

-7 mart horary fotionathu $7-3172$

NuMERICAL :/ETHODS

Volume Editor: E. Nelson

Part II

Chapters 6 through 8

PUBLICLY RELEASABLE Per Bill PabtinusFSS-16 Date: $\angle-8.95$

- data

VERIFIED UNCLASSIFIED
By Marlunhujass. CIC-14 Date: $\mathbb{1}-2285$
Written By:
T. H. R. Skyrme
E. Nelson
R. O. Peierls
S. Goldberg
J. Kemeny
D. Panders
F. Whitman

APPROVED FOR PUBLIC RELEASE

NIMERICAL METHODS

Volume Editor: E. Nelson

Part I I

TARLE OF CONTENTS
CHAPTER 6 NUMERICAL TNTEGRATION OF PARIIAL DTFFERENITAL EQUATIONS
6.1 Introduction, Bquations (T.H.R. Skyme)
6.2 Boundary Conditions
6.3 Integration Alone Characteristics
6. 4 Numerical Solution of the Hydrodynamic Eouation on IBM Nachines (E. Nelson)
6.5 Don Neumann's Lethod of Treating Shocks (R. O. Peierls)
GHAPTER 7 SOLTTION OF THE TIME DEPENDENT DIFFUSTON EQUATION ON TBMMACH TNES (S. Goldberg and J. Kemeny)
CHAPTER 8 NTSCELLANEOUS PROZLEUS IN INNERTCAL CALCULATION(D. Flanders and P. Whitman)

APPROVED FOR PUBLIC RELEASE
 Uaber UNLLAJSIFIED

 Neloor. R. Feierlis, T, H_{r}, Skyrue
 6, 1 INTRODUCNCN AND EQUATIONS (T,H, R, Sigrme)

In the numertal integration of ardinary afferempat equations, as discussed in the last chapter, we have to find the value of one or more functions $f(x)$ in a sequence of n valves of the indepentent varianle \mathbf{x}; for problems of similar tye the laocur required is groportioned to n. In the integration of a partial differential equation, we recuire the values of a function $f\left(x_{1}, x_{2} \ldots\right)$ at a set of n_{r} values of each of the m findeperdent variables x_{r}. Usually the process of integration will recuire inat all the n_{r} be of the same order of mapnituite, $n_{\text {, even though we may not wish te }}$ know the value of $f\left(x_{r}\right)$ for all these izlues, ant consequentiy the labour reauired is proportioned to $n^{\text {Ti }}$.

Now in any problem ir. which the values of the tecender: variziles vary significantly over the range of interation (ad a:l interesting problems are of this type) accurate realts may be ctaines oniv if n be a large number. The first consequene of this is that the effert neted increases enormouly with the number of indechert variables; even with the assistance of I, B, X, machires tolerably acourate solution to probiens with $m>2$ cannot, in ractice, be obtainet with'n a reasonably short time. The subsequent discussion 13 , therefore, linited to the case $m=2$, with two independer.t variables.

Secondly, the large nimber of oferations required lidits severajy the completion of each oceration. As in the tatersation of cratnary dfferential equations, there is scme choice betweer decreasing the number of operations and decreasing theid gonglicatigo. gut with to independert vartables the complications reguer torgut the numer of operationt

wiile retaining the same actoracy "gerfepidy outweigh the gaing expectalty
 sacrifice some accuracy there may be an overall gain,

This orings us to the third grint; nameiy, that in twowariable proclems there is a much greater premium or acouracy. In fact, it is very difficuit to estimate the absolute acouracy ootainable with a piven metnod of incerration, and the necessary magnitude of n has been found matily by experimentation wh particular problems. E. 1-1 Hydrodynarical Rquations.

This chapter is concernet manly with the integration of cue particilar parcial differential equation, that or the radially symatric fick or a fluid in space, Analogous methods rult, however exist for mary paritil difforertial equations of the second orer of "hyperbolie" type: that is, equations having real characteristics ani which can therfore be sclved by a step-by-ste; integration process.

The cuations of symetrical motion of a eluid in spa\% oi k lisenStons ($k=1,2,3$) may be formulated in two ways, from which the two prine ciral mothods of integration are desired. In the tirst. or Lagrarazan fyyter, the independent variables are the time t, and a label coordinate Fror the parifelej the dependent variable is the distance 9 from a fis: oriein of the particle ξ at any time t. It is convenient to choose for ξ either the origingl position, r, of the particie before the fiuld began to nove

$$
\begin{equation*}
r=9: \xi, 0) \tag{1}
\end{equation*}
$$

or a masa variable" m definad by

$$
\begin{equation*}
m=\int \rho_{0}\left\{\operatorname{cic}^{k}(\xi, 0)\right] \tag{2}
\end{equation*}
$$

were pois the original density of the fludd in the nefohbortiood of tho

APPROVED FOR PUBLIC RELEASE

particle ξ, (The actuad, resmedifere by ${ }^{\text {n }}$ factor π or $\frac{4 \pi}{5}$, for $k=2,3$). With this notation the equafen of antion of the fluid is

$$
\begin{equation*}
\frac{\partial^{2} R}{\partial t^{2}}=-\left(\frac{R}{r}\right)^{k-1} \rho_{0} \frac{\partial p}{\partial r}=-\left(k R^{k-1}\right) \frac{\partial p}{\partial m} \tag{3}
\end{equation*}
$$

where p is the pressure at the point r, t. The pressure is some given function of the specific vclume v (equal to the reciprocal of the density) and the entropy 3 . So long as the motion is continuous and heat condition is neglected $\frac{\partial S}{\partial t}=0$ and S will be a function only of the label r or m, determined by the boundary conditions (a particle will only enter the field of integration after it has crossed some boundary). The specific volume v is given by the equation

$$
\begin{equation*}
v=\frac{1}{\rho_{0}}\left(\frac{R}{r}\right)^{k-1} \frac{\partial R}{\partial r}=\frac{\partial R^{k}}{\partial m} \tag{4}
\end{equation*}
$$

The second, or Euierian, formulation of the hydrodynamical equations regards as independent variables t and R, and as dependent variables the velocity u, pressure p, density p. The equation of motion then takes the form

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial R}+\frac{1}{\rho} \frac{\partial p}{\partial R}=0 \tag{5}
\end{equation*}
$$

while Equation (4) is replaced by its time derivative, the equation of continuity

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial \bar{R}}+\rho\left(\frac{\partial u}{\partial R}+\frac{(k-1) u}{R}\right)=0 \tag{6}
\end{equation*}
$$

6.1-2 Characteristics.

Tne local "sound velocity" at any point in the fluid is

$$
\begin{equation*}
c=\sqrt{(\partial p / \partial \rho)_{S}} \tag{7}
\end{equation*}
$$

If an infinitesimaliy weak disturbance be superimposed on the main motion of the fluid, this disturbance will spread in all directions from

 i: (A,t) spase, rassine through (Ao, t_{o}), that are the solutions of the *w Ifferential equations

$$
\begin{equation*}
\frac{1 f}{d t}=u \pm c \tag{8}
\end{equation*}
$$

The two cne-parameter families of curves fefined by these equations in (R, t) space are called the characteristics. It can be show that they Emit the region over which any tisturiance fot necessarily anali) can spread. providet only that rio discontinulties are formed in the flide, If the fuldit motion be known up to a certain tine to over the interval $R_{1} \leqslant k \leqslant 4$, then, provided there ars no disoontimuities, the differential equations will define the subsequent motjon only over a region that is the least region bounded by characteristics passing ihrough R_{1}, R_{2} for whiot $4>0$; and, conversely, the motion at any point in this region is fotermined by condintons within an agpropriate subinterval of (R_{1}, R_{2}),

This propevty of the charanfistias is mogt imocrant for the numEncal intomsation. For, clearly, no method of integration can give correct
 Or the values of the varlables withot the regiun bounded by charactersins through R., Re; in fact, the attempt to do so will leal to instability so is ghown be low in 6. 4.

In terts of the lariangean vaidatha of Section $6,1-1$, the paths of He darazterigtics in (r, t) or (x, t) gosce are piven by

APPROVED FOR PUBLIC RELEASE

The orly discontinuity fint cantion in the types of motion conswered nere is a shock wave, that the pressure am material velocity aharge discontimorasly. Such a dam oon ind ty moves relative to the flud with a viccity wich is greater uran the local sound velocity aheat of the shock and less than that benind (otherwige the ilscontimity would be unstable and break up irito ordinary achar wares), Since it is superoonic wita respect to the fluil ahead it will arvance more rapilly than the characteristics whicn go in the same direation and which therefore que gradially eaten up. Consoquently the motion of the fludd ahead of the snock (out no: the limit of continaoss motion) is Letemined independently of the oresence of the shock, Aaen corditions aneat of the shook are known, there is one free paraneter in the values of the hydrcdyhanical variables behint the shook in terms of which all quanEtifa may be expanded by use of the Rankine-huporiot equations (l) inis om extra condition reeded to define the motion of the shock is provided by the characteristios that reach the ehock from betind. (The gnock is subsonic wth respect to the fluit behind $1 t$, , Tha sharacteristica of the opposite system suffer a discontinuous dinige in direction on crosimg the shock. The gituation is illustratei in figure 1.

The method of integraticri based orite Eulerian equations (5) and (6) is essentially a generalization of the well-known method of integration of the equations when $k=1$, (Ine), and when the pressure is a unique function of the density (or the entropy is constant), developed by Riemann. It will be useful to outline the theory here for later reference.

If we nultiply Ruation (6), with $k=1$, by c / p and add to Squation (5) we find

$$
\begin{equation*}
\frac{\partial u}{\partial t}+(u+c) \frac{\partial u}{\partial R}+\frac{c}{\rho} \frac{\partial \rho}{\partial t}+\frac{u c}{\rho} \frac{\partial \rho}{\partial R}+\frac{1}{\rho} \frac{\partial p}{\partial R}=0 \tag{10}
\end{equation*}
$$

If p is a unique function of ρ then $\frac{\partial p}{\partial R}=c^{2} \frac{\partial \rho}{\partial R}$, and if we introduce Riemann's function

$$
\begin{equation*}
\sigma=\int^{\rho} \frac{c d \rho}{\rho}=\int_{v}(\rho c) d v \tag{11}
\end{equation*}
$$

(where the lower limit of integration is arbitrary) then we can write Equation (10) in the form

$$
\begin{equation*}
\frac{\partial\left(u+\sigma^{\prime}\right)}{\partial t}+(u+c) \frac{\partial(u+\theta)}{\partial R}=0 \tag{12}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\frac{\partial(u-\sigma)}{\partial t}+(u-c) \frac{\partial(u-\sigma)}{\partial R}=0 \tag{13}
\end{equation*}
$$

These equations state that along the characteristics with slope $(u \pm c),(u \pm \sigma)$ is constant. In some special cases (when $p \propto \rho^{\gamma}$ and γ has certain values) these equations can be solved analytically and the problen is reduced to the solution of ordinary differential equations presented by the boundary conditions; generaliy, however, step-by-step nunerical integration is needed.

In such a numerical integration we do, in effect, regard $u \pm \sigma$ as the independent variables, from which $u \not{ }_{0}{ }^{c}$ are calculable, and H, t as the dependent variables. Itfis. mist donsenteft to picture the steps of integration in the (\mathbb{R}, t))

[^0]
another coordinate network
This, it we know the values
 by points P_{i}, so that the variations of a or σ between two adjacent points are small, ard construct lines having slopes $u t c$ through all the Pi. Consecutive characteristics of opposite systems will then meet in points Qi whose (R, t) coordinates my be found from the slopes of the intersecting characteristics and whose $(u \pm \sigma)$ coordinates are determined ty the particilar characteristics that intersect.

This enables $u s$ to find R, t, u, σ at all the points $Q_{k}, w h i c h$ sati then be taken 39 base points for the next 9 dep sn the integration. The process is illustrated in Figure 2.

We omit any further details here as the procedure is well known, and indeed can be regarded $3 s$ a serial case of the procedures discussed ir Section 6.3.
E.1-4 Methods of Integration.

We shall now deal exclusively with tine equations for radially symmetric motion in space, $k=3$. It is natural to try to generalise the method of Riemann to this case. However, the additional term, i $\rho \mathrm{m}_{\mathrm{i}} \mathrm{A}_{\mathrm{r}}$ in Equation (6) causes to appear a term $\pm 2 u c / 8$ on the right-hand altos of (12: and (13) so that $u \pm \sigma$ are no longer conserved along the oharacteristos. Indeed there is no function of the variables u and σ that is songerved along the characteristics In this case not even in the plane case when the ont ropy

```
Is not constant..)
```


Nevertheless, it will be"cogrgalaly prten to think of the characterm istics as if they carried with them therizue of some function, as $u \pm \sigma$, so that the physical conditions, velocity and pressure, at a point are determined by the intersection of two particular characteristics. In geners], the conditions at the polnt are dependent not only on the particular characteristics but on the path followed by them, although their 'conservation property' is still true over infinitesimal distances. A method of integration can indeed be devised which takes these factors into acccunt, and this is the subject of Section 6.3 beiow.

While this method is, in some ways, the most natural inasnach as we follow the paths of the signals that deterwine the fluid motion, the operctions to which it leads are somewhat complex; in practice,therefore, their number is restricted and the accuracy limited. The most useful application will usually lie in exploratory work where the qualitative features of the motion are more important than the quantitative.

When, however; I.B.M. machines are available, greater accuracy is obtainable with the same effort by a method which uses a large number of relatively simple operations; such a one is most conveniently based on the Lagrangean Bquations (3) and (4) and this is described in detail in Secticn 6.4 below. Because, however, this integration follows paths different from the characteristics, certain of the boundary conditions are troublesarie to handle. Thas forms a large part of the subject of the following Section 6.2.

These two methods represent somewhat extreme positions in the balance between number and simplicity of operations. It seems, however, that an intermediate type would be both too todious for manual calculation and too complex for the present scope of mechanical coniputations; though with the

There remains one very differest Gay of Tannling the partial diff-

APPROVED FOR PUBLIC RELEASE

erential equation, Wher the intesration of several problems of a similar type has been made. It may be" ofound"thad. "ine: "olutions can oe represerted (approximately) in sone rather simple quasi-analytic form. For exampie. it might be that the pressure gradient was nearly constant in space, so that the pressure it any time and place could se expressed in terms of two rimerically-given functions of the time. If such is the base me may ty to solve another protlem of the same type by ascuning the same quasianalytic form for the solution, and it may be possible io choose this in such a way that the whole probien can be redired to the solution of a sygten of ordinary differential equations, Tlese equations woult be suitable sverages of the true equations, chosen, if convenient, by 3 variaticna: principle. When, however, ilss has been tried in practice, the resulting equations have been so complicated as to outweigh the advantages which might otherwise ne expected from this approach.

6,2 BOUNDARY (2ONDTITCNS (Skyrme)

The boundary conditions needed to determine the solution of cur differertial equation are simple in theory. If the integration starts it time t_{c} cver an interval $R_{2} \leqslant R \leqslant R_{4}$, we must how the initial velocity, presoure and entropy or density distributicm over this interval; then, undess discontinulties form, the sclution is deternined over the reglon bounded by characteristics through $R_{1}{ }^{\prime} R_{2}$. If we desire to extend the solution beyond cither of tnese boundaries, then we must supply rae adiiticnal condition at the boundary of the fiels of integration to repiace the information sunglied by oharacteristics coming from without the fielat Which must be equivglent to cne relation, explicit or implicit, between the hydrodynamical variables at each instant of time.

The toundarieg of such aregion whin which the integration is continuous my be paths along which à cooditol6n. as prescribed a princt

[^1]Suppose first, for example, that the motion of the particle which is at $=$ R_{1} at time t_{o} is given. Ther at every time whall know the velocity for a ctatain vilue of the radius R. If we combine this information with that supplied by the characteristic coming irow within the field of integration, we can determine ${ }^{(1)}$ the pressure at the point and thereby extend the field of (I)

Speaking rather loosely in the sense mentioned - Section 6.1-4
integration to this point.
Now suppose that R_{1} were the boundary point between two media and that the motion of the nedium in $R \leqslant R_{1}$ is also being found by numerical integration. Now if the motion of this interface point were prescribed as in the preceding paragraph, then we could at every instant determine the pressure on either side of it by integretion from that side. These pressures must be equal, however, and this imposes one condition at every instant sutificing to determine the untnown motion of the interface.

We have stated this interface problem in a sonewhat elaborate way as this is the form in which it appears when we integrate along characteristics to find the field of velocity and pressure. As such it will be elaborated upon in Section 6.3 . But when we are integrating in Lagrangen variables to find R as function of time and particle coordinate, an interface presents no difliculty. So long as the acceleration of the intertace point is properly related to the pressure gradient across the interiace, the boundary conditions look alter theraselves. This will be touched upon again in Section 0.4 It is clear from this that the Latter method of integration is preterable when the problem involves several intertaces,

The Iagrangean method has however no such advantage when we deal with shock wave boundaries, and the rest of this section deals with this problean. Let us suppose that at time t_{0} a shoz is moving int the sane outward dir-

ection as the + characteristigs (2)

If not, the motion of the fluid ahead may be deternined ifrst and the same argument then applies.
let us suppose that the fluid ahead of the shock is at rest at constant pressure. If now the vel city of the shock, and therefore its path, were known as function of time, then the pressure and material velocity behind the shock, being functions of the shock velocity, would also be known. But through every point of the path of the shock there passes a + characteristic coning from within the field of integration ${ }^{(3)}$ which determines a relation between these quanti(3)

See end of Section 0.1-2.
ties. This provides infomation to deterwine the values of all quantities at the shock as functions of time.

This is the principle foliowed when integrating along characteristics, and It is elaborated in Section 0.3 . When using the Lagrangean equations we naturally do not wish to find the paths of characteristics explicitly. Instead we shall relate the motion of the shock to the gradients of pressure and density behind it. In this way we leave a small gap between the shock path and the edge of the field of integration, and this is bridged by relations derived from a combination of shock conditions with the orainary hydrodymame equations. This is discussed further in the following subsections together with related problems arising when the shock wave crosses an interface. 6.2-1 Conditions Acruss a Shock-Front.

When we are dealing with a single shock we shall use the following notation. Pressure, specific volume, sound velucity, material velocity,

shock velocity are denoted:Dy 0 low- and high-pressure sidés of the shoick, respectively. Then p, v_{p}, u_{p} are known functions of time and position and the Rankine-Hugoniot shock conditions deterinine two relations between p_{2}, v_{2}, u_{2}, rirst the energy conservation (4) (4)

The equation is $(1 / 2)\left(p_{2}+p_{1}\right)\left(v_{1}-v_{2}\right)=E_{2}-E_{1}$ where E denotes the internal energy, a function uf p and v. If we neglect the change of entropy across the shock, $p=P(v)$ is simply the adiabatic relation.
determines

$$
\begin{equation*}
p_{2}=P\left(v_{2} ; p_{1}, v_{1}\right) \tag{14}
\end{equation*}
$$

and the other conditions detarmine that

$$
\begin{equation*}
\left(u_{1}-u_{2}\right)^{2}=\left(p_{2}-p_{1}\right)\left(v_{1}-v_{2}\right) \tag{15}
\end{equation*}
$$

The shock velocity is related to these by the equations

$$
\begin{equation*}
u=u_{1}+v_{1} \sqrt{\frac{p_{2}-p_{1}}{v_{1}-v_{2}}}=u_{2}+v_{2} \sqrt{\frac{p_{2}-p_{1}}{v_{1}-v_{2}}} \tag{16}
\end{equation*}
$$

Instead of shock velocity in space it is more convenient to consider the velocity of the shock relative to the mass of the material divided by
$4 \pi R^{2}, \quad W_{12}=\sqrt{\left(p_{2}-p_{1}\right) /\left(v_{1}-v_{2}\right)}$
F_{12} has then the dimensions (density x velocity). Analogously, it will be convenient to introduce the acoustic impedances w_{i}, defined by

$$
\begin{equation*}
w_{i}=c_{i} / v_{i}=\left(-(\partial \mathrm{p} / \partial v)_{S}\right)^{\frac{1}{2}} \tag{18}
\end{equation*}
$$

The stability of the shock requires the condition

$$
\begin{equation*}
w_{1}<w_{12}<w_{2} \tag{19}
\end{equation*}
$$

A very useiui relations $1 \mathrm{~N}^{2}$ Iotnd Gy ditferentiating equation (15) with respect to time along the päth of "the"sfiock. If we denote such differentiation by the symbol $d / d t$, and divide this equation by $\left(v_{1}-v_{2}\right)$ after differentiation, we obtain

$$
\begin{equation*}
2\left(\frac{u_{1}-u_{2}}{v_{1}-v_{2}}\right)\left(\frac{d u_{1}}{d t}-\frac{d u_{2}}{d t}\right)=\left(\frac{d p_{2}}{d t}-\frac{d p_{1}}{d t}\right)+\left(\frac{p_{2}-p_{1}}{v_{1}-v_{2}}\right)\left(\frac{d v_{1}}{d t}-\frac{d v_{2}}{d t}\right) \tag{20}
\end{equation*}
$$

This may be rearranged and written in the form

$$
\begin{equation*}
x_{2}=x_{1} \tag{21}
\end{equation*}
$$

where X_{i} denotes a combination of derivatives on the $i-$ side of the shock,

$$
\begin{equation*}
x_{1}=w_{12}^{2} \frac{d v_{i}}{d t}-\frac{d p_{1}}{d t}+2 w_{12} \frac{d u_{i}}{d t} \tag{2,2}
\end{equation*}
$$

When the pressure is a unique function of donsjty

$$
x_{i}=\left(w_{12}^{2}-w_{i}^{2}\right) \frac{d v_{i}}{d t}+2 w_{12} \frac{d u_{1}}{d t}
$$

The expression (22) for X_{1} may te transf ormed in a number of ways by combination with the equations of motion and continuity Usire only the spatial derivatives of
$X_{1}=\left(3 W_{12}^{2}+w_{i}^{2}\right)\left(v \frac{\partial}{\partial R}\right)_{1}+W_{12}^{3}\left(v \frac{\partial v}{\partial R}\right)_{1}-3 W_{12}\left(v \frac{\partial p}{\partial R}\right)_{i}+\frac{2 u_{1} v_{1}}{R}\left(W_{12}^{2}-w_{i}^{2}\right)$
An intermediate form which is useful is

$$
\begin{equation*}
x_{i}=\left(3 w_{12}^{2}+w_{1}^{2}\right) \frac{d v_{1}}{d t}-w_{12}\left(2 w_{12}^{2}+w_{1}^{2}\right)\left(v \frac{\partial v}{\partial R}\right)_{1}-3 w_{12}\left(v \frac{\partial p}{\partial R}\right)_{1}-\frac{4 u_{1} v_{1}}{R} W_{12}^{2} \tag{24}
\end{equation*}
$$

If we wish to transform so as to have timederivatives (at constant mass), rather than space derivatives, we must introduce the entropy gradient, Let. S denote the entropy or some function of it, then we find

(25

When we cannot neglect changes of entropy, we shall have to consider also the result of differentigtin Equation (14) along the shock. We can write this as

$$
\begin{equation*}
\frac{d p_{2}}{d t}=-W_{h}^{2} \frac{d v_{2}}{d t}+A \tag{26}
\end{equation*}
$$

Where $A=\left(\partial p_{2} / \partial v_{1}\right)\left(d v_{1} / d t\right)+\left(\partial p_{2} / \partial p_{1}\right)\left(d p_{1} / d t\right)$ can be considered as known; if conditions ahead of the shock are constant, $A=0$. Then Equation (24) may also be written as
$x_{2}=\left(3 W_{12}^{2}+W_{h}^{2}\right) \frac{d v_{2}}{d t}-2 W_{12}^{3}\left(v \frac{\partial v}{\partial R}\right)_{2}-2 W_{12}\left(v \frac{\partial p}{\partial R}\right)_{2}-\frac{4 u_{2} v_{2}}{R} W_{12}^{2}-A$
We can also eliminate the entropy gradient from Rquation (25)

$$
\begin{align*}
x_{2}=-\left(1+\frac{2 w_{12}^{2}}{w_{2}^{2}}\right. & \left.+\frac{w_{12}^{2}}{W_{h}^{2}}\right)\left(\frac{\partial p_{2}}{\partial t}\right)_{m}+w_{12}\left(3+\frac{w_{12}^{2}}{W_{h}^{2}}\right)\left(\frac{\partial^{u_{2}}}{\partial t}\right)_{m}-\frac{4 u_{2} v_{2}}{R} W_{12}^{2} \\
& +\frac{W_{12}^{2}}{W_{h}^{2}} A \tag{28}
\end{align*}
$$

0.2-2 Shock Fitting.

When the integration is carried out by the method of Section 6.4 in Lagrange coordinates it is possible ${ }^{(5)}$ to carry the integration across the (5)

First pointed out by von Neumann.
shock as if the motion were continuous, and it wili be shown in Section 6.5 that this is a justitiable approximation if the shock is not too strong. Even, however, when the approximation should be sufficiently good this process introduces superponent oscillations which tend to obscure the detailed structure of the fluid motion behind the shock and which also make more difiicult the detection of errors.

