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a narrow temperature spike that is optically thin, hence incapable of
producing an optical signature except in the Lyman continuum or in strong

spectral lines.
The primary piston-driven shock finafly emerges at t = 1200s. Radiation

losses have a profound effect on the propagation of this shock. First, the
radiating shock’s velocity remains nearly constant, in sharp contrast to an
adiabatic shock that accelerates rapidly as it rises. Second, the temperature
jump in the radiating shock is quhe small, T,I,OJG ~ 1.2, in contrast to an

/ ~ 2 to 10. The compression behind theadiabatic shock for which Tshock TO
nearly isothermal radiating shock is about a factor of 2 larger than in the
adiabatic shock. When the shock finally reaches small optical depth, it
cools rapidly. The emergence of the primary shock is essentially invisible in
the emitted radiation field. The reason is that shock heating not only raises
the source function S. locally, but afso raises the opacity of the gas, hence
shifts the effective radiating surface near T. = 1 [recall the Eddington–
Barbier relation (79.17)] outward into cooler gas. The two effects nearly

cancel, and an external observer never actually sees the hot shock front
until it is already too optically thin to affect the emergent radiation field

significantly; precisely the same phenomenon occurs in fireballs from
intense explosions, see (R2) and (Z3, 598–626).

A related study has been made by Kneer and Nakagawa (K9) who
compute the time development of a nonequilibrium thermal transient in
the solar chromosphere. They formulate the problem in terms of implicit
Eulerian difference equations, ignoring all velocity-field effects on the

radiation field, which is assumed to be quasi-static. They allow departures
from LTE jn a two-level hydrogen atom including the Ly a transition.
They also calculate the response of the emergent Ly a radiation field to the
thermal pulse.

106. Ionization Fronts

In $$104 and 1.05 we considered flows in which the radiation is essentially
driven by the hydrodynamics, as when radiation is created in the high-
temperature downstream gas behind a strong shock. In this and the
following section we turn to the opposite case where instead the flow

(perhaps including shocks) is driven by radiation. Specifically we examine
the physics of ionization fronts (or l-fronts), which occur when intense
radiation from a hot source (e. g., an O-star) eats its way into an ambient
cold medium (e.g., the interstellar medium). An I-front is an interface only
a few photon mean free paths thick, across which the materiaf becomes
essentially completely ionized while the temperature and pressure jump
nearly discontin uoLlsly.

An I-front can produce a wicle variety of hydrodynamic phenomena. For
example, suppose the material is so rarefied and the incident radiation field
is so strong that the photon number density is much larger than the particle

.—
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number density and recombination can be ignored. Then the J-front races

into the medium at nearly the speed of light, ionizing every atom as it goes.
Hydrodynamic motions will develop much more slowly because the speed
of sound is much smaller than the speed of light. Thus at the front the
upstream and downstream material will coexist at the same density, despite
the fact that the temperature, hence pressure, in the downstream material
is orders of magnitude larger than in the upstream material, simply because

the I-front continually outruns the hydrodynamic motions that would
otherwise be driven by the pressure difference. At the other extreme,
suppose the medium is very dense. Then the radiation penetrates into the
cold material only very slowly by diffusion, essentially in a Marshak wave
(cf. $1.03). The effect of the I-front is to build a radiatively heated pressure

reservoir, which drives a shock into the upstream material. Because the
radiation front is choked in the dense material and therefore moves slowly,
the shock will run ahead of the I-front.

~-FROiW .IUMY CONDITIONS

Let us now derive the jump conditions that apply across a steady I-front.
We will discuss only the simplest cases, with the goal of providing basic
physical orient ation, and refer the reader to more comprehensive treat-
ments in the literature for details. Thus, consider an I-front driven by

collimated radiation from a steady source incident normally on a planar
slab of pure hydrogen. Assume that the material is completely neutral

upstream and completely ionized downstream. Furthermore, for simplicity,
assume that no recombination occur in the ionized lmaterial so that
radiation from the source always arrives unattenuated at the current
position of the l-front. We can then have a steady flow, and it is convenient
to transform to the frame moving with the front, using the geometric and
sign conventions indicated in Figure 106.1. As usual, subscripts “1” and
“2” refer to upstream and downstream quantities, respectively.

