Informal Report
C. 3

CIC-14 REPORT COLLECTION
REPRODUCTION COPY

A Curious Function of Otto Frisch

This report was not edited by the Technical Information staff. This repurt was prepared as an account of work sponsored
by the United States Government. Neither the United States by the United States Government. Nether the United States
nor the United States Department of Energy, nor any of thets employees, nor any of their contractors, subcontractors, or theif employees, makes any warranty, express or tmplled. or completeness, of usefutness of any information apparatus. product or process disctosed of represents that tis use would not infringe privately owned rights.

A Curious Function of Otto Frisch

C. J. Everett
E. D. Cashwell

by

C. J. Everett and E. D. Cashwell

ABSTRACT

If $\left\{x_{n}\right\}$ is a countable set of points everywhere dense on $(0,1)$, and $\left\{j_{n}\right\}$ a set of corresponding positive numbers with $\sum^{\infty} j_{n}=J<\infty$, then a monotone nondecreasing function $f(x)$ on $[0,1]$, with $f(0)=0, f(1)=J$, which is continuous on $[0,1]$ except at each x_{n}, where it is right continuous, but left discontinuous with jump j_{n}, is necessarily a sum of step functions uniquely determined by the x_{n}, j_{n}. A curious function, explicitly defined by 0 . Frisch, is proved to be such a function, with jump $j(p / q)=1 /\left(2^{q}-1\right)$ at each (reduced) rational point p / q on $(0,1)$, and continuous elsewhere. Moreover, it is rational valued iff \times is rational, and has some remarkable number theoretic properties, stemming from its character as a sum of step functions.

1. STRUCTURE OF A MONOTONE FUNCTION

In this part, $\left\{x_{n}\right\}$ denotes a fixed, countable set of points everywhere dense on $(0,1)$, and $\left\{j_{n}\right\}$ a set of corresponding numbers $j_{n}>0$, with finite sum $j_{n}=J$. Such a set of pairs x_{n}, j_{n} serves to define a monotone function $s(x)$ as a sum of step functions.

Theorem 1. If $s_{n}(x)$ is the step function

$$
s_{n}(x)=\left\{\begin{array}{l}
0,0 \leqslant x<x_{n} \\
j_{n}, x_{n} \leqslant x \leqslant 1,
\end{array}\right.
$$

then $s(x)=\sum_{1}^{\infty} s_{n}(x)$ is well defined on $[0,1]$, and
(a) $s(x)$ is strictly increasing on $[0,1]$, with $s(0)=0, s(1)=J$,
(b) $s(x)$ is continuous on $[0,1]$ except at the points x_{n},
(c) at x_{n}, $s(x)$ is right contlnuous, but left discontinuous with jump j_{n}.

Most of these properties of $s(x)$ are proved in Ref. 1, p. 129, and the rest are easily establlshed.

In fact, $s(x)$ is the only such function, in the sense of the following theorem.

Theorem 2. If $f(x)$ is a monotone nondecreasing function on $[0,1]$, with $f(0)=0, f(1)=J$, which is continuous except at the points x_{n}, and at x_{n} is right continuous but left discontinuous with jump j_{n}, then

$$
\begin{equation*}
f(x)=\sum_{x_{m} \leqslant x} j_{m}, 0<x \leqslant 1 \tag{1}
\end{equation*}
$$

Hence $f(x)$ is uniquely determined by the x_{n}, j_{n}, and must be the function $s(x)$ of Theorem 1, with all its properties.

Proof. Since $f(x)-f(0) \geqq \sum_{x_{m} \leqslant x} j_{m}$ and $f(1)-f(x) \geqq \sum_{x_{m}>x} j_{m}$ (Ref. 2,
p. 205), we have $f(1)=f(1)-f(0) \geqq \sum_{1}^{\infty} j_{n}=J$. Since we have stipulated that $f(1)=J$, the equality (1) follows, and the rest is obvious.

Note. The condition $f(1)=J \equiv \sum_{1}^{\infty} j_{n}$ is essential. For, if $s(x)$ is the function of Theorem 1 , then $f(x)=s(x)+a x$, a >0, satisfies all the other conditions of Theorem 2. It is curious that, if we take $j_{n}=\varepsilon / 2^{n}>0$, then $f(1)=\varepsilon+a$, where the sum ε of the jumps (the only discontinuities) may be arbitrarlly small, and the total variation $f(1)-f(0)$ arbitrarily large.