Accordingly, methods of "shock fitt \perp ng". have been developed in which the shock conditions are satistied correction tife peth of the shock is

fitum wn to the bountarye of. idse fodd. ofo"regularm integration by means
 the interation is gerforms. The most satiofarirm netinj ismbed for Tore this ts bues or whe following oriradple. f: is assumed the: the variation of ala raantities between the shock and tra es? of the tixt of interrataon is srall and may te asumed lirear in any space variable. If ther at any time the value cis the presoure, gav, of torwn both at the shoch and the edge, the messure rratient at the shock miy be dfored (assumed equal to the average erabient over the interval); similarly for any cther space-gratierte When trese vadues are substituted into one of the formulae of Equation (14)we cat dedice the "accelfriztion' of the shock and rind the pressure rehird it at a subsequent time at the sane tine, wo uge the krowlotge of conditions at the shock to extent the fied of inter raiso out from itg bounise characteristic and the cycie of ooerasions may then be repfated at the riext irstant of ine, Sonsider the important cast when the riudd thead of the shock is at

 srock

In this case fe is a known function of ve, and theiefore so also

$$
\begin{equation*}
\frac{d H}{d t}=v_{i} W_{3} \tag{30}
\end{equation*}
$$

Suppose at one tire the vilues of $\mathrm{R}_{\mathrm{p}} \mathrm{v}=\mathrm{v}_{2}$ are krown at the snock. The pradienta (vov; aR). (vopidi).arg calgulateg by tiking the difrerence of $v_{a} p_{a}$ with the adjacent values caligeted ifitientegration, respectively,

APPROVED FOR PUBLIC RELEASE
and dividing by the spatiai* 1 retervalo. 中ien Equation (29) will determine $d v_{2} / \mathrm{dt}$ and (30) gives $\mathrm{dF} / \mathrm{dC}$; thus"areqound the values of R, v at the shock at the next instant. rinally, the field is extended to complete the cycle by using the pressure gradient calculated here to find the acceleration of the particle at the edge of the field which is not otherwise determined by the integration behind the shock. In application, the Equations (29) and (30) are integrated to second order accuracy, rather than to first order as described above for simplicity of explanation, by determining \mathbf{v}_{2} by trial and error so that (29) integrates "backwards" correct to second order. The nuwerical value actually used will be discussed in Section 6.4 in connection with the interation.

As time increases, the gap between shock and the adjacent particle will increase, and we must do more than just extend the field of integration to this particle. This point is met by adding new particle-points in the gap by suitable interpolation when the gap becomes too large.

When the fluid ahead of the shock is in motion, the principle is exactly the same but the application is more tedious, because the pressure p_{2} is no longer a function of the single variable v_{2} but depends also on the varying quantities p_{1}, v_{1}, In the first place $X_{1} \neq 0$ and has to be calculated at each step as follows. Suppose that the solution ahead of the shock is known and that for some time t_{0} the values of $R, u_{1}, p_{1}, v_{1}, u_{2}, p_{2}, v_{2}$ are known. Then analogously to (30) the shock velocity

$$
\begin{equation*}
\frac{d R}{d t}=v_{1} w_{12}+u_{1} \tag{31}
\end{equation*}
$$

is known, and with it the position of the shock at the next instant. For this new position and time u_{1}, p_{1}, v_{1} are already known and by differentiating ther with their values at a suitable earlier time we can deduce the values of $\mathrm{du}_{1} / \mathrm{dt} \ldots$ at time t_{0}. Then X_{1},

APPROVED FOR PUBLIC RELEASE

Next, since we do not know h_{h}^{2} ant twe cannot, yse squation (2ϕ; instead

We have calculated X_{1}, ${ }^{2}$ nd W_{2}^{2} is a known function of p_{7}, V_{a}. Therefore, $d v_{a} / d t$ may be evaluated and the cycle of operations completed just 3 before; only when we have found ∇_{2}, v_{1}, p_{1}, at the next instant we have to calculate p_{2} from the enfrgy formula (14) 。 The operations can be made correct to the second order as before, but with correspondingly more effort.

In application it may be wore convenient to perfarm the integration similtaneously on both sides of the shock, although of course at each step we must integrate ahead of the shockfirst. This latter integration an be made by using the ordinary equations over the gap between the shock and the edge of the field; no adititional information is needed because the shock runs into the characteristics ahead of the shock. 6.2-3 Shock Crossing an Interface.

When a shock-wave crosses an interface between two different media, a disturbance will, in general, be reflected back into the first medium and there will be a sudden change of pressure behind the shock. These rapid changes over short distances cannot be handled very satisfactorily by the integration process. If the shock is being treated by the approximate method describet in section 6.5 this toes not matter much, but if the shock is being treated as a discontinuity by process such as that described in the last secion, undestrable fluctuation will be intrciuced unless some way is used of getting away from the repion of very rapid change.

The method adopted has been to use an analytic expansion for times and pesitions close to the instant the shock crosses the interface, and
 back into the first medium then the pajacent or "isn of the $\langle R, t\rangle$ plane

Figure 3
Region O is that ahead of the incident shock, 1 is behind the incident and aheat of the reflected shock, 2 and 3 are the regions in the two medja between the reflected and transmitted shocks, and 4 is ahead of the transmitted shock. The solution will be known in 0,1,4; now the problem is to find an analytic expansion for regions 2 and 3.

Since pressure and velocity are continuous across the interface, It will be convenient to deterrine first the values of $p \cdot u,\left(\frac{\partial p}{\partial t}\right)_{m},\left(\frac{\partial U}{\partial}\right)_{m}$ at the interface. When these have been found, it is easy to deterinine the values of all other quantities and their derivatives from the bydrodynamical equations in the two regions.

First, to determine p,u we must use the Rquations (14 and (15) across the reflected and transmitted shocks. Since $u_{1} p_{1} v_{1}$, $u_{4} p_{4} v_{4}$ are known these will determine two relations between the values of p, u at the interface. As p_{s} increases so does u_{s} and the relation between p, u so determined may be represented by the curve T in the figure $4 . \quad$ Similarly a curve R is determined by the reflected frock "om "Kas negative slope - = シ..

APPROVED FOR PUBLIC RELEASE

三: :

 rarefaction refiected, not a shockgan this case is discussed in the next 31bseution. finen an Intersection exists, its position may first be found aporozimately from this graphical picture and then by analytic approximation.

When $p_{2} P_{3}, u_{2}=i_{3}$ and therefore $v_{2}, v_{3} \ldots$ have been found, we carl alcalste ($\partial \mathrm{p} / \partial t$), ($\partial u / \partial t$) by use of the formulae of Section 6.2-1. This requires the solution of the two sfmalareous linear equtions,

$$
\begin{align*}
& x_{d}=x_{4} \tag{33}\\
& x_{3}=x_{4}
\end{align*}
$$

Ho:e X_{1}. X_{4} are room now that the inltial shock velocilies nave been foumd. and x_{2}. X_{s} are taiken in the form of Equation (28) wherein the only unknowns non are ($\partial \mathrm{p} / \partial \mathrm{l}),(\partial u, \partial \mathrm{t}), \mathrm{Wr}_{\mathrm{r}}^{2}$, A are calculated from the derived form of Equation (14).
5.2-A Reflectod Rarefaction Tave.

If, in the (F, u) diazram of the last subgection (Figure 4) the point (Fl, ${ }_{1}$) lies arove the curve $T_{\text {. }}$ then a rarefaction wave is reflected
 arated now ty a line of discontinuity bui by a finite region fovered

APPROVED FOR PUBLIC RELEASE

by the rarefaction wave, as shome ipe qeurg $5=0=0$

Figuro 5

The boundaries of regions F and 1 and F and 2 are characteristics, having initially the slopes $\left(u_{1}-c_{1}\right)$ and $\left(u_{2}-c_{2}\right)$, respectively, and all the characteristics of this system in F pass through the apex A.

The condition that determines u_{a}, p_{2} and provides the continuation downards of the curve A in Figire 4 , is

$$
\begin{equation*}
u_{2}+\sigma_{2}=u_{1}+\sigma_{1} \tag{34}
\end{equation*}
$$

where σ is Riemann's function (see section 6.1-3) taken at the entropy S. which is pachanged through F.

$$
\begin{equation*}
\sigma=\int_{V}(\rho=) d v=\int_{V}(-\partial p / \partial v)_{S}^{1 / 2} d v \tag{35}
\end{equation*}
$$

When u_{2}, p_{2}, v_{2} have been deternined we may determine ($\left.\partial u / \partial t\right)$, $\partial p / \partial t$) st the interface in way similar to that used when there is a reflected shock, The Equations (33) are replaced by

$$
\begin{align*}
& Y_{2}=Y_{1} \tag{36}\\
& X_{3}=X_{4}
\end{align*}
$$

Here Y is a certain function of the derivatives of u, p, that is conserved across F. just as X is conserved across a shock. The expression for Y may be written as

苛:
 $$
\begin{equation*} Y=z+1 / 3\left(v \frac{\partial S}{\partial T}\right) \int_{v}\left[\frac{\partial}{\partial S}(\rho)\right] \tag{37} \end{equation*}
$$

where（ $u+\sigma$ ）is a constant equal to the value of either site of Equation（34） and the upper limits of the integrils are arbitrary．$(v \partial a / \partial \bar{i})$ has equal values in regtons 1.2 because the entropy is conserved and 2 contains the velocity ani pressure gratients，

$$
\begin{align*}
z & =1 / \sqrt{\rho e}\left[(\partial u / \partial t)_{\mathrm{m}}+\left(1 / \rho \phi(\partial \rho / \partial t)_{\mathrm{m}}\right]\right. \tag{38}\\
& =-\sqrt{C / \rho}[\partial 1 / \partial R+(1 / \rho)(\partial \rho / \partial R)+2 u / R]
\end{align*}
$$

This case $1 s$ then just the same as in saction $6.2-3$ except that special treatment is needed to find the analytic expansion for the region f．If r is a Lagrangean coordinate as in Settion 6．1－1 and $r=a$ at the apex A，then it is convenient to introduce a variable z defined by

$$
\begin{equation*}
z=(a-r) / t \tag{40}
\end{equation*}
$$

where t is measured from zero at A ．Then in F the analytic expansion can be written

$$
\begin{equation*}
R(r, t)=a-t \phi_{1}(z)+1 / 2 t^{2} \quad \phi_{z}(z) \tag{41}
\end{equation*}
$$

The expansions for $\phi_{1}(z), \phi_{2}(z)$ are most conveniently expressed in terms of a parameter μ ．reiated to z by the equation

$$
\begin{equation*}
\rho_{0}^{2} z^{2}=-(\partial p / \partial v)_{v=J_{1}} \tag{42}
\end{equation*}
$$

Then we find

$$
\begin{equation*}
\phi_{1}(z)=(c+\sigma)_{v=\mu}^{-}(u+\sigma) \tag{43}
\end{equation*}
$$

and

$$
\begin{align*}
\phi_{2}(z)= & 2(H \sqrt{\rho c})_{\mu, S_{1}}+(v \partial S / \partial R)(\partial p / \partial S)_{\mu,} S_{1}+ \\
& 2 / a\left[c^{2}\left(\frac{\rho}{\rho_{0}}-1\right)+2 c(\overline{\mu+\sigma}-\sigma)\right]_{\mu, S_{1}} \tag{44}
\end{align*}
$$

Kere $H(v)$ is deflned by the equation

$$
\begin{equation*}
Y(v)=Y\left(v_{1}\right)=Y_{1} \tag{45}
\end{equation*}
$$

6.5 INTEGRATION ALONG CHARACTERISTICS (SkyTDe)

Ws has been stated in Section 6.1-4, the generalization of the Riemanr. method of integration to thres-imansional problams does not lead to 2 very satisfactory method of integration. Nevertheless, when mechanized calcuiation is not available, it seems the easiest to use. For this reason we shall describe in some detail the handing of the equations.

In the three-dimensional cas. Equation (10) contains an additional term, becoming

$$
\begin{gather*}
\partial u / \partial t+(u+c) \partial u / \partial R+c / \rho[(\partial \rho / \partial t)+u(\partial \rho / \partial R)] \\
+1 / \rho(\partial p / \partial R)+2 u c / R=0 \tag{46}
\end{gather*}
$$

Now the pressure is a function of the density ρ and the entropy. In the most usual type of problom the entropy of a particle is constant throughopt the motion ${ }^{(6)}$ and, therefore, if we differentiate along a streamline

$$
\begin{equation*}
\partial \rho / \partial t+u(\partial p / \partial R)=c^{2}(\partial \rho / \partial t+u \partial \rho / \partial R) \tag{47}
\end{equation*}
$$

APPROVED FOR PUBLIC RELEASE

Equation (46) may therefore "De"gritiqn.
ihere ($1 / \mathrm{dt}$) , denotes ifferentiation alone 3 oharacteristic. to that

$$
\begin{equation*}
(1 q / d t)_{+}=u+c \tag{4.3}
\end{equation*}
$$

Two similarequations may oe derived by changing the sign of ganely

$$
\begin{equation*}
(d u / d t)_{-}-1 / \rho c(d p / d t)_{-}=2 u c / R \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
(d q / d t)_{-}=u-c \tag{51}
\end{equation*}
$$

These last four equations (48)-(51) on which the integration is based, may be handled by two different wiys. In the former, we regard t as an independent variable and foliow the characteristics at succesive values of t. This is discussed further in 3ection 6, 3-2.

Altermately we may regard these equations as a set of four gimitaneous equations for R,t,u,p as anctions of two parameters labeline the character1stics. If we solve the equations from this point of view we shall obtain a numer of corresponding sets of values of the four variables. This is described in Section $8.3-3$.

If we do not recuice a very detalled picture of the flaid motion, the second method is preferable, as it usually allows rather larger fntervals to de taken. However, a detailed picture of, for example, the pressure distribution at each instant can only be found from this method of solution by sursequent. Interpolation; in such cases the first rethod would be better suited to the probler.
6.3-1 Transformation of the Equations.

Befcre changing the anove equations into differtrce equations for the numerical integration, it is often destrable to transforn then slyghty. Enuations (49) and (51) for the paths of the characteriatios cannot profitably

be altered, but the other two may transorned along one of the following lines.

First, in the special case when the entropy is constant and p is a unique function of p, one may introduce Riemann's function σ instead of p as dependent variable

$$
\begin{equation*}
\sigma=\int^{\mathrm{p}} \mathrm{dp} / \rho \mathrm{c} \tag{52}
\end{equation*}
$$

and then (48) or (50) become

$$
\begin{equation*}
d(u \pm \sigma) / d t=\mp 2 u c / R \tag{53}
\end{equation*}
$$

Even when the pressure is not a unique function of density, it may be desirable to introduce some dunction $f(p)$ such that ($\rho c)(d f / d p$) is more nearly constant than $\rho \mathrm{c}$. In most physical problems the value of $\gamma=\mathrm{p} / \rho \mathrm{c}^{2}$ is nearly constant. This suggests that we divide the equations through by c and introduce $\log \mathrm{p}$ as dependent variable.

$$
\begin{equation*}
1 / c(d u / d t)_{ \pm} \pm p / \rho c^{2}(d \log p / d t)_{ \pm}=\mp 2 u / R \tag{54}
\end{equation*}
$$

This form is useful if c does not vary widely over the intervals desired. On the right-hand side of both these last equations we may replace u / R by use of the equations of the characteristic paths,

$$
\begin{equation*}
u / R=\frac{u}{(u \pm c)}(d \log R / d t)_{ \pm} \tag{55}
\end{equation*}
$$

In some such way we shall transform these equations into a form

$$
\begin{equation*}
\mathrm{A}(\mathrm{du} / \mathrm{dt})_{ \pm} \pm \mathrm{B}(\mathrm{~d} \mathrm{f}(\mathrm{p}) / \mathrm{dt})_{ \pm}=\mp \mathrm{C}=\mp \mathrm{D}(\mathrm{~d} \log \mathrm{R} / \mathrm{dt})_{ \pm} \tag{56}
\end{equation*}
$$

such that the coefficeints A, B and C or D vary as little as possible over the intervals desirable. If this equation be integrated over an interval
Δt along the \pm characteristic we shall obtain

$$
\begin{equation*}
\bar{A}(\Delta u) \pm \bar{B}(\Delta f(p))=\mp \bar{C}(\Delta t)=\mp \bar{D}(\Delta \log R) \tag{57}
\end{equation*}
$$

where Δf denotes the change in the value of f over this interval and $\bar{A}, \bar{B} \ldots$

When we use (57) as a differcnce equation thene averages must be replaced
by 3 combination of values of "he "Cofffig onfo" If we use small intervals, then fant-crder accuracy will be sufficrit" we can replace the average by the initial values in the interval. Generally, however, it will be proItasle to use a formula correct to second order ac thit larger intervals may of then. If by iteration or some other method we can octain an approxArite vaide of the coeficients at the far end of the interval, then secondorier accuricy will be attaine: by the use of the arithmetle mean for the averare, becuricy of nioher order sould be meaches only by the use of much more corrlex formulae.

The same corslienations apply to the other two equations which will inve on integration

$$
\begin{equation*}
\Delta i=\overline{(u \pm c)} \Delta i \tag{58}
\end{equation*}
$$

and the avera e deral velocity may be replaced by its initial or arithmetic nean vaiue as with the other equations. 6. -2 Erst Methe of Integraticn.
(i) Refular Integration
suppoce, as in Section $6,1-2$, that we know the vaiues of veloctty, ressurc, ertropy within a ringe $R_{i} \leqslant R \leqslant R_{2}$ at time t_{0}. Ne take a set of points P_{i} everly spaced (not mecessarily at equal intervals of R) in this inter:al, getwen any two of which the hydrodynamical variacles change little.

Furcioh eanh woint Pf will pass \pm characteriatias havine glopes $u \neq 0$ which latber are calculable from the piver initial conditions. If we now sclect i later tire $t_{1}=t_{0}$ ot then in first approximation these charactoristics will pass throuph points $Q_{i} t$ in the (R, t) plane where. iccording to (59),

$$
\begin{equation*}
\gamma\left(Q_{1}{ }^{ \pm}\right)=R\left(P_{1}\right)+(u \pm c)_{P_{i}}(\Delta t) \tag{59}
\end{equation*}
$$

Also if we integrate alone these characteristics to first order we can find the radius of $A_{1} u \pm \mathcal{B}_{\lambda}$ "t(

APPROVED FOR PUBLIC RELEASE

$$
\begin{align*}
& \text { were, for breulty, A, derotes the value of } A \text { at } f_{1} \text {, ctc. Suppose now the } \tag{60}\\
& \text { point } Q_{i}{ }^{+} \text {Ife metneen } Q_{j}{ }^{-} \text {ant } Q_{j}{ }^{\prime}{ }^{*} \text {. } \\
& \left.3\left(Q_{j}{ }^{-}\right) \leqslant ?\left(Q_{i}{ }^{+}\right) \leqslant P_{j+1}{ }^{-}\right) \tag{61}
\end{align*}
$$

Miner me use liraze suterpotation over tnis interval to fetermine the valua of $A=-\operatorname{sif}(P) a^{*}+A, 5$ ave values arerased between those $3 t$ the ends of the interval). If this is combined with the vaiue of $A_{i} u+B_{i} f(p)$ detmemined
 We alao need to know the value of the fatrony at Q^{+}, By hypothesta the entropy is a knm function of the parbicie haori-coortintie. insu is found Dy integration of one of the equations (9^{\prime}

Now tht we have letemine the valucs of all wariables at the

 in the fifferemed fomulue. In gucsequent staps of the interration it will nou be necessary to carry nit the fnterration twiop it wili ve suffinfent to use values of A, B, \ldots at the far ends of the intervals deterninet by extrapolation alone, the paths of the characteristics and arry out the secondorder integration tmediately.
(2) Bountaries

Consider cor example an interface between two itiorent nedia.
arst we must follow the path or the interface from stop to itep just as we follow the path of a characteristic, using the equation

APPROVED FOR PUBLIC RELEASE

Abstract

E =

The + characteristics will run 1 ito the interface from the left the new time t_{1}, when we have found the position q of the interface, we extrapolate the values of $A u+B f(p)$ from the left and $A u-B f(p)$ fron the right to this interface point and then solve for $u, f(p)$ at this point as ugual (the values of A, B and the form of $f(p)$ may, of course, he quite difierent on the two sides of the interface). The only problem remaining is that of the continuation of characteristics that cross the interface; et ther we may Interpolate to find the time at with the sianal crosses the inierface and the new value of the slope of the characteristics and then treat this characteristic specially for the subsequent interval (because the time interval. is not the normal one), or we may drop the characteristic when it crosses the interface and introduce a new one on the appropriate aide starting from the interface at one of the chosen tines t_{1}.

The progress of a shock boundary is treated similarly. The shock path is found by integration of

$$
\begin{equation*}
(\mathrm{dr} / \mathrm{dt})_{\text {shock }}=U \tag{64}
\end{equation*}
$$

where 0 , the shock velocity, is a function of the known conditions ahead and any one variable behind the shock. The vaile of $A u+B f(p)$ extrapolated from the left gives a relation between u, p at the shock which determines u, p separately by combination with the shock conditions. This all assures that the solition has been fount ahead of the shook, and this an always be done as explained in the last section: in practice it may be onvenient to perform the integration sirultaneously on both siles of the shock. 6.3-3 Second Metiod of Integration.
(1) Recular Interration

Suppose, as teforf, that we are given initial valnes in ar interval

$R_{1} \leqslant ? \leqslant T_{2}$ at t fae t_{0}, Then in dust the same way we can sint the instial
 of finding the points where these patho sros3 a line of fixel time t in the (R, t) plane, we find the points θ_{1} of intersection of adjacent charicteristics of opposite systemi. Then, to Iirst order, the values of $R_{\text {p }} t$ at such a point Q_{1} will be determined by solving the simultanecus equations

$$
\left.\begin{array}{l}
R=R\left(P_{i}\right)+(u+n)_{P_{i}}\left(t-t_{P_{i}}\right) \tag{65}\\
R=\bar{R}\left(P_{i+1}\right)+(u-c)_{P_{i}, 1}\left(t-t_{P_{i+i}}\right)
\end{array}\right\}
$$

where 1 n this case $t_{p_{1}}=t_{p_{1+1}}=t_{0}$. Next. We f nid by use or Equation (60) (where Δt has now the value $\left(t-t_{p_{1}}\right)$ or $\left(t-t_{p_{i+1}}\right)$, the values of $A_{1} u+g_{i} f(p)$ and $A_{i+1} U-B_{i+1} f(p)$ at the (same) point \mathcal{O}_{1}, and these my then be solver for u, P. The eritropy at Q_{1} is fond in the same why by integration of Equation (61) along either charicteristic.

When this irrat-arder interration has been completet, the socont approximation can be carrict out in fuat the same wa, wing the first-order values at Q_{1} to find the men values of A, B, \ldots over the intervals. In the suosequent intepration we ari in uso an extrapolation process to detfraine aporoximate values of $A, B_{2} . .$. at Q_{i}. llowever, in this method it is not cone venient to extrapolate ilone the characteristics (becalse inf intervils betwen points tetermined may be irregular in ony reasonalo variable, the simplest method seems to on the use of jnear interaolation cuer a quadrangle In the (q.t) plane boinded by characteristics. Phus,is the next points determined on the \pm characteristics through a point P are Q, R respectively, and we seek now the values of the varianles at the intersection 3 of the cther characteristics through $2, R$ (See pigure 6), ther as firat approximation to the value f_{s} of any quantity f at S we assume

APPROVED FOR PUBLIC RELEASE

It has been found convenient in sone cases, where the variations of material velocity u are greater than those of sound velocity c, to proceed by assuming a value of uat S (in first approximation given by (66)), and correcting this until the values of the pressure determined by integration along either charseteristic become equal.
(2) Boundaries

The treatment of interfaces and shock boundaries is rather troublesome by this method. Since we cannot carry characteristics across an interface in one step we must always arrange that one of our intersection points \dot{Q}_{1} lie at the interface whenever a characteristic crosses it. Suppose that the point P of Figure 7 lies on the interface and that the + characteristic RS crosses the interface before QS.

Figure 7

The position of the intersection T of this characteristic with the interface may be determined as for the intersection of two charactertstics: next we have to determine a point Q^{\prime} on the + characteristic $P Q$ such that the - characteristic through Q^{\prime} pass also through T. .Thëgéint"i May "igen be treared as an intersection of characteristics througherg "in the usual way. The procedure

APPROVED FOR PUBLIC RELEASE

is tedious because it may bē nexesoary to. chinge the position of 0 when going to second approximation, The interpolation formae for finding position Q^{\prime} and the values of the variables thereat can easily be obtalned from the formulae used in Section 6.3-3(1)

Shock boundarles are rather easier to handle, Suppose that in the Figure $7 P$ lies on the shock and that $P T$ is the path of the shock. Suppose we assume a value of the siock velocity U at T; then the material velocity and sound velccity are determined simultaneously. He can now determine the position of T in the usual way (correct to second-order) and integration along RT gives a relation between u, p that must be satisfied at T. The value of 0 assumed must then be corrected so that this relation is true at T.

6.4. NUVERIGAL SOIETION OF PHE HYDRCDNAMICAL EQCATICNS ON I, B, I, EACitNES (Velson)

6.4-1 Analytic Form of the Equaticns.

In the preceding sections of this chapter, the hydrodynamical eouation and methods for its solution are discussed. The numerical methods get the solution by integrating step-by-step, from one interval to the next. Ir each Integration step they involve an appreciable number of elementary calculations. If a detajled picture of the fluid motion is required, small intervals mast be used; then there will be a large number of integration steps and an enomous number of elementary operations--of the order of a few hundred thousand. Such a large number of operations makes the doing of even a sirgle problem on an ordinary calculation machine almost pronititive. If several problems are to be solved, it becones necessary to thoroughly mechanize the method of solution. In this section a method is described in which the routine operations are done on I.B. M. machines.

The Lagrangean represeftation"dagertbet in 6.1-1 is the most conventent form of the hydrodynarac equation to ase a partial differential equation with two independent variables, r and t.

$$
\begin{equation*}
\frac{\partial^{2} R}{\partial t^{2}}=-v_{0} \frac{R^{2}}{r^{2}} \frac{\partial P}{\partial r}=-3 v_{0} R^{2} \frac{\partial P}{\partial r^{3}} \tag{GT}
\end{equation*}
$$

Here as ingection 6.3 the problen is restriced to the case of spherical symmetry. The coordinate r identifies a spherical shell of material, it is the radius of the spherical shell when the material is in a standard configuration of uniform density, $\frac{1}{\nabla_{0}}$. R is the actual radius at time t of this spherical sheld. pis the pressure. It is a known function, the equation of state, of the specific volume, v, and of the entropy S. Also, we have

$$
\begin{equation*}
v=v_{0} \frac{\partial R^{3}}{\partial r^{3}} \tag{69}
\end{equation*}
$$

Conduction of heat is neglected; therefore, so long as the motion is continuous, the entropy of a material particle does not change, $\frac{\partial S}{\partial t}=0$. What happens at a discontinuity is discussed in Section 6.4-5.

0,4-2 Difference Form of the Equations.