The density of the material is

(J = (w+ ~~p)%, (106.1)

the gas pressure is

p=(n~+no+nc)kT, (106.2)

and the intern.af energy of the material is

pe=~kT(ftH +np+ne)+eHnD. (106.3)

Here n~ is the density of neutral hydrogen atoms, n, is the proton density,
n. is the electron density, and =1.1is the ionization potential of hydrogen.
From charge conservation we hake n, = nP.

The radiation field has a specific intensity l(IA, v)= 1,, 8(LLi- 1.), that is, it is
nonzero only for ~ = –1. The number flux of ionizing photons (photons
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Fig. 106.1 Fluid velocities near ionization front, as Imeasured in lab frame (top]
and I-front’s frame (bottom).

cm ‘2s–1) is

.
4 = j (l,,IIw) dv (106.4)

~},

where v,+ is the threshold frequency for hydrogen ionization. Because we
neglect recombination the transfer equation simplifies to

(dIJdx) = nE,aJ. (106.5)

(recall I-L= –l), which implies that

(d@/dx) = n,,tib, (106.6)

where we have defined a mean cross section

~=
[1- 1/(aJu/hv) dv d. (106.7)

~,I

Similarly, we define a mean photon energy

~=’’~=(j:~’d$l~b
(106.8)
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In the frame moving with the front, the statistical equilibrium

become

d(?LHu)/dx = –R, <+RK, = –? IF16!+

an c1

d(n#)/dx = RLK–R.l = ?@+,

equations

(106.9)

(106.10)

where we set the recombination rate R.l = O. Adding (106.9) and (106.10)
we get the equation of continuity

: [(%+ nr,)ul=: (Nu) = o, (106.11)

whence we have

Nu = (n~u)l = (npu)2 = constant (106.12a)

or

plul = pzuz = constant, (106.12b)

where we have used the assumption that n~,z = nO,l=0.
Combining (106.6) with (106.9) and (106.1.0) we find

(%IU)l = (%7.4)2=+2 (106.13a)

or

p~u, = Q,U2= rnF,@2, (106.13b)

which make the physically obvious statement that each ion izing photon
incident at the front converts one hydrogen atom to a proton-electron pair.
We have set @l= O because al I photons are absorbed in the front.

The fluid momentum ecluation in the frame of the I-front yields

plu; +p1=p2u; +p2 (106.14)

where pl = k(nFIT)l and p2= k[(~ + ne)T]2 = 2k(nPT)2. The material
energy equation in the frame of the front is

-&{u[p(e +~u’)+ p]} = n,@@. (106.15)

integrating across the discontinuity with the aid of (106.6) we find

3p2/p2)+b; ‘%h/pl)+iu?+ (~– &F[)/~H. (106.16)

Equations (106.12), (106.14), and (106.16) uniquely determine the
downstream conditions in the flow for given upstream conditions and a
specified photcn flux (Kl). However in astrophysical applications it is
usually the case that radiative relaxation times are orders of magnitude

smaller than typical flow times through the I-front. Hence, as was true for
shocks (cf. $104), we can often make the simplifying assumption that both
the upstream and downstream material remains isothermal at temperatures
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appropriate to the radiative heating and cooling mechanisms occurring in
the neutral and ionized gases, respectively. We can thus replace (1 06. 16)
by the conditions

PI/PI= kTL/wlnl,.1= af (106.17a)

and

PZIPZ= kTz/pzm~[ = a:, (106.17b)

where a denotes the isothermal sound speed. In the interstellar medium,

typical temperatures are T1 ==1.02 K in the neutral gas, where I-L,= 1, and

T2 = 104 K in the ionized gas, where W2= $ (S20), (S21), (S22). Therefore

typical sound speeds are al =0.9 km S-l and a2 = 13 km s-’.

Tvms OF l-FRONTS

Solutions for the jump conditions written above are described in a funda-
mental paper by Kahn (Kl), who developed a comprehensive classification
scheme for I-fronts, discussed their basic physical properties, and de-
lineated the conditions under which they can occur in nature. An exhaus-
tive treatment of these questions was later given by Axford (AS), who also
analyzed the structure of I-fronts in great detail.