11. A STRANGE FUNCTION OF OTTO FRISCH

In a private communication to N. Metropolis, 0 . Frisch has defined a very curlous function $f(x)$: For x on $[0,1]$, and $n=0,1,2, \ldots$ let $x_{n}=n x, g_{n}=$ $\left[x_{n}\right]$,

$$
b_{n}=\left\{\begin{array}{l}
0 \text { if } g_{n}=g_{n+1} \\
1 \text { if } g_{n}<g_{n+1},
\end{array}\right.
$$

and $f(x)=\sum_{1}^{\infty} b_{n} / 2^{n}$. This function has the propertles of the following theorem, some of which were stated (without proof) by Frisch.

Theorem 3. The function $f(x)$ is right continuous at $x=0$, with $f(0)=0$, and left continuous at $x=1$, with $f(1)=1$; strictly increasing on [0, 1$]$; rational at every (reduced) rational point p / q on $(0,1)$, where it is right continuous but left discontinuous with a jump $j(p / q)=1 /\left(2^{q}-1\right)$, the sum of all jumps being unity; and continuous and irrational at every irrational \times on (0,1).

The theorem is in the nature of a summary, the truth of which will become apparent from the following remarks.

1. $f(1)=1$. For $x=1$, one has $x_{n}=n, g_{n}=n, b_{n}=1$ for $n \geqslant 0$ and $f(1)=\sum_{1}^{\infty} 1 / 2^{n}=1$.
2. For $0 \leqslant x<1$, we may write $f(x)=\sum_{0}^{\infty} b_{n} / 2^{n}$. For then $x_{0}=0$, $x_{1}=x<1, g_{0}=0, g_{1}=0$, and $b_{0}=0$. ($1+$ is convenient to include $b_{0}=0$ in the definition of $f(x)$ for $x<1$, and we do so hereafter.)
3. $f(0)=0$. For $x=0$, one has $x_{n}=0, g_{n}=0, b_{n}=0$ for $n \geqslant 0$, and $f(0)=\sum_{0}^{\infty} 0 / 2^{n}=0$.
4. For any x on $[0,1]$, the sequence $g_{0}, g_{1}, g_{2}, \ldots$, can jump by at most 1. For, $g_{n} \leqslant n x<g_{n}+1$ implies $g_{n} \leqslant n x+x<\left(g_{n}+1\right)+x \leqslant g_{n}+2$. Thus $g_{n} \leqslant(n+1) x<g_{n}+2$ and g_{n+1} is g_{n} or $g_{n}+1$.
5. If $x>0$, the sequence $b_{0}, b_{1}, b_{2}, \ldots$, cannot terminate in 0 . For, $x_{n}=n x \rightarrow \infty$ as $n \rightarrow \infty$. Hence $g_{n} \rightarrow \infty$, whereas termination of $\left\{b_{n}\right\}$ in 0 implies all g_{n} identical after some point.
6. If $x<1$, the sequence $b_{0}, b_{1}, b_{2}, \ldots$, cannot terminate in 1 . If $1=b_{N}=b_{N+1}=\ldots$ for some N, we should have $g_{N+k}=g_{N}+k$ for $k=1,2,3$, \ldots by (4), and hence $g_{N}+k \leqslant(N+k) x<\left(g_{N}+k\right)+1$, or $g_{N} / k+1 \leqslant$ $(N / k+1) \times<\left(g_{N}+1\right) / k+1$. Since N is fixed, and $k=1,2,3, \ldots$, this implies $1 \leqslant x \leqslant 1$ and $x=1$.
7. $f(x)$ is strictly increasing on $[0,1]$. By (5) and (6), it suffices to prove $f(x)<f\left(x^{\prime}\right)$ for $0<x<x^{\prime}<1$. Since $x_{n}=n x \leqslant n x^{\prime}=x_{n}^{\prime}$ for all $n \geqslant 0$,
we must have $g_{n} \leqslant g_{n}^{\prime}$ for all n. Moreover, there must be a first N for which $g_{N}<g_{N}^{\prime}$. Otherwise we should have all $g_{n}=g_{n}^{\prime}$ whence $g_{n} \leqslant n x<g_{n}+1$ and $g_{n} \leqslant n x^{\prime}<g_{n}+1$. Writing the first of these as $-g_{n}-1<-n x \leqslant-g_{n}$ and adding to the second gives $-1<n\left(x^{\prime}-x\right)<1$, a contradiction for $x^{\prime}>x$ and $n \rightarrow \infty$. Thus for x and x^{\prime}, the g_{n} sequences are of form (cf. (2)) $g_{0}=0, g_{1}=0$, $g_{2}, \ldots, g_{N-1}, g_{N}, \ldots ; g_{0}=0, g_{1}=0, g_{2}, \ldots, g_{N-1}, g_{N}^{\prime}, \ldots$, where $g_{N}<g_{N}^{\prime}$ for an $N \geqslant 2$. Now if $g_{N-1}<g_{N}$, then $g_{N}^{\prime}>g_{N}>g_{N-1} ; g_{N}^{\prime}$ would be at least 2 more than its immediate predecessor, which is impossible by (4). Hence we must have $g_{N}=g_{N-1}, g_{N}^{\prime}=g_{N-1}+1$, and so $b_{N-1}=0, b_{N-1}^{\prime}=1$. 1 t then follows from (5) and (6) that $f(x)<f\left(x^{\prime}\right)$.
8. $f(x)$ is left continuous at $x=1$. For $x=1$ and $n \geqq 1$, we have the defining sequences

