - Case 2C8 Bare with 8 Unit Types Matrix Calculation

This problem is the same as problem 1 except that the geometry is set up explicitly. More specifically, each cylinder and unit are defined separately. The corresponding MCNP input duplicated the KENO input by also deining each cylinder or unit separately.

Sample Problem \#3-2C8 15.24 cm Paraffin Reflector

This problem involves a $2 \times 2 \times 2$ array of 93.2% enriched uranium cylinders that is reflected by 15.24 cm of paraffin on all six faces. The components of this critical experiment are designated in Table II of Ref. 15. An illustration of this critical experiment is shown in Fig. 2. These cylinders are also 10.765 cm in height and 11.496 cm in diameter, but their surface separation has been increased to approximately 11.98 cm .

Sample Problem \#4-2C8 15.24 cm Paraffin Reflector Automatic Reflector

This problem is the same as sample problem 3 except for the paraffin specifications. The materials and geometry are exactly the same.

KENO uses this problem to demonstrate its automatic reflector option, which is an input feature that allows the assignment of different importances to different regions of the reflector. Although MCNP does not offer an option such as this, the KENO input was duplicated ky manually specifying the importances of the various regions. The only differences between the MCNP problem \#3 input and this input are the importances of the various regions.

Sample Problem \#5-2C8 12 inch Paraffin Albedo Reflector:

This problem is the same as problems 3 and 4 except that the reflector is represented by 30.48 cm of paraffin. This problem was designed tos demonstrate KENO's paraffin albedo. The KENO input for this problem was duplicated in MCNP by simply increasing the reflector thickness of problem 3 from 15.24 cm to 30.48 cm .

Fig. 2. Critical 2 C 8 Assembly with Paraffin Reflector

Sample Problem \#6 - One 2C8 Unit (Single Unit)

This problem involves a single unreflected uranium metal cylinder, as shown in Fig. 3. This cylinder is characterized by the same enrichmen: and dimensions as the cylinders in the earlier problems.

Sample Problem \#7-Bare 2C8 Using Specular Reflection

This problem is designed to simulate problems 1 and 2 , usir ; specular reflection. It involves one of the 2 C units that were used in problems 1 and 2, with specular reflection on the positive x, y, and z faces of the unit.

MCNP and KENO are both capable of applying a specularly reflective boundary condition to any surface.

Sample Problem \#8 - Infinitely Long Cylinder from 2C8 Unit

This problem is designed to simulate an infinitely long cylinder. ${ }^{15}$ The material and cylinder radins from sample problem 1 are used. The length of the cylinder was arbitrarily chosen to be 20 cm , and the unit is specularly reflected on the top and bottom.

Sample Problem \#9 - Inflnite Array of 2C8 Units

This problem involves one of the 2 C units used in problem 1 and specular reflection to simulate an infinite array of 2 C 8 units. The parallelpiped containing a single uranium cylinder is specularly reflected on all faces to create an infinite array of 2 C 8 units having an edge-to-edge spacing of 2.244 cm in the x and y directions and 2.245 cm in the z direction.

Sample Problem \#10-2C8 Bare Write Restart

This problem is the same as problem 1, a $2 \times 2 \times 2$ array of uranium metal cylinders, except it is set up to write restart information on every fifth cycle which is the method that is used by KENO to prepare for a continuation of a run. KENO does not automatically write restart information; the default parameter must be changed, as it was in this particular problem.

Fig. 3. One 2C Unit, Single Uranium Metal Cylinder

Sample Problem \#11-2C8 Bare Read Restart Data

This problem is a restart of sample problem 10. The problem is restarted from the 10 th set of restart data (50 th cycle), which was written by sample problem 10 , and run out to the 200th cycle.

While problems 10 and 11 were designed to demonstrate the restart capabilities of KENO, they are not necessary for MCNP. MCNP does not require separate restart data input. It writes the restart data automatically, so that the restart information is available if it is required.

Sample Problem \#12-4 Aqueous 4 Metal

This problem consists of a composite array of four highly enriched (93.2\%) uranium metal cylinders and four cylindrical Plexiglas containers filled with a highly enriched (92.6%) uranyl nitrate solution. The relevant experimental information describing this critical experiment can be found in Ref. 15. An illustration of this experiment is located in Fig. 4.

Sample Problem \#13 - Two Cuboids in a Cylindrical Annulus

This critical experiment consists of two assemblies of highly enriched (93.2\%) uranium metal stacked vertically. ${ }^{16}$ The bottom assembly contains a uranium metal cuboid offset to the right within a uranium metal cylindrical annulus. The top assembly contains a uranium metal cuboid offset to the left within a uranium metal cylindrical annulus. The cuboid extends above the annulus. A drawing of this configuration is given in Fig. 5. A point source at the center of the geometry was used in place of the uniform volume source for this problem.

Sample Problem \#14-U Metal Cylinder in an Annulus

This problem involves a highly enriched (93.2\%) uranium metal cylinder within a cylindrical annulus of the same material. ${ }^{16}$ The uranium metal specification is identical to that used in sample problem 13. A schematic of this critical experiment is located in Fig. 6.

Fig. 4. Critical Assembly of 4 Solution Inits and 4 Metal Units

Fig. 5. Critical Assembly of Two Cuboids in a Cylindrical Annulus

Fig. 6. Critical Assembly of a Cylinder within a Cylindrical Annulus

Sample Problem \#15-Small Water Reflected Sphere on Plexiglas Collar

This critical experiment is a small highly enriched (97.6%) uranium metal sphere supported by a Plexiglas doughnut in a tank of water. ${ }^{17}$ The sphere extends down through the doughnit, as shown in Fig. 7. The uranium sphere has a diameter of approximately 13 cm and is iocated in a cylinder of water that has a height of 44.1844 cm and a diameter of 65.94 cm .

The KENO V.a geometry package cannot rigorously describe a doughnut. Therefore, the KENO description of this problem models the doughnut as an annular cylindrical plate, and the sphere is supported by it. Modeling the torus as a cylindrical plate should not change the problem significantly since the material making up this doughnut is Plexiglas, and both the sphere and the doughnut are contained in a tank of water. Although the gcometry modeled by KENO was duplicated for this comparison, MCNP is capable of specifically describing the geometry of the experiment. For the sake of thoroughness, the experimental geometry in MCNP was modeled exactly, and the resulting $k_{e f f}$ values were found to agree within the statistics.

Sample Problem \#16- UO $\mathbf{2}_{2}$ Infinite Slab K-Infinity

This problem models an infinite number of slabs of uranyl fluoride solution contained in Pyrex glass and separated by borated uranyl fluoride solution. The uranyl fluoride slab is 4.958 cm thick, 93.2% enriched, and has a density of $578.7 \mathrm{~g} \mathrm{U} / \mathrm{liter}$. The Pyrex glass is 1.27 cm thick and is present on both faces of the uranyl fluoride solution. A total of 27.46 cm of borated solution separates the Pyrex glass of adjacent slabs of solution. Once again, the specularly reflective boundary condition was utilized to simulate the infinite array. Instead of a uniform volume source, the initial source consisted of one point in each slab of uranyl fluoride. An illustration of the unit that is reflected on ail sides is given in Fig. 8.

Sample Problem \#17 - 93\% UO $\mathbf{2}_{2} \mathbf{F}_{2}$ Solution Sphere Adjoint Calculation

This problem consists of a single 93% enriched uranyl fluoride sphere. The sphere is unreflected and has a diameter of 32.0 cm .

Fig. 7. Critical Assembly Consisting of a Uranium Spherc on a Plexiglas Collar with a Cylindrical Water Reflector

Fig. 8. Assembly Consisting of Glass and Solution Slabs

This problem demonstrates KENO's adjoint calculation option. The results for the forward and adjoint $k_{e f f}$ should be the same, within statistical error, when the problem is run both ways. Although MCNP is capable of performing an adjoint trancport calculation, it cannot perform adjcint $k_{e f f}$ calculations. ${ }^{18}$ Thus, only a forward calculation was performed and is reported for this problem.

Sample Problem \#18-1F27 Demonstration of Options

This problem involved a reflected cubic array of 27 cylinders of aqueous uranyl nitrate in Plexiglas bottles. ${ }^{19,20}$ The walls of the bottles were 0.64 cm thick, and each bottle was filled with 5.0 liters of 92.6% enriched sclution at an $\mathrm{H} / \mathrm{U}^{235}$ atomic ratio of 59 and an $\mathrm{N} / \mathrm{U}^{\mathbf{2 3 5}}$ atomic ratio of 2.006. The $3 \times 3 \times 3$ array was surrounded by a 15.24 cm paraffin reflector. An additional 30.48 cm water reflector, located on the negative z face of the paraffin, was simulated by KENO with the help of the albedo data card. An illustration of this experiment, excluding the water slab, is given in Fig. 9.

Besides describing a relatively complicated geometry, this problem was used to demonstrate the albedo boundary condition, as well as many of the print options that are available with KENO. Due to the fact that MCNP does not offer a water reflecting boundary condition, a slab of water was physically placed at that point in the geometry. Also. while MCNP has numerous print options of its own, print options were not the concern of this investigation.

Sample Problem \#19-4 Aqueous 4 Metal Array of Arrays

'This problem was previously described as sample problem 12. Although the critical experiment this problem models is the same, the KENO array of arrays option is utilized to describe the geometry. A similar method, namely repeated structures, is used in MCNP.

Sample Problem \#20 - Triangular Pitched Array

This problem represents a crit:cal experiment consisting of seven cylinders in a triangular pitched unreflected array. The central cylinder has six cylinders around it, as shown in Fig. 10. Each unit consists of a $0.152-\mathrm{cm}$-thick aluminum can with

Fig. 9. Paraffin Reflected 3x3x3 Array of Cylinders of Uranyl Nitrate

Fig. 10. Critical Assembly Consisting of Seven Cylinders of Uranyl Nitrate
a 20.32 cm inside diameter, filled with a solution of 93.2% emriched uranyl nitrate with a $\mathrm{H} / \mathrm{U}^{235}$ atomic ratio of 44.3 and a density of $576.87 \mathrm{~g} \mathrm{U} / \mathrm{liter}$.

nple Problem \#21 - Partially Filled Sphere

. his problem describes a critical experiment consisting of a partially filled unreflected spherical container. ${ }^{21}$ This aluminum container had an inside diameter of 69.2 cm and a wall thickness of 0.159 cm . The sphere was 98% filled with uranyl fluoride at an enrichment of 4.89% with an $\mathrm{H} / \mathrm{U}^{235}$ atomic ratio of 1099 . The height of the solution in the sphere was 64.6 cm above the bottom of the sphere. A diagram of the container is given in Fig. 11.

Sample Problem \#22 - Case 2C8 Bare with 3 Nested Holes; Each is Equal Volume

This problem describes the same critical experiment as sample problem 1. It is a $2 \times 2 \times 2$ array of highly enriched (93.2%) uranium metal cylinders. This problem defines a uranium cylinder in a void spacing cuboid using nested holes. Eight of these units are stacked together in a $2 \times 2 \times 2$ array.