A solution to the problem is the obtaining of the actual radius R, of the spherical shells identified by the coordinate r for all times t, of interest. In the numerical solution, R is ealculated for a discrete set of values of r and t. These values of r are labeled by an index 1 , which will be used as a subscript; the values of t are labeled by an index n, which will be used as a superscript. Thus the radius of spherical shell it at time n is R_{i}. The derivatives in muations (87)and(68) are approximated as finite difference oxpressions.

$$
\frac{R_{1}^{n+1}-2 R^{n}+R_{1}^{n-1}}{(\Delta t)^{2}}=-\frac{v_{1}^{\left(R_{1}^{n}\right)^{2}}}{r_{i}^{2}}\left(\frac{\left.p_{1+\frac{1}{2}-p_{i-\frac{1}{2}}^{n}}^{\Delta r}\right)}{\Delta r}\right)
$$

or

$$
\begin{align*}
& R_{i}^{n+3}=2 R_{i}^{n}-R_{i}^{n-1}+\frac{v_{0}(\Delta t)^{2}\left(R_{i}^{n}\right)^{2}}{r_{i}^{2}} \Delta r \tag{71}\\
& \left(p_{i+\frac{1}{2}}^{n}-p_{i-\frac{1}{2}}^{n}\right) \tag{72}\\
& p_{i-\frac{1}{2}}^{n}=p\left(v_{i-\frac{1}{2}}^{n}, S_{i-\frac{1}{2}}\right) \tag{78}\\
& v_{i-\frac{1}{2}}^{n}=v_{0} \frac{\left(R_{i}^{n}\right)^{3}-\left(R_{i-1}^{n}\right)^{3}}{\Delta r^{3}}
\end{align*}
$$

The difference equation represents the differential equation exactly only in the limit as Δr and Δt go to zero. Since finite intervals are used in the numerical calculation, errors are made. These errors can be studied by expanding significant quantities in power series.

$$
\begin{aligned}
& R_{i}=R_{i}^{n_{1}}+\left(\frac{\partial R}{\partial t}\right)_{i}^{n}\left(t-t \cdot{ }^{n}\right)+\frac{1}{2}\left(\frac{\partial^{2}}{\partial t^{2}}\right)_{i}^{n}\left(t-t \cdot{ }^{n}\right)^{2}+\frac{1}{6}\left(\frac{\partial^{3} R}{\partial t^{3}}\right)_{i}^{n}\left(t-t^{n}\right)^{3}+\frac{1}{24}\left(\frac{\partial^{4}}{\partial t^{4}}\right)_{i}^{n}\left(t-t^{n}\right)^{4} \\
& R_{i}^{n+1}=R_{i}^{n}+\left(\frac{\partial R}{\partial t}\right)_{i}^{n} \Delta t+\frac{1}{2}\left(\frac{\partial^{2} R}{\partial t^{2}}\right)_{i}^{n}(\Delta t)^{2}+\frac{1}{6}\left(\frac{\partial^{3} R}{\partial t^{3}}\right)_{i}^{n}(\Delta t)^{3}+\frac{1}{24}\left(\frac{\partial^{4}}{\partial t^{4}}\right)_{i}^{n}(\Delta t)^{4} \\
& R_{i}^{n-1}=R_{i}^{n}-\left(\frac{\partial R}{\partial t}\right)_{i}^{n} \Delta t+\frac{\partial}{2}\left(\frac{\partial^{2} R}{\partial t^{2}}\right)_{i}^{n}(\Delta t)^{2}-\frac{1}{6}\left(\frac{\partial^{3}}{\partial t^{3}}\right)_{i}^{n}(\Delta t)^{3}+\frac{1}{24}\left(\frac{\partial^{4} R}{\partial t^{4}}\right)_{i}^{n}(\Delta t)^{4} \\
& \frac{R_{i}^{n+1}-2 R_{i}^{n}+R_{1}^{n-1}}{(\Delta t)^{2}}=\left(\frac{\partial^{2} R}{\partial t^{2}}\right)_{i}^{n}+\frac{1}{12}\left(\frac{\partial^{4} R}{\partial t^{4}}\right)_{i}^{n}(\Delta t)^{2}+
\end{aligned}
$$

Thus the difference equation (*) represents $\frac{\partial^{2}}{}$ evaluated at time n and point i with an error proportional to $\frac{(\Delta t)^{2}}{12}=0$.if wit any other point within the interval $n t \cdot 1$ and $n=$ the error would contain
terrs proportional to $\Delta t,-\operatorname{Trpssexalatitop}$ of tre derivative at the midpoint of the interval over which the difference. In the absence of specific information concernjng the higher derivatives of a lunction, it is best. For this reason the specific volume obtained by the differencing process in Equation (73) is labeled v_{i-j}^{n}, i- ${ }^{n}$ is the midpoint of the interval between i and $1-1$.

Bimilarly, the other derivative in Equation (67) has the expansion

This equation gives the error in $\frac{\partial p}{\partial r^{2}}$ as calculated ircm a set of known values of p, But in the actual numericel solution, p is calculated iron v and A, whet may themselves be in arror. The entropy, 3 , wil] here be considered as known with arbitrary accuracy aince it is obtained in a procedure imiepercent of lias set of difference equations. vis calculated from a difference sumation (75). which has an error

$$
-\frac{v_{0}}{24}\left(\frac{\partial^{2} v}{\left(\partial r^{3}\right)^{2}}\right)_{i-\frac{2}{2}}\left(\Delta r^{3}\right)^{2}
$$

If the above expression for $\frac{\partial P}{\partial r^{3}}$ is rodified to inciucie this effect it becomes $\left(\frac{\partial p}{\partial r^{3}}\right)_{i}^{n}=\frac{p 1^{n}-p p^{n}-2}{\Delta r^{3}}-\left(\Delta r^{3}\right)^{2}\left[\frac{\partial^{3} p}{\partial\left(r^{3}\right)^{3}}+\frac{\partial^{2} p}{\partial r^{3} \partial v} \frac{\partial^{2} v}{\partial\left(r^{2}\right)^{2}}+\frac{\partial p}{\partial v} \frac{\partial^{3} v}{\partial\left(r^{2}\right)^{3}}\right]_{i}^{n}$ Here $p_{i+\frac{1}{2}}^{n}$ and $p_{i-\frac{j}{5}}^{n}$ are interpreted as calculater! from $v_{i+\frac{1}{2}}^{n}$ and $v_{i-\frac{1}{2}}^{n}$ wish are calculated fromequation (73). It has been assumed that the intervals i +1 , and $i, i-1$ have the same Δr^{3}.

The procedure in the sclution is to calchate $\mathrm{m}_{i}^{\mathrm{i}+1}$ from deta at tines n anc $n-1$. If this deta is assumed to be correct, $\mathrm{R}_{\mathrm{i}}^{\mathrm{n}+1}$ wili be in error, owing to the finite size of the intervals, by the roilowing ancunt:
$\frac{(\Delta t)^{2}}{12}\left(\frac{\partial^{4} h}{\partial t^{4}}\right)-\frac{\left(\Delta r^{3}\right)^{2}}{24}\left[\left(\frac{\partial^{3} p}{\left.\partial r^{2}\right)^{3}}+\frac{\partial^{2}}{2 r^{2} \partial^{2}} \frac{\partial^{2}}{\left.\partial r^{3}\right)^{2}} \cdot \frac{\partial p}{\partial v} \frac{\partial^{3}}{\partial\left(r^{3}\right)}\right)\right]$

in the muterial are nearlys constant.

$0.4-3$ Size of Intervals ance steflity of qre jolution.

The intervals in r and t must be chosen smell enough to make the error terr (74) negligible. In r this means that there must be encugh points to give a good definition of p. The runber of puints neeced in a given section of miterial may change auring the curse of a problem, for the pressure distribution may chanfe radically in that time. How trie intervals shouid be distributed in reill depend on the expected pressure distribution. If the pressure is approximately a Linear tunction of the mass of material, as is the case in the early stages of a blast wave in atr, the intervals are best choser equally spaced in r^{3}. Then, too, the expected errors will be the least in tre central difierence formuias, In other protiens p is a slowiy varying function of r and a rapidly varyine lunction of r^{3}. There it is better to use intervals equally spaced in r itself. Then certral difjerence accuracy cowld be maintained if v were calculated by the following formila instead oi (73),

$$
v_{1-\frac{1}{2}}^{n}=v_{0}\left(\frac{R_{1-\frac{1}{2}}^{n}}{r_{i-\frac{1}{2}}}\right)^{2} \frac{\mathrm{H}_{i}^{n}-\mathrm{R}_{i-1}^{n}}{\Delta r}
$$

However, the use of this fortula would greatily complicate the procedure.
ifter the intervads in r are chosen, Δt cannct be chosen independently. The discussion of characteristics in Siction $0.1-2$ predicts Δt should be chosen so that R_{i}^{n+1} Lies within the domain bounced by the characterisiics through H_{i+1}^{n} and R_{j-1}^{n}. This means that Δt should be less than $\left(\frac{r}{R}\right)^{2} \frac{A r}{v_{0} \sqrt{-\frac{\partial \rho}{\partial V}}}$. If Δt is larger than this quantity, R_{i}^{n+1} cannct correctly be obtained from information witi in the interval $i+1$ and $i-1$; at time n, that is, the situation outside of this interval influerces the value of $\mathrm{k}_{1}^{\mathrm{r}+1}$.

This same condition on Δt can be derived directiy iror the difference Efuation (71). The ifuestion is pul in the. joflowing amaner: If an orror δ is

 volumes $v_{i-\frac{1}{2}}^{\prime \prime}$ and $v_{i+\frac{1}{2}}^{n}$ calculated wily differ tron the correct specific volumes..
$v_{i-\frac{1}{2}}^{n}=\frac{v_{0}\left[\left(R_{i}^{p}+\delta\right)^{3}-\left(R_{i-1}^{n}\right)^{3}\right]}{\Delta r^{3}}=v_{i-\frac{1}{2}}^{n}+\frac{3 \delta v_{0}\left(R_{i}^{n}\right)^{2}}{\Delta r^{3}}+0\left(\delta^{2}\right)$
$v_{i+\frac{1}{2}}^{n}=v_{i+\frac{1}{2}}^{n} \frac{3 \delta v_{0}\left(R_{1}^{n}\right)^{2}}{\Delta r^{3}}+0\left(\delta^{2}\right)$.
The corresponding calculated pressures are also in error.

$$
\begin{aligned}
& p_{i-\frac{1}{2}}^{n}=p_{i-\frac{1}{2}}^{n}+\left(\frac{\partial p}{\partial v}\right)_{i-\frac{1}{2}}^{n}\left[\frac{3 \delta v_{0}\left(R_{i}^{n}\right)^{2}}{\Delta r^{3}}\right] \\
& p_{i+\frac{1}{2}}^{n}=p_{i+\frac{1}{2}}^{n}-\left(\frac{\partial p}{\partial v}\right)_{i+\frac{1}{2}}^{n}\left[\frac{3 \delta v_{0}\left(R_{i}^{n}\right)^{2}}{\Delta r^{3}}\right]
\end{aligned}
$$

If these quantities are substituted into (71) an incorrect value of the radius at time $n+1$ will be calculated.

$$
\begin{aligned}
K_{i}^{n+1}=2 R_{i}^{n}+ & 2 \delta-R_{i}^{n-1}+\frac{3 v_{0}(\Delta t)^{2}\left[\left(R_{i}\right)^{2}+2 \delta R_{i}^{n}\right]}{\Delta r^{3}}\left[p_{1-\frac{1}{2}}^{n}-p_{i+\frac{1}{2}}^{n}\right. \\
& +\frac{3 \delta v_{o}\left(R_{i}^{n}\right)^{2}}{\Delta r^{3}}\left(\frac{\left.\left.\left(\frac{\partial p}{\partial v}\right)_{i-\frac{1}{2}}^{n}+\left(\frac{\partial p}{\partial v}\right)_{i+\frac{1}{2}}^{n}\right)\right]}{2}\right]
\end{aligned}
$$

The correct formula for this radius is

$$
R_{i}^{n+1}=2 R_{i}^{n}-R_{i}^{n-1}+\frac{3 v_{0}(\Delta t)^{2}(R i)^{2}}{\Delta r^{3}}-\left(p_{i-\frac{1}{2}}^{n}-p_{i+\frac{1}{2}}^{n}\right)
$$

Hence the error is

$$
\begin{aligned}
R_{i}^{n+1}{ }^{!}-R_{i}^{n+1} & =2 \sigma\left\{1+\left[\frac{3 v_{0} \Delta t\left(R_{i}^{n}\right)^{2}}{\Delta r^{3}}\right]^{2}\left[\frac{\left(\frac{\partial p}{\partial v}\right)_{i-\frac{1}{2}}^{n}+\left(\frac{\partial p}{\partial v}\right)_{i+\frac{1}{2}}}{2}\right]\right. \\
& \left.+3 v_{0}(\Delta t)^{2} R_{i}^{n}\left(\frac{p_{i-\frac{1}{2}}^{n}-p_{i+\frac{1}{2}}^{n}}{\Delta r^{3}}\right)\right\}
\end{aligned}
$$

The last, term is just

APPROVED FOR PUBLIC RELEASE

of Δt should be very smali ${ }^{30}$ compered tgel, asc it can be neglected. The second tern will be called - Thus; δ in R_{i}^{n} is $2 \delta(1-L)$. Sinilarly, the error in R_{i}^{n+1} produced by an error δ in R_{i}^{n-1} is $-\delta L$, by an error δ in R_{i-2}^{n} is $+\delta L$, and by an error δ in R_{i+l}^{n} is $+\delta \mathrm{L}$. The propagation of these errors is shown in the following chart in which an error 1 was made in point i at cycle n. In constructing this chart it has been assuaed that L does not vary significantly from one point to the next. This is true if the pressure does not change much in one interval. The erior made in the radius of point i at time n spreads to other points. If $L>1$, the error will spread one point per cycle. If $L<1$, It will initially spread one point per cycle but quickly will become attenuated and move with the speed of sound.

$n-1$	$\begin{gathered} 1-2 \\ 0 \end{gathered}$	$\begin{gathered} 1-1 \\ 0 \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} i+l \\ 0 \end{gathered}$	$i+2$
n	0	0	1	0	0
$n+1$	0	+L	2(1-L)	+i	0
n+2	L^{2}	$-4 L^{2}+4 L$	$0 L^{2}-8 L+3$	$-4 i^{2}+4 i$	L^{2}

The error in a given point oscillates in time. If $L>1$, the amplitude of the oscillation will grow beyond bound. If $L<1$, the amplitude of the oscillation will remain bounded. The sur of the errors in the radii of the points at any cycle is independent of L and is equal to the magnitude of the error tines the number of cycies since the error was made.

In any calculation, one tries to have it free 1 rommistakes. But there are errors which are inhterent in any numerical computation. These are rounding orrors, owing to the iinite number of digits carried in each number. If $L>1$ randing errept 1111 introduce large and uncontroliabie oscillations in the points. If $L<1$, the oscillatigns, from the rounding errors will remain suall and ones trom diferent points inill interfere

intervil. $\triangle t$, must be chogen. to ouke. L_{4} K.

$$
-\left(\frac{v_{0} \cot _{0}^{2}}{r^{2} \Delta r}\right)\left(\frac{\partial p}{\partial v}\right)<1
$$

or

$$
\begin{equation*}
\Delta t<\frac{r^{2} \Delta r}{v_{0} R^{2}} \sqrt{-\frac{\partial P}{\partial v}} \tag{75}
\end{equation*}
$$

This restriction means that if Δr is made small to secure spatial detail in the solution, Δt must be nado correspondingly small.
o. $4-4$ Arrangement of the Computation Steps.

The difilerence equation(7i) is the basis for the nunerical work. It expresses the radius of a point, at a time $n+1$ in terms of its radius at times n and $n-1$ and the pressure distribution at time n. Equations (72) and (13) exiress the pressure at time n in terms of radii at time n. This suggests as a procedure of calculation to calculate from the radii at tirne n the pressure distribution at time n and then insert it into(7) for the calculation of the radii at time $u+1$. This set of operations can be repeated to give the radii at time $n+2$ and so on, giving rise to a cyclic procedure.

In Equation (72).the pressure p is given as a function of two variables, v and S. This function is usually so complicated that it is impractical to compute the pressure from v and S each tine it is needed. If a table of p as a function of v and S is constructed, it would contain one entry for each pair of values of v and S. In most problems the range of v and S is so great and consequently, the number of table entries needed is so Large, that this is also an impractical procedure. However, it has been found that many equations of state can be adequately approximated by a form which requires only a single entry table and a simple calculation. This form is

$$
\begin{equation*}
p=F_{1} \frac{v}{a}+b F_{2} \frac{v}{a} \tag{76}
\end{equation*}
$$

where b and a are known functions of S orier of 1000 entries with one I.B.M"eard for"eachivalue of $\frac{v}{a}$. Both F_{1}

APPROVED FOR PUBLIC RELEASE
and F_{2} and their first differences "can Be "Blurcheit on the same card. A thousand entry table would contatn entries for every possible value of a 3 digit $\frac{v}{a}$. In the problems we solver, we used a 5 digit $\frac{v}{a}$. Values of F_{1} and F_{2} and their first differences to the first 3 digits of $\frac{v}{a}$ were read out of a tabie, and the values of F_{1} and F_{2} corresponding to the 5 digit $\frac{v}{a}$ were obtained by linear interpolation.

One I.B.M. card is used to represent each material point. The collection of cards representing all the material points at a definite time n is called the deck belonging to cycle n. The computation of the radius at time n and the pressure distribution at time n is done on the deck of cards of cycle n.

The most efficient arrangement of the elementary operations within a cycle depends on the I.E.M. machines available. The procedure at Los Alamos was developed on the basis of triple product multipliers and the tabulatorsummary punch combination (see Chapter 1). The triple product multipliers compute the expressions $A \times B \times C$ or $A \times(B \pm z)$ in one run of the cards through the machine. These machines reduced significantly the number of operations and the number of card columns needed in a cycle compared to an arrangenent using ordinary multipliers. The tabulator-sunnary punch combination was used to list the data for cycle n, to difference a lew quantities, and to transfer to a new deck of cards the data necessary for the computations in cycle $n+1$.

Each I.B.M. card, which represents a definite material point, has punched on it the numbers necessary to perform the calculations for this point. Some of the quantities depend only on the coordinate r, or the index i, and hence for a given point, do not change in time. They are, in addition to the identification of the card, the quantities $\frac{v_{0}(\Delta t)^{2}}{r_{i}^{2} \Delta r}, \frac{v_{0}}{a_{1-\frac{1}{2}}\left(\Delta r^{3}\right)_{i-\frac{1}{2}}}$, and $b_{i-\frac{1}{2}}$. They are called rates.

At the start of cycle n, thefoging quantigies are punched in card i,

$p_{i-\frac{1}{2}}^{n-1}-p_{i+2}^{n-1}$. The sign of dp iss reacentedeby x-punch in an appropriate

The computation is arranged in the following series of operations:

1) Triple multiplication: $\frac{v_{0}(\Delta t)^{2}}{r_{i}^{2} \Delta r}\left(R_{i}^{n-1}\right)^{2}$
2) Nultiplication and addition:

$$
R_{i}^{n}=\left(2 R_{i}^{n-1}-R_{i}^{n-2}\right)+\frac{v_{o}(\Delta t)^{2}}{r_{i}^{2} \Delta r}\left(R_{i}^{n-1}\right)^{2} d p_{i}^{n-1}
$$

3) Triple multiplication: $\left(R_{i}^{n}\right)^{3}$
4) Transfer of R^{3} of point i-1 to card i by the reproducer.
5) Addition and multiplication:

$$
\left(\frac{v}{a}\right)_{1-\frac{1}{2}}^{n}=\frac{v_{0}}{a_{i-\frac{1}{2}}\left(\Delta r^{3}\right)_{i-\frac{1}{2}}}\left[\left(R_{i}^{n}\right)^{3}-\left(R_{i-1}\right)^{3}\right]
$$

6) Sort cards into ascending order on lirst 3 digits of $\frac{v}{a}$.
7) Karging in collator work cards with table cards bearing F_{1} and F_{2}.
8) Multiplication: Interpolate F_{1}.
9) Multiplication: Interpolate F_{2}.
10) Sort out table cards.
11) Vultiplication and addition: $p_{i-\frac{1}{2}}^{n}=F_{1}+b_{i-\frac{1}{2}} F_{2}$
12) Tabulator and Sumary punch: List data from cycie n, transier identification and rates to new deck in summary punch, compute $2 R_{i}^{n}-R_{i}^{n-1}$ and $d p_{i}^{n}$ and punch on new deck.

A detailed discussion of each operation is given in 0.4-7.

6.4-5 Boundary Conditions.

The set-up just described is a procedure for the calculation of R_{i}^{n+1} from R_{i}^{n}, R_{i+1}^{n}, and R_{i-1}^{n}, R_{i}^{n-1} : i.e, , it the radii of all points are given at times n and $n-1$, the ranil by successive application of the difterenge pguation (\%). But the initial ̈: : - - : : : •:

themselves correspond to a unique plysicqu. situgtion, and hence do not have a unique solution. They must be supglemented by oiner cunditions, boundary conditions. The boundary conditions are conditions imposed at two material points, two values of r. They will be dilierent for different physical problems. Here they will be described for a detinite problem, a spherical blast wave in air.

One of the conditions is imposed at the center or the blast. The material point which was originaliy at the center remains there: 1.e., the point with coordinate $r=0$ has the same radius, $R=0$ for all times. This condition is easily worked into the machine procedure. The radius of the point, $r=0$, directly affects the calculation of other points oniy in the computation of v for the point with next larger r. Since in tre calculation the cubes of the radil are subtracted 1 rom the cube of the radius of the iirst point witn nonzero r, it is only necessary to have no I.B.M. card representing the point. $r=0$. Then the zero will automatically get tranaferred (in operation 4), as the radius cubed of the point $r=0$, to the next card.

The other boundary condition is that there is an outgoing spherical shock wave. At this shock wave the preseure, density, and material velocity change discontinuously. The derivative of the pressure, $\frac{\partial}{\partial r}$, does rot exist \&cross the shock; hence, the partial dilierential equation cannot be used to contimue the soiution across the shock frorit, Boundery conditions must be applied to connect the solution on one side with the solution on the other side. These boundary conditions, which are derived from conservation laws, are the Hugoniot relations discussed in 0.2-1.

The state of the system outsice the shock wave is that the air is at rest at nornaj. pressure, density and entropy. When the shock wave hits a particular spherical shell of air, it changes discontinuousiy its pressure from one atnosphere to a pressure p, "and it

 changes some energy is transformed into heat, giving rise to a change in entropy of the air. The shock moves with respect to the material; hence its positicn, $r_{8}, i s$ a function of the tiae. Since a point has not moved fron ils original position at the time the shock rit it, its actual radius R_{s} is the same as itg label coordinate $r_{s}, R_{s}=r_{s}$, and r_{s} is a function of cnly one independent variable, the time, t.

The Hugoniot reiations are:
velocity of the shock

$$
\begin{align*}
& \frac{d}{d t} r_{s}=v_{0}^{W} \tag{77}\\
& w \equiv \sqrt{\frac{P_{s}-F_{0}}{v_{0}-W_{s}}} \tag{78}
\end{align*}
$$

material velocity

$$
\begin{equation*}
u_{s} \equiv\left(\frac{\partial R}{\partial t}\right)_{s}=\sqrt{\left(p_{s}-p_{0}\right)\left(v_{0}-v_{s}\right)} \tag{79}
\end{equation*}
$$

the change in internal energy produced by the shock:

$$
\begin{equation*}
E_{s}-E_{0}=\frac{1}{2}\left(p_{s}-F_{0}\right)\left(v_{0}-v_{g}\right) \tag{80}
\end{equation*}
$$

The internal energy, E, and the pressure, p, are known functions of v and 3 . If these functions are substituted into (80 there restilts an equation relatirg the entropy in the shock to the specific volwe in the shock v_{s}. This equation can be solved (numerically, if necessary) for the entropy in termis of v_{s} and this result substituted intc the equaticn of statie $p=p(v, S)$. The resultant function in v_{s} alrne is called ψ.

$$
\begin{equation*}
p\left(v_{s}, s_{s}\right)=\psi\left(v_{s}\right) \tag{81}
\end{equation*}
$$

 relations, which now become

$$
\begin{aligned}
& \text { APPROVED FOR PUBLIC RELEASE }
\end{aligned}
$$

$$
\begin{align*}
& W\left(v_{3}\right)=\sqrt{\frac{\nVdash-F_{0}}{v_{0}-v_{3}}} \tag{53}\\
& u_{s}=\sqrt{\left(\psi-p_{0}\right)\left(v-v_{s}\right)} \tag{84}
\end{align*}
$$

If the general solution of the partial differential equation were known, these quations (82), (88), and (84) could be used to elininate the arbitrary constants in it and to locate the position of the shock. The solution described here is a numerical solution and it is difficult to use these relations alone, if any sort of accuracy is needed. To supplement then then it has been converient to derive from then expressions for $\frac{d v_{s}}{d t}$ and $\frac{d^{2} r}{d^{2}}$. (See 6.1-2). These expressions are:

$$
\begin{gather*}
\frac{d v_{s}}{d t}=\left[\frac{4 u_{s} v_{s} w}{r_{s}}-\frac{\left.2 v_{0} w^{3 / 2}\left(\frac{\partial v}{\partial r}\right)-2 v_{0} \sqrt{w}\left(\frac{\partial p}{\partial r}\right) s\right]}{(3 v+w)}\right. \tag{65}\\
w=-\frac{d W}{d v} \tag{86}\\
\frac{d^{2} r_{s}}{d t^{2}}=\frac{v_{0}}{2 u_{s}} \frac{d v_{s}}{d t^{2}}\left(w^{2}-w^{2}\right) \tag{87}
\end{gather*}
$$

These formulas, the Hugonict relations and their time derivatives, form a practical basis for fitting the boundary conditions at the shock: front. The formula for $\frac{d v_{s}}{d t}$, (85), contains first space derivatives of p, v. In that respect, it is of the same order as the partial differential equation. Here, however, it is not possible to use central difference formus to approximate to the derivatives. The quantities v and p are discontinuous at the shock and hence two values a finite distance apart and equidistant from the shock: front cannot approximate to the derivetive: :These gitference formulas, less accurate than those in the body of the cabader,

are used. (i is here the mass polint nearest the shock.)
The quantities to be ohtained from tre application of the shock conditions are the position of the shock and of the mass point, i, nearest to the shock. To calculate the position of point 1 , the difference equation (71) is used except that (88) is used to approximate $\frac{\partial p}{\partial r}$. Here as in the corqutation of $\frac{d v}{d t}$, a said error is made because of the failure to use a central difference formula.