$x_{n}:$	1	2	3	\ldots	$N-1$	N	$N+1$	\ldots
$g_{n}:$	1	2	3	\ldots	$N-1$	N	$N+1$	\ldots
$b_{n}:$	1	1	1	\ldots	1	1	1	\ldots

For small $\varepsilon>0$, and N the first integer for which $(N+1) \varepsilon>1$, the corresponding sequences for $x^{\prime}=1-\varepsilon$ will read

$$
\begin{array}{ccccccccc}
x_{n}^{\prime}: & 1-\varepsilon & 2-2 \varepsilon & 3-3 \varepsilon & \ldots & (N-1)-(N-1) \varepsilon & N-N \varepsilon & (N+1)-(N+1) \varepsilon \ldots \\
g_{n}^{\prime}: & 0 & 1 & 2 & \ldots & N-2 & N-1 & N-1 & \ldots \\
b_{n}^{\prime}: & 1 & 1 & 1 & \ldots & 1 & 0 & \ldots &
\end{array}
$$

Clearly $f(1-\varepsilon) \rightarrow 1=f(1)$ as $\varepsilon \rightarrow 0$.
9. $f(x)$ is right continuous at $x=0$. For $x=0$ and $n \geqslant 1$,

$x_{n}:$	0	0	0	\ldots	0	0	0	\ldots
$g_{n}:$	0	0	0	\ldots	0	0	0	\ldots
$b_{n}:$	0	0	0	\ldots	0	0	0	\ldots

For small $x^{\prime}=\varepsilon>0$, and N the first integer for which $(N+1) \varepsilon \geqslant 1$, we have the sequences

$\times_{n}^{\prime}:$	ε	2ε	3ε	\cdots	$(N-1) \varepsilon$	$N \varepsilon$	$(N+1) \varepsilon$	\cdots
$g_{n}^{\prime}:$	0	0	0	\cdots	0	0	1	\cdots
b_{n}^{\prime}	0	0	0	\cdots	0	1	\cdots	,

so that $f(\varepsilon) \rightarrow 0=f(0)$ as $\varepsilon \rightarrow 0$.
10. If $x=p / q$ is a reduced fraction on $(0,1)$, i.e., $q \geqq 2, i \leqslant p<q$, $(p, q)=1$, then