Sample Protlem \#23 - Case 2C8 Bare as Mixed Zhemicylinders

The physical representation of this sample problem is the critical experiment described in sample problem 1. This problem describes each of the 8 units in the critical $2 \times 2 \times 2$ array using hemi-cylinders. The hemi-cylinders, with their axes paral'el to the z axis, are used to form the cylinders that make up problem 1 .

Sample Problem \#24 - Case 2C8 Bare as Mixed Xhemicylinders

The physical representation of this sample problem is the critical experiment described in sample problem 1. This sample problem describes each of the 8 units in the critical $2 \times 2 \times 2$ array using hemi-cylinders whose axes are in the x direction.

Fig. 11. Critical Assembly Consisting of a Bare Sphere Partially Filled with Uranyl Fluoride.

The physical representation of this sample problem is the critical experiment described in sample problem 1. This sample problem describes each of the 8 units in the critical $2 \times 2 \times 2$ array using hemi-cylinders whose axes are in the y direction.

V. RESULTS

The MCNP results for continuous energy, with the $\mathrm{S}(\alpha, \beta)$ thermal treatment, and the KENO results are given in Table I. The percent differences between the MCNP results and the KENO results, $100 \times\left(k_{M C N P}-k_{K E N O}\right) / k_{K E N O}$, are listed in the column labeled monp from keno. The percent differences between MCNP and the experimental results, where available, are listed in the column labeled menp from exp. The last column contains the percent difference between KENO and experimental results. All values of $k_{\text {eff }}$ for MCNP were generated by version 4.2 and correspond to the combined average of the collision, absorption, and track length estimators. Also, the two codes were run on different machines; KENO was executed on CTSS (Cray X-MP) while MCNP was executed on UNICOS (Cray Y-MP). This machine difference should not cause any significant discrepancies, because MCNP gives the same results on both machines.

The results for the multigroup MCNP and KENO are listed in Table II. The percent differences between MCNP and KENO, defined above, are located in the second column from the right. The percent differences between MCNP multigroup and experiment, where available, are listed in the last column. As mentioned earlier, the MCNP multigroup cross sections use thirty energy groups whereas KENO uses the sixteen group Hansen-Roach cross-section library.

A comparison of these MCNP results with the results irom MCNP version 4x-c can be found in Appendix B.

VI. DISCUSSION OF RESULTS

A. Multigroup Cross-Section Problems

Test problems 18 and 21 demonstrate that MCNP multigroup cross sections are not adequate for certain applications. Since the multigroup errors for these problems clearly exceed the statistical uncertainties of MCNP or KENO, further investigation was necessary.

TABLE I

$k_{\text {eff }}$ Values for KENO and MCNP Continuous Energy

with the $\mathbf{S}(\alpha, \beta)$ Treatment

case	MCNP ${ }^{\dagger}$		KENO		\%DIFFERENCE		
	$k_{\text {ce }}$	relative error	$k_{\text {keno }}$	relative error	menp from keno	$\underset{\text { exp }}{\text { menp from }}$	keno from \exp
1	0.9999	0.0009	0.9996	0.0011	0.0	-0.0	-0.0
2	0.9999	0.0009	0.9996	0.0011	0.0	-0.0	-0.0
3	0.9990	0.0011	1.0009	0.0013	-0.2	-0.1	0.1
4	0.9945	0.0028	1.0016	0.0015	-0.7	-0.5	0.2
5	0.9995	0.0027	1.0210	0.0009	-2.1	-0.0	2.1
6	0.7461	0.0010	0.7487	0.0015	-0.3	*	*
7	0.9993	0.0009	0.9984	0.0011	0.1	-0.1	-0.2
8	0.9401	0.0009	0.9430	0.0012	-0.3	*	*
9	2.2905	0.0005	2.2617	0.0004	1.3	*	*
10	0.9979	0.0014	0.9996	0.0011	-0.2	-0.2	-0.0
11	0.9979	0.0014	0.9982	0.0012	-0.0	-0.2	-0.2
12	0.9997	0.0012	1.0055	0.0013	-0.6	-0.0	0.6
13	0.9942	0.0009	1.0026	0.0012	-0.8	-0.6	0.3
14	0.9991	0.0009	1.0011	0.0010	-0.2	-0.1	0.1
15	1.0016	0.0011	1.0612	0.0020	0.0	0.2	0.1
16	0.9902	0.0009	0.9936	0.0007	-0.3	*	*
17	1.0029	0.0014	0.9783	0.0023	2.5	*	*
18	1.0302	0.0013	1.0088	0.0015	2.1	*	*
19	0.9997	0.0012	1.0044	0.0013	-0.5	-0.0	0.4
20	0.9960	0.0012	0.9791	0.0014	1.7	-0.4	-2.1
21	0.9962	0.0008	1.0012	0.0009	-0.5	-0.4	0.1
22	0.9992	0.0009	0.9996	0.0011	-0.0	-0.1	-0.0
23	0.9999	0.0009	0.9996	0.0011	0.0	-0.0	-0.0
24	0.9994	0.0008	0.9999	0.0011	-0.1	-0.1	-0.0
25	1.0004	0.0008	0.9987	0.0011	0.2	0.0	-0.1
* Experimental values of $k_{e f f}$ could not be located for these problems. \dagger Values reported are for the covariance-weighted combined estimator.							

TABLE II

$k_{\text {eff }}$ Values for KENO and MCNP Multigroup

	MCNP ${ }^{\dagger}$		KENO		\%DIFFERENCE	
case	$k_{m g}$	relative error	$k_{k \times n o}$	relative error	menp from keno	monp from exp
1	0.9971	0.0009	0.9996	0.0011	-0.3	-0.3
2	0.9960	0.0009	0.9996	0.0011	-0.4	-0.4
3	1.0199	0.0010	1.0009	0.0013	1.9	2.0
4	1.0166	0.0027	1.0016	0.0015	1.5	1.7
5	1.0187	0.0030	1.0210	0.0009	-0.2	1.9
6	0.7426	0.0008	0.7487	0.0013	-0.8	*
i	0.9966	0.0008	0.9984	0.0011	-0.2	-0.3
8	0.9357	0.0008	0.9430	0.0012	-0.8	*
9	2.2955	0.000 .5	2.2617	0.0004	1.5	*
10	0.9976	0.0014	0.9996	0.0011	-0.2	-0.2
11	0.9976	0.0014	0.9982	0.0012	-0.1	-0.2
12	1.0013	0.9012	1.0055	0.0013	-0.4	0.1
13	0.9918	0.0009	1.0026	0.0012	-1.1	-0.8
11	0.9944	$1) 0009$	1.0011	0.0010	-0.7	-0.6
15	1.0294	0.0010	1.0012	0.0020	2.8	2.9
16	1.0132	0.0010	0.9936	0.0007	2.0	*
17	0.9873	0.0016	0.9783	0.0023	0.9	*
18	1.0670	0.0011	1.0088	0.0015	5.8	*
19	1.0013	0.0012	1.0044	0.0013	-0.3	0.1
<0	1.0013	0.0015	0.9791	0.0014	2.3	0.1
21	0.8362	0.0011	1.0012	0.0009	-16.5	-16.4
22	0.9961	0.0008	0.9996	0.0011	-0.4	-0.4
23	0.9960	0.0009	0.9996	0.0011	-0.4	-0.4
24	0.9970	0.0008	0.9999	0.0011	-0.3	-0.3
25	0.9976	0.0008	0.9987	0.0011	-0.1	-0.2

* Experimental values of $k_{e f /}$ could not be located for these problems.
\dagger Values reported are for the covariance-weighted combined estimator.
 derestimates the exp inental value of $k_{e f f}(1.0)$ by 16%. Problem 21 cos is of a splesical aluminum tank partially filled with uranyl fluoris! of low U^{235} wiciment
 tion. used to process the MCNP inultigroup library, incorreculy calc late:, the U^{238} resonance integral. This approximation always overestimates the res. inance integral and thus the absorption in U^{238}. Resonance self-shieldin ${ }_{b}$ in U^{235} ints less effect on $k_{\text {eff }}$ (U^{235} has competing fission and capture resonances). ${ }^{14}$ Therefore, the error in the multigroup result should decrease as enrichment increases. By varying the enrichment in aqueous solutions of uranyl fluoride and uranyl nitrate, this decrease was demonstrated to be so.

As an additional test, the σ_{p} corrected cross sections called frs: in KENO input \# 21 were replaced with "infinitely dilute" values ($\sigma_{p}=\infty$), and K.ENO was rerun to produce $k_{1 f f}=0.8503$, which agrees well with the MCNP mulrigroup value of 0.8374 . Such a significant chenge in the KENO result emphasize.. the importance of resonance self-shielding in this problem.

The error in problem 18 is not as pronounced as that in problem 21 , since it is both smaller in magnitude and positive (overestimate of $k_{e f f}$). Nevertheless, it is large enough to cause concern. Since the percent differences for both multigroup and continuous energy without $S(\alpha, \beta)$ scattering are comparable, the majority of the error appears to be duc to the lack of $\mathrm{S}(\alpha, \beta)$ thermal scattering with the multigroup cross sections (see Tables II and III). Like problem 21, the fissile material is in solution, but unlike 21, it is highly enriched in U^{235}. A fissile solution enhances resonance effects since it has a sofi.. i spectrum. In U^{235}, however, the infinite dilution approxit ation overestimates the fission resonance integral, and thus $k_{\text {eff }}$ is orerestimater'. Results from similar problems imply that this is a minor effect.

Lack of $\mathrm{S}(4, \beta)$ thermal scattering also causes difficulty in problem 15 , as shown in Table III. The 3% multigroup error is nearly identical to the error in the continuous energy run without $\mathrm{S}(\alpha, \beta)$. The effects are particularly large in this problem because of the large volume of water. MCNP and KENO are in very close agreement when the water is removed.