The procedure used in conputing the position of the shock is so complicated that it is impractical to use I.B. M. machines for it, but it can be done satisfactorily with an ordinary calculating machine. The steps in the calculation can be arranged on a computation sheet so that the time required to work out a cycle on it is of the sade order of magnitude as the time for the machine cycle. If one person does the hand calculations and one person operates the machines, the time of a cycle need now be significantly increased.

With (87) expressing the acceleration of the shock, the position of the shock could be calculated irom the second difference formula

$$
r_{s}^{n+]}=2 r_{s}^{n}-r_{s}^{n-1}+\frac{\Delta t_{1}}{2} \quad\left(\frac{d^{2} r_{s}}{d t^{2}}\right)^{n}
$$

However, in this form an error in r_{s} at one cycle affects the velocity as well as position in later cycles, and hence it may give rise to long period oscillations. The sithation here is more serious than in the solution of gquation (72). Ior the shock pressure and velocity are more sensitive to the pressure difference than the corresponding quantities for a material point. Consequently the oscillations produced by an error may be of longer period and larger amplitude. A more stable formula is

$$
\mathbf{r}_{s}^{n+1}=r_{s}^{n}+\frac{1}{2}\left[\left(\frac{d r_{s}}{d t}\right)^{n}+\left(\frac{d r_{s}}{d t}\right)^{n-1}\right]+\frac{\Delta t^{2}}{2}\left(\frac{d^{2} r_{s}}{d t^{2}}\right)^{n}
$$

If this equation is used, an orrgr an rest produce a significant

error in the velocity of the shock zod hencts it is more quickly "corrected" by the pressure differences. $\because:$.

In the calculation of $\frac{d^{2} r_{s}}{d t^{2}}$ and $\frac{d r_{s}}{d t}, v_{s}$, and $\frac{d v_{s}}{d t}$ are needed. If v_{s} and the results of the machine calculation at that cycle are known, $\frac{d v_{s}}{d t}$ can be computed from Ruation (85). To get v_{s}^{n} it is not arcurate enough to use $\left(\frac{d v_{s}}{d t}\right)^{n-3}$ but $\left(\frac{d v_{s}}{d t}\right)^{n-\frac{1}{2}}$ is needed. To calculate $\left(\frac{d v_{s}}{d t}\right)^{n-\frac{k}{2}}$ directly $v_{s}^{n-\frac{1}{2}}$ would be needed. The best procedure is to use the formula

$$
\left(\frac{d v_{s}}{d t}\right)^{n-\frac{1}{2}}=\frac{1}{2}\left(\frac{d v_{s}}{d t}\right)^{n}+\frac{1}{2}\left(\frac{d v_{s}}{d t}\right)^{n-1}
$$

and an iteration method. v_{s}^{n} is guessed and $\left(\frac{d v_{s}}{d t}\right)^{n}$ is computed. Then a new v_{s}^{n} is calculated and this value used to compute a new $\left(\frac{d v_{s}}{d t}\right)^{n}$. This procesis is continued (it is rapidly convergent) until the sane v_{s}^{n} is obtained from the formulas as was put into them.

A computation sheet can be set up which provides space for the computing of the various elements of the formulas and the combination of these elenerts into the desired quantitias. Each item on the computation sheet should be in a form such that its computation requires only performing a single operation on a calculating machine or looking up the item in a table, with a possible linear interpolation. By a single operation on a calculating machine is meant a computation in which no intermediate writing down of a number is neeted, e.g., $a(b+c) / d$.

The pressure table is often made up witt. the specific volume normalized so that the normal specific volume is 1 , instead of v_{0}. The fcllowing sample computation sheet was rade up on the basis of this normaliaation. It is also assuned that the points are chosen equally spaced in r.

1. cycle: n
2. point nearest the chock:
3. $r_{3}^{n}=r_{s}^{n-1}+\frac{A t}{2}$

(This w^{n} differs from the one"derjned in ($\& 3$) by a factor $\sqrt{v_{0}}$) Q^{n-1} differs from $\frac{d^{2} r_{s}}{d t_{2}}$ by the factor $\frac{\sqrt{v_{0}}}{2}$.
4. $\Delta r_{s}^{n}=r_{s}^{n}-r_{s}^{n-1}$. This item is for checking purposes only o Jumps in the value of Δr_{s}^{n} indicates an error in r_{s}^{n}.
5. $\delta=r_{s}^{n}-r_{i}^{n-\frac{1}{2}}$. r_{i}^{n} is the value of r for the point which at cycle n is nearest the shock.
6. $\left(\frac{\mathbf{v}}{\mathrm{a}}\right)_{i-\frac{1}{2}}^{n}=\mathrm{y}_{i-\frac{1}{2}}^{\mathrm{n}}$ from I.B.M. listing.
7. $p_{i-\frac{1}{2}}^{n}$ from I.B.M. Listing.
8. $\quad v_{i-\frac{1}{2}}^{n}=\left(\frac{y}{a}\right)_{i-\frac{1}{2}}^{n} /\left(\frac{1}{a}\right)_{i-\frac{1}{2}}^{n}$. Items $1-8$ are independent of the iteration procedure used in computing $\nabla_{s}{ }^{n}$.
9. ∇_{s}^{n} (guess).
10. ψ^{n} from table.
11. ω^{n} from table. $-\frac{\Delta \psi^{n}}{\Delta v}=\omega^{n}$
12. $A^{n}=1-\underbrace{n}$
13. $\left(W^{n}\right)^{2}=\left(\psi^{n}-p_{0}\right) / A^{n}$
14. $W^{n}=\sqrt{\left(W^{n}\right)^{2}}$. (This W^{n} differs rom the one defined in (33) by a factor $\sqrt{v_{0}}$
15. $G^{n}=\left[\frac{.75}{\sqrt{v_{0}}}\left(\psi^{n}\right)^{2}+\frac{.25}{\sqrt{v_{0}}} \omega^{n}\right] / w^{n}$
16. $H^{n}=\frac{\left(\psi^{n}-p_{0}\right)\left(v^{n} / v_{0}\right)}{r_{s}^{n}}$
17. $w^{n}=\left[\left(w^{n}\right)^{2}\left(1-v_{i-\frac{1}{2}}^{n} / v_{0}\right)^{45} p_{i-\frac{1}{2}}^{n}+p_{0}\right] / \sigma$
18. $\left(\frac{d v_{8}}{d t}\right)^{n}=\left[H^{n}+.5 M^{n}\right] / G^{n}$

If item 19 is not the same as item, 9, new y should be guersed and steps 9-19 repeated.
20. $B^{n}=v_{0}\left(\psi^{n}-p_{1-\frac{1}{2}}^{n}\right) / \delta$
21. $R_{i}^{n+1}=2 R_{i}^{n}-R_{i}^{n-1}+(\Delta t)^{2} B^{n}$ (Implosion)

Card i is kept out of machine operations 1 and 2. Its R, conputed in item 21, is hand punched into the appropriate colurns and the cerd is released to the deck before operation 3.

$$
\begin{aligned}
& \text { 22. } U^{n}=A^{n} n^{n} \sqrt{v_{0}} \\
& \text { 23. } a^{n}=-\left(\frac{d v^{n}}{d t}\right)^{n}\left[w^{n}-\left(w^{n}\right)^{2}\right] v_{0} / U n
\end{aligned}
$$

Since the shock moves with respect to the material, it passes a new point every few cycles and then a new card must be added to the machine calculations. The time t*, at which the shock wave hite the new point is determined by interpolationo In this interpolation $K^{n+]}$ and consequentiy ∇_{8}^{n+1} are needed; hence these quantities at time $n+1$ must be calculated. The shock specific volume
 from v*. The assumption is made that in the time from cycle n to t*, the acceleration of a mass point at the shock front has not changed significantly, so B^{n} is used. The R at cycle $n+1$ of the new point is gotten by expanding it in a power series in time about t*. Since in a precise calculation of $v_{s}^{n+1}, v_{1+\frac{1}{2}}^{n+1}$ is needed, and to calculate v_{i+1}^{n+1} the position of the new point is needed, "an iteration method must be used. The first v_{s}^{n+1} used is the guessed \mathbf{v}^{n+1} (item 9). When the new R is calculated, $v_{i+\frac{j}{2}}^{n+1}$ is calculated by hand and is used in getting a new ∇_{0}^{n+1}. The process is repeated until it has converged. 24. r_{1+1}^{n} from previousiy prepared table of the positionsof the points. If r_{s}^{n+1} is less than r_{i+1}^{n}, items $25-49$ need not be computed. If r_{3}^{n+1} is greator than r_{i+1}^{n}, the shock has hit point $1 \neq 1$ between cycles n and $n+1$, and items 25-49 must be computer:
25. $t_{1}=\left(r_{1+1}^{n}-r_{8}^{n}\right) / H_{1}^{n}$ The 1
factor $\sqrt{v_{0}}$) the shock hit pointy $+\ldots+0$
26. $t_{2}=\left(r_{s}^{n+1}-r_{i+1}^{n}\right) / w^{n+1}, \Delta \bar{c}-t_{2}^{4} 4$ another approximation to the time the shock hit point $1+1$.
27. $t *=t_{1}\left(2 \Delta t \sqrt{v_{0}}-t_{1}-t_{2}\right) /\left(v_{0} \Delta t\right), t *$ is an average of t, and $\Delta t-t_{2}$, with t_{1} weighted by $\frac{\Delta t-t_{1}}{\Delta t}$ and $\Delta t-t_{2}$ by $\frac{t_{1}}{\Delta t}$. The factors v_{0} and $\sqrt{v_{0}}$ are to remicve the factor $\sqrt{\mathbf{v}_{0}}$ in $t_{1}+t_{2}$ i.
28. $\Delta t-t$. ${ }^{\boldsymbol{H}}$
29. $(\Delta t-t k)^{2 / 2}$
30. $(\mathrm{t} *)^{2} / 2$
31. $\quad v^{*}=\left[v_{3}^{n}(\Delta t-t *)+v_{3}^{n+1} t^{n} t\right] / \Delta t$
32ψ from table.
33. $(U)^{2}=\psi\left(1-v^{2}\right) /\left(\frac{1}{v_{0}}\right)$
34. $U^{*}=\sqrt{(U *)^{2}}$, the velocity of point i+1 just after it was hit by the shock.
35. $R_{i+1}^{n+l}=r_{i+1}^{n}+U *(\Delta t-t \cdot x)+\frac{1}{2}(\Delta t-t *)^{2} B^{n}$
36. $R_{i+1}^{n}=r_{i+1}^{n}-U t t_{1}+\frac{1}{2}(\Delta t-t x)^{2} B_{n}$

3'. $\left(\frac{1}{a}\right)_{i+1}$ from table
38. $\left(\frac{1}{a}\right)_{i+\frac{1}{2}}=.375\left(\frac{1}{a}\right)_{i+1}+.750\left(\frac{1}{a}\right)_{i}-.125\left(\frac{1}{a}\right)_{i-1}$
quadratic interpolation.
39. $\left(\frac{1}{a r^{3}}\right)_{i+\frac{1}{3}}=\left(\frac{1}{a}\right)_{i+\frac{1}{2}}\left(\frac{1}{\Delta r^{3}}\right)_{i+\frac{1}{2}}$. This is punched on card $1+1$.
40. $y^{3}=v^{3}\left(\frac{1}{a}\right)_{i+1}$
41. $F_{1} *=F_{1}\left(w^{*}\right)$ from table.
42. $\mathrm{F}_{2}{ }^{*}=\mathrm{F}_{2}(\mathrm{~F})$ from table.
43. $b_{i+1}=\left(\psi *-F_{1} *\right) / F_{2}^{*}$
44. $\left.b_{i+\frac{1}{2}}=.37\right\rangle b_{i+1}+0750 b_{i}=0$

46. $\left(R_{i}^{n+1}\right)^{3} \quad$ 47. $Y_{i+\frac{3}{2}}^{n+1}=\frac{1}{\left(a \Delta r^{3}\right)_{1-\frac{1}{2}}} \quad\left[\begin{array}{c}\left(R^{n+1}\right)^{3} \\ 1+2\end{array}\right]$

This is the sane as item 6 of cycle $n+1$.
48. $\quad \mathrm{R}_{i+\frac{1}{2}}^{\mathrm{n}+\frac{1}{2}}=\mathrm{F}_{1}\left(\mathrm{Y}_{i+\frac{1}{2}}^{n+1}\right)+b_{i+\frac{1}{2},} F_{2}\left(Y_{i+\frac{1}{2}}^{n+\frac{1}{2}}\right.$
same as item 7 of cycle $n+1$.
49. $v_{i+\frac{1}{2}}^{n+1}=Y_{i+\frac{1}{2}}^{n+1} /\left(\frac{1}{a}\right)_{i-\frac{1}{2}}$
same as item 8 of cycle $n+1$.
6.4-6 Card Leyout.

If the number of intervals in r is chosen just large enough to give a good definition of the pressure curve, seven digits must be used in R. The number of digits in R determines the number of digits in other quantities: e.E., then v must havesdigits. The colunans of the card must be apportioned among the various quantities so that there is space for all of them and so that the columns alloted to those aumbers punched by a multiplier are the same as the spacings given by available skip bars.
ill the numbers to be punched on a card during a single cycle were found to occupy more than 80 columns. It was therefore necessary to use two cards to represent each point. This was accomplished without producing an increase in the time required for or the number of operations in a cycle. Each cycle uses two decks of cards. Deck 1 is used in operations 1-4. Since 4 is a reproducer operation, the necessary data can be transferred from deck 1 to deck 2 without any essential complication. Deck 2 is used from operation 4 on.

The distribution of card colunns is given in the following table:

DECK 1

Columas
"X" in 11 and 80 on an en

1-2
3-5
6-10
11-15
17-23
24-30
31-35
36
37-42
43
44-49
50
51-57
58-65
66-72
73-79
For an explanation of the X-pu
$6.4-7$ The Machine-Operations.
The elementary operations which make up a cycle are listed in 6.4-4. Here they are described in detail and plugboard wiring diagrams are given. Operation 1 - Triple product multiplier. R_{1}^{n-1} is squared on the first
 multiplication cycle. R_{i}^{n-1} is read from columns $42-48$ into the mitipiler and multiplicand counters, and $\frac{v_{0}(\Delta t)^{2}}{r_{i}^{2} \Delta r}$ is read from columns 73-78 into the sumary counter. The product of thomitiplication is pinched into columns $=\bar{O}$ =.

APPROVED FOR PUBLIC RELEASE

17-23. See Pigure 8.
Operation 2 - Maltiplier. Computation of \bar{P}_{1}.
$2 R_{i}^{n-1}-R_{i}^{n-2}$ is read fror columes $25 \cdots 1$ into the sumary counter.

and $\left|\mathrm{dF}^{n-3}\right|$ is read Erom columns $50-56$ into the multifllcand counter. The prodiot. is transferred fren the prosucts counter into the sumary counter nositively if there is no x-rinch in column 24 ard negatively if there is an \bar{h}-punch in column 24. The regult $P_{1}^{n}=\left(2 R_{1}^{n-1}-R_{i}^{n-2} y+\frac{V_{0}(\Delta t)^{2}}{r_{1}^{2} \Delta r}\left(R_{1}^{n-1}\right)^{2}\left(\Delta p_{1}^{n-1}\right)\right.$
is punche: in column if-23. See Feure 9.
Eperation 3 - Triple product multiplier. Computation of $\left(R_{i}^{n}\right)^{3}$. R_{i}^{n} is read Iron column l?-2z into tre miltiflier, multivlicand, and sumary counters. On the First multiplication cycle, R_{1}^{n} is squared; on the second multirifaticr acie, the cube is conpletet. The product, $\left(g_{i}^{n}\right)^{3}$ is punched in colnmme $33-40$.

In many problemg, R varies by a factor 10 in a single deck. Then f^{3} in that deak varies by a factor 100C. Since this setup allows for the punching of mily 8 digits of 7^{3}, the number of sipnificant digits of i^{2} punched conlt, for some caris, be as $10 n$ as 5 . This would resuit in a real 1033 of acouracy. Howevar, by the use of two vontrol y-punches, one in column 49 (see creration ifor the rolp of x in 41.) and one ir colum 58, it is possible to have a ouffiriont number of dicits of R^{3} punched in 711 caris,

The K punch in 49 contruls the digits of R^{2} that are tringferred from the producta counter to the mitiplier counter. 9 digits of R^{2} are wred into a selector that is activatea by the "X"in 49. The right han a digite gre wired Intc g"NX"mbs of the selector; the left hand a aigits are wired into the corresponling $8^{\prime} x$ "rmbs of the selector". "figt wires ary used for the 7 digits that are wired to hoth "X" and "NX" mbs of the selector". The 8 C hubs of these

Figure 8

INTERNATIONAL BUSINESS MACHINES CORPORÄTION

CUSTOMER \qquad DEPT. \qquad
TITLE OF REPORT
ELECTROTYPE NUMBERS OF CARDS INVOLVED:
DATE \qquad

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

$$
\begin{aligned}
& =\bar{y}
\end{aligned}
$$

Figure 9

INTERNATIONAL BUSINESS MACHINES CORPORATION

CUSTOMER \qquad DEPT. \qquad
TITLE OF REPORT \qquad DATE \qquad
ELECTROTYPE NUMBERS OF CARDS INVOLVED:
selector positions are wrei irbo. tho whitiplien conter. Thas the"X'in 49 shifts the decinal point in $p^{2}{ }^{\circ}$ as. gosition to the acht; congecuently, it shirts the deatna: point in \boldsymbol{T}^{3}, as il is primohed in the card, onp colum to the right.

The $x-j$ wach in column in contrala the ingits of i^{3} that are punchel. l) difits of g^{3} are wired fror the products counter into the seleotor that de artivatea oy the" $\chi^{\prime \prime}$ in 53. The right ham 8 or these are wirea into o "Ny" hubs of the selector: the ifft nari 3 are \because irei ano the" $X^{\prime \prime}$ mus of these 8 selector posilions, Agatn split wies are usti for the 6 lifits that are wirer into
 runch. Thu; the" $x^{\prime \prime}$ an 58 siffts the deaimal point, in $?^{3}$, as it is pumed in the cani. two gnsitiong to the rigit, Y-rumohes in ooth 49 and as shit. n ${ }^{3}$ Lncen columas to the right. The giugboand wiring diagrom is given in Fimire 10.

 v in oceration 5 From dita on a sugle card, Simae v is ocmacof ton only 5

 is given the rage 01000 to 999999. Jirice the differerice of 3^{3} rever has

 to teck 2.

The following quanitives are tranferred directly fron deck 1 into the sane columen in deck 2. The problem number, col. 1a? ; card number, sol. 3-3; cycle muber, coj. $5-10$; the rate $\frac{v_{0}}{\Delta r^{3}}, \operatorname{col}, 10-15 ;$ and the rate ,

Figure 10

$$
1
$$

INTERNATIONAL BUSINESS MACHINES CORPORATION

CUSTOMER \qquad DEPT. \qquad
TITLE OF REPORT
DATE \qquad
ELECTROTYPE NUMBERS OF CARDS INVOLVED:
col. 60-72. An"X"from tho 0 and X enitters is wifed through the colunn split

The last fi dipits of $\left(R_{f}^{n}\right)^{z}$ are transferced from columns $35-40$ of deck 1 into coiumns $37-4$ of deck 2 ; the last 6 digits of this quantity are trans ferred from columns $37-42$ of card $i \cdot!$ of leck 1 into columns 44-49 of card i of deck 2. In order for this operation to be perfomed, card i-1 must precede car i throutin the reproducer. On the other hand, in the tabulator3umary purch operation, nperation 13 , card $1+1$ must precede card i through the tariulator. Thus ia cuerations 4 and 13 the ards must have a different ordering. In order to avoit a sorting operation, tie cards are in both opa eratiens arranged in the orrer, ard $i+1$ precedes rand 1 , but in operation 4 Gie cards are ran throuen the reproucer with the deck inverted so that the cards are face up. 12 edge first. This means that the mobs wired on the phuguon ci must be 81 mirus the card column: e. E. . sard column 12 becomes $\because \because g b o a r z 81-12=69$.

The existence of severil decimal groups in R^{3}. labeled by X-punches in ooiurans 49 and si, creates a roclem in the transfer of R_{1-1}^{3}, for the afferencing of R^{3} 's in operation 5 is carried out in such a way that the G col-
 tion. Tnerefore, when card i helongs to one decimal ercup and card $1-1$ to another, a ifferent type of transfer must be made tian when both cards i and 1-1 belorie to the sa:de decimal erof. This is asconpilsined by transferring on that concrol sitiationjore next to the last o digitis of R^{3} of card 1-1 to carc i. The X-punch, in 49, cân be used to a ctivate the selectors, three ofwich are needed. Singe thé reproducer sometimes fails to pick up a single $\cdots \quad X$-punci, $2 n^{*} X^{\prime \prime}$ is punched in column 41 , on ail caras having an"X"in 49. It is unlikely that the reprofucer would fail to piok up ooth X-punches on the same card.

As shown in the piugboand dagran, Figure. 1l, selector 1 and 3 are

APPROVED FOR PUBLIC RELEASE

Figure 11

\qquad
\qquad
activated directly hy $8 \| x$-punch in. 4 and 49 . selector 2 is also activated by the same X-punch, but through the cyel defay unft, Thus if neither card i-1 or i have an X-punc!, all three selectors will be unselectod; $j f$ both cerds i and 1-1 have X-punches, $\& l l$ three selectors will be selected. The selectors are wired sethat in both of these control situations columns 35-40 of card i-l of deck 1 are transfarred into columns $44-49$ of card 1 of dack 2. If card 1 has X-punches but card i-l none, selectors 1 and 3 will be selected and selector 2 unselected; If card i has no punches but card i-1 does, selectors 1 and 3 will be unselected and selector 2 selected. Trey are wired so that in these two control situations columns $34-39$ of card i-1 of deck 1 are transferred into columns 44-49 of card 1 of deck 2. For details, see Figure 1l. Only the wiring of the selectors is shown in this figure. The wiring tor the rest of the transfers is straightforward and is not shown. All sihsequent operations use deck 2. Operation 5 - Triple product multiplier. Computation of $\left(R_{i}^{n}\right)^{3}$ is read from columns 37-42 into the left hand components counter; $\left(R_{i-1}^{n}\right)^{3}$ is read from columns 44-49 into the r ght hand components counter, and the rate $\frac{v_{0}}{a_{i-\frac{1}{2}}\left(\Delta r^{3}\right)}$ is read into the summary counter, On the first multiplication cycle, the contents of the right hand components counter are transferred nagatively into the left hand components counter, thus differencing R_{i}^{3} and R_{1-1}^{3}. On the second multiplication cycle, the difference of the $R^{3 / s}$ is multiplied by the rate. The product $\left(\frac{v}{a}\right)_{i-\frac{1}{2}}^{n}=\frac{v_{0}}{a_{i-\frac{1}{2}}\left(\Delta r^{3}\right)_{i-\frac{1}{2}}}\left[\left(R_{j}^{n}\right)^{3}-\left(R_{1-1}^{n}\right)^{3}\right]$ is punched in columns 31-35.

Slnce on the first multiplication cycle, the right to left hand components counter transfer must be negative and on the second multiplication cycle, positive (in order for the multiplication to be done correctly), a special control must be provided. This control is accomplished through the use of the 2 position selector of the X-skip device. This selector, when activated, is selected only during the firet multiplication cyclg. An "XN controlimpulse is gotten from

the "X" in 80 punches on evory"caifors "Seg figure 12.
 different positions is taken care of by making a corresponding shift in the rate $\frac{v_{0}}{a_{i-\frac{1}{2}}\left(\Delta r^{3}\right)_{i-\frac{k}{2}}}$.

Cperation 6 - Sorter. Deck 2 is sorted into ascending order on the first three digits of v, columns 31-33. Thjs sorting makes deck 2 ready for merging by the collator with the cards of the table of F_{1} and F_{2}. Operation 7 - Collator. The work cards, deck 2, are merged with the table cards, which have been previously sorted into ascending order on their argument, a three digit 7 . The merging is such that the table curd precedes the Honk card; hence the table cards are put in the primary feed hopper and the work cards are put in the secondary feed hopper. Those table cards that do not have a v that matches the v of any work card are selected out and put in stacker 1. The tatle cards are checked for sequence. Since thay are supposed to be in ascending order, the low second primary hub is connected to the error stop hub. See Pigure 13.

After the merged table cards have been used, they mast be reinserted in thejr proper place in the tabie so that they can be used in the next cycle. This can be accomplished with the same plugboard as was used to merge the work. arid table cards if the instmetions to select the primery and secondary cards are wired through a selector. The secondary X-selector is used and is activoted by the "X" in 80 on the work cards. The table cards should not have an X-punch in column 80 . See Fgure 13.

Operstion 8 - Nultiplier. Interpolavion of F_{1}, F_{I} is read fiom the table cards, interpolated and the result punched on the work cards. This can be done in one run of the cards through the multiplier if the table entries of F_{1} have no more than 5 digits and the firgt differeges of F_{1} have no more than 3 digits. This limitation exists because F_{G} and its first difference

$\triangle F_{1}$ are stored in the ε positiof, Futiplier cinter as a group multiplier

APPROVED FOR PUBLIC RELEASE

$$
\begin{aligned}
& \text { 苟 }
\end{aligned}
$$

Figure 12

INTERNATIONAL BUSINESS MACHINES CORPORATION

TITLE OF REPORT \qquad DATE \qquad

APPROVED FOR PUBLIC RELEASE

Fipure 13

TITLE OF REPORT
DATE \qquad
\qquad

NAME OF CUSTOMER
DEPARTMENT OF CUSTOMER
to be used by the work cards. During. the wert card cycie, a unit impulse is entered in the extrene right hand position af the witiplicand counter and the last two digits of $v, \triangle v$ are read from column 34 and 35 of the work card into the two extrewe left hand positions of the maltiplicand counter.