$$
g_{k q+1}+p=g_{(k+1) q+i}
$$

for $i=0,1,2, \ldots, q-1$ and all $k \geqslant 0$. For, $g \leqslant(k q+i) p / q<g+1$ implles $(g+p) \leqslant i(k+1) q+i) p / q<(g+p)+1$.
11. For a reduced fraction $x=p / q$ on $(0,1)$, the sequence $\left\{b_{n}\right\}, n \geqslant 0$, is pure periodic, with a period of length q, and $f(x)$ is rational. For, by (10), the g_{n} sequence is of form $g_{0}, g_{1}, \ldots, g_{q-1} ; g_{0}+p, g_{1}+p, \ldots, g_{q-1}+p$; $g_{0}+2 p, \ldots$, where $g_{0}=g_{1}=0$. Consequently the b_{n} sequence b_{0}, b_{1}, \ldots, $\mathrm{b}_{\mathrm{q}-1} ; \mathrm{b}_{0}, \mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{q}-1} ; \mathrm{b}_{0}, \ldots$ is periodic of period k, and $f(x)$ is rational. Ex. 1. For $x=1 / 2$, one has the sequences

$$
\begin{aligned}
& x_{n}: 0,1 / 2 ; 1,3 / 2 ; 2,5 / 2 ; 3, \ldots \text {, } \\
& \mathrm{g}_{\mathrm{n}}: 0,0 ; 1,1 ; 2,2 ; 3, \ldots \text {, } \\
& \mathrm{b}_{\mathrm{n}}: 0,1 \text {; } 0,1 ; 0,1 \text {; } 0, \ldots \text {, } \\
& f(1 / 2)=1 / 2+1 / 2^{3}+1 / 2^{5}+\ldots=2 / 3 \text {. }
\end{aligned}
$$

Ex. 2. For $x=2 / 5$,
$x_{n}: 0,2 / 5,4 / 5,6 / 5,8 / 5 ; 10 / 5,12 / 5,14 / 5,16 / 5,18 / 5 ; 20 / 5, \ldots$, $\mathrm{g}_{\mathrm{n}}: 0,0,0,1,1 ; 2,2,2,3,3 ; 4, \ldots$, $\mathrm{b}_{\mathrm{n}}: 0,0,1,0,1 ; 0,0,1,0,1 ; 0, \ldots$, $f^{n}(2 / 5)=\left(1 / 2^{2}+1 / 2^{4}\right)\left(1+1 / 2^{5}+1 / 2^{10}+\ldots\right)=10 / 31$.
12. For a reduced fraction $x=p / q$ on $(0,1)$, one has for all $k \geqslant 1$,

$$
\begin{array}{ll}
x_{k q-1}=(k q-1) p / q=k p-p / q, g_{k q-1}=k p-1, \\
x_{k q}=(k q) p / q=k p, & g_{k q}=k p, \\
x_{k q+1}=(k q+1) p / q=k p+p / q, g_{k q+1}=k p,
\end{array}
$$

Hence for $x=p / q$, the b_{n} sequence is always of form $0, b_{1}, \ldots, b_{q-2}, 1$; $0, b_{1}, b_{2}, \ldots, b_{q-2}, 1 ; 0, \ldots$.
13. For a reduced fraction $x=p / q$ on $(0,1)$, we have $f(p / q)=\left(B+1 / 2^{q-1}\right) /\left(1-1 / 2^{q}\right)$, where $B=\sum_{1}^{q-2} b_{n} / 2^{n}(B=0$ for $x=1 / 2)$. This is clear from (12).
14. If $x=p / q$ is a reduced fraction on $(0,1)$, and $\varepsilon>0$ is very small, then for $x^{\prime}=p / q-\varepsilon$, the b_{n}^{\prime} sequence will begin with $0, b_{1}, b_{2}, \ldots, b_{q-2}, 0$; $1, b_{1}, b_{2}, \ldots, b_{q-2}, 0 ; 1, \ldots$, the only change in the initial g_{n} being from the g - triads $\mathrm{kp}-\mathrm{l}, \mathrm{kp}$, kp to the g ' triads $\mathrm{kp}-\mathrm{l}, \mathrm{kp}-\mathrm{l}, \mathrm{kp}$, as may be inferred from (12). For $x_{n}=n(p / q)$ is an integer iff n is a multiple of q.
15. It is clear that the smaller $\varepsilon>0$ is taken in (14), the longer this b_{n} - pattern will persist. Hence

$$
f\left((p / q)^{-}\right)=\lim _{\varepsilon \rightarrow 0} f(p / q-\varepsilon)=\left(B+1 / 2^{q}\right) /\left(1-1 / 2^{q}\right) .
$$