Combining (106.1.3), (106.14), and (106.1 7) we find

p2/pl = {ut-~ u~+[(a~ + u~)2– 4aju~]1’2}/2a~. (106.18)

The restriction that p2/pl be real implies that L{, must satisfy the in-
equalities

u1>u~=a2+ (a~–a~)112=2a2, (106.19)

or

ulSu~=az– (a~–a~)1’2 =a?/2a2<< al, (106.20)

where the approximations apply when az >>a,.
When u, exceeds the critical velocity UR we have an R-type ionization

front; “R” stands for “rarefied” because such fronts occur when pl < p~ =
m~I$/LLK.For fixed ~, u~ ~ cx (more precisely u, ~ c) as p, ~ O. Fronts for
which u, = u~ and pi = p]< are called R-critical. Similarly, when UI < u,]
and pl > p~s m~~/uD we have a D-type ionization front; “D” stands for
“dense”. Fronts for which u, = UD and p, = p~ are called D-critical. Fronts
for which UD< u ~< u,< and pp.< p, < p~ are called M-type.

In an R-front u ~> u~ > a2 > a,. Hence R-fronts always advance super-
sonically into the neutral gas, and thus cannot be preceded by a hydro-
dynamic disturbance of the upstream material. D-fronts always advance
subsonically into the neutral gas, and thus can be precedecl by hydro-
dynamic disturbances (e.g., a shock or a rarefication). A steady I-front
cannot advance into the neutral gas when conditions ahead of it are
M-type.

.,.,.
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R-FRONTS
We obtain simple expressions for the density jump and downstream
velocity in R-fronts in the limiting case that U1>>u~. ‘Expanding (106.18)

and choosing the negative root we find

pJpl = 1 + (aJuJ2 = 1. (106.21)

Such fronts are called weak R-fronts because the material is only slightly
compressed as it passes through the front. Choosing the positive root we
find

p2/p, = (U1/aZ)2[l – (a2/u, )2]>>1. (106.22)

Such fronts are called strong R-fronts because the material is greatly
compressed.

The downstream velocity in a weak R-front is

u~ = Ul[l – (a2/ul)2] >>a2, (106.23)

and in a strong R-front

U2 ==a~lul <<a2. (106.24)

Thus a weak R-front moves supersonically with respect to both the neutral
and the ionized gas. In the lab frame the neutral material is at rest,
VI = u,+ q = O, hence the front moves to the left (cf. Figure 106.1) with a
speed Uf= –uJ, and the ionized gas moves Subsonically to the left with a
speed

v2=u2+v~= u2—ul=—aZ/u,. (106.25)

In contrast, a strong R-front moves supersonically with respect to the
neutral gas but only subsonically with respect to the ionized gas. Therefore
in the lab frame the ionized gas moves to the left supersonically, almost
with the speed of the I-front:

V2=–u, [l–(a2/u, )q. (106.26)

~or an R-critical front one finds

Uz= a2 (106.27)

and

p2/p,=2–*(al/aJ2 =2. (106.28)

Thus an R-critical front moves exactly sonically with respect to the ionized
gas, and produces a moderate density jump across the front. In the lab
frame the ionized gas moves to the left nearly sonically.

D-FRONTS
In contrast to an R-front, in which p2 always exceeds pl, the gas passing
through a D-front undergoes expansion. We can obtain simple expressions
for pJpT and U2 by assuming that UI <<Ul><<al. Then by choosing the
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positive root in (1.06.18) we find that in a weak D-front

P2/P, = (a?_/aa3(l+ 6) = (uJa2)(l +8)<< 1, (106.29)

where

8 = [1 – (2u La2/a;)’]’” (106.30)

increases from zero to one as Ml decreases from UD to zero. In a strong
D-front we find

pz/pI= (a;/4a;)(~, /~D)2‘;(%/~D)(UD/~2) ‘< 1, (106.31)

which is smaller than the density ratio in a weak D-front by an additional
factor of (uJuJ.

The downstream velocities in weak and strong D-fronts are, respectively,

u,/f2, =(uL/u~)/(l+ti)<< 1 (106.32)

and

u2/a2 = 2(uD/u,) >>1. (106.33)

Thus weak D-fronts move subsonically with respect to both the neutral and
ionized gas, whereas strong D-fronts move subsonically into the neutral gas

but supersonically with respect to the ionized gas. For a D-critical front
one finds

U2= az (106.34)

and

p2/pl = a?/2a~ = (uD/a2)<<1. (106.35)

Thus a D-critical front moves exactly- sonically with respect to the ionized
gas.