Multigrn'lp cross : ections in MCNP must be used with care. Whenever possible, the continuous energy cross sections should be employed. The test cases included in this benchmark study indicate that the MCNP 30 group cross sections are unreliable in criticality calculations involving solutions with low U^{235} enrichment. Moreover,

TABLE III
$k_{\text {eff }}$ Values for KENO and MCNP Continuous Energy with and without the $S(\alpha, \beta)$ Treatment

cast	MCNP ${ }^{\dagger}$ with $\mathrm{S}\left(\alpha_{1} \beta\right)$		MCNP ${ }^{\dagger}$ no $\mathrm{S}(\alpha, \beta)$		\%DIFFERENCE			
	\cdots	relative erior	$k_{\text {ce }}$	relative error	with $\mathbf{S}(\alpha, \beta)$ from keno	$\begin{aligned} & \text { no } S(\alpha, \beta) \\ & \text { from keno } \end{aligned}$	with $S(x, \beta)$ from exp	$\begin{aligned} & \text { no } S(\alpha, \beta) \\ & \text { from exp } \end{aligned}$
3	0.9990	0.0011	1.0168	0.0011	-0.2	1.6	-0.1	1.7
4	0.994;	0.0028	1.0181	0.0025	-0.7	1.6	-0.5	1.8
5	0.9995	0.0027	1.0156	0.0028	-2.1	-0.j	-0.0	1.6
12	0.9997	0.0012	1.0010	0.0013	-0.6	-0.4	-0.0	0.1
15	1.10016	0.0011	1.0189	0.0012	0.0	1.8	0.2	1.9
16	0.9902	0.0009	0.9953	0.0009	-0.3	0.2	*	*
17	1.0029	0.0014	0.9830	0.0015	2.5	0.5	*	*
18	1.0302	0.0013	1.0479	0.0012	2.1	3.9	*	*
19	0.9997	0.0012	1.0010	0.0013	-0.5	-0.3	-0.0	0.1
20	0.9960	0.0012	0.9932	0.0016	1.7	1.4	-0.4	-0.7
21	0.9962	0.0008	0.9811	0.0010	-0.5	-2.0	-0.4	-1.9
* Experimental values of $k_{e f f}$ could not be located for these problems. \ddagger Values reported are for the covariance-weighted combined estimator.								

$\mathrm{S}(\alpha, \beta)$ treatment is unavailable with multigroup cross sections. Thus, continuous energy cross sections with the thermal scattering treatment should be used for highly moderated systems.

B. Effects of $\mathbf{S}(\alpha, \beta)$ Card

The MCNP results for continuous energy, with and without the $\mathrm{S}(\alpha, \beta)$ thermal treatment, and the percent differences from experinent are given in Table III. Only the problems that were affected by $\mathrm{S}(\alpha, \beta)$ scattering are listed. The first set of MCNP results was generated with the $\mathrm{S}(\alpha, \beta)$ scattering treatment, whereas the second set was generated without. The percent differences between the MCNP results and the KENO results, $100 \times\left(k_{M C N P}-k_{\text {KENO }}\right) / k_{\text {KENO }}$, are also listed. All values of $k_{\text {eff }}$ for MCNP were generated with version 4.2, and correspond to the combined average of the track length, absorption, and collision estimators.

The MCNP results with the $\mathrm{S}(\alpha, \beta)$ thermal treatment, where applicable, are considered to be the most accurate because they account for molecular scattering. Problems with fissile mater:al in metal form, for which $\mathrm{S}(\alpha, \beta)$ treatment is unimportant, are not listed in Table III. The results without the $\mathrm{S}(\alpha, \beta)$ treatment are reported to demonstrate its importance in applications in which there is thermal scattering with light nuclei.

By accounting for molecular scattering in MCNP the results for five of the problems are in better agreement with KENO, whereas the results for six of the problems are not. Of these six, problems $12,16,19$, and 20 varied very little, and problems 5 and 17 became much closer to unity (problem 17 is believed to be a critical experiment). In fact, the last two columns in Table III demonstrate that $\mathrm{S}(\alpha, \beta)$ thermal scattering improves the results with respect to the available experimental data. Therefore, the $S(\alpha, \beta)$ treatment should be employed when applicable.

It should be noted that $S(\alpha, \beta)$ treatment for paraffin is not presently available in MCNP. Therefore, the $\mathrm{S}(\alpha, \beta)$ treatment for polyethylene was used for paraffin. Although the use of polyethylene is questionable, it did improve the MCNP results relative to both KENO and experimental values (see problems $3,4,5$, and 18).

C. Version $4 \mathrm{x}-\mathrm{c}$ vs. Version 4.2

Appendix B presents $k_{e f f}$ values produced by MCNP version $4 x-c$, the preliminary version of MCNP4A at the time of publication. Although version 4.2, the
most recent public version, was used for the benchmark study, it was thought that the sample problems should also be run using the latest LANL version. Some $4 \mathrm{x} \cdot \mathrm{c}$ runs show small differences (within statistical uncertainty), but most track the 4.2 results exactly.

D. Experinental Results

Table I, above, contains two columns that compare the MCNP and KENO results to the experimental results. As noted in this table, the experimental results were not available for all the sample problems. The experimental results used in Table I are all for problems that were exactly critical.

The experimental results that were not found correspon to tomple problems 6, 9,16 , and 17. The results for problem 18 are located in Ref. 21, but it appears to be incorrectly modeled in the KENO input. The original experiment does not contain a 30.48 cm slab of water on the negative z face. Therefore, a percent difference for that problem is not included. The result for problem 8, which is located in Ref. 15, simply states that the experiment is subcritical. Although the experimental results for problem 17 have not been reviewed, it appears to represent a critical experiment. The result of problem 1 implies that problem 6 is subcritical; however, the experimental value of $k_{e f f}$ is unknown. The experimental results for the remaining two, problems 9 and 16 , most likely do not exist since they involve infinite geometric features.

E. $k_{e f f}$ Plots

The following pages contain selected plots of $k_{\text {eff }}$ as a function of generation or cycle; these are called KCODE plots in MCNP. The abcissa represents the number of cycles over which $k_{e f f}$ has been averaged (i.e., the number after the initial "settling cycles"); for these plots, 20 cycles were skipped before averaging, so the actual cycle is the x-coordinate +20 . On the vertical axis is the cumulative average of the track length estimate of $k_{e f f}$ using continuous energy cross sections (with the $S(\alpha, \beta)$ treatment, where applicable). Note that the values appearing in Tables I-III are combined averages of collision, absorption, and track length estimates; MCNP does not plot the combined average. In general, the collision, absorption, and track length estimators are in close agreement; this agreement was
true for all 25 sample problems. The plots that follow, Figs. 12 through 21, illustrate that sufficient cycles were used to allow $k_{e f f}$ to converge.

VII. CONCLUSIONS

The 25 sample problems that make up the KENO criticality safety benchmark set have been run with MCNP, versions 4.2 and $4 x-c$. These criticality problems were chosen as benchmarks because they represent a relatively wide variety of criticality problems and because they were originally used to validate the KENO Monte Carlo criticality code. The comparison of the MCNP results for both continuous energy and multigroup cross sections indicates that the continuous energy cross sections are more accurate than the standard MCNP muitigroup set. With the continuous energy cross sections, MCNP successfully predicts the experimental results, in some cases better than KENO, within the expected data and statistical uncertainties. This benchmark study demonstrates that MCNP can accurately model a variety of criticality problems.

KCODE DATA FROM SAMPLE PROBELM 1

Fig. 12. Cumulative Average $k_{\text {eff }}$ vs Cycle - Problem 1. Problem 1 is an array of 8 U -metal cylinders

KCODE DATA FROM SAMPLE PROBLEM 3

Fig. 13. Cumulative Average $k_{\text {eff }}$ vs Cycle - Problem 3. Problem 3 is an array of 8 U -metal cylinders with paraffin reflectors

KCODE DATA FROM SAMPLE PROBLEM 7

Fig. 14. Cumulative Average $k_{e f f}$ vs Cycle - Problem 7. Problem 7 is a single U-metal cylinder inside a cube with 3 perfectly reflecting surfaces

KCODE DATA FROM SAMPLE PROBLEM 9

Fig. 15. Cumulative Average $k_{\text {eff }}$ vs Cycle - Problem 9. Problem 9 models an infinite array of U-metal cylinders

Fig. 16 Cumulative Average $k_{e f f}$ vs Cycle - Problem 12. Problem 12 consists of 4 U -netal cylinders and 4 containers of uranyl nitrate

Fig. 17. Cumulative Average $k_{e f f}$ vs Cycle - Problem 15. Problem 15 is a U-metal sphere in water

Fig. 18. Cumulative Average $k_{e f f}$ vs Cycle - Problem 17. Problem 17 is a spherical tank of uranyl fluoride solution

Fig, 19. Cumulative Average $k_{\text {eff }}$ vs Cycle - Problem 18. Problem 18 consists of 27 containers of uranyl nitrate solution with paraffin and water reflectors

Fig. 20. Cumulative Average $k_{\text {eff }}$ vs Cycle - Problem 20. Problem 20 comprises 7 cylinders of uranyl nitrate in a triangular pitched array

KCODE DATA FROM SAMPLE PROBLEM 21

Fig. 21. Cumulative Average $k_{e f f}$ vs Cycle - Problem 21. Problem 21 is a partially flled spherical tank of uranyl fluoride

REFERENCES

1. J. F. Briesmeister, Editor, "MCNP - A General Monte Carlo Code for Neuiron and Photon Transport, Version 3A," Los Alamos National Laboratory report LA-7396-M, Rev. 2 (1986).
2. D. J. Whalen, D. E. Hollowell, and J. S. Hendricks, "MCNP: Photon Benchmark Problems," Los Alamos National Laboratory report LA-12196 (1991).
3. D. J. Whalen, D. A. Cardon, J. L. Uhle, and J. S. Hendricks, "MCNP: Neutron Benchmark Problems," Los Alamos National Laboratory report LA-12212 (1991).
4. John S. Hendricks, Daniel J. Whalen, David A. Cardon, Jennifer L. Uhle, "MCNP Neutron Benchmarks," Trans. Am. Nuc. Soc., 65, 262 (1992).
5. Daniel J. Whalen, David E. Hollowell, and J.S. Hendricks, "Monte Carlo Photon Benchmark Problems," Proceedings of the International Topical Meeting on Advances in Mathematics, Computations, and Reactor Physics, (American Nuclear Society), 5, 30.1 5-1 (April 1991).
6. S. Sitaraman, "MCNP: Light Water Reactor Critical Benchmarks," GE Nuclear Energy report, NEDO-32028 (March 1992).
7. Thomas P. Wilcox, Jr. and Edward M. Lent, "COG - A Particle Transport Code Designed to Solve the Boltzmann Equation for Deep-Penetration (Shielding) Problems," Volume 4, "Benchmark Problems," Lawrence Livermore National Laboratory report M-221-4 (December 2, 1988).
8. L. M. Petrie and N. F. Landers, "KENO V.a An Improved Monte Carlo Criticality Program with Supergrouping," Section F11, NUREG/CR-0200, Vol. 2, U.S. Nuclear Regulatory Commission (December 1984).
9. W. C. Jordon, N. F. Landers, and L. M. Petrie, "Validation of KENO V.a Comparison with Critical Experiments," ORNL/CSD/TM-238, Martin Marietta Energy Systems, Inc., Oak Kidge National Laboratory (December 1986).
10. D. W. Nigg, C. A. Atkinson, J. B. Briggs, and J. T. Taylor, "A PC-Based Version of KENO V.a," Trans. Am. Nucl. Soc., 61, 188 (June 1990).
11. J. F. Briesmeister, "MCNP3B Newsletter," X-6:JFB-88-292, Los Alamos National Laboratory (July 1988).
12. Judi Briesmeister and John Hendricks, "MCNP4 Newsletter," X-6:JFB-91-177, Los Alamos National Laboratory (April 1991).
13. R. E. Scamon, "Hanson-Roach 16-Group Cross Sections for MCNP," X-6:RES-90-223, Los Alamos National Laboratory (April 1990).
14. R. D. Busch and R. D. O'Dell, "Validity of Hansen-Roach Cross Sections in LowEnriched Uranium Systems," Proc. of the Int'l Conf. on Nucl. Criticality Safety, Sept. 9-13, 1991, Oxford, United Kingdom, Vol. I, pp IV-45 through IV-52.
15. J. T. Thomas, "Critical Three-Dimensional Arrays of Neutron Interacting Units, Part II - U(93.2) Metal," ORNL-TM-868, Union Carbide Corporation, Nuclear Division, Oak Ridge National Laboratory (1964).
16. D. C. Irving and J. T. Mihalczo, "Monte Carlo Calculations for Enriched Uranium Metal Assemblies," Trans. Am. Nucl. Soc., 4, 302 (1961).
17. C. C. Byers, J. J. Koelling, G. E. Hansen, D. R. Smith, and H. R. Dyer, "Critical Measurements of a Water-Reflected Enriched Uranium Sphere," Trans. Am. Nucl. Soc., 27, 412 (1977).
18. D. G. Collins, "Normalization of Forward and Adjoint MCNP Runs," X-6:DGC-87-187, Los Alamos National Laboratory (March 1987).
19. J. R. Knight, "Validation of the Monte Carlo Criticality Program KENO V.a for Highly Enriched Uranium Systems," ORNL/CSD/TM-221, Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory (1984).
20. J. T. Thomas, "Critical Three-Dimensional Arrays of Neutron Interacting Units," ORNL-TM-719, Union Carbide Corroration, Nuclear Division, Oak Ridge National Laboratory (1963).
21. E. B. Johnson and D. F. Cronin, "Critical Dimensions of Aqueous $\mathrm{UO}_{2} \mathrm{~F}_{2}$ Solutions Containing 4.9\% Uranium-235-Enriched Uranium," Trans. Am. Nucl. Soc., 17, 301 (1964).