16. $f(x)$ is left discontinuous at every reduced fraction $x=p / q$ on $(0,1)$, with a left jump

$$
j(p / q)=f(p / q)-f\left((p / q)^{-}\right)=1 /\left(2^{q}-1\right) .
$$

This follows at once from (13) and (15).
17. $f(x)$ is right continuous at every reduced fraction $x=p / q$ on $(0,1)$. For small $\varepsilon>0$, the b_{n}^{\prime} - pattern for $x^{\prime}=p / q+\varepsilon$ will begin just as does the b_{n} - pattern for $x=p / q$, and the smaller $\varepsilon>0$, the longer this pattern will persist.
18. The sum of all the jumps $j(p / q)$ is unity. Since for $q \geqslant 2$, there are $\phi(q)$ reduced fractions p / q on $(0,1)$, at each of which there is the same jump $j(p / q)=1 /\left(2^{q}-1\right)$, we must have

$$
J \equiv \sum_{0<p / q<1} j(p / q)=\sum_{2}^{\infty} \phi(q) /\left(2^{q}-1\right)=1 .
$$

The value 1 of the serles may be inferred by setting $y=1 / 2$ in the Liouville identity (Ref. 3, p. 240)

$$
\sum_{1}^{\infty} \phi(q) y^{q} /\left(1-y^{q}\right) \equiv y /(1-y)^{2},|y|<1 .
$$

(The latter is an easy consequence of the well known property $\sum \phi(d)=m$ of the Euler ϕ-function.) d/m
19. $f(x)$ is continuous at every irrational $x=\theta$ on $(0,1)$. For smali $\varepsilon>0$, the b_{n}^{\prime}-patterns for both $x^{\prime}=\theta+\varepsilon$ and for $x^{\prime}=\theta-\varepsilon$ will begin as does the b_{n}-pattern for $x=\theta$, the latter because $n \theta$ is never an integer, and the smaller $\varepsilon>0$ is taken, the further this pattern will continue. Thus $f(x)$ is right and left continuous at $x=\theta$.
20. $f(x)$ is Irrational at every irrational $x=\theta$ on $(0,1)$. Suppose on the contrary that for some irrational $x=\theta$, the b_{n} sequence were terminally perlodic of some period length q. Since by (6) it cannot terminate in 1 , we should have an N such that for all $k \geqslant 0$,

$$
{ }^{b_{N+k q}}=0
$$

```
and hence \(\quad g_{N+k q}=g_{N+k q+1}\).
Now write \(\quad N \theta=g+\delta,(N+1) \theta=g+\varepsilon\),
where \(g=g_{N}\) is an integer, and \(0<\delta<\varepsilon<1\).
Also let \(q \theta=c+\eta\),
where \(c=[q \theta], 0<\eta<1\), and \(\eta\) is irrational.
Then \(\quad(N+k q) \theta=g+\delta+k c+k n\),
and \(\quad(N+1+k q) \theta=g+\varepsilon+k c+k n\)
must have the same integral part, for all \(k \geqslant 0\).
Now \(\eta\) is irrational, and the numbers \(k n, k \geqslant 0\) are uniformly distributed mod 1
(Ref. 4, p. 72). Hence there exists a \(K\) such that
\[
K n=h+r,
\]
```

where h is an integer, and

$$
\begin{array}{ll}
& 0<1-\varepsilon<r<1-\delta<1 . \\
& H e n c e \\
r+\delta<1 \text { and } r+\varepsilon>1 .
\end{array}
$$

Then $(N+K q) \theta=g+\delta+K c+h+r=(g+K c+h)+(r+\delta)$, and $(N+1+K q) \theta$ $=g+\varepsilon+K c+h+r=(g+K c+h)+(r+\varepsilon)$. But obviously these two numbers do not have the same integral part, and this is a contradiction.

III. NUMBER THEORY AND THE FRISCH FUNCTION

Since the Frisch function has the properties of Theorem 2, we may infer at once the following theorem.