In the lab frame the ionized gas behind a D-front advancing into neutral
material at rest always moves to the right, subsonically for weak fronts,
nearly sonically for critical fronts, and supersonically for strong fronts.

A more detailed and complete discussion of the properties of steady
1-fronts can be found in (AS).

RELATrON TO COMt3 USTrON WAVES

Ionization fronts resemble combustion waves (L2, Chap. 14), (C20, Chap.
3, Sec. E) in many respects. In both cases the “chemical composition” of
the gas changes across a sharp interface as a result of energy input into the
gas: from exothermic chemical reactions (which burn the gas) in the case of
combustion waves, and from an external radiation source in the case of
I-fronts (which “dissociate” atoms into ions and electrons). In general
terms D-fronts resemble deflagrations (or flame fronts) and R-fronts re-
semble detonations.

A significant difference between the two theories is that, according to the
Chaprnan–.Touguet hypothesis, only weak de flagrations and strong detona-
tions are possible. In the former case the front propagates subsonically with



618 FOUNDATIONS OF RADIATION HYDRODYNAMICS

respect to both the unburnt (upstream) and burnt (downstream) gas; in the
latter it is driven by a shock that propagates supersonically into the
unburnt gas, but subsonically with respect to the combination products.
Strong deflagrations and weak detonations arc forbidden.

In contrast, for I-fronts, weak R-fronts (corresponding to weak cletona-
tions) are not only possible, but, as we will see beiow, play a central role in
the dynamics of gaseous nebulae and ablation fronts. Similarly, whereas
the D-fronts in gaseous nebulae are usually D-critical or weak-D, transient
strong D-fronts can arise.

Indeed it is strong R-fronts (analogous to strong detonations) that are
not expected to occur in nature because some additional (i.e., nonradiative)
mechanism would be required to maintain the large velocity of the com-
pressed, ionized gas behind the front. Moreover, sonic disturbances in the
hot gas behind the front can catch up with the front and can continually
weaken it. An essential reason for this difference is that the exothermic

chemical reaction that powers a detonation wave is actually driven by the
wave itself; that is, the high temperatures in the shock cause the upstream
gas to ignite spontaneously as it passes through the front, while the energy
thus released propels the shock forward. Thus the strong detonation
(supersonic upstream, subsonic downstream) is the only natural solution.
However an I-front will propagate naturally at the speed of light (a signal
speed that is independent of the hydrodynamic state of the material) until
the density, hence absorption coefficient, of the upstream material becomes
large enough to slow the radiation front to a diffusion wave. Thus the weak
R-front is a natural solution that reflects the properties of the externally
imposed energy source.

A much more penetrating analysis of the differences between combus-
tion waves and J-fronts was carried out by Axford (A8), who demonstrates
that the Chapman–.Touguet hypothesis is invalid for I-fronts.

AI31..ATION FRONTS

When intense radiation from a hot source (e.g., an O-star) penetrates into
optical] y thick cold material (e.g., an interstellar cloud) bounded by vac-
uum, an ablation front is driven into the medium, and hot ionized material
expands rapidly away from the boundary surface in a blowoff. To gain
insight we first assume planar geometry, and, following Kahn (Kl), we
consider what happens at the vacuum-cloud interface as the intensity of the
incident radiation is progressively increased from a very low to a very high
level.

when the incident photon flux is very small, conditions in the neutral gas
are of extreme D-type, hence the radiation produces a very weak D-front
which propagates only very slowly into the neutral material. The ion ized
gas expands gently into the vacuum, essentially as a mild evaporation. T’his
loss of material induces a weak rarefaction (or expansion wave) to propa-
gate at the speed of sound into the cold medium ahead of the I-front,

.
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which penetrates only subsonically. The resulting flow pattern is sketched
in Figure 106.2a.

As the photon flux is increased, the rate of ablation increases, and the
pressure in the ionized gas in the blowoff rises. Eventually the back

pressure becomes large enough to prevent any expansion of the neutral
gas, at which point conditions in the flow are D-critical, as sketched in
Figure 106.2b.