APPENDIX A:

MCNP INPUT FILES

```
-5nt.1: coavertod from zono 110 a.1; copkinuous eners7; andf/b-5
\(c \quad 8\) bare cylinders of U-metal
    Cell Cards
```



```
    Surfacs Cards
    parallelpiped
    pz 0.0
    px - 13.74
    py 0.0
    py -13.74
    pz 0.0
    pz - 13.01
    cyliader
    \(\begin{array}{llll}c / 2 & -6.87 & -6.87 & 5.748\end{array}\)
    pz -1.1225
    pz -11.8875
    parallelpiped (shrink dimansions slightly to avoid fill trouble)
    px 13.7399
    px - 13.7399
    PY 13.7399
    PJ - 13.7399
    pz 13.0099
    pz -13.0099
    Data Carde
mode \(n\) tranapore noutroas only
c
\(c\) enterial cards: andf/b-5 data
-1 92235.50c 0.932631 U-235
    \(92238.50 c \quad 0.055328\) U-238
    92234 . 50c 0.010049
    92236.50 c \(0.001992 \quad \mathrm{U}\)-236
    S(alphe, beta): not applicable
    defanit enorey bins; Iareen-hoach structure
        \(1.0 e_{-7} 4.0 e^{-7} 1.0 e^{-6} 3.0 e^{-6} \quad 1.0 e^{-5} \quad 3.0 e^{-5} \quad 1.0 e^{-4} 5.5 e-4\) 3.0e-3
        \(1.7 e-20.10 .40 .91 .43 .020 .0\)
c tallies
14:~ 1
c


A1. Input File for Problem 1 (continued)
```

e5nt.2: convertsd from keno lilek.2; continuous energy: endf/b-6
c 8 bare L-setal cylinders
explicit geometry specification
Coll Carda

1	4.80368-2	-1 6	-6			
1	4.80368e-2	-2 5	-6			imp: $\mathrm{n}=1$
1	$4.80368 \cdot-2$	-3 5	-6			
1	4.80362.-2	-4 5	-6			iep : $n=1$
1	$4.80368 e^{-2}$	-1 7	-8			imp max^{1}
1	$4.80368{ }^{-2}$	-2 7	-8			imp: $\mathrm{n}^{\text {- }}$
1	4.80368-2	-3 7	-8			19 : $\mathrm{n=1}$
1	4.80368e-2	-4 7	-8			imp:n=1
0		11.2	838485	86878	810	imp:ne1
0		-11:	12:-13:	14:-15:	16	imp:ay

 cylinder
 c/z 6.87
 c/& 6.87 -6.87 5.748
 c/z -6.87 6.87
 c/z -6.87 -6.87 5.748
 pz -11.8875
 pz -1.1225
 l 1.1225
 pz 11.8875
 parallelpiped
 px -13.74
 pz 13.74
 py -13.74
 P) }13.7
 pz -13.01
 pz !3.01
 Data Cards
 mode n I transport noutrons only
c matorial cards: endy/b-5 deta
92235.50c 0.932631 % U-235
92238.50c 0.055328 U-238
92234.50c 0.010049 U-234
92236.50c 0.001992 U-230
S(alpha. beta): not applicable
defanlt energy bins: Bansen-Roach structu=e
1.00-7 4.0e-7 1.0e-6 3.0e-6 1.0e-5 3.0s-5
1.0e-4 5.5e-4 3.0e-3 1.7e-2 0.1 0.4 0.e 1.4 3.0 20.0
c
14:^ 1 \$ ave 11vx in cell 1

```

\section*{A2. Input File for Problem 2}
```

c
c criticality cards
lrcode 3000 1.0 20 200 4500 0
c
adef celadl orgad2 radud3 ext=d4 pos=fcel d5 arg=0 0 1
c
ail 112345670 % cells

```

```

ep2 -5
213 0.0\quad5.748
s23
si4 -5.3825 5.3825
ap4 -21 0
Cs5 \& 1 6.87 6.87 -6.505
2 6.87 -6.87 -6.505
3-6.87
4-6.87-6.87-6.505
5
6 6.87 -6.87 6.506
6
8-6.87-6.87 6.505
c
prdmp j j1 j
print
* equal ; hamility for all cello above
* Yatt lission spectrom
s radial distribation
\$ radial distribution
* axial distribution
* p(x) s conat
\$ if cel=1. then pos=6.87 6.87 -6.695
s etc.
8
%
8
|
*rite mctal file
sfall output

```
    A2. Input File for Problem 2 (continued)
2. 3: converted from kano file k.3; continuous energy; endf/b-5
    univorses of parafin vith constant importance surrounding coro
    Coll Cards

    concentric boxes of constant importance
    0 - 0 11 12 -13 14 -15 16 imp: \(a=1\)
    \(20.122282 \quad 810 \quad\) inp: \(n=1\)
    0 0. \(122282 \quad-21 \quad 22\)-23 24 -25 26 imp:n=1

        330 tap: \(2=\) !
        \begin{tabular}{lllllll}
-41 & 42 & -43 & 44 & -45 & 46 & \(\begin{array}{l}\text { inp:n01 } \\
\text { inp:n=5 }\end{array}\) \\
\hline 40
\end{tabular}

        \(\begin{array}{lllllll}-61 & 62 & -63 & 64 & -65 & 66 & \begin{array}{l}\text { imp } \\ \text { imp: } \\ \text { im }\end{array} \\ 601\end{array}\)
    u=10 fill=2
    u=10
    u=20 Pill=10
    \(\mathrm{t}=20\)
    : \(=30\) 1111=20
    \(\mathrm{v}=30\)
    \(u=40 \quad 1 i 11=30\)
    \(u=40\)
    u=50 1ill=40
    \(u=50\)
    fill=50
Surface Cards
parallelpiped
    px 0.0
    px -23.48
    PJ 0.0
    Py -23.48
    pz 0.0
    pz -22.75
cyliader
    \(c / 2-11.74-11.745 .748\)
    pz -5.9925
    pz - 16.7575
parallelpiped (dimenstens shrunk by 0.001 to avoid fill probleas)
    p1 23.479
    pz -23.479
    Py 23.479
    py -23.479
    pz 22.749
    pz - 22.743
parallelpiped
    pr 26.48
    pz -26.48
    p) 26.48
    py - 26.48
    pz 25.75
    pz -25.75
parallelpiped
    px 29.48
    PE -29.48
    PJ 29.48
    pJ -29.48
    pz 28.75
    pz -28.75
parallelpiped
    pz 32.48
    pz -32.48
    p) 32.48
    py -32.48
    pz 31.75
    pz -31.75

A3. Input File for Prohlem 3
```

paral101piped
pz 35.18
52 pz -35.48
53 PJ 35.48
54 PI -35.48
55 pz 34.75
56 pz -34.75
parallelpiped
px 38.72
px -38.72
py 38.72
py -38.72
pz 37.99
pz -37.99
Data Cards
c
mode a
E transport noutrons orly
c
c. atarial cards; andf/b-5 data
@192235.50c 0.932631 % U-235
92238.50c 0.055328 U-238
92234.50c 0.010049 \& U-234
92236.50c 0.001992 U-236
parafín
1001.50c 0.575324 8: (in paraftin)
6000.50c 0.324676 C (in paraftin)
S(alpha, beta)
poly.01t
dofault energy oins; \#ameon-Roach structure
1.0e-7 4.0e-7 1.0e-6 3.0e-6 1.0e-5 3.0e-5
1.00-4 5.50-4 3.0e-3 1.7e-2 0.1 0.4 0.9 1.4 3.0 20.0
c
c
14:n 11e
c
c criticality cards
kcode 3000 1.0 20 200 4500 0
c
adef celod1 erged2 rad=d3 ext=d4 pos=-11.74 -11.74-11.375 axm=0 0 1
c
\&il 1 60:50:40:30:20:10:3(0 C 0):1 pa=h: /cel160/coll50/.../cell1
60:50:40:30:20:10:3(1 0 0):1 % path to cell 1 thre lattice(1,0,0)
60:50:40:30:20:10:3(1 1 0):1 path to cell 1 thre lattice(1,1,n)
60:50:40:30:20:10:3(0 1 0):1 \$ Otc.
60:50:40:30:20:10:3(0 0))):1
60:50:40:30:20:10:3(1 0 .):1
60:50:40:30:20:10:3(0 1 1,:1
60:50:40:30:20:10:3(1 1 1):1
11 1 1 1 1 1 equal probability for all pathe above
sp
c

```