The calculation to be performed is $F_{1}+\Delta F_{1} \Delta v, \quad F_{1}$ is read into the right hand 5 positions of the multiplier counter and ΔF_{1} into the remaining 3 positions. In the followirg multiplication the first three digits of the product $\triangle F_{1} \Delta v$ are coroputed correctly. The fourth digit of that product has added to it the first digit of the product $F_{1} \triangle v$; hence it is not correct. However, only three digits of $\Delta F_{1} \Delta v$ are needed; the error in the fourth digit only affects the rounding. On this account the last digit of the interpolated value of F_{1} will sometimes be wrong. The product $\triangle F_{1} \Delta v$ must still be added to F_{1} in order to complete the interpolation. To do this F_{1} is wired frow the multiplication table (it has been multiplied by l) into the sunariy counter and $\Delta F_{1} \Delta v$ is transferred fros the products counter to the summary counter. This transfer is shown as negative in Figure 14 since in most equations of state ΔF_{1} is negative. The fourth maltiply-crossfoot switch is set on crossfoot in order to delay punching until the products to sumary counter transfer has taken place. The upper hub of the second crossfoot switch is wired to the upper hub of the on setting of the second crossfoot to sumary counter switch in order to permit the sumnary counter to receive the impulses fron the miltiplication tible. See Figure 14.

During the course of a probien, p may vary by several factors of 10. Seven card coluans in deck 2 have been alloted to p, F_{1} and F_{2} in order to allow for this variation. Of these seven digits of p that are punched, only 5 can be significent since the table entries from which p is computed have only 5 digits. However, this does not produce iny error, since when p is

 intervals are used, but the sionificant 5 digits of p are then the right hand

APPROVED FOR PUBLIC RELEASE

$$
\begin{aligned}
& \text { 三-: シ : }
\end{aligned}
$$

Figure 14

INTERNATIONAL BUSINESS MACHINES CORPORATION

APPROVED FOR PUBLIC RELEASE

5 of the seven that are puncheg．e．Tos coptrol on this variation in F is
 into several decfnial groups，identified by X－punches in columas 73 and 76 ． These X－punches designate into which 5 card columns the interpolated $\bar{F} I$ is punched．They are read from the toble card and the selectors they activate nust remain selected until the last work eard matched with that table card has been punched．The wiring of such an k－control is shown in figure 25， where the X－punches in colums 80 and 11 of the work cards are used to keep the selectors activatec．Figure 10 shows the wiring of the gelectors to accompligh this control on the disits of r_{1} punched．Ne have not found it necesgary to use the full capacity of thes system，so only 7 digits are shown wired to the punch．Although in an actual problem the features in figure 14 ， Hgure 25，pigure le are incorporated in one plugboard，they have been separated here to make the wiring more easily understood． Operation 9 －Multiplier．The intergolation of Fa is the satte as for Fi exeept that different card columns are used．In some problens ha is small compared to F_{1} ．Then It is usually not necessary to inte polate F_{2} ，anc！ $p=F_{1}+b F_{z}$ can be computed without the intermeitiste punching of F_{z} ，F_{z} －read as a group multiplier from the table cart．From the work carl，b is read into the miliplicand counter and F_{1} is crossfcoted into the left hand components counter．

Cperation 10 －Sorter．The table cards are sorted out from the work cards． Column 1 can be used．Then all the table cards will fall in the reject pocket and all the work cards will fall in the pocket corresoonding to the proolen nuater．

Cperation 11 －Muitiplier．Computation of $p_{i-1 / 2}^{n}$ b is read into the multi－ plier counter．F_{2} into the multiplicand counter，and F into the left hand
 this is a standard type I．B．M．mitylinif operation，no diagran is given．

APPROVED FOR PUBLIC RELEASE

Figure 15

panteo inu.s.a.

APPROVED FOR PUBLIC RELEASE vi 6 g.

Operation 12 - Sorter. In the listing and Effereneing operations done by the tabulator-summary punch, numbers from both áck 1 and deck 2 are needed. Also 2 card cycles are needed to perform some of the computations. So deck 1 is merged with deck 2 , the deck 1 card ahead of the corresponding deck 2 card. This is done by placing deck 1 in the feed hopper of the sorter and deck 2 on top of it. The cards are sorted into descending order on the card number, columns 3-5.

Operation 13 - Tabulator-suuiary punch. Information from decks 1 and 2 is listed, $R_{1}^{n}-R_{i}^{n-1}$ and $d p_{1}^{n}$ are computed and listed. $2 R_{1}^{n}-R_{i}^{n-1}$ and $d p_{1}^{n}$ are computed and punched on deck 1 of cycle $n+1$ in the summary punch. Identification, rates, and R_{i}^{n} are punched on the new deck.

The tabulator does not have enough type bars to print all the numbers punched on the cards and computed in this operation. The following cholce of itens gives the necessary information about the solution and includes useful checks on the calculation.

Alphamerical Type Bars

Typo Bars	Item Printed
1-2	Problen Number
3-5	Card Number
6-10	Tine (cycle number)
11	blank
12-13	time interval, $\triangle \mathrm{t}$
14-20	$b_{i-\frac{1}{2}}$
21	blank
22	$\frac{v_{0}(\Delta)^{2}}{r_{i}^{2} \Delta r}$
29	blank
30-35	$\frac{r_{0}(\Delta t)^{2}}{r_{i}^{2} \Delta r} \quad\left(\mathrm{R}_{i}^{n-1}\right)^{2}$

list-tabulate switches are set to tioutat oang s ingor cycle is taken every two card cycles; hence, information eoncring point 1 is printed on one line - first from the list cycle following the previous total cycle and then. without the platen moving, frow the total cycle. In the following, discussion, the card cycles are referred to in the following manner: at cycle one, the card from deck l is at the upper brishes; at cycle two, the card fron teck 1 is at the lower brushes. The total eycle for that point is taken after the card fror deck 2 passes the lower brughes; this gives time for the computing of $2 R_{1}^{n}-R_{1}^{n-1}$.

The trickiest feature of the wiring is that for the computing of $2 R_{1}^{n}$ -$\mathrm{R}_{1}^{\mathrm{n}-1}$. On cycle $1_{,} \mathrm{R}_{1}^{\mathrm{n}-1}$ is read by the upper brushes and entered negatively inte a counter. On cycle 2. K_{i}^{n} is read by the lower brishes and entered positively inte the same counter and alse into another counter. Thus at the end of cycie 2 one counter contains $R_{1}^{n}-R_{1}^{n-1}$ and the other centains R_{1}^{n}. On the next cycle (cycle 1 again) the first counter, on a card cycle total transfer, transfers $R_{1}^{n}-R_{1}^{n-1}$ pesitively into the second counter forming $2 R_{1}^{n}-R_{1}^{n-1}$. Then a total cycle is taken, clearing the counters. This operation has, of course, taken three card cycles and the firat counter should have beer receiving the impulses from the next card at the time it was transferring $q_{1}^{r_{4}}-R_{1}^{n-1}$ inte the second counter. This Aifficulty is avolded by using twe counters which aiternately compute $R_{1}^{n}-R_{1}^{n-1}$.

Fer this complitation twe basic cycles of selector operation are needed. one of period 2 and the other of peried 4. The ene of period 2 is obtained gimoly by wiring an finpulse frem lewer brush 80 to the X-pickup of a selecter. Nhen deck 2 passes the lower brushes, an"x"inpulse comes through and activates the selector; when deck 1 passes the lower brushes, no" x "impulse comes through. Therefore; the selector is selected on cycle 2 and is uneelected at cycle 1. The period of 4 is obtained by congegting lowet jrush 80 to an X^{n} pesition of a selector, upper brush 80 to"NX of. that selector position, and the C of that
position to the x "pickup of thersetector, "eque" selector then gees through the following cycle,

Gycle 1 unseleoted - (80 LB is connected to $\mathrm{X}^{\prime \prime}$ and cannot activate selecter for cycle 2)

Cycle 2 unselected - (80 UB is connected to NX and nence activates selector for next cycle,

Cycle 1 selected - (80 LB is connected to "X"and now can activate selector for next cycle.)

Cycle 2 selected - (80 UB is connected to N^{\prime} and canrot now activate selector for next cycle)
and repeat.
In Figure 17 selectors A and B operate on a period 2 cycle and selecters $0, H$, and C operate on a period 4 cycle.

Upper brushes 42-48 are wired to $N X$ of a period 2 selector (selector A) and lower brishes $77-23$ to the X of the same selector positions. The 70 nubs of these positions are connected to C of period selector. Thus the C of the peried 4 selecter receives on cycle $1, R_{i}^{n-1}$, and on cycle 2 , R_{1}^{n}. This period 4 gelector (selector G) is used to enter R_{i}^{n-1} and R_{i}^{n} alternately inte counters $g A$ and $8 B$. The X-hubs of selector G are wirel do the gA counter entry $3 \pi d$ the $N X$ to the 83 counter entry.

- Counters $8 A$ and $8 B$ are used to compute $R_{1}^{n}-R_{1}^{n-1}$, cobnte: $8 D$ is used to compute $2 R_{i}^{n}-R_{i}^{n-1}$ and counter $8 C$ is used to transfer R_{1}^{n} to the new deck in the summary punch.

Add-subtract impulses for the counter are tined in the following way: plug te C gives an inpulse on both times 0 and 2 ; plug to C imoulse wired to a C hub of seiector A gives r"see to 1 time 1 inpulse out of "rx"and a tine 2 impulse out of X, a ite 2 impulse wired to a C hub of selector G givis rise to time 2 impulses alternately coming out of " x " and "NX". The connters are impulsed as follows:

APPROVED FOR PUBLIC RELEASE

Figure 17

Counters $8 C$ and 80 are aiways clear on the total cy:ie. countery ed We 53 tate turns clearirg on the total cycle.

The counter total exits of counters 8 A and $8 B$ are wired inte the" X^{\prime} ant "NX", respectiveity, of selector h. The C of selector is witret to the G of selector B. The" $1 X^{\prime \prime}$, selector B is wiraj to $Q D$ counter eritry. anu: fa and 85, alternatejy, on time $:$ transfer $R_{1}^{9}-R_{B}^{7-1}$ inte counter 80 , which on the
 not wred through gelectur B but were conneded dirte jy ic ab councer entry, a back efrcist would reandt when counters $4 A B C D$ which are used in computing dP, go through a conversicn oycle. See Figure 17 for the wiring.

The tabulator is instructel to tare micc total cycie after cycle 1 by wifing Lower brash 80 to digit selector 2 . The 11 or "x"nut of digit zeiector 2 Ls wied tuine comparing renays. Cu cycle 1 , the" $x^{\prime \prime}$ in desk 2 cards sende ari imolse through this circult. Since the comraririf relayg do not receive a matchirg infulse, an ancqual trpulge is efrerated. This is wired to the rinor total huty

 and $8 D$ arf already in use, two 8 position counters are riady by conecting

4A t. $4 E$ and 40 to $4 D$. P is read into these santers from araer bruste. El-
 They receive no add or subtract impultogt tymeat pence no geifctors are

 A 'the mput type bars. If no selector is used here, a back circuit will result and wrong numbers will. be printed. See Figure 17 for the plagobard wiring. The items that are listed and transferred are not shown in the miring diagram. They are standard tabulator operations, and their presence in the diagram would require so many Ines that the diagram would becone almost unreadable.
X-punches are transferred from the decks of cycle n to deck 1 of cycle $n+1$ by using them to direct a counter togo through a conversion cycle. Then the summary punch can be wired to punch an "x*. The counter is made to go through a conversion cycle by wiring the add-subtract impulse through a selector activated by that " $\mathrm{I}^{\text {". The selector is wired so that when it is controlled the }}$ counter subtract hub is impulsed. Then if the extreme left hand position of the counter has no digit entered in it and the CI and C hubs are wired to counter balance control, the counter will go through a conversion cycle.

The summary punch plugboard wiring diagram is also not shown. The totels of counters $4 A B$ and $4 C D$ must be wred to 2 selector and the common of the solector wired to the punch. If this is not done and a circuit connecting the punch to both counters at once is formed, wrong numbers will be punched.

6.5 THEORY OF VCN NGUANN'S METHOD OR TREATING SHOCKS (Peierls)

6.5-1 Introduction.

It is well known that in hydrodynamic problems involving compressible media there may exist shock waves, 1.e., places at which the velocity, pressure and density are practically discontinuous, and at which the equations of maler do not hold. The reason for this is that the Euler equations assume the changes In the material to be reversible, whereas at a shock wave gradients become so large that the dissipative efects (yiscoithy, heat con-
duction) become important. Iagees: ghe ege ilimgt usually considered, in which
 shosk is a sharp discontinuity ant the gradients are infinite.

Therefore, it would in general not make sense to assume Euler's equations to hold even across the shocir, Von Neumann has pointed out, however, that the situation is different if one uses, instead of the differential equations, The approxinate differince equations which are the basis of mechanical methot of treating the oquations. In condftions where a shock would form. we know there exists no solution of the differential equations. Any solution of the di:ferpnce equations will gpproximate to a solution of the differentia? eadationa only 15 the changes of all functions over one interval are small, herce the difference equations cannct be expected to have any solution of this kind at a shock, There are, however, solutions of oscillatory behavior containing fluctuations with periods of the orter of the interval size. These, acsonding to von Neumann, can be regarded as a model of the increase of entropy In the shock, and infeed the fluctuations thus obtained represent the heat motion of the saoked material.

It is evident that this molel of the heat motion is very crude, and that It loes not represent correctly the themal behavior of any reasonable substance. However, there are many cases of intorest in which the infiuence of tempfratire on the equation of state is negligible, and in those cases one may expeot that the rror introluced by the model may not of serious.

The purpose of this section 19 to study the difference between the model and an actua: gubstance in more quantitative detail, and to derive criterla that may sprve to estlmate the error in individual sases. 6.5-2. Basic Equations.

In one case of a one-dimensional problem the differential equations

$$
\begin{equation*}
\frac{\partial y}{\partial t^{2}}=-\frac{1}{\rho 0} \frac{\partial P}{\partial x} \tag{89}
\end{equation*}
$$

where y is the position at time $t^{e=0} 0^{\circ}$ this point which would be at x if the
 function of the specific volume V (reversibility). More precisely V stands for the ratio of the volume to the normal volume. The normal dens it is Po.

The difference equation is obtained from this by choosing time intervals t and space intervals Δx, so that after neglecting higher than second powers of the interval sizes, (89) becomes:

$$
\left.\begin{array}{c}
\frac{y_{1}^{n+1}-2 y_{1}^{n}+y_{1}^{n-1}}{(\Delta t)^{2}}=-\frac{1}{\rho_{0}(\Delta x)^{2}}\left(p_{i+\frac{1}{2}}^{n}-p_{i-\frac{1}{2}}^{n}\right) \tag{90}\\
v_{i}^{n}=\frac{1}{\Delta x}\left(y_{i+\frac{1}{2}}^{n}-y_{i-\frac{1}{2}}^{n}\right)
\end{array}\right\}
$$

Where n, i, label the tire and space intervals:

$$
\begin{align*}
& t_{n}=n \Delta t+\text { cons } . \\
& x_{i}=1 \Delta x+\text { cons. } \tag{91}
\end{align*}
$$

We apply these equations to the state of affairs we expect behind a shock, where there will be irregular fluctuations superimposed on a "macroscopic" or mean motion. If our interval sizes are chosen correctly, the mean quantities vary little over one interval and over a few intervals we may regard all macroscople quantities as uniform.

As to the "atomic" motion, or fluctuations, we shall assume that the amplitude is mall. The limitations introduced by this assumption will be discussed later. We can then write

$$
\begin{equation*}
y_{i}^{n}=\vec{y}_{i}^{n}+\eta_{i}^{n} \tag{92}
\end{equation*}
$$

where the bar denotes the "mean" position and η_{i}^{n} is shall. Then
and (90)becomes:

Solutions of this equation can be written in the form

$$
\begin{equation*}
\eta_{i}^{n}=\text { Ae } j(n \phi+i \psi) \quad j=\sqrt{-1} \tag{95}
\end{equation*}
$$

where A, ϕ, ψ are constants. Inserting this in (94) we have

$$
\begin{equation*}
(1-\cos \phi)=-\frac{(\Delta t)^{2}}{\rho_{0}(\Delta x)^{2}}\left(\frac{d p}{d v}\right)_{\bar{v}}(1-\cos \psi) \tag{96}
\end{equation*}
$$

It is well known that the factor

$$
\begin{equation*}
1^{2}=\frac{(\Delta t)^{2}}{\rho_{0}(\Delta x)^{2}} \quad\left(-\frac{d p}{d V}\right)_{V} \tag{97}
\end{equation*}
$$

milust be less than unity in order that the step-by step solution of (90) be possibie. Indeed, it is evident from (96) that if $1^{2}>1, \phi$ is imaginary neara $\psi=T /$, and hence there are disturbances which will grow exponentially with tine, making the systen unstable.

Othervilse, there will be N frequencies, where N is the number of space Intervals in the region under consideration. The values of ψ belonging to these will be spread uniformiy over the interval -7 to π.

If the IInear Equation (94)were rigorous, all these oscillations would be Independent. Since, however, the correct equation (90) does contain terms of hjegrer degree, there will be a certain anount of coupling between oscillations which, given eriough tine, must produce some kind of statistical equilibrium.

For strong amplitudes, where the terms of different degrees in the amplitude are comparable, it is clear from dimensional arguments that the "mean free path" of the oscillations, (i.e., the distance a wave travels before equilibrium has essentially been established) that the oscillation is of the order of one interval size, with a numerical factor, whict, by analogy with the problem of waves in crystal latices, one wouid ixpect. Eo be itger than undty, As the

further, and one would thus expect bhetofog gowe appreciable distance behind the shock the oscillation caised by trespoctiay not be in equilibrium, This effect extends over a greater distance for weaker shocks.
6.5-3 Thermodynamic Relations for Smell.1.

We have seen above that we nay expect statistical equilibrium to be established axcept very closely behind the shock. To this equilibrium ordinary thermodynamics is nct inmediately applicable, since fuation (94) is a difference equation in tirne as well as in space, and hence energy conservation does not hold in the usual form.

If however, $l \ll l$, the time interval is negligible in comparsion with the space interval, and the equations are then essentially differential equations in time. They are closely analogous to those for a one-dinensional Born-von Karman lattice. Since the equations are linear and there is a restoring force for each degree of freedom, it is clear that in equilibrium the thermal erergy will be kT per degree of freedom,or

$$
\begin{equation*}
E_{t h}=\frac{1}{\rho_{0} \Delta x} \mathrm{kT} \tag{98}
\end{equation*}
$$

per unit miss, where $\frac{1}{\Delta x}$ is the number of degrees of freedom per unit length, k Boltzmann's constant, and 2 tie temperature.

The unit of temperiture is here arbitrary, since we cannot measure the temperature of this fictitious system by bringing it into theraal contact with any other physical system, hence only the product kT has a definite meaning. For convenience we choose our units of temperature in such a way that

$$
\begin{equation*}
k=\rho_{0} \Delta x \tag{9}
\end{equation*}
$$

or the mass per interval, hence

$$
\begin{equation*}
E_{t h}=T \tag{100}
\end{equation*}
$$

As in any other oscillating systen, this energy is on the average half kinetic and half potential. Hence f0ct ine kinstienergy per unit mass
or
where

$$
\begin{equation*}
u=\frac{\partial \eta}{\partial t} \tag{102}
\end{equation*}
$$

is the velocity associsted with the fluctuations, and the bar denotes the statistical average.

Equation (W) may be regarded as a definition of T and allows one to estimate T in any individual case. The potential energy per unit mass is

$$
\begin{equation*}
E(V)=\frac{1}{\rho_{0}} \int_{V}^{1} p d V \tag{103}
\end{equation*}
$$

For suall deviations, to second order inclusive,

$$
\begin{equation*}
E(V)=E(\bar{V})+\frac{1}{\rho_{0}} p(\bar{V})(\bar{V}-V)-\frac{1}{2} \frac{1}{\rho_{0}}\left(\frac{d p}{d V}\right)_{\bar{V}}(\bar{V}-V)^{2} \tag{104}
\end{equation*}
$$

On the statistical average, the first term gives the potential energy of the mean density without taciperatire, the second term vanishes, and the last represents the potential part of the thermal energy, hence:

$$
\begin{equation*}
\frac{1}{2 \rho_{0}}\left(-\frac{d p}{d V}\right) \bar{V} \overline{(\nabla-V)^{2}}=\frac{1}{2} T \tag{105}
\end{equation*}
$$

or

$$
\begin{equation*}
\overline{(\bar{V}-V)^{2}}=\rho_{0} T\left|\frac{d p}{d V}\right|^{-1} \tag{108}
\end{equation*}
$$

Since $\frac{d p}{d V}$ is known and T can be found fron ($10 i_{i, t h i s}$ relation can be treat ed. However, the equality of kinetic and potential energy, in the time average, holds for any harmanic motion whother in equilibrium or not. Hence this test merely verifies that the amplitudes of oscillation are weak nough to make the riction essentially harmonic.

We can now find the pressure caused by the heat motion. By axpansion to second order

$$
\begin{equation*}
p=p(\bar{V})+\frac{d p}{d V}(V-\bar{V})+\frac{1}{2} \frac{d^{2} p}{d V}\left(V, V^{2}\right) \tag{107}
\end{equation*}
$$

On the average, the ifrst term is ite jpressue

$$
P_{t h}=\frac{1}{2}\left[\frac{d^{2} p}{d v^{2}}\right]_{\bar{v}} \quad \begin{gather*}
\because \vdots \tag{108}\\
(\bar{v}-v)^{2}=-\frac{1}{2}(\bar{v}-v)^{2} \frac{d}{d V}\left|\frac{d p}{d v}\right|
\end{gather*}
$$

(The negative sign comes fron the fact that $\frac{d p}{d V}$ is necessarily negative.) Using (106)

$$
\begin{equation*}
p_{t h}=-\frac{1}{2} \rho_{0} T \quad \frac{d}{d V}\left(\log \left|\frac{d p}{d V}\right|\right) \tag{109}
\end{equation*}
$$

The same relation can be derived in a different way. In general

$$
\begin{equation*}
p=-\frac{\partial F}{\partial v}=-\rho_{0} \frac{\partial F}{\partial V} \tag{110}
\end{equation*}
$$

where F is the free energy per unit mass, and v the volume per unit mass. P is a sum over the different degrees of freedon, and for each degree of frecdom,

$$
F_{i}=-k T \log W_{i}+\text { const. }
$$

where W_{i} is its frequency (in radians per second) and the constant may depend on the temperature but not on V. Hence, using (99)

$$
\begin{equation*}
p_{t h}=-\frac{\rho_{0}^{2} T \Delta x}{M} \sum_{i} \frac{\partial \log W_{i}}{\partial V} \tag{122}
\end{equation*}
$$

the sum to extend over all degrees of freedon belonging to the region considered, which has a total mass M. The frequencies are to be found from (96) with

$$
w=\frac{1}{\Delta t} \phi
$$

If 1 is small, the right-hand side of (96) is always sobill, hence ϕ is a small angle and the left-hand side can be roplaced by $\frac{1}{2} \phi^{2}$. Hence each of the frequencies is proportional to $\sqrt{\left|\frac{d p}{d V}\right|}$ and

$$
\begin{equation*}
w_{i}=f_{i} \quad \sqrt{\left|\frac{d p}{d \bar{V}}\right|} \tag{114}
\end{equation*}
$$

where f_{i} depends on the wave nunber $2 f$ butenet or V. Hence all terns of the
 in a mass M, i. e., to

Inserting this in (112) we obtain again (log ${ }^{\circ}$
This derivation is of interest since it shows the dependence of the result on the relation (114), which is not correct unless 1 is snall.

We may reasonably surmise that, for our present purpose, l can be regarded as small as long as (114) is substantially correct. To test this, the solutions of (96) have been plotted in Figure 18 against 1 for different angles ϕ

- It is seen that all lines are straight in good approximation up to 1 $=\frac{1}{2}$ and in view of (97) this means that in this range all frequencies are proportional to $\sqrt{\left|\frac{d p}{d v}\right|}$. For $1=\frac{1}{2}$ only the uppermost curves begin to bend, and without further investigation it is not possible to estimate to what extent this would affect our conclusions.

0.5-4 Hugoniot Relations.

Consider now a shock running into raterial at rest. (This causes no essentisul loss of generality.) Let V_{1} be the specific volume, p_{1} the pressure ahoad of the shock, and assume there is no thermal motion ahead of the shock, Then the first Hugoniot relation is

$$
\begin{equation*}
\bar{u}=U\left(1-\bar{v} / v_{1}\right) \tag{216}
\end{equation*}
$$

where \bar{u} is the nean velocity and \bar{V} the mean specific volume behind the shock, U the shock velocity. This relation only expresses conservation of material and mast be satistijed automatically in our model.

The other two relations:

$$
p-p_{I}=\rho_{0} U^{2} \frac{V_{1}-\bar{v}}{v_{I}^{2}}
$$

and

$$
\begin{equation*}
\rho_{0}\left(E-E_{1}\right)=\frac{1}{2}\left(V_{2}-V\right)\left(p+p_{1}\right) \tag{118}
\end{equation*}
$$

will now also contain the thermal pressteond enser:

$$
\begin{equation*}
p(\bar{V})-p_{1}+p_{t h}=\frac{p_{0}^{2}, \ldots\left(V_{1}\right)}{\left.\bar{v}_{1}^{2}\right)} \tag{110}
\end{equation*}
$$

APPROVED FOR PUBLIC RELEASE

$$
\begin{aligned}
& \text { Mिए }
\end{aligned}
$$

Figure18

Frequency as function of 1 for varying ratio of wavelength to spacing

APPROVED FOR PUBLIC RELEASE

It is convenient to write g for the ratio

$$
\begin{equation*}
\mathrm{g}=\rho_{0} \frac{E_{\mathrm{th}}}{p_{\mathrm{th}}} \tag{12I}
\end{equation*}
$$

Then, by (100) and (109):

$$
g=\frac{2}{\left.\left|\frac{d}{d V} \log \right| \frac{d p}{d V} \right\rvert\,}
$$

and with this abbreviation, we can solve (120)for $p_{t h}$:

$$
\begin{equation*}
p_{t h}=\frac{\frac{1}{2}\left(p+p_{1}\right)\left(V_{1}-\bar{V}\right)-\rho_{0}\left[E(\nabla)-E_{1}\right]}{g-\frac{1}{2}\left(v_{1}-\bar{V}\right)} \tag{123}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\rho_{0} v^{2}\left(v_{1}-\bar{v}\right)}{v_{1}^{2}}=\frac{g\left[p(\bar{v})-p_{1}\right]+p_{1}\left(v_{1}-\bar{v}\right)-\rho_{0}\left[E(\bar{v})-E_{1}\right]}{g-\frac{1}{2}\left(v_{1}-\bar{V}\right)} \tag{124}
\end{equation*}
$$

The thermodynamic properties of the model are unimportant as long as (13) is srikill compared to the pressure $p(\vec{V})$, at the same time (223) allows one to estimate the amplitude of the fluctuations to be expected behind a shock of given strength.