A further increase in the photon flux would raise the I-front velocity
above the D-critical limit u~, hence the conditions in the neutral gas would
become M-type, and the front could not propagate directly into the quiet
material. But at the same time the pressure in the blowoff rises above the
value necessary to just stop the backward expansion of the neutral gas, and
thus drives a shock that moves supersonically into the quiet gas ahead of
the 1-front. This shock compresses the material passing through it enough
that the postshock clensity rises to the value p~ required to permit
continued D-critical propagation of the I-front at the specified value of o.
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The resulting flow, comprising an I-front and an ablation-driven shock, is

sketched in FigLlre 106.2c.
As the photon flux is increased still further, the ionization rate becomes

larger and larger, and the I-front travels through the gas at a speed closer
and closer to that of its antecedent shock. Eventually the flux becomes
large enough that the I-front and shock have the same speed and thus
merge into a single front propagating into the quiet gas. Conditions are
then R-critical, and the flow pattern is as sketched in Figure 106.2d.

If the photon flux is made even greater, the I-front moves into the cold
material so fast that the shock can no longer keep up with it. The I-front
then propagates directly into the neutral gas as a weak R-front.

Newton’s third law of motion implies that the rapid loss of high-velocity
material in the blowoff from an ablation front will accelerate the neutral
medium in the opposite direction. Oort and Spitzer (02) have suggested
that this rocket effect can accelerate neutral interstellar clouds near O- and
B-stars to very large velocities. Thus if radiation on a cloud of mass 44
forces it to lose mass at a rate d.M/dtin material expanding into vacuum
with a velocity V at the ablation front, then the velocity u of the cloud can
be determined from

Jf4(dv/dt) = –v(dM/Lit), (106.36)

which yields the standard rocket equation

v = Vln (&O/A). (106.37)

Here WO is the initial mass of the cloud, which is assumed to be initially at
rest. The mass-fess rate is related to the photon number flux by

(d.M/dt)= –7TR2@’n,.,, (106.38)

where R characterizes the projected cross section of the cloud to the stellar
radiation. Here we have assumed that each photon ionizes an atom, and
that the ionized material all leaves in the blowoff.

To trace the time history of a cloud in detail, one must make a variety of
additional assumptions. But with reasonable, if simplified, models one can

show that there is a critical initial mass tiC~it at which clouds engulfed in the
region of ionized gas sumounding an O-star just evaporate as the cloud
rem nant reaches the edge of that region (02), (S20), (S21). Clouds with
.4f0 < AC,,, evaporate completely; clouds with tiO > MC,i( can survive and
escape from the ionized region, sometimes with large velocities.

The efficiency of the rocket effect is somewhat reduced by recombination
of ions and electrons in the blowoff. Neutral atoms formed by recombina-
tion attenuate the radiation from the external source before it reaches the
ablation front; they thus produce an insulating layer that decreases the rate
of energy deposition into the front. This decrease can be quite significant in
planar geometry (Kl), but is less serious for a uniformly irradiated spheri-
cal med iurn because the geometrical divergence of a radial blowoff leads to
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a rapid reduction of the density, hence recombination rate, in the expand-
ing material. In this case we can get rather efhcient energy deposition into

a spherical ablation front that drives a converging spherical shock into the
cold medium. The converging shock can collapse the core of the original
sphere to very high densities. In fact it is just such radiadon-driverr
implosions that are used in laser-fusion experiments to compress pellets
containing appropriate isotopes of hyctrogen to the high densities and
temperatures needed to ignite thermonuclear reactions (M2).

Similar effects occur in interstellar cloud complexes near or around
young clusters containing O- and B-stars. In particular the bright rims
sometimes observed to surround dark clouds near very hot stars may be
insulating layers formed by blowoff from the clouds. Furthermore,
radiation-driven implosion of interstellar clouds may provide an effective
mechanism of star formation (E2), (S3).

Thus suppose a single seed O-star “lights” deep inside a massive (105 to
106 MO) interstellar molecular cloud complex that has a very inhomo-
geneous structure consisting of dense condensations surrounded by a more
rarefied meclium. Radiation from the seed star will preferentially burn
through the less-dense interstices in the cloud complex, and can produce
ablation fronts around several nearby condensations in the original cloud.
Each of these fronts may implode a condensation to the point where it
becomes Jeans unstable, collapses gravitationally, and forlms a new star.
Radiation from these new stars may (hen implode still more stars, and one
can imagine the possibility of a multiplicative runaway leading to a violent
burst of star formation in the cloud.