Theorem 4. The Frisch function $f(x)$ is the sum $s(x)$ of the step functions In Theorem 1, where $\left\{x_{n}\right\}$ is the set of all reduced fractions p / q on $(0,1)$, and $j(p / q)=1 /\left(2^{q}-1\right)$.

Thus $f(x)$ has all the properties of $s(x)$, some of which are easily obtalned from the original definition in Part 11, as we have seen, but others are by no means obvious.

It is interesting that the value of $f(1 / 2)$ may be found both from the Frisch definition of $f(x)$, and from its realization $s(x)$. Thus $f(1 / 2)=2 / 3$, as we saw in Part II (II), whereas

$$
\begin{aligned}
& s(1 / 2)=\sum_{\frac{p}{q} \leqslant \frac{1}{2}} j(p / q)=j(1 / 2)+\sum_{3}^{\infty} \frac{(1 / 2) \phi(q)}{2^{q}-1} \\
& =\frac{1}{3}+\frac{1}{2}\left(\sum_{2}^{\infty} \frac{\phi(q)}{2^{q}-1}-\frac{\phi(2)}{2^{2}-1}\right)=\frac{1}{3}+\frac{1}{2}\left(1-\frac{1}{3}\right)=\frac{2}{3}
\end{aligned}
$$

But $x=1 / 2$ is the only fraction on $(0,1)$ for which $s(x)$ is easlly evaluated. It seems remarkable therefore that the readily evaluated $f(p / q)$ provides a means of summing the series $s(p / q)$.

Theorem 5. If a / b is a rational number on $(0,1]$, and $N(q, a / b)$ denotes the number of integers p prime to q for which $1 \leqslant p \leqslant(a / b) \cdot q$, then

$$
\sum_{q \geqslant b / a} \frac{N(q, a / b)}{2^{q}-1}=f(a / b)
$$

where $f(a / b)$ is evaluated in Part 11 (13).
Note that $N(q, 1)=\phi(q)$ for $q \geqslant 2$, and $N(q, 1 / 2)=\frac{1}{2} \phi(q)$ for $q \geqslant 3$, but for other values of $a / b, N(q, a / b)$ seems to be a new arithmetic function with interesting properties. As a final example (cf. Part ll (II), we note that

$$
\begin{aligned}
& 10 / 31=f(2 / 5)=s(2 / 5)=\sum_{q=3}^{\infty} \frac{N(q, 2 / 5)}{2^{q}-1} \\
& =1 / 7+1 / 15+2 / 31+1 / 63+2 / 127+2 / 255 \\
& +2 / 511+2 / 1023+4 / 2047+1 / 4095+5 / 8191+\ldots .
\end{aligned}
$$

Note. The Frisch function seems a fitting companion to a simllarly constructed function of van der Waerden, which is everywhere continuous, but nowhere dlfferentiable (Ref. 5, p. 353).

Note added in proof: A short discussion of the function by Frisch will appear In Ref. 6.

REFERENCES

1. R. P. Boas, A Primer of Real Functlons, (John Wiley and Sons, Inc., New York, 1960).
2. 3. P. Natanson, Theory of Functions of a Real Variable, Vol. I, Revised Edition, (Frederick Ungar Publishing Co., New York, 1964).
1. W. Sierpinski, Elementary Theory of Numbers, Monografie Matematyczne, (Warszawa, 1964).
2. 3. Niven, Irrational Numbers, (John Wiley and Sons, Inc., New York, 1956).
1. E. C. Titchmarsh, The Theory of Functions, 2nd Edition, (Oxford Univ. Press, London, 1939).
2. O. Frisch, "A Crazy Function," Speculations in Science and Technology (to appear).

Printed in the Uniled States of America. Avaitultu from National Technical Information Service
is Depariment of Conmmert
5285 Purs Royal Road Springlikld, VA 22161

Mictofirite $\$ 3.00$

001.025	4.00	126.150	7.25	251.275	10.75	$376-400$
026.050	4.50	151.175	1.00	276.300	11.00	40.425
051.075	5.25	176.200	9.00	301.325	11.75	426.450
076.100	6.00	201.225	9.25	326.350	12.00	451.475
101.125	6.50	226.250	9.50	151.375	12.50	476.500