```

si3 [lllol
ci4 -5.3825 5.3825
- axial diatribation

```

```

c
pratp j ji j aricemctal file
C
fall output

```
A3. Input Fiie for Problem 3 (continued)
.4: converted from keno 1ile h.4; continuous onezisy; ondf/b-b universes or parafiln oith derreasing inportance nuryounding core
Cell Carda


A4. Input File for Problem 4


A4. Input File for Problem 4 (continued)

\footnotetext{
e5nt.5: converted irom kevo 1ile k.4: continuous enorgy: andf/b-5 30.48 cm of paraffin surrounding eatal cylinders Models the REDO albede option.

Cell Cards


Surface Cards
parallelpipad
pz 0.0
pz -23.48
Py 0.0
py -23.48
pz 0.0
pz -22.75
cylinder
c/z-11.74-11.74 5.748
pz -5.9925
pz -16.7575
parallelpiped (dinensions shrunk by 0.001 to avoid 1121 probleas)
pz 23.479
pz -23.479
\(75 \quad 23.479\)
py -23.479
pz 22.749
pz -22.749
parellelpiped
pr 26.48
\(p z-26.48\)
PJ 26.48
py -26.48
pz 25.75
pz -25.75
parallelpiped
pz 29.48
pz -29.48
py 29.48
p) -29.48
pz 20.75
pz - 28.75
parailelpiped
pz 32.48
pz -32.48
PJ 32.48
p) -32.48
p2 31.75
pz - 31.75
}

A5. Input Filo for Problem 5


A5. Input Eile for Problem 5 (continued)
```

05nt.6: converted from komo 1lle m.6: continuous eaezgy; endf/b-5
c Cell Cerde

```

```

 Surface Carde
 parallelpiped
 pz 6.87
 Pz -6.87
 py 6.67
 py -6.87
 pz 6.505
 pz -6.505
 cylinder
 cz 5.748
 pz 5.3825
 pz -5.3825
 Data Carde
 ode a tranaport merezems oaly
material cards ondf/b-5 data
same composition as menp.1
92235.50c 0.932631 U-235
92238.50c 0.055328 U-238
92234.50c 0.010049 U-234
92236.50c 0.001992 U-236
S(alpha. beta): not applicable
defanlt energy bins: Bansen-Roach gtrectere
1.0e-7 4.0e-7 1.0e-6 3.0e-6 1.0e-5 3.0e-5 1.0e-4 5.5e-4 3.0e-3
1.7e-2 0.1 0.4 0.9 1.4 3.0 20.0
c
f4:m 1 Save Rus in cell 1
c criticality cards
kcode 3000 1.0 20 200 4500 0
sder cel=1 posco 0 0 axs=0 0 1 radedl ext=d2 erged3
c
sif 0.05.748 De amre this encloses cell 1
c
sp3 -3 Natt ldsaion sgectrue
cramp j j1 j
print fall output

```

A6. Input File for Problem 6
```

e5nt.7: convorted from keno file k.7; continuowe onergy: andf/b-5 data
c reflection on 3 sides
c Cell Cards
C

```

```

c Surface Carde
c parallelpiped
C parallelpiped
2 1 pz
03 PY 6.87 \& reflecting surence
4 PY -6.87
pz 6.505
pz -6.505
cylinder
cz 5.748
pz 5.3825
pz -5.3825
enclosing sphere
so 11.0
Data Cards
Cmode n Erameport neutrons only
matorial cards andf/b-5 data
seme composition ts meng.1 (U-235
ll
M2238.50cc 0.056328 %

```

```

c
c S(alpha. bota): not applicable
default energy bins
0.025e-6 1.0e-6 1.0e-4 1.0e-2 1.0e-1 5.0e-1 1.0 2.0 4.0 10.0 14.0 20.0
c
c talliea
14:n 1 % ave 17ux in cell 1
c criticality cards
lecode 3000 1.0 20 200 4500 0
c
adef cel=i pos=0 0 0 axg=0 0 1 rad=d1 ext=d2 erg=d3
Cil 0.0 5.748 be sure this encloses cell }
C 12 -5.3825 6.3825
c
prdy j j1 j *mitemetal file
prigt \$ Eull output

```

A7. Input File for Problem 7
```

e5mt.8: converted fron keno file z.8
c reflecifon on 2 faces only
c Cell Cards
c}

```

```

c Surface Cards
Surface Cards
parallelpiped
pz 6.87
pz -6.87
py }6.8
py -6.87
pz 10.00 sellectiag eurfece
pz-10.00 re\&lectifig surface
cylinder
Cz 5.748
Data Cards
mode n % tramsport neutrons ouly
c
c natorial cards ondf/b-5 data
92235.50c 0.932631 U-235
92238.50c 0.055328 U-238
92234.50c 0.010049 U-234
92236.50c 0.001992 U-236
S(alpha. bets): not applicable
default energy bins
0.025e-6 1.0e-6 1.0e-4 1.0e-2 1.0e-1 5.0e-1 1.0 2.0 4.0 10.0 14.0 20.0
c
fs:a 1 Save rauz in cell 1
c critzcality cards
kcode 3000 1.0 20 200 4500 0
c
gdef cel:1 pos=0 0 0 arem0 0 1 radmdl ext=d2 ergm3
sil 0.05.748 be aure this enclosea cell 1
si2 -10.0 10.0 \$ be aure this eacloses cell i
sp3 -3 S Uatt liseion apectrme
prdup jj1j FErite metal sile
priat
*all outpot

```

\section*{A8. Input File for Problem 8}
```

e5mt.9: convertod from keno file y.9; Continuous energy; endy/t-5
infinite erray of cylinder-in-boz units
model by making all box valle reflective
Cell Carde

```

```

 Surface Cards
 parallelydped
 px 0.0
 pz -13.74
 py 0.0
 P) -13.74
 pz 0.0
 pz -13.01
 cylinder
 c/z -6.87 -6.87 5.748
 pz -1.1225
 pz -11.8875
 Data Cards
 m Eranaport noutrons ouly
 c anterial carda; ond\&/b-5 data
92235.50c 0.932631 U-235
92238.50c 0.055328 U-238
92234.50c 0.010049 U-234
92236.50c 0.001992 U-236
c S(alpha. beta): not applicable
default energy bias: gamsen-Roach structure
1.0e-7 4.0e-7 1.0q-6 3.0q-6 1.0e-5 3.0e-5 1.0q-4 5.5e-4 3.0e-3
1.7e-2 0.1 0.4 0.9 1.4 3.0 20.0
c talliga
14:n 1 ave 11uz in cell 1
c
kcode 3000 1.0 20 200 4500 0
c
c uniform volwe source in cell 1
ade! cel=d! rad=d2 extad3 erged4 pog=-6.87 -6.87 -6.505 axg=0 0 1
sil 1 3:1 path to cell 1
apl d 1 0 5 7 % choose above nith prob 1
mi2 m 0.0 5.748 ralial linita (frompos)
sp2 -21 1 f(r) = conster
si3 b -5.3825 5.3825 Sarial limits (from pos)
sp3 -21 0 p(z) = const
cp4 -3 (Uatt liesion spectrym
prdup j j 1 j S Eritemetal file
prirt \&ull output

```

A9. Input File for Problem 9
```

e5nt.10: converzed from keno 1ile k.10: continuous onergy; ondf/b-5
c }8\mathrm{ bare cylinders of U-metal
to demonstrate restart
Cell Carde
14.80368e-2 -7 -8 9 { {P:a=1 q=-1
0 S1 im:m=1 ual
0 (1)
1ill=0:1 0:1 0:1 111 1 1 1 1 1 1 1 1

```

```

 Surface Cards
 parallelpiped
 pz 0.0
 pz -13.74
 p) 0.0
 py -13.74
 pz 0.0
 pz-13.01
 cylinder
 c/z -6.87 -6.87 5.748
 pz -1.1225
 pz -11.8875
 parallelpiped (ahrink dimansions slightly to avoid fill trouble)
 pz 13.7399
 pI -13.7399
 py 13.7399
 py -13.7399
 pz 13.0099
 pz -13.0099
 Data Cards
 sode n seanaport nevtroas oaly
c
material cards; and\&/b-5 deta
92235.50c 0.932631
92238.50c 0.055328
92234.50c 0.010049
92236.50c 0.601992
S(alpha, beta): not applicable
default anergy bins; Eenaen-Moach structure
1.0e-7 4.0e-7 1.0e-8 3.0e-8 1.0e-5 3.0e-8 1.0e-4 5.6e-4 3.0e-3
1.7e-2 0.1 0.4 0.8 1.4 3.0 20.0
c
14:a 1

* are 2Rur in coll 1

```

A10. Input File for Problem 10
```

c
criticality cards
rcode 3000 1.020 200 4500 0
ade1 celadl ergad2 radxd3 extads pon=-6.87-6.87-6.505 axgm001
C lil 1 4:3(1 1 0):1
4:3(1 0 0):1
4:3(0 1 0):1
4:3(0 0 0):1
4:3(1 1 1):1
4:3(1 0 1):1
4:3(0 1 1):1
4:3(0 0 1):1
sp1 1111111:11
cp2 -3
813 0.0 6.748
sp3 -21 1
ci4 -5.3825 5.3825
cp4 -21 0
pzdap }
c
print
pata: /coll4/cell3/lateice(1,1,0)/coll1

* otc.
this ordering chosen to match
sampling in e5ce.2
equal probability for all pathe above
Vatt fission epectrme
% radial diatribation
- p(x) = coasteabs(x)
* axial distribution
* p(x)= const
* print tavileu/grite every % cycles
sull outpert

```

A10. Input File fer : ithliem ion (contia.
```

menemge: c 11 runtpencint. 10
05nt.11: Converted from keno 2ile k.10; cont drgots 900%gy; endf/b-5
8 bare cylindere of U-metel
to demonstrate restart
same us e5ce 10
Coll Cards
14.80368e-2 -7 -8 9 LEP:a=1 r=-1
0 1, 8lllllllll
M:a=1 \&=2 lat=1

```

```

 Surfece Carde
 parallelpiped
 pI 0.0
 pI -13.74
 PJ 0.0
 PY -13.74
 pz 0.0
 pz -13.01
 cylinder
 c/: -6.87-6.87 5.748
 pz -1.1225
 pz -11.8875
 parallelpiped (shrint dimensions sligbtly to avoid fill trouble)
 pz 13.7399
 px -13.7399
 PJ 13.7399
 py -13.7399
 py -13.7395
 pz 13.0099
 pz -13.0099
    ```

A11. Input File for Problem 11


A11. Input File for Problem 11 (continued)
```

Q5nt.12: converted from keno 8ile h.12; cont onergy; endf;'b-6
C
c Coll cards

```
```

L

```
L
    lllll}\begin{array}{llll}{1}&{0.0480295}&{-7}&{-8}
    lllll}\begin{array}{llll}{1}&{0.0480295}&{-7}&{-8}
        -27 -38 29
        -27 -38 29
    imp:m=1 fill=1
    imp:m=1 fill=1
    like 1 but trcl=(0.\infty
    like 1 but trcl=(0.\infty
    like 4 but trcl=(0.00 21.75 0.00)
    like 4 but trcl=(0.00 21.75 0.00)
    like 1 but trcl=(0.00 0.00 12.45)
    like 1 but trcl=(0.00 0.00 12.45)
    lize 4 but trcl=(0.00 0.n0 20.48)
    lize 4 but trcl=(0.00 0.n0 20.48)
    like 1 but trcl=(0.00 13.18 12.45)
    like 1 but trcl=(0.00 13.18 12.45)
    like 4 but trcl=(0.00 21.75 20.48)
```

 like 4 but trcl=(0.00 21.75 20.48)
    ```