For this purpose one nay either compare the average pressure with the pressure belonging to the average volume $\overline{\mathrm{V}}$ or use the mean square velocity fluctuation, which, using (121) and (100) (201), is

$$
\begin{equation*}
\overline{v_{t h}^{2}}=g p_{t h} \tag{125}
\end{equation*}
$$

For strong shocks it is evident from (123) that there is a limiting compression ratio which cannot be exceeded even for an infinite pressure, and this is given by the condition

$$
\begin{equation*}
g=\frac{1}{2}\left(v_{1}-\vec{v}\right) \tag{128}
\end{equation*}
$$

As g depends on the volune in the final state, it is most convenient to express the limiting compression by giving the highegt yolume V_{l} for which a given $\bar{\nabla}$ can be reached in a single shuck:

APPROVED FOR PUBLIC RELEASE

Fipure 19 shows g as a functitn se the spotadic voluae \bar{V} for air, and the liniting, volume V_{1} for which ă givent ven be reached.

Figure 20 shows the thermal pressure for air, starting at normal volune. For comparison, the "cold" pressure, $P(V)$, and the correct thermal pressure, as calculated by Keller, are also shown.

It is evident from this figure that, whenever the thernal pressure amounts to an appreciable contribution to the cold pressure, it is considerably in excess of the true value.

Table 0.5-4 lists the thermal pressures for air for various values of V_{1} and \bar{V}.

From these values, the mean ariplitude of the fluctuations was obtained by the formula

$$
\begin{equation*}
\Delta V^{2}=P_{\operatorname{th}} g\left|\frac{d p}{d V}\right|^{-1} \tag{128}
\end{equation*}
$$

which follows immediately from (106), (100) and (221). Since for a harmonic oscillation the root mean square amplitude is $\frac{1}{\sqrt{2}}$ times the maximum anoplitudo, we can define a minimum volume that wouid be reached for harmonic oscillation of the same $\triangle \bar{V}$. This is

$$
\begin{equation*}
V_{\min }=\bar{V}-\sqrt{2 \bar{\Delta} V^{2}} \tag{129}
\end{equation*}
$$

See Table $\mathbf{6}_{0} \mathbf{5 - 1}$.

APPROVED FOR PUBLIC RELEASE

Pigure 19

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

$P_{\text {th }}\left(\bar{V}_{1}, \bar{v}\right)$

v_{1}	\bar{v}	.80	.70	.60	.50	.40	.30
1.0	.0057	.0333	.1484	.7207	10.905		.20
.90	.0007	.0107	.0643	.3387	2.6251		
.80	0	.0018	.0207	.1425	1.004		
.70		0	.0027	.0446	.3849	5.873	
.60			0	.0064	.1173	1.532	
.50				0	.0170	.4099	32.20
.40							
.30							
.00							

6. 5-5 Other Effects.

The analysis given in the previous sectionsis is in some ways still very idealized, and we want to discuss a few effects that have been neglected. (1) The fact has already been referred to that the discussion applies only to small 1 , and probably in practice to $1<1 / 2$. This probably covers all applications of practicai interest.
(2) Horeover, we have assumed that the oscillations are always in statistical equilibrium. In fact, all oscillations arise at the shock front, and it will take them a finite time to get into equilibrium. This means that there will be a region behind the shock front in which there is no equilibrium. The extent of this region is inversely prom portional to the temperature, since the establishment of equilibrivm depends on the coupling between difierent degrees of freedon by the terms of higher order in the amplitude of the oscillations. This effect may cause errors if the extent of the non-equilibrium region is comparable to the distance over which the dynamical variables change appreciably.
(3) In the discussion given above, we have assumed harmonic oscillations, which is correct only for small amplitudes. When the "thermal" pressure exce日ds the "cold" pressure this is no longer justified. As a result the thermodynamic properties of the system may differ from our description at high temperatures, and in particular the limiting compression may be appreciably affected. On the other hand the limit of applicability of the method will remain unchanged since this refers to the condition that the thermal pressure is negligible, which means that it must have small aniplitude.
(4) Conduction of energy. In the physical applications of most interest heat conduction is usually negigible and aî acsurate model therefore ought to give adiabatic changes in-tho stãta "of" natter everywhere except

APPROVED FOR PUBLIC RELEASE

at the shock front. In our model thepe efiste s. finite heat conductivity carried by the sound waves and Iindited nifniy by the second-order terms which 2imit the free min of such waves. The "mean free path" of the vaves 18 dimensionally of the order of the interval size, multiplied by a function of temperature which is large for low temperatures. Hence, one may expact some error due to this effect. for weak shocks. However, as the heat content Is then saall, this will not lead to appreciable errors. In any case, for any shock strength this effect can be made negligible by a generous choice of the number of intervals used.
(5) Changing interval size. It is often convenient in calculations not to make all intervals equal but to use groups of smaller intervals in regions where more structure is required. Consider the boundary between two such groups. Physically, the two parts of the raterial ought to be in equilibrium for equal temperature, i.e., for equal energy per unit mass. However, in the model this does not correspond to equality of temperatures as deilned by (10p) since the latter is measured on a conventional scale. In the model, the two groups of points are in equilibrium if the energy per degree of freedom is the same, which means different energies per unit mas. What we have done corresponds, in effect, to using difierent values of Avogadro'g number in differ ent parts of the material.

Suppose, for example, that a shock is movirig through a range where the Interval size is Δx, and that a short distance behind the shock: it is rem duced to $\Delta x / 2$. Then, as soon as the disturbances have had time to travel back to the region with the smaller intervals, an equilibrium will be approached in which the energy per interval is the same, so that the temperature at the small intervals will be twice as high as in the larger ones. 6.5-6 Application to Spherical Problems.

An important class of problems concernis rotion with sphericel symmetry. Then we have, in place of (89).

$$
\begin{align*}
& \frac{\partial^{2} R}{\partial t^{2}}=-\frac{1}{\rho_{0}}=\frac{p^{2}-r^{2}}{i P^{2}}=0 \tag{130}
\end{align*}
$$

where R is the actual distance from the center, and the independent variable r is the original distance between the point considered and the center. If we are to obtain the ilnear equations for small disturbances, we nust bear in mind that the mass contribution to the free energy comes from oscillations with wave lengths of the order of the interval size, and that, for any reasonable choice of interval, this is small compared to the distance from the center. Hence if we writo again

$$
\begin{equation*}
R=\bar{R}+\eta \tag{131}
\end{equation*}
$$

where \bar{R} represents the undisturbed motion, the variation of η is much wore rapid than that of \vec{R}. Hence we find:

$$
\begin{equation*}
\ddot{\eta}=-\frac{1}{\rho_{0}} \frac{\mathrm{R}^{2}}{\mathrm{r}^{2}} \frac{\mathrm{dp}}{\mathrm{dv}} \frac{\mathrm{R}^{2}}{\mathrm{r}^{2}} \frac{\partial^{2} \eta}{\partial r^{2}} \tag{132}
\end{equation*}
$$

Hers $\frac{\mathrm{R}^{2}}{\mathrm{r}^{2}}$ should be regarded as locally constant. If the calculation is carried out with constant intervals in radius, this leads to an equation of the type of (94). It is atili true that upon a change in volume each Prequency is proportional to $\sqrt{\frac{d p}{d V}}$ and hence the formulae of section $6.5-3$ still apply.

However, in addition, the frequencies vary with R, the position of the radiel element, and thus we find a dependence of free energy on position. This means a radial force G per unit mass.

$$
\begin{equation*}
G=-\frac{\partial F}{\partial R} \tag{133}
\end{equation*}
$$

Using (111)

$$
\begin{equation*}
G=\frac{\rho_{0} \Delta x}{M} T \sum_{i} \frac{\partial \log W_{i}}{\partial R} \tag{134}
\end{equation*}
$$

and, in view of (732)

$$
\frac{\partial \log w_{1}}{\partial R}=\frac{2}{R}
$$

so that

Vaing (121) and (100):

$$
\begin{equation*}
G=-\frac{2 \mathrm{~g}}{\pi \rho_{0}} \rho_{t h} \tag{138}
\end{equation*}
$$

If g is near $1 / 2$, which is the case for a considerable range of values of $\overline{\mathrm{V}}$ for air,

$$
\begin{equation*}
\rho_{0} G=-P_{t h} / R \tag{1.37}
\end{equation*}
$$

If the true pressure varies, for example, as the inverse radius, the true pressure gradient is $-\frac{P}{R}$, and thus the relative error in the acceleration is of the order of $p_{t h} / p$, i.e., the same as the relative error in the pressure itself.

0, 5m Comparison with I. B. K. Calculations.

In the I.B.K. solution of the problem of a spherical blast wave, the von Neumann method of treating the shock was not used; conditions at the shock front were treated separately by the Hugoniot relations, which gave data to be used as boundary conditions in the I.B.M. solution. However, another problem, that of a plane blast wave in air, wae treated by the von Neumann method. One would expect that this problem would give quite cleancut resplts, since there is no change in interval size and there are none of the effects of the radial problen.

Figure 22 shows, for three mass points, the specific volume as a function of time. Since the period of this oscillation is considerably larger than one time interval, the curves show the motion quite clearly; for the dynamical quantities at fixed time, the period is of the order of one mass interval, and the curves are not clear. It is clear that the motion is fairly harmonic; the first'minimum thus should represent the mean volume of the shocked material manus the maximum amplitude of the shock, and the curves of Figure 21 should be applicable. We get:

Mass point no	2.5%	$3^{\circ} 5^{\circ}=$	4.5
V_{1}	1.0	00°	1.0
$V_{\text {min }}$. 555	. 535	. 515
$\overline{\mathbf{v}}$. 673	.663	. 650

APPROVED FOR PUBLIC RELEASE

Figure 21

APPROVED FOR PUBLIC RELEASE

Figure 22

APPROVED FOR PUBLIC RELEASE
 S. Goliberg and J. Kemeny

7. 1 MATHBMATICAL FORMULATION OF THE PROBLEA

If one considers a system of particles moving in material which both absorbs and scatters, the distribution of these particles in space and time is given by the Bolismamnn Equation:
$\frac{\partial n(\gamma, \mu, t)}{\partial t}+V \cdot \nabla n(\gamma, \mu, t)=-\sigma V n(\gamma, \mu, t)+\frac{\sigma V(1+f)}{2} \int_{-1}^{+1} n\left(\gamma, \mu_{1}^{\prime} t\right) d \mu^{\prime}$
where

$$
n(r, \mu, t)=n u m b e r \text { of particles (per unit volume) at point } r \text {, at time } t \text {, }
$$ moving in the direction given by the direction cosine μ made with the radius vector,

$$
\begin{aligned}
& v=\text { velocity of the particles, } \\
& \sigma=\text { the collision probability per unit path of length } \\
& 1+f=\text { the mean number of particles emerging per collision. }
\end{aligned}
$$

As an example of a problem to which this equation is applicable, consider the followirg: A known distribution of neutrons is introduced into the system. Depending upon the geometry and material construction of this system. the neutron distribution will grow or decay in time. (Provided that the distribution is not stationary.) The Boltamann Equation (1) describes the growth of such a neutron popilation. The asymptotic solution for (1) shows that the population grows as $e^{\alpha t}$. We want to find α.

We must first reduce equation (l) to a form more suitable for numerical solution. To do this consider the gratient in (1) 'aken aione a given direction lescribed by the coordinate q. The equation then reads $\begin{aligned} \frac{\partial n(\gamma, \mu, t)}{\partial t}+v \frac{\partial n(\gamma, \mu, t)}{\partial q} & =-\sigma v n(\gamma, \mu, t)+\frac{\sigma v(1+f)}{2} \int_{-1}^{+1} n\left(\gamma, \mu^{\prime}, t\right) d \mu^{\prime}\left(i^{\prime}\right)\end{aligned}$ We now make substitations

$$
\xi=\frac{q+v t}{2}
$$

so that

$$
\begin{equation*}
\frac{\partial n}{\partial q} \rightarrow \frac{1}{2}\left[\frac{\partial n}{\partial \xi}+\frac{\partial n}{\partial \eta}\right], \frac{\partial n}{\partial t}=\left[\frac{\partial \eta}{\partial \xi}+\frac{\partial n}{\partial \eta}\right] \tag{2}
\end{equation*}
$$

Equation (1) now becomes
$\frac{\partial n(Y, \mu, t)}{\partial \xi}+\sigma n(Y, \mu, t)=\frac{\sigma(1+f)}{2} \int_{-1}^{+1} n\left(Y, \mu_{1}^{\prime} t\right) d \mu^{\prime}$
if we now multiply both sides of this equation by $e^{\sigma \xi}$. we may rewrite it in the form

$$
\frac{\partial}{\partial \xi}\left[n(r, \mu, t) e^{\sigma \xi}\right]=\frac{\sigma(1+f)}{2} e^{\sigma \delta} \int_{-1}^{+1} n\left(Y, \mu_{1}^{\prime} t\right) d \mu^{\prime}
$$

Integrating along the direction $\frac{k}{}$ from initial point $\xi_{0} o$ to a final point ξ. Ne get
$n(\xi) e^{\sigma \xi}-n\left(\xi_{0}\right) e^{\sigma \xi_{0}}=\int_{\xi, 0}^{\xi} \frac{\sigma(1+f)}{2} e^{\sigma \xi^{\prime}} \int_{-1}^{+1} n\left(r, \mu_{1}^{\prime} t\right) d \mu^{\prime} d \xi^{\prime}$
$n(\xi)=n\left(\xi_{0}\right) e^{-\sigma\left(\xi-\xi_{0}\right)}+\int_{\xi_{0}}^{\xi} \frac{\sigma(1+f)}{2} e^{-\sigma\left(\xi-\xi_{0}^{\prime}\right)} \int_{-1}^{+1} n\left(r, \mu^{\prime}, t\right) d \mu^{\prime} d \xi^{\prime}$
Now if we let ξ_{0} refer to 篗me t, ξ_{0} to time $t-\Delta t$, then

$$
\xi_{0}-\xi_{0}=\frac{q+v t}{2}-\frac{q-v \Delta t+v(t-\Delta t)}{2}=v \Delta t
$$

$v \Delta t$ is of course the distance the particle travels in a given direction in time $A t$, provided that, it suffers no collisions. Under the transformation

$$
\begin{equation*}
\xi_{0}-\dot{\varepsilon}^{\prime}=s v \Delta t_{1} \tag{4}
\end{equation*}
$$

equation (3) becomes
$n(Y, \mu, t)=n\left(Y-\delta Y_{1} \mu-\delta \mu, t-\Delta t\right) e^{-\sigma v \Delta t}+\int_{0}^{1} \frac{\sigma(1+f)}{2} \gamma \Delta t d S \int_{-1}^{t} d \mu^{\prime} e^{-\sigma v s \Delta t} n(Y-S \delta Y, \mu, t-S \Delta t$
Equation (4) is now in the form which can easily be transformed for numberical computation. We want to treat this as a two-dimensional problem; therefore, we shall assume spherical symmetry.

We must first fix intervals in space (Δr), in angle $(\Delta \mu)$, and in time (Δt). The details of this procedure will be outlined in section $7.8 . \delta Y$ and $\delta \mu$ are then functions of r, μ, and these interval values. We can easily find these expressions with the ald of the following diagram. Our problem is spherically symmetric so that we need consider our equation along one radius only.

APPROVED FOR PUBLIC RELEASE

An application of the law of cosines and the law of sines to the triangle indicated yields the equations

$$
\begin{aligned}
& (v-\delta r)^{2}=r^{2}+(v \Delta t)^{2}-2 r v \Delta t \mu \\
& \frac{\sqrt{1-\mu^{2}}}{r-\delta v}=\frac{\sqrt{I-(\mu-\delta \mu)^{2}}}{r}
\end{aligned}
$$

One may easily verify algebraically that δr and $\delta \mu$ are given by the following formulae:

$$
\begin{equation*}
\delta r=r-R, \quad \delta \mu=\mu-\frac{1}{R}(\mu r-v \Delta t) \tag{5}
\end{equation*}
$$

where

$$
R=\sqrt{r^{2}+(v \Delta t)^{2}-2 r v \Delta t \mu}
$$

It must be remenbered that $I . B, M$. machines can perform arithmetical operations only, and therefore we must make further simplifying assumptions to be able to carry out the operations indicated in (4). Fe first assume that the term $n(r-\delta r, \mu-\delta \mu, t-\Delta t)$ is a linear combination of $n(r, \mu, t-\Delta t), n\left(r, \mu \pm \Delta \mu_{i}^{*} t-\Delta t\right), n(r \pm \Delta r, \mu: t-\Delta t)$ and $n\left(r_{ \pm} \Delta r_{2}\right.$ $\mu \pm \Delta \mu, t-\Delta t)$. Here, as in the following paragraphs, the + or - sign is adjusted so that we should always get an interpolation, not an extrapolation formula, That is the $+\operatorname{sign}$ goes-with $\Delta r(\Delta \mu)$ when $\delta r(\delta \mu)$ is negative, the - sign goes with Δ restay whin $8(\delta \mu)$ is positive. Now

APPROVED FOR PUBLIC RELEASE
 $n(r-\delta r, \mu-\delta \mu, t-\Delta t)=\frac{1}{\Delta r}[|\delta r| n(Y \pm \Delta r, \mu-\delta \mu, t-\Delta t)+(\Delta r-|\delta r|) n(r, \mu-\delta \mu, t-\Delta t)]$ Using these two interpolation formulae one easily derives the final equation: $n(r-\delta Y, \mu-\delta \mu, t-\Delta t)=\frac{|\delta Y \delta \mu|}{\Delta r \Delta \mu} n(r \pm \Delta Y, \mu \pm \Delta \mu, t-\Delta t)+\frac{|\delta r|(\Delta \mu-|\delta \mu| \mid}{\Delta r \Delta \mu} n(r \pm \Delta r, \mu, t-\Delta t)+$ $\frac{(\Delta r-|\delta r|)|\delta \mu|}{\Delta r \Delta \mu} n(r, \mu \pm \Delta \mu, t-\Delta t)+\frac{(\Delta r-|\delta r|)(\Delta \mu-|\delta \mu| \mid}{\Delta r \Delta \mu} n(r, \mu, t-\Delta t)$

Having chosen the radil and angle values and intervals $\Delta r, \Delta \mu, \Delta \mathrm{t}$, the four coefficients above are fixed constants for given r and μ. Since we assume that the density remains constant, σ is a known constant in any particular material. Since $e^{-\sigma v \Delta t}$ is a constant for the problem, the evaluation of the term $n(r-\delta r, \mu-\delta \mu, t-\Delta t) e^{-\sigma v \Delta t}$ in equation (4) is reduced to finding the sum of four products. Equation (4) now has the form:
$n(r, \mu, t)=a_{1} n(r \pm \Delta r, \mu \pm \Delta \mu, t-\Delta t)+a_{2} n(r \pm \Delta r, \mu, t-\Delta t)+a_{3} n(r, \mu \pm \Delta \mu, t-\Delta t)+$ $a_{4} n(r, \mu, t-\Delta t)+\frac{\sigma(1+f)}{2} v \Delta t \int_{0}^{1} d s \int_{-1}^{+1} d \mu^{\prime} n\left(r-s \delta r, \mu^{\prime}, t \cdot s \Delta t\right) e^{-\sigma v \Delta t s}$ where the a_{1} are the coefficients $\operatorname{in}^{-1}(6)$, each multiplied by $e^{-\sigma v \Delta t}$.

We turn now to the simplification of the last term in (7) involving two integrations, with respect to μ and then with respect to the axalliary variable s. We denote the integra $\int_{-1}^{+1} n\left(r-s \delta r, \mu^{\prime}, t-s \Delta t\right) d \mu^{\prime} \quad$ by $\bar{n}(Y-s \delta Y, t-s \Delta t)$. In order to $\frac{-1}{-1}$ valuate

$$
\begin{equation*}
\int_{-0}^{0} \bar{r}(r-s \delta r, t-s \Delta t) e^{-\sigma v \Delta t s} d s \tag{8}
\end{equation*}
$$

we assume that $\bar{n}(r, t)$ varies linearly in r and t. Then the integral (8) becomes a linear combination of $\bar{n}(r, t), \bar{n}(r \pm \Delta r, t), \bar{n}(r, t-\Delta t)$, and $\bar{n}(r \pm \Delta r, t-\Delta t)$. Just as we derived the interpolation formula (6), we can similarly demonstrate that
$\bar{n}(r-s \delta Y, t-s \Delta t)=(1-s)\left(1-s \frac{|\delta r|}{\Delta Y}\right) \bar{n}(r, t)+s(1-s) \frac{|\delta r|}{\Delta Y} \bar{n}(r \pm \Delta Y, t)+$ $s\left(1-s \frac{|\delta Y|}{\Delta Y}\right) \bar{n}(r, t-\Delta t)+s^{2} \frac{|\delta r|}{\Delta r} \bar{n}(r \pm \Delta r, t-\Delta t)$

$$
\begin{align*}
& \text { Ge may easily verify the following formulat } \tag{9}\\
& \int_{0}^{1}\left(A s^{2}+B s+C\right) e^{-\sigma v \Delta t s} d s=0^{-\sigma v a t}\left[-\sigma \frac{1-e^{-\sigma v \Delta t}}{(\sigma v \Delta t)^{3}}\right]
\end{align*}
$$

$$
\left.+B\left[-\frac{e^{-\sigma v \Delta t}}{\sigma v \Delta t}+\frac{1-e^{-\sigma v \Delta t}}{(\sigma v \Delta t)^{2}}\right]+e^{-g v v t}\right]
$$

We may use this general integration formala to integrate (8) after substituting (9) for $\bar{h}(\gamma-5 \delta \gamma, t-s \Delta t)$. This reduces the last term in (7) to exactiy the same form as the first part, $1 . e$. , to the sum of four simple products. Equaition (4) now has the convenient form:

$$
\begin{align*}
& n(r, \mu, t)=a_{1} n(r \pm \Delta r, \mu \pm \Delta \mu, t-\Delta t)+a_{2} n(r \pm \Delta r, \mu, t-\Delta t)+a_{3} n(r, \mu \pm \Delta \mu, t-\Delta t)+ \\
& a_{4} n(r, \mu, t-\Delta t)+a_{5} \bar{n}(r, t)+a_{6} \bar{n}(r \pm \Delta r, t)+a_{7} \bar{n}(r, t-\Delta t)+a_{8} \bar{n}(r \pm \Delta r, t-\Delta t) \tag{10}
\end{align*}
$$

For the exact value of the a_{i} see $\mathrm{Section}^{7.3}$.
There remains one further problem. Equation (10) tells us that in order to get $n(r, \mu, t)$ we must know n at $t-\Delta t$, and \bar{n} at t and $t-\Delta t$. In the problem as stated above we have n and \bar{n} at $t-\Delta t$, but we do not have \bar{n} at $t_{\text {. (}}$ i.e., we know the distribution up to time $t-\Delta t$, but we have yet to find it for t.) Finding it for t is precisely our problem. We have to make the further assumption that \bar{n} grows exponentially in time at a given radius, 1.4..

$$
\frac{\bar{n}(r, t)}{\bar{n}(r, t-\Delta t)}=e^{\gamma \Delta t}
$$

It is then easy to see that $\bar{n}(r, t)$ may be expressed in terms of known quantities as follows:

$$
\bar{n}(r, t)=\frac{[\bar{n}(r, t-\Delta t)]^{2}}{n(v, t-2 \Delta t)}
$$

In the following sections a detalled description will be given of the I. B. Y. method used in solving E quation (10).
T. 2 I. B. \mathcal{M}. PROCEDURE GENERAL GUILINE

Our problem presents itself to us in the form of given distributions $n(r, \mu, t), \bar{n}(r, t-\Delta t)$, and $\bar{n}(r, t)$, from which we have to calculate $n(r, \mu$,

$n(r, \mu, t+\Delta t)=a_{1} n(r \pm \Delta r, \mu \pm \Delta \mu, t) \pm a_{2} n\left(\ddot{r} \pm \dot{\theta}_{1}, \ddot{i}, \dot{0}\right) a_{3} n(r, \mu \pm \Delta \mu, t)+$ $a_{4} n(r, \mu, t)+a_{5} \bar{n}(r, t+\Delta t)+a_{6} \bar{n}(r \pm \Delta r, t+\Delta t) \dot{+} \cdot \dot{a}_{9}^{\dot{n}} \bar{n}(\dot{r}, t)+a_{8} \bar{n}(r \pm \Delta r, t)$ $\bar{n}(r, t+\Delta t)=\int_{-1}^{+1} n(r, \mu, t+\Delta t) d \mu$
where a_{i} are the functions of r and μ only, and the \pm signs are f ixed for each r, μ.
$A 11$ the quantities up to time t are known, but we do not have $\bar{n}(t+\Delta t)$. As stated previously, we assume that

$$
\bar{n}(t+\Delta t)=\frac{[\bar{n}(t)]^{2}}{\bar{n}(t-\Delta t)}
$$

Therefore we start out by squaring $\bar{n}(t)$, and then we divide the square by $\bar{n}(t-\Delta t)$. (The deck containing these \bar{n} 's has only one card for each r; hence, it is known as the small deck. The large deck conteins the n 's, having one card for every combination of r and μ.) After the small deck has gone through operations 1 and 2, we have all the needed $n ' s$ and $\bar{n} ' s$, and we have to miliply them by the fixed a_{i} 's. Whenever there is a problem involving a large number of maltiplications in each of which there is a factor that does not change from one cyale to the other, the masterdeck method can be used to great advantage. (This method was also used in matrix-multiplication, which is described in another chapter of this volume.)