There is, of course, a competition between the loss of material into the
blowoff and the effects of the converging shock. If the implosion proceeds
too slowly, an initial condensation will evaporate before it can collapse
gravitationally. Thus the radiatiomdriven implosion mechanisms may pro-
duce mainly high-mass stars, though recent work (K6) suggests that irradiat-
ion of a condensation by multiple driving stars may produce low-mass
stars as well.

The multiplicative star-formation mechanism described above implies a
rapid building of radiation inside the cloud comp[ex. Ultraviolet stellar
radiation wiIl continually ionize the less-dense regions between condensa-
tions in the complex. In due course, each ionization is followed by a
recombination, which results in the emission of one or more photons in
subordinate continua and in spectral lines (including Lyman Q). This
recombination radiation scatters around within the transparent ionized
interstices between condensations and steadily accumulates, as in a reser-
voir, because new ionizing photons are continually emitted by stars. The
level of this reservoir, representing the time-integrated luminous output
from all stars embedded in the cloud complex, can become quite high.
Eventually the ionizing radiation burns through at some position on the
outer boundary surtace of the (cloud complex. It is interesting to speculate
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whether one might observe an intense, nonequilibrium burst of radiation at
this instant, as the radiation reservoir stored in the cloud pours out. At a

somewhat later time one might also expect to observe an energetic
hydrodynamic flow through the site of the radiative burn-out.

RADIATION- DR1V13N EXPLOSIONS

A radiation-driven explosion is produced when a large amount of radiant
energy is released nearly instantaneously from a point source in a cold gas.
The radiation both ionizes and strongly heats the gas and can thus drive
violent hydrodynamic phenomena. Ciood examples are H 71 regions, which
are regions of ionized hydrogen in the interstellar medium surrounding O-
and B-stars, and ,jirebcdk produced by extremely strong explosions in the
Earth’s atmosphere.

The dynamics of fireballs is significantly influenced by gravity (stratifica-
tion of the ambient atmosphere) and by reflected shocks (in explosions
near the ground). As fireballs are discussed extensively in (Z3, Chap. 9)
and the references cited therein, they will not be considered further here.
Rather, we cliscuss qualitatively the dynamical behavior of an H 11 region
as it expands into the sumounding H I region (i. e., the neutral interstellar
medium) until it comes into equilibrium with its surroundings and forms a
static Stromgren sphere (S26) around the exciting star. We assume that the
H T region is initially homogeneous, and neglect gravitational forces.

Numerous studies have been made of the dynamics of H II regions.

Simple analytical considerations are summarized in (S20), (S21). A similar-
ity solution was constructed by Goldsworthy (G6), but unfortunately it is
valid only for a particular initial density distribution (p w r–3’2 in spherical
geometry and p ~ r “ in cylindrical geometry). Moreover, for a steady

photon flLIx the solution requires that the gas temperature must vanish at
the origin in spherical geometry, which is unphysical, hence one is forced to
cylindrical geometry, which is unrealistic. Thus these solutions have only
limited value. Vandervoort (VI), (V2), (V3) discussed the early phases of
evolution of H H regions using the method of characteristics. The effects of
various physical processes on the structure of H II regions in the steady-
flow approximation were analyzed by Hjellming (H5).

The most realistic models have been constructed by Mathews (M6) and
Lasker (L5) using numerical methods. We will discuss these shortly, but
first, following Mathews and O’Dell (M7), it is instructive to study the
evolution of an H 11 region by an analysis of the behavior of the gas in the
(p, V) diagram. As we saw in $56, conservation of mass and momentum
across a front imply that

p2–pl=–tit2(v2-vJ> (106.39)

where rh is the mass flux and V= l/p. This result, which applies for both
shocks and I-fronts, shows that the initial and final states of the gas must be
con netted by a straight line of negative slope in the (p, V) diagram. For the
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Fig. 106.3 Evolution of shocks and ionization fronts in an H II region, shown in
(p, V) diagram. Adapted with pemlission, from (M7) in Annual Review of As-
tronomy and Astrophysics, Vol. 7, @ 1966 by Annual Reviews, Inc.

problem under consideration, the initial and final states must lie on the
isotherms T = T1 and T= Tz which, as sketched in Figure 106.3, are
hyperbola in the (p, V) plane. Shocks are represented by straight lines

joining two points on the same isotheLm; I-fronts by straight lines with
negative slope joining points on the two isotherms.