```

 O 30 imp:amo oataide of aphere
    ```
    O 30 imp:amo oataide of aphere
    Sarface Carde
    Sarface Carde
    finite cylinder:
    finite cylinder:
    c/z 
    c/z 
    pz -0.8425 5.3925 above midplane
    pz -0.8425 5.3925 above midplane
    pz -11.6075 % 5.3825 bolov midplane
    pz -11.6075 % 5.3825 bolov midplane
    c/z llllllo.875-10.875 9.525 % % 8.89 above midplane
    c/z llllllo.875-10.875 9.525 % % 8.89 above midplane
    luz llol
    luz llol
    c/z 10.875 -10.875 10.16
    c/z 10.875 -10.875 10.16
    pz -0.715
    pz -0.715
        $9.525 above midplane
        $9.525 above midplane
    pz -19.765 $9.525 belor midplane
    pz -19.765 $9.525 belor midplane
    s0 35.0
    s0 35.0
    * enciosing aphere
    * enciosing aphere
    Data Carde
    Data Carde
    a & transport aoutroas osly
    a & transport aoutroas osly
    material cards; ands/b-5 date
    92238.50c 0.067198
    92235 .50c 6.932802
    uranjl nitrate
    1001.50c 0.592466
    7014.50c 0.020143
    8016.50c 0.370557
    92235.50c 0.010041
    92238.50c 0.000792
    plexigla.
e3 6000.50c 0.333330
    1001.50c 0.533338
    8016.50c 0.133334
c
3(alpha, bota)
mt2 1vtr.01t
```

A12. Input File for Problem 12

A12. Input File for Problem 12 (continued)

```
e5mt.13: converted from keno file k.13; continvous energy: ondf/b-5
    2 ofrset crbes of enriched U-236 surrounded by a cjlindricel
    annulus of enriched U-235
    Cell Cards
        14.803680-2 -1 2-3 4 -5 6 imp:n=1 trcl=(-0.2566 -6.35 0.00)
        14.80388o-2 -1 2 -3 4 -7 6 imp:n=1 trc.1x(-12.4434 -6.35 7.62)
        1 4.80368--2 -12 -13 6 11 trp:m=1 {anaulus
        0 - -11-13 6 $1 E2 imp:a=1 bign bozes and cylinder
        Surface Cards
    planes
        pz i2.7
        pz 0.0
        P] 13.7
        p) 0.0
        pz }7.6
        pz 0.0
        pz 11.176
        ylinders
        Cz 13.97
        Cz 19.05
        pz 16.18
        Data Cards
mode a transport neutrons only
    material cards: endy/b-5 datc
    92235.50c 0.932631
    92238.50c 0.055328
    92234.50c 0.010049
    92236.50c 0.001992
    S(alpha, beta): not applicable
    defau't energy bins; gaseen-Roach structure
    1.0e-7 4.0e-7 1.0e-6 3.0e-6 1.0e-5 3.0e-5 1.0e-4 5.5e-4 3.0e-3
    1.7e-2 0.1 0.4 0.9 1.4 3.0 20.0
c
s4:m 1 Sve flux in coll 1
c criticality cards
kcode 3000 1.0 20 200 4500 0
Exyc 6.35 0.0 3.81 -6.35 0.0 13.2 proint is each block
c
prdap j j 1 j Srite metal 111e
c
pxint full outpat
```

A13. Input File for Problem 13

```
e5nt.14: converted from hemo 11le k.14; continoous energy; ende/b-S
C
c Coll Carde
c
    I,*ace Cards
    \because?i**
    \therefore\therefore 29 0.0 8.89
    \because% 长 %
    \becausevr=i-
    < 10.1 2
    \becauseO
    En:: Crs is
0.1: 7 % trasaport nectroas ouly
```



```
    \hdashline235.4... j055328 U-238
    52:3.1 !:%.0.010049 U-234
```



```
    :(si-phe. nota): not applicable
c default :-0rgy bins; gansen-Roach atructare
    1.C&-1 , Je-7 1.0e-6 3.0e-6 1.0^-5 3.0e-5 1.0@-4 5.8e-4 3.0e-3
    1.7e-2 \therefore.1 0.4 0.9 1.4 3.0 20.0
c
```

```
- criticailty cards
kcode 3000 1.0 20 200 4500 0
c
cdel cel=dl posmicel d2 extwicel d3 rad=fcel d4 erg=d5 axg=0 0 1
c
sil ll 1 3 % llol
sil l 1 3 % llol
sil ll 1 3 % llol
    $ prob proportional to volume
sil ll 1 3 % llol
sil ll 1 3 % llol
lllol
Ei31 c
sp31 
lllol
lllol
```



```
ep42 -21 1 f(r)= constesbs(r)
lllol
lllol
lllol
    * Erite motal 1ilo
- tramaport motiroms only
```



```
\(\because 238.40 .055320\) U-238
3.3 ! ! \% 0.010049 U-234
c(asiphe. nota): not applicable
s default :-xrgy bins; gansen-Roach atructare
```



```
\(1.70-2 \times 10.40 .91 .43 .020 .0\)
c
```



```
* ext distrib numbers based on cel
* axial range about pos
    * p(z) = conet
    * p(z)= conet 
    | p(z) = const
    * rad distrib numbers based on cel
    ffull output
```

A14. Input File for Problem 14

```
e5nt.15: converted from keno 1ile m.15; continvoue onergy; andi/b-5
c
c cell cards
```



```
    sorface cards
    pz -7.092175
    pz -4.652185
    4.1275
    12.7
        0.5384756 .5537
    pz -22.092175
    pz 22.092175
    cz \(\quad 32.97\)
    data carda
mode \(\boldsymbol{n}\)
Leode 30001.02020045000
sdef cel=1 ergidi radmed poano.0 0.0 0.538475
c
sp1 -3
c
\(\begin{array}{lll}12 & 0.0 \quad 6.58\end{array}\)
p2 \(\quad-21 \quad 2\)
\({ }_{c}\)
\(c\) contincous eads/b-v
al 92234.50c 0.01177258
        0.01 .77258
        0.97656128
        92236.50c \(\quad 0.00199123\)
        92238.80c 0.00967450
    Plexiclea
        1001.50 c
        6000.50 c
        8016.50 c
    vater
\(\begin{array}{llll}1001.50 c & 0.686087 & \text { 日 } \\ & 8016.50 c & 0.333333 & 0\end{array}\)
\(\begin{array}{llll}1001.50 c & 0.686087 & \text { 日 } \\ & 8016.50 c & 0.333333 & 0\end{array}\)
\(\begin{array}{llll}1001.50 c & 0.686087 & \text { 日 } \\ & 8016.50 c & 0.333333 & 0\end{array}\)
c S(alpha, beta)
Et3 1تtr.01t
C
promp jij srite ectal tile
print stnll outpat
```

A15．Input File for Problem 15

```
05m.16: converted from meno file k.16: continuous energy: endif/b-5
c U02F2 infinite slab
c Cell Cards
C (1)
2 llllllll
```



```
    Sarface Cards
    planes
    px 2.479
    pz -2.479
    Py 100.0
    py -100.0
    pz 100.0
    pz -100.0
c
11 Pz 3.749
12 pz -3.749
c
c21 pz 17.479
*22
    pz -17.479
c
c
mode n (ransport neutrons only
c material cards; endf/b-5 data
c U02F2 solo
m1 92235.50c 0.013999
    92238.50c 0.001008
    9019.50c 0.030013
    8016.50c 0.338315
    1001.50c 0.616665
    Myraz 
        5000.01c 0.065162 (atural Boron
        8016.50c 0.637706
        14000.50c 0.255821
        11023.50c 0.033788
        borated U02F2 soln
        5000.01c 0.014789
    92235.50c 0.013792
    92238.50c 0.0009935
        9019.50c 0.029589
        8016.50c 0.333312
        1001.50c 0.607545
c
c S(alpha, beta)
#t1 letz.01t
mt3 lvtr.01t
c
c defaolt energy bins: Ef isen-lloach atructure
@ 1.0@-7 4.0e-7 1.0e-6 3.0e-6 1.0e-5 3.0e-5 1.0e-4 5.Ee-4 3.0e-3
    1.7e-2 0.1 0.4 0.9 1.4 3.0 20.0
c
c sallies
14:m 1 $ ave 810x in cell 1
c
zcode 3000 1.0 20 200 4500 0
c
larc 0.0 0.00.0 % yoist in meterial i
    -10.61 0.0 0.0 point in enterial 3
        10.61 0.00.0 point in material 3
C
prdap j j 1 j %ritemectal 1110
print full outpet
```

A16. Input File for Problem 16


```
c Cell Carde
1 1 1 0.0995739 
    Surface Cards
    so 16.0
    Data Cards
Caode a & transport neutrone only
c aterial carde; ead&/b-5 data
c U02F2 sola
    92236.50c 0.0032197
    92238.60c 0.0002349
    1001.50c 0.6551517
    8016.50c 0.3344853
    9019.50c 0.0065084
c S(alpha, bota)
Et1 lotr.0it
c default eaezgy bias; Hansen-Roach atructure
00 1.0e-7 4.0e-7 1.0e-6 3.0e-6 1.0e-5 3.0e-5 1.0e-4 5.5e-4 3.0e-3
    1.7e-2 0.1 0.4 0.9 1.4 3.0 20.0
c tallies
1a:n l $ ave R1ux in cell 1
c criticality cards
kcode 3000 1.0 20 200 4500 0
c
c uniform volme source
adef cel=1 ergadl rad=d2 pos=0.0 0.0 0.0
c api -3 Uatt &iseion apectram
c
Ei2 -21 0.0 16.0 radial linits
cp2 -21 2 p(x) a constes2
prdug j j1 j Eritemetal lue
crint fall outpot
```

A17. Input File for Problem 17

A18. Input File for Problem 18

A18. Input File for Problem 18 (continued)

```
e5mt.19: converted from keno file k.19: cont energy; eude/b-5
C
    Coll Curds
```