From the equation for $n(r, \mu, t+\Delta t)$ we see that a particular $n(r, \mu, t)$ may be used for the computation of several of the $n(r, \mu, t+\Delta t), n(r \pm \Delta r$, $\mu \pm \Delta \mu, t+\Delta t)$, etc. Therefore, $n(r, \mu, t)$ is multiplied by several different a_{i}. The simplest way of handling this is to use $n(r, \mu, t)$ as a greupmitiplier for thess a_{1}. These A_{1} do not change, and the same a_{1} are $a l$ wey; multiplied by the same n's. Therefore, we make up a masterdeck in which each card has an $a_{1}\left(r^{\prime}, \mu^{\prime}\right)$ and which has the r of the n which will mitiply the a1. Then we can combine the masterdeck ($a_{1}-a_{4}$) sorting on r and μ. We put the combined deck through the multiplier, punching $a_{1} n$ on each mastercard.
 deck is then re-sorted on r^{\prime} and. μ (so.that. the eight products whose sum

is $n\left(r^{\prime}, \mu{ }^{\prime}\right)$ follom each other), and, the "Fiodug tiansumed.
It is very important to understind the diffêrercé between r, μ and r^{\prime}, μ^{\prime}. Tc every a_{1} corresponde an r and an $r^{\prime}:$ to $a_{1}(1=1 \ldots, 4)$ correspond an r^{\prime} and a μ 'also. Trat is, if $n\left(r_{0}, \mu_{0}, t+\Delta t\right)=a_{1} n\left(r_{0}-\Delta r_{1} \mu_{0}+\Delta \mu, t\right)+\ldots \ldots .+a_{8} \bar{n}\left(r_{0}-\Delta r_{1} t\right)$ then $r^{\prime}=r_{0}, \mu^{\prime}=\mu_{0}, r=r_{0}-\Delta r_{1} \mu=\mu_{0}+\Delta \mu$
Hence, during multiplication r, μ are important, while during the suming of the products $r^{\prime}: \mu$ ' becone significant.

The products are added up in the tabulator, and at the same time a new large deck is summary punched. This new deck contatns the n's on which we have to perform an integration:

$$
\bar{n}(r, t+\Delta t)=\int_{-1}^{+1} n(r, \mu, t) d \mu
$$

For any given $r, \Delta \mu$ is constant (we choose equat intervals in μ). Hence the trapezoidal rule of integration gives us a very simple formula, Usually this rule is not very accurate, but since we found that $\frac{\partial n(Y, \mu, t)}{\partial \mu}$ is a slowiy changine function of μ, we decided that the advantace of simplicity in this case outweighs the accuracy lost.

$$
\begin{aligned}
& \int_{-1}^{+1} n(r, \mu, t+\Delta t) d \mu \approx \frac{1}{2} \Delta \mu\left[n\left(r_{1}-1, t+\Delta t\right)+2 n\left(r_{1}-1+\Delta \mu, t+\Delta t\right)+\ldots \ldots . .\right. \\
& \quad+2 n(r, 1-\Delta \mu, t+\Delta t)+n(r, 1, t+\Delta t)]
\end{aligned}
$$

In our next cperation we sum $\left[n\left(Y_{1}-1, t+\Delta t\right)+2 n\left(Y_{1}-1+\Delta \mu, t+\Delta t\right)+\ldots+n\left(Y_{1} 1, t+\Delta t\right)\right]$ (For a discussion of the $(1 / 2) \Delta \mu$ term see the next section). This is performed on the tabulator, and at tio same time a new small deck is sumary punched.

Finally N, the total number of neutrons, is computed.
$N(t+\Delta t)=\int \bar{n}(r, t+\Delta t) d\left(r^{3}\right)=3 \int \bar{n}(r, t+\Delta t) r^{2} d r \approx \sum \bar{n}(r, t)\left(3 r^{2} \Delta r\right)$
($3 r^{2} \Delta r$) is independent of tine. Hence we have a fixed deck containing r and $\left(3 r^{2} \Delta r\right)$. We merge this deck with the small teck and perform a group-

This section was meant only as a brigf. outline of the method used. There are a mamber of problems that were not even toucher urod, such as how to set the probiem up, how to get $\bar{n}(t)$ and $\bar{n}(t+\Delta t)$ into the same deck, how to keep $\bar{n}(t-\Delta t)$, and how to handle the $1 / 2 \Delta \mu$ factor. These will be discussed in Section 7.3. In Section 7.4 ve will give an outline of the eight operations. In section 7.5 we will give the plugboard diagrams, and a description of the plugboards.

7. 3 PROCEDURE FOR STARTING A FROBLEM

Let us assume that an actual probiem is given. We shall still. for the sake of simplicity, restrict ourselves to the spherically symmetric case, R shall assume that σ and f are known at 2.11 points.

Our first problem is to choose the intervisls $\Delta r, \Delta \mu$, and Δt. (For the actual problem it is not necessary to know v or Δt. We can use $v \Delta t$ instead of Δt, and α / v for α.$\rangle He want to choose v \Delta t$ as large as possible In order to shorten our work. But we want it to take several cyrles for the neutron to pass through the materdal. A reasonable value for $v \Delta t$ is about $1 / 50$ the radius of the material. Next we chcose Δr. It is best to have the same Δr all through the material; but if that would require too many intervals and if there is some less important meterial near the outside, it may be better to choone a larger interval on the outside. Δr should be of the same order of magnitude as σ, but preferably sraller than σ. Once Δr is chosen we have a pood check whether $v \Delta t$ is reascnable. $\Delta \Delta t$ should be simaller than Δr. otherwise we get toc Ifthle detail. One possible choice of these intervals is to let $\Delta r=1 / 2 \sigma$ and $v \Delta t=1 / 2 \Delta r$.

Our next problem, choosing $\Delta \mu$. is more difficult, We have to make sure that $|\delta \mu| \leqslant \Delta \mu$. ($\mid \delta Y$ is alwars $\leqslant \Delta r$ resince Δr is at most $v \Delta t \leqslant r$. For large $r, \delta \mu$ will be small, but if we have too many intervals, for small

pouted the $\delta \mu$'s. (Please note that.the.vadue: of: $\delta \mu$. does not depend upon the choice of $\Delta \mu$.$) For small r we decided .t. use. gone: of the same values of \mu$ (though not all of them, to increase $\Delta \mu$). We also insisted on getting only one $\Delta \mu$ for each r. Therefore $\Delta \mu$ had to be a multiple of .25 and a factor of 2. This left us $\Delta \mu=.25, .5,1,2$, with $9.5,3,2$ values of μ respectively. When $\Delta \mu=.25$ turned out to be too small, we tried. 5 , etc. It turned out that our two inside points had to have $\Delta \mu=2$, the next one had $\Delta \mu=1$, the next one $\Delta \mu=.5$ and all the others had $\Delta \mu=.25$. There are, of course, many other ways of choosing $\Delta \mu$; but this seems as reasonable as any.

Once we have $v \Delta t, \Delta r$, and $\Delta \mu$, we can compute the a_{1}. This is a simple but laborious process.

$$
\begin{aligned}
& a_{1}=\frac{|\delta r \delta \mu|}{\Delta r \Delta \mu} e^{-\sigma v \Delta t} \\
& \mathbf{a}_{\mathbf{a}}=\frac{|\delta r|(\Delta \mu-|\delta r|)}{\Delta r \Delta \mu} e^{-\sigma v \Delta t} \\
& a_{\mathbf{s}}=\frac{(\Delta r-|\delta r|)|\delta \mu|}{\Delta r \Delta \mu} e^{-\sigma r \Delta t} \\
& \mathbf{a}_{4}=\frac{(\Delta r-|\delta r|)(\Delta \mu-|\delta \mu|)}{\Delta r \Delta \mu} e^{-\sigma v \Delta t} \\
& \mathbf{a}_{0}=\frac{1+f}{2}\left\{1-\frac{1}{\sigma v \Delta t}+\frac{e^{-\sigma v \Delta t}}{\sigma r \Delta t}-\frac{|\delta r|}{\Delta r} \frac{1}{\sigma v \Delta t}+\frac{|\delta r|}{\Delta Y}\left[\frac{2\left(1-e^{-\sigma v \Delta t}\right)}{(\sigma v \Delta t)^{2}}-\frac{e^{-\sigma v \Delta t}}{\sigma v \Delta t}\right]\right\} \\
& \mathbf{a}_{6}=\frac{1+f}{2} \frac{|\delta r|}{\Delta r}\left[\frac{1+e^{-\sigma v \Delta t}}{\sigma v \Delta t}-\frac{2\left(1-e^{-\sigma v \Delta t}\right)}{(\sigma v \Delta t)^{2}}\right] \\
& a_{7}=\frac{1+f}{2}\left\{-e^{-\sigma v \Delta t}+\frac{1-e^{-\sigma v \Delta t}}{\sigma v \Delta t}-\frac{|\delta r|}{\Delta r}\left[\frac{2\left(1-e^{-\sigma v \Delta t}\right)}{(\sigma v \Delta t)^{2}}-\frac{2 e^{-\sigma v \Delta t}}{\sigma v \Delta t}-e^{-\sigma v \Delta t}\right]\right\} \\
& \mathbf{a}_{8}=\frac{1+f}{2} \frac{|\delta r|}{\Delta r}\left[\frac{2\left(1-e^{-\sigma v \Delta t}\right)}{(\sigma v \Delta t)^{2}}-\frac{2 e^{-\sigma v \Delta t}}{\sigma v \Delta t}-e^{-\sigma v \Delta t}\right]
\end{aligned}
$$

With the aid of these formulae we can compute all the $a_{1}\left(r^{\prime}, \mu^{\prime}\right)$. Then we want to know wat r, μ equal for each $a_{i}\left(r^{\prime}, \mu \cdot\right)_{0}$
$a_{1}: r=r^{\prime} \pm \Delta r, \mu=\mu^{\prime} \pm \Delta \mu$
$a_{a}: \quad \gamma=Y^{\prime} \pm \Delta Y,-\mu=\mu^{\prime}$
as: $\gamma=\gamma_{1}^{\prime} \mu=\mu^{\prime} \pm \Delta \mu^{\prime}$
as: $r=r^{\prime}, \mu=\mu^{\prime}$
as: $Y=Y^{\prime}$

$a_{6}: Y=Y^{\prime} \pm \Delta Y$
$a_{7}: r=r^{\prime}$
ag: $\quad r=r^{\prime} * \Delta Y$

We are now ready to prepare the masterdocks. We punch i in column 1 , r in columns $2-2, \mu$ in $4, a_{1}$ in $5-11$. the problem nc. in 19. r° in 68-c9, and μ ' in 70. (To thesf decks we shall add dummy-cardy later.) It is adviable to keep several copies of the masterdecks or hard. Since we have to use a new mastordeck on every cycle, it is also useful to change the cant layout frequently. By moving the product into a new field (changing the punching on op. 4, and reading in op. 6), we can use the masterdecks several times.

In punching t, r, and μ we replaced the real values by key. We set Δt equal to 1 . We sallet the center 1 , the next point 2 , etc. Ne also replaced $\mu=-1$ by $0, \mu=-.75$ by 1 , etc, Whenever a reference is made to t, r. or μ "cr, the card", we mean the symbol, not the real value.

Next we choose two distributions: $n(r, \mu, 0)$ ard $n(r, \mu, 1)$. These can be chosen arbitrarily, because the initial distribution does not effect the asymptotic solution. However, throne h 3 wificient practice we can choose curves that will shorten our work considerably. Our own starting data was not very good from this point of view. The best we can say is that in a monotone increasing function of μ, and it is a rapidly decreasing function of r. These two sets of curves should be punched on arris according to the Layout, Then these two decks are put through operation 7 to get the corvesponcing small decks.

He also prepare a fixed dock according to the layout.
We are still left with the three problems mentioned at the end of the last section. One of them is caused by the $16 \% \Delta \mu$ factor in the formula

$$
\bar{n}=\frac{1}{2} \Delta \mu\left(n,+2 n_{2}+\ldots, n_{k}+1\right.
$$

 center where $\Delta \mu$ ctanges $)$; and to replace $a_{i}(1=5, \ldots, 8)$ by $\frac{1}{2} \Delta \mu^{\prime} a_{i}$. We then get in operation 0 :
$\frac{1}{2} \Delta \mu^{\prime} n\left(r^{\prime}, \mu^{\prime}, t+\Delta t\right)=\sum_{i=1}^{4}\left(\frac{\Delta \mu^{\prime}}{\Delta \mu}\right) x_{i}\left(\frac{1}{2} \Delta \mu n_{i}\right)+\sum_{i=5}^{g}\left(\frac{1}{2} \Delta \mu^{\prime} a_{i} j \bar{n}_{i}=\frac{1}{2} \Delta \mu^{\prime}\left[\sum_{i=1}^{4} a_{i} n_{i}+\sum_{i=5}^{8} a_{i} \bar{n}_{i}\right]\right.$
which is correct. In operation 7 we get:

$$
\bar{\eta}=\left(\frac{1}{2} \Delta \mu n_{1}\right)+2\left(\frac{1}{2} \Delta \mu n_{2}\right)+\ldots+\left(\frac{1}{2} \Delta \mu n_{K}\right)
$$

which is also correct. But we must remember that our listings show $\frac{1}{2} \Delta \mu n_{k}$ instead of n.

Next we face the problem of having to add both $a_{i} \bar{n}(t)$ and $a_{i} \bar{n}(t+\Delta t)$ terms in the same n. We found the following tc be a fruitful approach. In cycle $t-\Delta t$ we compute all the $a_{i} \bar{n}(t)$, but we save the $a_{7} \bar{n}(t)$ and $a_{8} \bar{n}(t)$ until the next cycie. In their place we use the cards saved from the last cycle. Then at cycie tre two sets of $a_{i} \bar{n}(t)$ will be available from the last cycle, the two $a_{i} \bar{n}(t+\Delta t)$ are conputed during the cycle. Thus $a_{7} \bar{n}(0)$ and $a_{8} \bar{n}(0)$ have tc be done before the problem is started. Then in cycle one we proceed normally until operation 5. In operation 5 we sort on colunn 1 to separate the a_{i} on 1 . Here we replace the decks $1=7,8$ and replace them by $a_{\eta} \bar{n}(0)$ and $a_{8} \bar{n}(0)$. The two decks removed. will be used in a similar manner in cycle 2.

It turns out that the same trick will solve the problem of keeping $\bar{n}(t-\Delta t)$. We have $\bar{n}(t)$ on the small deck. (This was computed in operation 7 of the last cycle.) What we need is $\bar{n}(t)$ of the lasi cycle. Therefore we put some dumny ay cards into the masterdecks, one for each r. These have $a_{\eta}=1$. Let us say that we are running cycle $t . \bar{n}(t+\triangle t)$ will multiply this $a_{7}=1$, and the product card (tugether with all a and $^{\text {a }}$) will be renoved and saved for the next cycle. In operation 0.0 . n card, and in operation 7 to the proper geard. "This card will be used in
cycle $t+2 \Delta t$ and will have $\bar{n}(t+\Delta t)$ opn
 from adding them up with the regular products.

A very userul trick is to change the "in which. refers to problem no.l. It is best tc change it to 9. For example, if we are running probiem 1 , repiace the a_{1} by a_{9}. This enables us to separate the masterdecks ircm the small and large decks in operation 5, and at the same time to sort the a_{i} on 1 . This also ensures that the a_{8} will not be the last a_{i} in any of the groups of eight cards; this is necessary for plugboard o to function correctly.

2.4 OUTLINE OF THE OPERATIONS

Operation 1. Purpose: to compute $\overline{n^{2}}(t)$.
Procedure: We take the snall deck and put it through the nultiplier with plugboard 1.

Operation 2. Purpose: To divide $\bar{n}^{2}(t)$ by $\bar{n}(t-\Delta t)$, i.e., to compute $\bar{n}(t+\Delta t)$ approximat $\theta l y$.

Procedure: We put the small deck through the multiplier with plugboard 2. Be sure not to use a blank leadcard. (On a blank catd $0 \div 0$ causes trouble.)

Operation 3, Purpose: To merge deck for the main multijilication.
Procedure: Sort masterdecks on column 1. Separate $a_{1} \mathbf{- a}_{4}$
fron $a_{5}-a_{8}$. Merge large deck with $a_{1}-a_{4}$ on columns 2-4 (be sure large deck precedes masterdeck.) Merge small deck with $a_{5}{ }^{-a_{8}}$ on columns 2-3. (Be sure small deck precedes masterdeck.)
Operation 4. Purpose: To compute the products.
Procedure: Put the merged decks through the multipliers, using plugboard 4, and using a leadcard with an "X" in 30.

Operation 5. Purpose: To separate haterajeceig fgom large and small decks. To replace $a_{7} \bar{n}(t+\Delta t)$ aifd $a_{8} \bar{n}\left(t t_{4} \Delta t\right)$ by $a_{7} \vec{n}(t)$ and $a_{8} \vec{n}(t)$. To sort the mastercesk for fabuetion. 2.3?,

Procedure: Sort on col $\mathcal{I}_{\hat{A}}$, dempyethe small and large decks
 cards in pockets 7 and 8 by the cards saved from the last cycle. Sort on cols. 63-70. (See the last paragraph of section 7.3.) Operation 6. Purpose: To compute $n(t+\Delta t)$. To transfer $\bar{n}(t)$. To transfer all permanent information,

Procedure: Put the masterdeciss through tabulator using plugboard 6 in the tabulator, and $6 \mathbf{S}$ in the 3 unary punch, Use 3 leadcard with $t+\Delta t$ in cols. 1-2, and ar. " X " in 40 .
aeration 7. Purpose: To compute $\bar{n}(t+\Delta t)$. To transfer $\bar{n}(t)$. To transfer all permanent irtomation.

Procedure: Put the now large deck through the tabulator using plugboard 7 in the tabulator, and $7-S$ in the summary punch. Use a minot card with an ${ }^{*} X^{m}$ in 17.

Operation 8. Purpose: To compute $N(t+\Delta t)$.
Procedure: Marge the fixed dock with the new small deck on cols. 1-2. (The fixed deck precedes the amalldeck,) pr e the merged deck through a multiplier using plugboard e. Use a lead card with an " $X^{* \prime}$ in $80 . N(t+\Delta t)$ is accumulated in the summery courter. (Be sure to blear summary counter before starting operation.
After operation $8\left(\frac{\alpha}{V}\right)$ var. be computed locally.
$N(t)$ is assumed to tend to $e^{o t} n(Y, \mu)$
$\frac{N(t+\Delta t)}{N(t)}=\frac{e^{\alpha(t+\Delta t)} n(Y, \mu)}{e^{\alpha t} n(r, \mu)}=e^{\alpha \Delta t}=e^{\left(\frac{\alpha}{\nabla}\right) v \Delta t}$
$\log \left[\frac{N(t+\Delta t}{N(t)}\right]=(V \Delta t)\left(\frac{\alpha}{v}\right) \quad \therefore \frac{\alpha}{V}=\frac{1}{V \Delta t}[\log N(t+\Delta t)-\log N(t)]$
7. 5 DEJCRIPTIGM OF THE FLUGBOA OS A END ZLUGRCAKD DIAGRAMS

X-1. The purpose of this operation $19 . t_{0}$ compute $\bar{n}^{2}(t)$ on the small deck.

$x-2$.
This blupbnard is wired og gimple avision. The dividend is taken from 21-29, the divisor from 16-20. The quotient is computed to 93 many ifgits as possible, and the answer is punched in cols. 31-30. Note: In both the foregoing plugboaris it is asmued that the first digit of \bar{n} in not grester than a 3 . If this is not the case, an extra place must be allowed on the left in the product in $X-1$, and in the dividend in $X-2$. (F igure 2)

X - 4 . We now have the 3 mall and large tecks mergat with their respective mastariecks. The quantities in $31-36$ are used as proup mulioliers. The group multipitcation is undsp the sontrol or an " x " in 30 . Colis. 5-11 in the mastmertecks, the a_{1}, are used as multiplicands. The products are punched in col.3. 12-18. (Figure 3)
$x-6$. x-5~3.

The products jave been compatod, and we now want to add up the eight terms of each $n\left(r^{\circ}, \mu^{*}, t * \Delta t\right)$. The masteriecks are gortel on ${ }^{*}$ and μ. Thus the eight terms adding into a parifoular follow each otion. We use a locdoart with an ${ }^{6 \prime \prime}$ in 40 , ant $\ddagger+\Delta t$ in $1-2$. This number is read into counter 2 B ani 13 kert there till the end of the operation. the cycle number $t+\Delta t 13$ punched on every ont by the summary gunch, and it 13 printed at the end of the listing. Or the folloning carts the products are added into counters 8A and 3B. On a change in μ (end of the B-ararg group) a total is taken In Ba and the n is onth Ifsted and summary punched. 89 computeg the total of all n. The probien no.. r, and μ have to be real fron one of the elgint carls. For thig we use difit seleotor 1 , When an 8 is pfeked up in col. 1 (1 of a_{i}), selector D is turned on. So the germanent data is read from the card following ag. (This is

-

Figure 1
Plugboard Diagrati

INTERNATIONAL BUSINESS MACHINES CORPORATION

CUSTOMER \qquad DEPT. \qquad
TITLE OF REPORT \qquad DATE \qquad

ELECTROTYPE NUMBERS OF CARDS INVOLVED:

APPROVED FOR PUBLIC RELEASE
 : = :

Fliver
Plurgoard Diagrain

INTERNATIONAL BUSINESS MACHINES CORPORATION

APPROVED FOR PUBLIC RELEASE

- : :

Figure 3
Plugboard Diagram

INTERNATIONAL BUSINESS MACHINES CORPORATION


```
APPROVED FOR PUBLIC RELEASE
```



```
    *:OMCOM
```

\ldots Numbers
---n-..--- Control
Print

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE
$\bar{n}(t)$ is taken from the fumy narie en end into countor tion when
 summary punched. An x^{m} 1s gangpanched in coly, 20 and 30 on every cari, The last remaining problex is the sumary punching of the * $x^{\prime \prime}$ in $17,2 ?$ or 29 . By reating a carlcount impulze negatively into $8 D$ ne asgure ourgelves that. $3 D$ wil have a negative sum. Ne put the aunter on Dalance conrarsion and use the sumary X opunch oontrol for summary punching. Digit selecior astivatea selector F gin a 0 ir. col. 1, and zelector Z on arl 8 . If μ equalg 0 , the ${ }^{4} X^{\prime \prime}$ is puncked in 17 . If $\mu \neq 0$, the inpulse is carried into
 It is punched in 18. The Ifsting of these " $\mathrm{X}^{* / g}$ is done 3 imilarly by the use of the total symbols. It is a good check to watoh the Ifstinga in numerina? typerars $3-3$. An in 3 should be followed by severa? CR in 4 and oy an in 5 , eto. Thme is a set of wires that is no longer necessary under our revised methow. They are, nowever, inclulet beanuge they illustrate a very interesting netion. Under our now retnod all the af are asitive, and digit sele:tors 2,3 as woil as gelecto:s l-3 should not be coneate; insteat a blug to "c" fmoulse should be connected to ${ }^{*}+^{n}$ of the connters $8 A$, ge. In one original netrat we used an extrapoiation formula in asen of nexative $\delta r, \delta \mu$. Therefore. 3 had io adbtract on about half our caris. The use of an "X" for a minis sien is very cumbarsone beca:ase of tine large numer of carda. and we felt, it safer to use a differ-nt methou, We notiaed that most of our minus slens occirred on ortain combinaticns of i and μ Thererore, $1=2,5,8$, or 9 and $\mu=2,1,3,3$ or 4 will act as a minus sign, frere are fevintignal nenative at, and therefore an " x^{*} in $39 \times 111^{\circ}$ alsto nitue the counters subtract. If none of the

20 combinations occurs, ang there ia*ne "an in 39 , the counters add.

The main purpose of this operation is to perform the trapezoidal integration on n. The coefficients of this integration are 1,2 , $2, \ldots, 2,1$. Therefore, the cards with "X" in 17, 19 are added once, the others are added twice. This is done completely under the control of the different "X"'s. Let us suppose that we have only three values of μ, so that we have three cards with "X"'s in $17,18,19$ respectively. On each card n is read into selector B. On the first card this selector is on, hence n is read into $8 A$. On the next card n is added into 8B (through selectors B, C), and into 8C, 8D (through selector D. . On the last card the n is added into counters $8 C, 8 D$ only (through selectors B, C). Now we have all the necessary n's in counter $8 \mathrm{~A}, 8 \mathrm{~B}, 8 \mathrm{C}(8 \mathrm{D})$, and they are sumued by total-cyclewtransfers. On the last card $8 A$ transiers to $8 B$, and on the first card of the next group (after the next n has been read into the counter 8A) 8B transfers to 8 C and. 8 D . Then a total is taken giving us \bar{n} in 8 C . The difficulty in this procedure cone up on taking a total. We take a totai on the iirst card of the next, group, and therefore $8 A^{\circ}$ clears at the wrong time, We avoided this by not taking a total on 8d; instead we clear it when it transfers its information. (This is done by the 6 wires from counter total exit to counter list exit.) In order to complete the last group, we must use a runout card with an " X " in 17. (Figures 6 and 7).
The $\bar{n}(t)$ is read into counter $O B$, fron which it is listed and sumary punched. For simplicity's sake the problew number is just listed and gangpunched (not sumiary punched). r and t are read into counters 2C
 selector A, which is türned on by the first μ in each group only.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

Figure 6
Wharee explanation as follows:
- Numbers
-................ Control
--Int

APPROVED FOR PUBLIC RELEASE
INTERNATIONAL BUSINESS MACHINES CCKFCRATION
ALPHABETIC ACCOUNTING MACHINE CONTKOL F'ANEL
TYPE 405 WITH NET BALANCE COUNTERS AND AUTOMATIC CAFRIACE FLUGGADLE CONTROLS

\qquad
auto mameth.cce ievers

womme, on : sTEO

Figure 7
Piagboard Diagram.