```
c Surface Cards
c rinite cylinders
\begin{tabular}{|c|c|c|c|c|}
\hline 7 & c/2 & -6.59-6.59 5.7 & \multirow[t]{3}{*}{5.748} & \\
\hline 8 & pz & -0.8425 & & 55.3825 abcve midplane \\
\hline 9 & pz & -11.6075 & & \$ 5.3825 belov midplane \\
\hline c & & & & \\
\hline 17 & c/8 & 10.875-10.875 & 0.525 & \\
\hline 18 & pz & -1.35 & & 18.89 above midplase \\
\hline 19 & pr & -19.13 & & - 8.89 belov midplane \\
\hline c & & & & \\
\hline 27 & c/2 & 10.875-10.875 & 10.16 & \\
\hline 28 & pz & -0.710 & & \$ 9.525 above aidplane \\
\hline 29 & \(p 2\) & -19.765 & & - 9.525 belov midplane \\
\hline c
30 & 80 & 35.0 & & - encloskif Ephere \\
\hline c & & & & \\
\hline c & \multicolumn{3}{|l|}{Data Cards} & \\
\hline code & n & & & (tranaport noutrons oniy \\
\hline
\end{tabular}
ta0naport noatrons only
c metorial cards: ondy/t-5 data
@1 92238.50c 0.067198
    92238.50c 
c urangl nitrate
E2 1001.50c 0.592466
    7014.50c 0.020143
    8016.50c 0.376557
    92236.50c 0.010041
    92238.50c 0.000792
c Plexiglas
    6000.50c 0.333330
    1001.50c 0.533336
    8016.50c 0.133334
E
t2 S(alpha. beta)
nt2 lotr.0it
C defanlt energy bins: Enmsen-Roach strocture
e0 1.0e-7 4.0e-7 1.0e-6 3.0e-6 1.0e-5 3.0e-5 1.0e-4 5.5e-4 3.0e-3
    1.7e-2 0.1 0.4 0.9 1.4 3.0 20.0
c
```



```
c criticality cards
Ecode 3000 1.0 20 200 4500 O
```

A19. Input File for Problem 19

A19. Input File for Problem 19 (continued)

```
05mt.30: converted from keno 1+1: i 20; r.ontinuous unargy, ondf/.
c Cell Cards
c Alvainum cas oith uramgl aitrate
    lollol
    lollollol
    lollol
    lollollol
    lollollol
    lollollol
    lollol
    lollol
    lollol
    lollollol
    lollol
    lollol
c Surface Carde
c px 50.0
l
llr
4
5 Pz 50.0
c finitecglindurs
17 cz 10.16
18 pz 18.288
19 pz 0.0
27 cz 10.312
28
29 pz -0.152
c
mode a tramapert neutrons oriv
c Enterial cardo: onds/b-5 deta
c uranyl Fluoride
l1 92235.50c 0.014017 U-235
    92235.50c
        $.50c 0.33834
        9019.50c 0.030053
        1001.50c 0.616570
    $3027.50c 1.0
2
    | U
    8
    F
    ##
    & cas
c
m$1
    S(alpla, beta)
    pz -0.152
1"tr.01t
```

A20. Input File for Problem 20

```
C defanlt energy bins: Gacson-Roach structure
c defanlt energ% bins: gagsen-Roach gerncture
    1.7e-2 0.1 0.1. 0.9 1.0 3.0 20.0
c
C4:a talliee Save Rlux in cell 1
c
c criticality cards
zcode 3000 1.0 20 200 4600 O
c Uniformiy diatributed volumesource in oach cyllader.
c Uniforniy diatributod volome source in oach cyllader.
c cell. energy, radive (fron axe), and z displacement (Irom pos).
c Siace the cyliader is in a repeatod siructure, bat alvegs
c has the same cell mubor, you most specify the path of cells
c Fhich uniquely defines the cylinder you vant. The path begins
    Fith the outermose cell and forke domn.
    sdef celadl exged2 rad=d3 extad4 pog=0.0 0.0 9.144 axym0 0 1
c
cir 1 3:1 path: /coll13/ce:l1
13:1
    * etc.
        45:1
        53:1
        63:1
            1 1 1 1 1 1 1 1
mp1 
llll
c
c
p4 -21 0
crave j j1 j
print stll outpot
c
            3:1
    * etc.
* eq-.l prob for all the above
    * Latt fiseion epectrme
    * radial limits
    p(x) = coneteabs(x)
-1
* axial limitn
- p(x) = const
```

A20. Input File for Problem 20 (continued)

| $92238.50 c$ | 0.0553234 | $U-236$ |
| :--- | :--- | :--- |
| $92234.50 c$ | 0.0100485 | $U-238$ |
| 922 | $\mathrm{U}=234$ | |

92238.50c 0.0019922$1.7 e-20.10 .40 .91 .43 .020 .0$
c
tallios
14:2 1
c
c criticalizy cerde
ncode 30001.02020045000
c
c don't bother nith anifore voluab source
kerc $6.87 \quad 6.87 \quad 6.505-6.87 \quad 0.87 \quad 6.505: 1$ poiat per cylinder
$\begin{array}{lllllll}6.87 & -6.87 & 6.505 & -6.87 & -6.87 & 6.505\end{array}$
$6.87 \quad 6.87-6.505-6.87 \quad 6.87-6.505$
$6.87-6.87-6.505-6.87-6.87-6.505$
c
prdep j j 1 j Erite metal file
pcint stall outpat

```
efet 23: couverted from keno file k. 23: continnous oneris: tadf/b-5
cane geosetry as problen 1
8 barg cylinders of U-metal
Cell Curds
\(14.80388-2 \quad 7-8 \quad 8 \quad\) imp: \(n=1 \quad \pi=-1\)
```



```
Surtace Cards
parallelpiped
    pI 0.0
    5x -13.74
    py 0.0
    PJ -13.74
    pz 0.0
    pz-13.01
cylinder
    c/z -6.87 -6.87 5.748
    pz - 1.1225
    pz -11.8875
    parailelpiped (shrink imensions alighty to avoid 1111 Exouble)
    px 13.7399
    px - 13.7399
    PY 13.7399
    pJ - 13.7399
    \(\begin{array}{lr}\text { PJ } & -13.7399 \\ \text { Pz } & 13.0099\end{array}\)
    pz -13.0099
```

```
c
C
moce u
c
c matexial cardu; endf/b-5 deta
m1 92236.50c 0.932831
    9223:.60c 0.055328
    92234.60c 0.010049
    9223e.60c 0.001992
c
c S(alphe, beta): not applicable
c
c defanle energy bins; Fansen-Roach Etructure
00 1.0e-7 4.0^-7 1.0e-8 3.0e-6 1.0@-5 3.C --5 1.0e-4 6.5e-4 3.0e-3
    1.7s-2 0.1 0.110.9 1.4 3.0 20.0
c tallies
14:n 1 % ave 11ux in cell 1
c criticality cards
ycode 3000 1.0 20 200 4500 0
c
sitef celadl erged2 rad=d3 ext=d4 pos=-6.87-6.87-8.505 axs=0 0 1
c:11 1 4:3(1 1 0):1
            4:3(1 0 0):1
            4:3(0 1 0):1
            4:3(0 0 0):1
            4:3(1 1 1):1
            4:3(1 0 1):1
            4:3(0 1 1):1
            4:3(0 0 1):1
            1111111111
ap1
c
ep2 -3
c13 0.0 5.748
up3 -21 1
c
ci4 -5 3825
ep4 -21 0
c
prdap j jij fritemetal file
print full outpot
```

```
e5mt.24: converted .row mano sile k.24: continoous onerg]; ondf/b-5
    mane geometry os problen i, but oriented along x
        8 bare cylinders of U-metai
Coll Cards
    14.80368e-2 -7 -8 9 位 (m:n=1 n=-1
    0 - -1 2-3 4-5 6 imp:a=1 u=2 lat=1
    111100:1 0:1 0:1 & 1 1 1 1 1 1 1
```



```
    Sarface Cards
    parallelpiped
        pz 0.0
        pz -13.74
        p] 0.0
        p) -13.74
        pz 0.0
        py -13.01
        cylinder
        c/x -6.87 -6.87 5.748
        pz -1.1225
        pz -11.8875
        parallelpiped (shrink dimensioas alightly to avodd fill trouble)
        Fz 13.7399
        pz -13.7399
        P) 13.7399
        p] -13.7399
        px 13.0099
        pz -13.0099
    Data Curds
mode a transport asutroas only
c
meterial cards; andf/b-5 deta
    92235.50c 0.932631
    92238.50c 0.055328
    92234.50c 0.010049
    92238.50c 0.001992
c
c S(alphe, beta): not appilcable
```

```
C
c default anergy bins; Bameon-losch structure
        1.0e-7 4.0e-7 1.0s-6 3.0e-6 1.0e-5 3.0s-5 1.0e-4 5.5&-4 3.0e-3
    1. }\because=-2 0.1 0.4 0.9 1.4 3.0 20.0
c
c tallies
14:a 1 Sve flur in call 1
c criticality cards
lcode 3000 1.0 20 200 4500 0
c
ede1 cel=d1 erged2 rad=d3 ext=d4 pos=-f.87 -6.87 -6.505 axs=1 0 0
C l1 1 4:3(1 110):1
        4:3(1 1 0 0):1
        4:3(0 1 0):1
        4:3(000):1
        4:3(1 1 1)::1
        4:3(1 1 1):1
        4:3(0 1 1):1
        4:3(0 0 1):1
sp1 111111111
c
c
c
ci3
cp3 -21 1
C
si4 -5.3825 5.3825
sp4 -21 0
c
c
    % puth: /ce214/cell3/lattice(1,1,0)/cell1
    * otc.
    * this ordering chosen to entch
        * supling ln efcs.2
8
1111111 %
& squal probabillty for all piths above
    * Vatt fission opectrwa
    - radial distribatioa
si4 -5.3825 5.3825 % axial distribution
    % p(x) = copeteabe(x)
    ep(x) = const
    * Erite mctel fice
    rint full output
```

A24. Input File for Problem 24 (continued)

```
-5mz .25: convarted from keno file 3..25: continnous energy: ends/b-5
C same geometiry a.f problom 1, but oriented elongy
    8 bare cylinders of U-metel
    Coll Caids
        14.80368e-2 -7 -8 9
        0 81
        0 -1 2 -3 4 -5 6
    {il1m0:1 0:1 0:1 1 1 1 1 1 1 1 1 1
```



```
Surlace Cards
parallelpiped
    pz 0.0
    pz - 13.74
    pz 0.0
    pz -13.74
    p; 0.0
    yy -13.01
    cylinder
    c/y-6.87 -6.87 6.748
        p] -1.1225
        py -11.8875
    parallelpiped (shrink dimensions slightly to avoid fill rrouble)
    px 13.7399
    px -13.7399
    pz 13.7399
    pz -13.7399
    PJ 13.0099
    py -13.0099
    Data Cards
aode n
S tramsport neutrons only
c material carda: ondf/b-5 data
m1 9223E.Enc 0.932631
92338.50c 0.055328
92234.50c 0.010049
92236.50c 0.001992
    S(alpha, bets): not applicable
```

```
c detault energy bins: #amsen-Roach structure
00 1.00-7 4.00-7 1.0e-6 3.00-0 1.00-5 3.0e-5 1.0e-4 5.50-4 3.0e-3
    1.70-2 0.1 0.4 0.9 1.4 3.0 20.0
c
c criticality cards
zcode 3000 1.0 20 200 4500 O
c
sdef celadi erged2 rad=d3 extm&4 pos=-6.87-0.87 -0.505 axe=0 10
C11 1 4:3(1 1 0):1
        4:3(100):1
        4:3(0 1 0):1
    etc.
        4:3(0 1 0):1
        4:3(1 1 1):1
        4:3(1 0 1):1
        4:3(0 1 1):1
        4:3(0 1 1):1
```



```
cp2 -3
c
e13
c
-p4 -21 0
prdmp jilij
c
    | ave 1lum in coll 1
* equal probability for all paths above
    * Uatt lission spectzo
    cradial distribution
    p(x)=consteabs(x)
c
    path: /csll4/cell3/lattico(1,1,0)/coll1
    this ordering chosen to metch
        empling in e5ce.2
```

APPENDIX B:

MCNP 4x-c RESULTS

MCNP version 4.2, which is the most recent MCNP release, was used to produce all of the results that are located in the main body of this report. The problems were also run with a presiminary version of MCNP4A, version $4 \mathrm{x}-\mathrm{c}$, to determine whether any discrepancies exist between the two. As these results indicate, the two versions produce the same results within statistical uncertainties.

The three tables that are included in the body oif this report are reproduced below, with the $4 \mathrm{x}-\mathrm{c}$ results. Table B1 contains the KENO results and the MCNP results for continuous energy, with the $\mathrm{S}(\alpha, \beta)$ card. The percent differences between the MCNP results and the KENO results are listed in the column labeled monp from keno. The percent differences between MCNP and experimental and KENO and experimental, where available, are listed in the last two columns.

TABLE B1
$k_{e f f}$ Values for KENO and MCNP Continuous Energy with the $\mathbf{S}(\alpha, \beta)$ Treatment

| case | MCNP ${ }^{\dagger}$ | | KENO | | \%DIfFERENCE | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $k_{\text {ce }}$ | relative error | $k_{\text {keno }}$ | relative error | $\underset{\substack{\text { menp } \\ \text { keno }}}{\text { from }}$ | $\begin{gathered} \text { menp from } \\ \text { exp } \end{gathered}$ | keno from \exp |
| 1 | 0.9999 | 0.0009 | 0.9996 | 0.0011 | 0.0 | -0.0 | -0.0 |
| 2 | 0.9999 | 0.0009 | 0.9996 | 0.0011 | 0.0 | -0.0 | -0.0 |
| 3 | 0.9990 | 0.0011 | 1.0009 | 0.0013 | -0.2 | -0.1 | 0.1 |
| 4 | 0.9945 | 0.0028 | 1.0010 | 0.0015 | -0.7 | -0.5 | 0.2 |
| 5 | 0.9995 | 0.0027 | 1.0210 | 0.0009 | -2.1 | -0.0 | 2.1 |
| 6 | 0.7461 | 0.0010 | 0.7487 | 0.0013 | -0.3 | * | * |
| 7 | 0.9993 | 0.0009 | 0.9984 | 0.0011 | 0.1 | -0.1 | -0.2 |
| 8 | 0.9401 | 0.0009 | 0.9430 | 0.0012 | -0.3 | * | * |
| 9 | 2.2905 | 0.0005 | 2.2617 | 0.0004 | 1.3 | * | * |
| 10 | 0.9979 | 0.0014 | 0.9996 | 0.0011 | -0.2 | -0.2 | -0.0 |
| 11 | 0.9979 | 0.0014 | 0.9982 | 0.0012 | -0.0 | -0.2 | -0.2 |
| 12 | 0.9986 | 0.0012 | 1.0055 | 0.0013 | -0.7 | -0.1 | 0.6 |
| 13 | 0.9942 | 0.0009 | 1.0026 | 0.0012 | -0.8 | -0.6 | 0.3 |
| 14 | 0.9991 | 0.0009 | 1.0011 | 0.0010 | -0.2 | -0.1 | 0.1 |
| 15 | 1.0025 | 0.0010 | 1.0012 | 0.0020 | 0.1 | 0.2 | 0.1 |
| 16 | 0.9887 | 0.0008 | 0.9936 | 0.0007 | -0.5 | * | * |
| $!7$ | 1.0029 | 0.0014 | 0.9783 | 0.0023 | 2.5 | * | * |
| 18 | 1.0287 | 0.0013 | 1.0088 | 0.0015 | 2.0 | * | * |
| 19 | 0.9936 | 0.0012 | 1.0044 | 0.0013 | -0.6 | -0.1 | 0.4 |
| 20 | 0.9981 | 0.0014 | 0.9791 | 0.0014 | 1.9 | -0.2 | -2.1 |
| 21 | 0.9948 | 0.7009 | 1.0012 | 0.0009 | -0.6 | -0.5 | 0.1 |
| 22 | 0.9992 | 0.0009 | 0.9996 | 0.0011 | -0.0 | -0.1 | -0.0 |
| 23 | 0.9999 | 0.0009 | 0.9996 | 0.0011 | 0.0 | -0.0 | -0.0 |
| 24 | 0.9982 | 0.0008 | 0.9999 | 0.0011 | -0.2 | -0.2 | -0.0 |
| 25 | 1.0011 | 0.0009 | 0.9987 | 0.0011 | 0.2 | 0.1 | -0.1 |
| * Experimental values of $k_{e \rho f}$ could not be located for these problems.
 \dagger Values reported are for the covariance-weighted combined est:mator. | | | | | | | |

The results for the multigroup MCNP and KENO are listed in Table B2.

TABLE B2
$k_{e f f}$ Values for KENO and MCNP Multigroup

| | MCNP ${ }^{\dagger}$ | | KENO | | \%DIFFERENCF, | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| case | $k_{m g}$ | relative error | $k_{k e n o}$ | relative error | menp from keno | menp from exp |
| 1 | 0.9971 | 0.0009 | 0.9996 | 0.00 il | -0.3 | -0.3 |
| 2 | 0.9960 | 0.0009 | 0.9996 | 0.0311 | -0.4 | -0.4 |
| 3 | 1.0199 | 0.0010 | 1.0009 | 0.0013 | 1.9 | 2.0 |
| 4 | 1.0166 | 0.0027 | 1.0016 | 0.0015 | 1.5 | 1.7 |
| 5 | 1.0187 | 0.0030 | 1.0210 | 0.0009 | -0.2 | 1.9 |
| 6 | 0.7426 | 0.0008 | 0.7487 | 0.0013 | -0.8 | * |
| 7 | 0.9966 | 0.0008 | 0.9984 | 0.0011 | -0.2 | -0.3 |
| 8 | 0.9357 | 0.0008 | 0.9430 | 0.0012 | -0.8 | * |
| 9 | 2.2955 | 0.0005 | 2.2617 | 0.0004 | 1.5 | - |
| 10 | 0.9976 | 0.0014 | 0.9996 | 0.0011 | -0.2 | -0.2 |
| 11 | 0.9976 | 0.0014 | 0.9982 | 0.0012 | -0.1 | -0.2 |
| 12 | 1.0013 | 0.0012 | 1.0055 | 0.0013 | -0.4 | 0.1 |
| 13 | 0.9918 | 0.0009 | 1.0026 | 0.0012 | -1.1 | -0.8 |
| 14 | 0.9944 | 0.0009 | 1.0011 | 0.0010 | -0.7 | -0.6 |
| 15 | 1.0292 | 0.0010 | 1.0012 | 0.0020 | 2.8 | 2.9 |
| 16 | 1.0132 | 0.0010 | 0.9936 | 0.0007 | 2.0 | * |
| 17 | 0.9873 | 0.0016 | 0.9783 | 0.0023 | 0.9 | * |
| 18 | 1.0670 | 0.0011 | 1.0088 | 0.0015 | 5.8 | * |
| 19 | 1.0013 | 0.0012 | 1.0044 | 0.0013 | -0.3 | 0.1 |
| 20 | 1.0013 | 0.0015 | 0.9791 | 0.0014 | 2.3 | 0.1 |
| 21 | 0.8353 | C.0009 | 1.0012 | 0.0009 | -16.6 | -16.5 |
| 22 | 0.9961 | 0.0008 | 0.9996 | 0.0011 | - 4.4 | -0.4 |
| 23 | 0.9960 | 0.0009 | 0.9996 | 0 n 11 | -14 | -0.4 |
| 24 | 0.9980 | 0.0008 | $0.999 ?$ | , | . 0.2 | -0.2 |
| 25 | 0.9974 | 0.0009 | 0.9887 | | -0.1 | -0.3 |

[^0] the KENO results are given in Table 13 .
'NASES 33

MCNP ${ }^{\dagger}$ with $S(\alpha, \beta)$ MCNP ${ }^{\dagger}$ no Sil: :; \quad \%DIFFERENCE

| case | $\boldsymbol{k}_{\alpha \beta}$ | relative error | $k_{\text {ce }}$ | resulat. error | $\begin{array}{ll} \because & \therefore \\ \because \quad n o \end{array}$ | $\text { no } S ; a, \beta)$
 from keno | with $S(\alpha, \beta)$
 from exp | no $S(\alpha, \beta)$
 from exp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.9990 | 0.0011 | 1.0163 | 0.0011 | -0.2 | 1.6 | -0.1 | 1.7 |
| 4 | 0.9945 | 0.0028 | 1.0181 | 0.0025 | -0.7 | 1.6 | -0.5 | 1.8 |
| 5 | 0.9995 | 0.0027 | 1.0156 | 0.0028 | -2.1 | -0.5 | -0.0 | 1.6 |
| 12 | 0.9986 | 0.0012 | 1.0016 | 0.0012 | -0.7 | -0.4 | -0.1 | 0.2 |
| 15 | 1.0025 | 0.0010 | 1.0189 | 0.0012 | 0.1 | 1.8 | 0.2 | 1.9 |
| 16 | 0.9887 | 0.0008 | 0.9954 | 0.0009 | -0.5 | 0.2 | * | * |
| 17 | 1.0029 | 0.0314 | 0.9830 | 0.0015 | 2.5 | 0.5 | * | * |
| 18 | 1.0287 | 0.0013 | 1.0487 | 0.0012 | 2.0 | 4.0 | * | * |
| 19 | 0.9986 | 0.0012 | 1.0016 | 0.0012 | -0.6 | -0.3 | -0.1 | 0.2 |
| 20 | 0.9981 | 0.0014 | 0.9948 | 0.0014 | 1.5 | 1.6 | -0.2 | -0.5 |
| 21 | 0.9948 | 0.0009 | 0.9830 | 0.0009 | -0.6 | -1.8 | -0.5 | -1.7 |

* Experimental values of $k_{\text {c/f }}$ could not be located for these problems.
\dagger Values reported are for the covariance-weighted combined estimator.

[^0]: * Experimental values of $k_{e ; \text {; }}$ conlu ..ut ve locatrd for inerse problems.
 \dagger Values reported are for the covariance-weighted combined estimator.