TITLE OF REPORT
NAME OF CUSTOMER

DATE
DEPT.
 TYPE 513 AUTOMATIC REPROOUCING CLNOCH PLUGBOARD
FOR SUMMARY PUNCHING -ALPHABETIC ACCOUNTING MACHINE TVNOIL甘NGヨINI

 The oroducts are adted up in the sumary oonter, lize cards are skipped out without punchirg. Use a Seatcars with an X in 80 . (This " $X^{\prime \prime}$ controls tie group multiplieqtint.) li(t Δt) is ghown in the sumary sonnter at the end of the operation, Be sure to dea* sumary countar before starting the operation. (Figare 8).

CABD- 4 Y YUUTS

LAYUE DECK	3EALAL DECK	WASTERDESK	FIXE DECK
column item	colum iters	column item	columm item
- rroblen no.	P Probim no.	$210{ }^{1} \mathrm{a}_{1}$	a Problem no.
$2-3 \quad r$	$2-3 \mathrm{r}$	$2-3$ -	$2-3 \mathrm{r}$
4μ		5-21 ${ }^{1}$	$4.93 r^{2} \Delta r$
$3-6$ t	1)-15 $\bar{n}(t-\Delta t)$	$2 \cdot-13 \text { product }$	$x 20$ eroup aultiblier
$21.25 \bar{n}(t-\Delta t)$	16-20 $\bar{n}(\mathrm{t})$	19 Prat lem no.	
3) -36 n (t)	$21-28 \bar{n}^{2}(t)$	68-6. ${ }^{\prime}$	
X 17 $\mu=-1$		${ }^{7} 0 \mu \mu$	
X i ${ }^{3} \mu \pm$	x 10 denctes amall deck	X 39 negative a_{1}	
$x \text { it } \mu=v i$	$\begin{array}{rl} \therefore 30 & 2 r a p \\ \text { multipiter } \end{array}$	$x 79$ dumm card	
x s derotes large deck			
x 3c group mult	der		

*iduder reviaed system were are no negative as.

APPROVED FOR PUBLIC RELEASE

Flene 8
Fligboard DLag:ran

INTERNATIONAL BUSINESS MACHINES CORPORATION

APPROVED FOR PUBLIC RELEASE

CHAPTER 8

MISCELLANEOUS FROBIEMS IN NUMERICAL CALCULATION
D. Flanders and F. Whitman

8.1 SOLUTION CF EQUATIONS (Flanders)

8.1-1 Introduction; Quadratic Formula

A common problem in numerical computations is: find the solution or solutions of a given equation. In certain cases this can be done by an explicit formula, but in many cases it must be done by approximation or by a succession of approximations.

An equation which can be solved explicitly is the general quadratic equation

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1}
\end{equation*}
$$

where a, b, and c are given. Its solutions are

$$
\begin{equation*}
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \tag{2}
\end{equation*}
$$

usually called the "quadratic formula". An equation such as $a x^{4}+b \dot{x}^{2}+c=0$ can be reduced to the form (1) by the substitution $Z=x^{2}$. For equations of the types

$$
\begin{gathered}
a x^{3}+b x^{2}+c x+d=0 \\
\text { and } a x^{4}+b x^{3}+c x^{2}+d x+e=0
\end{gathered}
$$

 (I)
L. E. Dickson, First Course in the Theory of Equations, New York (1922) pp. 45-54.
J. B. Rosenbach and E. A. Whitman, College Algebra, revised edition, Boston (1939) pp. 265-271.
F. R. Rider, College Algebra, New York (1940) pp. 203-208 (or almost any other book on this subject).
a method (such as Newton's method, about to be described) which is applicable to equations generally.

8.1-2 Removing Known Solutions

However, after all but two of the solutions $x_{1}, x_{2}, \ldots, x_{n}$ of

$$
\begin{equation*}
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0 \tag{3}
\end{equation*}
$$

have been found, the remaining two can be found by dividing out the factors $\left(x-x_{1}\right)$ corresponding to the known roots. For this purpose, however, it is advisable to find the "known" roots to one or two more figures than desired, to allow for rounding-off errors, etc., in the division.

The division is most conveniently done by "synthetic division"(2).

Rosenbach and Whitinan, loc. cit., pp. 229-230.
Rider, loc. cit., pp. 176-177.

For example,

$$
\begin{equation*}
1.337 x^{4}+68.927 x^{3}+1082.456 x^{2}+5115.498 x-3333.796=0 \tag{4}
\end{equation*}
$$

has the solutions $x_{1}=0.578303$ and $x_{2}=-26.8019$ (see below, section 8.1-3). Divide these out successively:

$$
\begin{gather*}
1.337+68.927+1082.456+5115.498-3333.796 \quad 1.578303 \tag{5}\\
.7732 \quad 40.307+64927.3333 .799 \tag{6}
\end{gather*}
$$

Here line (7) represents sifultaneously the quotient from the first division and the dividend for the second division. That the remainder comes out zero in lines (7) and (9), to within an amount which can be accounted for by significant figures ${ }^{(3)}$ and rounding-off errors, shows that 0.578303 and -26.8019 (3)

As discussed in Section 84-1, we have sometimes carried more figures in the computation than are, strictly speaking, significant.
are indeed solutions of (4), while the remaining two roots must by (9) be solutions of

$$
\begin{equation*}
1.337 x^{2}+33.86606 x+215.08905=0 \tag{10}
\end{equation*}
$$

and so can be found by the quadratic formula (2); they turn out to be complex numbers.

8.1-3 Nethod of Successive Interpolation

Cne method ${ }^{(4)}$ of finding the solutions of an equation - the equation need (4)

Scarborough, loc. cit., pp. 174-178.
Whittaker and Robinson, loc. cit. pp. 92-93.
not be of the type (3) - is sometimes called the "method of false position", but might more appropriately be called the method of successive interpolation. Suppose the equation to be solved is

$$
\begin{equation*}
f(x)=0^{(5)} \tag{11}
\end{equation*}
$$

(5)

An equation $g(x)=h(x)$ can be written in the form (ll) by transposition.

First one must get a rough.jdea ofe the gration of the solutions. If

nothing is known a priori, one maj qonpute:ix) (xor several values of x (for instance, $x=0, \pm 1, \pm 2$, etc.) and observe that if $f(b)$ and $f(c)$ have opposite signs then there is a solution between b and c, provided $f(x)$ is continuous in this interval. Trouble may be encountered in case there are two solutions between a pair of successive integers, but the trend of the values of $f(x)$ will generally indicate what is happenf here, and one nay graph the function or take sone non-integral values of x to separate the roots. Then, too, this method locates only real roots, but in numerical work we are usully (but not always) interested only in real numbers. With the know values $f(b)$ and $f(c)$ we may interpolate to find what value of x will give $f(x)=0$; actually, if course, this is inverse interpolation (Section $2.1-14$), but since we use linear interpolation (Equation (7)) no distinction between direct and inverse interpolation need be made, Let us denote by a_{1} the interpolated value of x. Then compute $f\left(a_{1}\right)$. If interpolation were exact, then $f\left(a_{1}\right)=0$; but since we used an approximation (linear interpolation) it can only be expected that $f\left(a_{1}\right)$ will be near zero. Then using either $f(b)$ or $f(c)$ - usually, whichever is smaller in absolute value - and $\mathbb{f}\left(a_{1}\right)$ we may perform a milar interpolation or extrapolation to get a new approximate solution, a_{2}. Then interpolating between $f\left(a_{1}\right)$ and $f\left(a_{2}\right)$ we get a_{3}, and so on. Once well started, the process converges rapidly except for functions whose graphs have sharp bends near the points in question.

The process should be continued until two successive ai have the same value to the desired accuracy.

The first approximation ay may, if desired, be obtained by graphing the calculated points (e.g. $x=0, \pm 1, \pm 2$, etc.) and reading off the value of x for $f(x)=0$, rather than by interpolation as indicated above. This method is useful wher it is suspected that the curve has a sharp bend in the vicinity. For convenience we may. $=$ mether formation in the

-

special form used here:

$$
\left.\begin{array}{l}
a_{n+1}=a_{n}+\Delta a_{n} \tag{12}\\
\Delta_{a}=-f\left(a_{n}\right)-\frac{a_{n}}{f\left(a_{n}\right)-a_{n-1}}-f\left(a_{n-1}\right)
\end{array}\right\}
$$

where, fer starting, we may denote b by a_{-1} and c by a_{o} (or vice versa).

8.1-4 Method of Iteration

A slight variation of the previous method is applicable if the given equation can be written in the form $x=f(x)$. Then once a first approximation a_{1} to the solution has been obtained, say as in Section $8.1-3$, then successive approximations can be obtained by $a_{2}=f\left(a_{1}\right)$, $a_{3}=f\left(a_{2}\right)$, etc. This process
 (6)

Scarborough, loc. cit., p. 187.

8.1-5 Newton's Method

Another method, known as Newton's method (7), applies to any equation,

$$
\begin{equation*}
f(x)=0 \tag{23}
\end{equation*}
$$

Provided that. $f^{\prime}(x)$ can be found and is not zero at or near a solution $x=r$. (7)

Scarborough, loc. cit., p. 178 ff .
Whittaker and Robinson, loc. cit., p. 84 ff .
Granville, Smith, and Longley, loc. cit., pp. 131-132.

If a_{i} is an approximation to a solution of (13), then as the next approximation we have

$$
\begin{equation*}
a_{i+1}=a_{i}-\frac{f\left(a_{i}\right)}{f^{\prime}\left(a_{i}\right)} \tag{14}
\end{equation*}
$$

or

Cnce a reasonably accurate first "Pryoxtuation "has been found for instance by the same method as in Section 8 this process generally gives quite rapid convergence. The approximate error of a_{i+1} is given (8) by
(8)

Scarborough, loc. cit., pp. 182-183.

$$
\begin{equation*}
\left.E_{i+1} \leqq \frac{\left(\Delta a_{1}\right)^{2}}{2\left|f^{\prime}\left(a_{i}\right)\right|} \quad a_{i} \leqq x \leqq f^{\wedge}(x) \right\rvert\, \tag{16}
\end{equation*}
$$

In practice, however, one simply continues naking new approximations by (14) or (15) until two successive af agree to the accuracy desired.

For example, as in section 8.1.-3, it is found that

$$
\begin{equation*}
1.337 x^{4}+68.927 x^{3}+1082.456 x^{2}+5115.498 x-3333.796=0 \tag{17}
\end{equation*}
$$ has a solution approximately equal to 0.57 . Using (15) we have

$$
\begin{aligned}
& f^{\prime}(x)=1.337 x^{4}+68.927 x^{3}+1082.456 x^{2}+5115.498 x-3333.796 \\
& f^{\prime}(x)=5.348 x^{3}+206.781 x^{2}+2164.912 x+5115.498
\end{aligned}
$$

Triaj	1	2	3
a	0.570000	0.578315	0.578303
a^{2}	0.324900	0.334448	0.334434
a^{3}	0.185193	0.1934 .16	0.193404
a^{4}	0.105560	0.111855	0.111846
$f(a)$	-53.366	0.080	0.002
$f^{\prime}(\mathrm{a})$	6418.	6438.	6438.
$\Delta a=-\frac{f(a)}{f(a)}$. 008315	-0.0412	$-\mathrm{C}_{-} \mathrm{C}_{3}$
Solution			0.578303

Similarly, - 26.8019 is fourctone a

 will necessarily be much cancellation in the computation of $f(a)$ since we wish it to be zero. Hence $1 t$ may be necessary to carry this computation to many figures, taking a as exact (i.e., an exact number used as a trial value; of course it is not the exact solution).

On the other hand, f (a) will generally not involve much cancellation and only a few figures of it are needed for Δ a; indeed, once a has been found to a few figures, f'(a) will be known closely enough and need not be recomputed. It may be remarked here that any fairly close approximation to f'(a) may be used. This will not affect the fact that successive approximations converge to tre answer, provided $f^{\prime}(a)$ is not near zero, though it may make the convergence slower.

Q.1-6 Checkirg Solutions

The test of the correctness of the solutions found is whether they satisfy the given equation.

An error in one step of either Newton's method or the method of successive irterpolations, unless it is the last trial (which should essentially agree with the previous trial), will not vitiate the firal answer but only resilt in slower convergence to that answer. A systematic error (the same mistake in each trial) may, on the other hand, lead to an incorrect result.

8.1-7 Choice of Method

While there are still other methods ${ }^{(9)}$, those outlined above are generally (9)

Scarborough, loc. cit., Chapter X.
Thittaker and Robinson, loc. cit., Chapter VI.
adequate and satisfactory.
If $f^{\prime}(x)$ can readily be fokg , and of (k) and $f^{\prime}(x)$ are not difficult to

 $f(x)$, then the method of successive interpolation (Section 8.1-3) is preferable. The method of iteration has the advantage of involving a little less calculation at each step than the other methods, which is worthwhile if there is reason to suppose that one will not lose much in rapidity of convergence.

8.2 CURVE FITIING (BY LEAS I SQUARES) (WhItman)

In fitting a curve to a set of values obtained by experimental methods, the theory of least squares is sometimes found useful. The general form of the problem of curve fitting is that severel corresponding values of two variables are measured experimentally, an appropriate equation is assumed to give the relationshif between the two variables, and then the parameters of the equation are determined.

The simplest type of equation to use is a polynomial. The degree of the polynomial can be determined by differencing the values of the depencent variable. If the second differences are fairly constant a parabola may be used for the approximating curve, if the third differences - a cubic, etc. Since some experimental error appears in each pair of measured values, one equation cannot fit all points exactly, but the method of least squares gives the optimum approximating curve ${ }^{(10)}$.
J. B. Scarborough, The Johns Hopkins Press, Numerical Nath. Analysis (1930), p. 304 ff.

The theory consists of mindmizing the error between the fitted polynomial and the points given by the experimental data by mininizing the sum of the squares of the errors at those points. Since both positive and negative errors are assumed to occur in such a way as to average out to zero, the squares of the errors must be used to fnsure an agout numerical minimum.
-0........ :-.

APPROVED FOR"PUBLIC RELEASE

The theory is intended to ming ze the açual error that occurs between " the supposed or measured value and the true value; but since this error can never be determined in practice, the "residual" is found, i.e., the difference between the measured value of the dependent variable and the value of the function found from the computed parameters and the independent variable. It can be shown that minimizing the residuals is equivalent to minimizing the true errors.

To take a general example, suppose we have n pairs of values, $\left(x_{i}, y_{j}\right)$ measured experimentally and we wish to fit a parabola to these pints. We write

$$
\begin{equation*}
y_{1}^{1}=A_{1}+A_{2} x_{1}+A_{3} x_{1}^{2} \tag{18}
\end{equation*}
$$

using the notation y^{l} to distinguish the computed values from the experimental. values of y. The problem now is to solve for the A's.

Writing y_{i} for $y_{i} 1$ in (18) and dividing the equation by y_{i}, we obtain

$$
\begin{equation*}
1=A_{1} \frac{1}{y_{i}}+A_{2} \frac{x_{i}}{y_{i}}+A_{3} \frac{x_{i}^{2}}{y_{1}} \tag{19}
\end{equation*}
$$

We then multiply Equation (19) by the coefficient of each of the A's, in turn, and sum the resulting equations, obtaining the set

$$
\left\{\begin{array}{l}
\sum \frac{1}{y_{i}}=A_{1} \sum \frac{1}{y_{i}^{2}}+A_{2} \sum \frac{x_{i}}{y_{i}{ }^{2}}+A_{3} \sum \frac{x_{i}^{2}}{y_{i}^{2}} \tag{20}\\
\sum \frac{x_{1}}{y_{i}}=A_{1} \sum \frac{x_{i}}{y_{i}^{2}} \cdot A_{2} \sum \frac{x_{i}^{2}}{y_{i}^{2}}+A_{3} \sum \frac{x_{i}^{4}}{y_{i}^{2}} \\
\sum \frac{x_{i}^{2}}{y_{i}}=A_{1} \sum \frac{x_{i}{ }^{2}}{y_{i}{ }^{2}}+A_{2} \sum \frac{x_{i}^{3}}{y_{i}{ }^{2}}+A_{3} \sum \frac{x_{i}^{4}}{y_{i}{ }^{2}}
\end{array}\right.
$$

These equations allow us to solve for the desired parameters (usually by rule of determinants), and we have thes soluffor or pur problem.

That the Equations (20) give the requed result can be shown theoretically, ${ }^{(11)}$ (11)

Hifltaker and Robinson, Blackie and Son, Ltd. (1940) - The Calculus of
Observations, p. 210-211.
and so this process does not appear in the numerical work. The theory, however, should be utilized whenever possible as a check on the numerical work. For instance, the residuals are easily computed by taking $r_{i}=y_{i} 1-y_{i}$.

Hence, $\sum \mathrm{r}_{i}$ can be computed directly. Also

$$
\left.\sum r_{1} \cong A_{1}\right\rangle-\frac{1}{y_{i}}+A_{2} \overline{>} \frac{x_{1}}{y_{i}}+A_{3} \sum \frac{x_{i}^{2}}{y_{i}}-\sum 1
$$

The separate sums on the $\begin{aligned} \\ \text { ght } \\ \text { appear }\end{aligned}$ in the existing computation, and so we have a simple creck on the correctness of the calculations. Cne should expect to find that $\sum_{i}=0$, within the desired accuracy. The A's of course, may be checked by substitution in (20).

Another, more exacting check, is performed by taking the sums

$$
v_{i}=\frac{1}{y_{i}}+\frac{x_{i}}{y_{i}}+\frac{x_{i}^{2}}{y_{i}}
$$

and also

$$
>\frac{1}{y_{i}} \sigma_{i}, \sum \frac{x_{1}}{y_{i}} \sigma_{i}, \sum \frac{x_{1}^{2}}{y_{i}} \sigma_{i}
$$

Then the following two equations form a check, since the left hand sums appear in the previous computation ${ }^{(12)}$.

Whittaker and Robinson, Blackie and Son, Ltd. (1940) - The Calculus of
Cbservations, p. 211 .

If the residuals, r_{i}, are sors for a check on gross errors. It can also be shown ${ }^{\circ}$ (13) that (13)

Whittaker and Robinson, Blackie and Son, Ltd. (1940) - The Calcuius of Observations, p. 234.

$$
\Sigma r_{1}^{2}=\sum y_{i}^{1_{2}}-A_{1} \sum y_{i}^{1} \cdot \frac{1}{y_{i}}-A_{2} \sum y_{i}^{1} \cdot \frac{x_{i}}{y_{i}}-A_{3} \sum y_{i}^{1} \cdot \frac{x_{i}^{2}}{y_{i}}
$$

It may be that a certain "weight" should be attached to eack observation so that instead of the points. $\left(x_{i}, y_{i}\right)$ we have ($\left.w_{1} x_{1}, y_{i}\right)$. The points might simply be weighted according to position ($w_{i}=\frac{1}{y_{i}}$ or $w_{i}=\frac{1}{x_{i}}$). The residuals are affected linearly according to weight. The checks should be formed using the weighted residuals, for instance, the last formula would read

$$
\begin{gathered}
\sum w_{i} r_{i}^{2}=\sum w_{i} y_{i}^{l_{2}}-A_{1} \sum y_{i}^{1} \cdot \frac{w_{i}}{y_{i}}-A_{2} \sum y_{i}^{1} \frac{w_{i} x_{i}}{y_{i}} \\
-A_{3} \sum y_{i}^{1} \frac{w_{i} x_{i}^{2}}{y_{i}} \\
\text { 8.3 HARMONIC ANALYSIS (F1Anders) }
\end{gathered}
$$

It is sometimes desirable to represent a periodic function $f(x)$ in the form

$$
\begin{gathered}
f(x)=a_{0}+a_{1} \cos x+a_{2} \cos 2 x+a_{3} \cos 3 x+\cdots+b_{1} \sin x+b_{2} \\
\sin 2 x+b_{3} \sin 3 x+\cdots
\end{gathered}
$$

This subject has been exhaustively treated in studies of Fourjer series; a good description of a practical method for finding the first few coefficients is given by Scarborough and Whittaker and Robinson (14).

Scarborough, $10 e^{\circ} \mathrm{c}^{\circ} \mathrm{t}, \mathrm{pF} \cdot 388^{\circ} \mathrm{F} 95$.
Whittaker and Robinson, loc. cit:, Chapter X, especially the insert

APPROVED FOR PUBLIC RELEASE
 8. 4 GENERAL PROCEDUR

8.4-1 Setting Up Numerical Coraputations

When a mathematical problem is to be solved numerically, there are three principal parts to the fob: " setting up" the problem, performing the calculations, and checking the results.

The setting up may be simply a matter of specifying the nunerical operations "to be performed, or it may require manipulation of the given formulas or equations to obtain a more convenient form. How detailed the specification of the operations must be depends upon the qualifications of the computer; a style suitable for computers with limited knowledge of mathematics is shown in Section 5.1-9, Chapter 5. For the sake of flexibility it is usually advisable to make the directions detailed enough to be readily intelligible to the least well-trained computer in a group. However, for some problems this is impracticable and they must be given to computers who can do the work without detailed instructions. In the process of setting up a problem, it is well to watch for things which look inconsistent (for instance, a regular procession of powers with ore exception, or a certain combination of expressions repeated several times but once slightly different) and check their correctness with the person providing the problem.

In many cases, especially in numerical integration (Section 3.1. Chaptor 3) the person who sets up a problem must also determine what values of the argument are to be substituted in formulas in order to achieve a specified accuracy in the answer or a suitable distribution of answers. In some cases an inspection of the formula will indicate the proper choice; in other cases, it is necessary to substitute a number of values of the argunent and inspect the results to see whether more are needed. Similar remarks apply to the determination of the number of significant"figes to = $=$..............

are exact. it may be pointed ont that ait oundy advisable to carry an extra figure or two so as not to have to worry about rounding-off errors.

8.4-2 Carrying Cut the Calculations

If the set up is adequate, the congutation itself should be simple though perlaps tedjous.

8.4-3 Checking the Calculetions

Checking the work is the last item but by no means the least. The set up should be checked before starting computation; presuratiy this will be dore by a person competent to judge the recessary technique so our remarks will be confined to the checking of the numerical work.

Basically there are two types of check: self-consistency of results, and comparison of two independent calculations.

Whether results are self-consistent may be deterained by seeine whether the answers (for varicus values of the argumer.t) run in smooth succession, Gross individual errors (but not. systematic errors) may thus be detected at a glance; to detect smailer errors one may take the first, second or higher differences (Section 2.1-1) of the answers and inspect their regularity. The effect on the differences of an error in one value of the function may be seen from the following table. Thus, the first variation in the differences appears on the line where the error occurred, but the greatest variation is opposite a Z with greater subscript.

If it is observed that there is an error, but it is not apparent where this error lies, one may take differences of the terms or factors which enter directly irsto the computation of Z, and of the iteras which erter into these terms or factors, and so on. If the differences oscillate in one step A and not in the items which enter into A, then presumably the error lies in the computãtion of A.

It will be ohserved, for instance, from the above table that an error of one in the last digit in Z_{6} (mich might easily arise from rounding off) will cauce an error of 6 in the list figure of $\dot{\Delta}_{4} Z_{8}$, as well as orrors of opposite sign in adjecent values of $\Delta_{4} Z$, so this much variation in $\Delta_{4} Z$ is not significant.

Even though the differences indicate no error, the comrutation should be done independently for at least one value of the argunent, to guard against systematic orrors.

In some cases the check of self-coneistency is not applicable; for inetence, if there are too fer palues of the argument the differences of the answers will not afford a sufficient test; if the values of the arement are not equally speced, it is difficult to get adequately comparable differences (15). (15)

However, something, el oge thite "Isife:cen be done by the uso of ndivided differences"; of E T That take Ens G. Robinson, The Calculus of Ohservations, p. 20, ... :............ Kobinson, The Calculus of

The other mettod of chectiṇ ${ }^{\circ}$ en using either two different complets? or tho "difierent methods; the latter alternative is in some respects theoretically more attractive, but the former is usually more practical.

In crder to obtajn really "independent" comytations by two conruters, it is best to have them work without communcating with each otrer with a third person comparjng tie results, finding the source of any discrepancies, and returnjng incorrect work to the computer for correctior. However, this from cedure may not always be practical and it may be necessary to allow the computers to conpare figures now and then to avoid further combutation with jncorrect velues. Ihjs involves some danger that one will convince the other of the correctress of an incorrect value or operation; the extent of the dariger depencs on the character of the computers.

「o minimize time spent in checking one may, in setting up a problem, specify the recording of values at internediate steps rether than only the recording of the final ariswer to a complicated computation; also, one may indicate points at which a check ghould be made beficre continuing.

A method iritermediate betueen self-consjstency and conputaifor by two independent methocis 3 s trat uged in checking step-by-step integration of differential equations (Sectjon 5.1-3, Chapter 5). Fere one computes a new value on the basis of the old ones, then substitutes the "rew value" irio a formula which should fiedd the sane "new value" over again; failure to do so indicates a mistake.

8.4-4 Cther Items

n few ocds and ends in the way of practical considerations may be mentioned.
All work sheets should be labelled so that they can be identified months Later when memory is dulled.

 job the first time instead of having to dö it"over agatr.

Then a great many values of a very complicated function must be used in computations, it is convenient to calculate chosen values of the function and to draw a graph. The values are chosen so that they are simple to compute with and also so that the curve is sufficiently well defined, e.g., a hump in the curve requires more points than would a fairly linear segment. The computed points are then plotted and the scale chosen large enough to allow the desired number of significant figures to be read from the graph. A small amount of accuracy may be sacrificed in this method, but a great mass of detailed computing is obviated.

welussife

APPROVED FOR PUBLIC RELEASE

Uúclassiffed

DOCUMENT ROOM

rec. from feC. Meyulioly
DATE .-8-30-49 UNCLASSIFIED
REC. NO. REC.-

[^0]: $\therefore: . . \because \%$

[^1]: rat ig shuckmave fronts