If the initial state of the gas is represented by point O at (p,, VI] on the
H I isotherm, various types of 1-fronts with respect to this point are shown
on the H H isotherm. Thus the separation between M-type conditions and
R-fronts occurs at infinite photon flux (which implies ti = m), anti between

M-type conditions and D-fronts at zero photon ffLIx (which implies that
fi = ()). A transition via an I-front from point O to any point in the M-type

region is clearly impossible because the slope of the line joining the initial
and final states would be positive. R-critical and D-critical fronts occur
when the line from O is just tangent to the H 11 isotherm, for this is the
condition that the front propagate sonically at T = Tz.

Suppose now that an O-star begins to radiate essentially instantaneously
in a large, low-density H I cloud having (p, V) = (p,, V,). Then initially ti

is very large and a weak R-front moves rapidly [u] -800 km s–’ (M6)]
outwarcl, producing a transition such as OB in Figure 106.3. As the front
moves outward, ~, hence M, decreases owing to spatial dilution and to
absorpt ions resulting from recombination in the H II region. Eventually
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the front becomes R-critical, producing the transition OC in Figure 106.3,
and moves at the sound speed relative to the ionized gas. The pressure in
the H II region exceeds that in the H I region by two orders of magnitude,
hence it must expand, and will drive a shock into the H I region. In fact,
the transition OC can also be viewed as a strong shock (OD) in the neutral
gas followed by a D-critical ionization front (DC) relative to pohtt D.

As the I-front continues outward @ and ti decrease further and the front
moves subson ically relative to the ionized gas. The shock driven by the
excess pressure of the H H region can thus outrun the I-front, and we now
have transitions of the type OEF in which a shock in the isothermal neutral
gas is followed by a weak D-front. The shock progressively slows and the
I-front progressively weakens, passing from transitions like OGH to transi-
tions like OLT, in which the shock is very weak (0[ is nearly tangent to the
isotherm, hence the Mach number is near unity) and is followed by a very
weak D-front (tit is nearly zero). Ultimate] y, the system approaches
equilibl”iurn in the transition OK, with rit = O, and a static Stromgren sphere
is formed. Note, however, that all early type stars embedded in H II
regions have strong winds (cf. $107) that are a major source of energy and
momentum to the interstellar medium, hence the purely radiation-driven
flow discussed above ceases to provide a rea!istic description at late times
when the dynamical effects of the stellar wind dominate.

If the sequence just described is reversed, we recover the scenario
discussed earlier for ablation fronts. An important difference is that in
Kah n’s analysis (Kl) of an I-front backed by vacuum, rarefaction waves
running ahead of a D-front tend to maintain it in a D-critical condition
until ~ becomes large enough to force the front to be R-critical. Much of
the earl y analytical work on the propagation of 1-fronts in H II regions was
based on the simplifying assumption that the I-front following remained

exactly D-critical. But numerical calculations show (L5) that in reality this
approximation is not at all appropriate for H 11 regions (because the large
pressure in the ionized gas drives a strong shock, which must be followed
by a weak D-front) until the H 11 region expands nearly to its equilibrium
position and ~ ~ O.

The numerical models (M6), (L5) of H II regions employ the one-
dimensional Lagrangean hydrodynamics schemes discussed in $59. One
uses the equation of continuity to relate radii to a Lagrangean mass or
space variable as in (59.84); Euler’s equation of motion with a pseudo-
\,isco L1spresstlre and zero gravity [cf. (59.82)]; and an energy equation of

the general form
(De/Dt)+ p[D(l/P)/Dtl= %-Z (106.40)

where % and $2 are radiative gains and losses per unit mass. The
ion ization state of the material is cietermi necl by the rate equation

(Dx/Dt) = (1 ‘X)&f_I - (~/?J’lH)X2/3(~), (106.41)

where x is the ionization fraction and ~(T) is a recombination coefficient,
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while the photon flux follows from the (quasi-static) transfer equation

>: (r’+)= ~ (1 - x)tixj. (106.42)

These equations are discretized and solved using basically the techniques

described in $59. The I-front, Ilowever, reqLlires sPecial treatment.
Mathews (M6) used a special integration scheme suggested by Henyey to
handle the numerical stiffness of (106.41) as the ionization fraction ap-
proaches equilibrium. In addition he used extremely fine zones in the
I-front along with a rezoning scheme that added new zones in the upstream
gas as it entered the I-front and discarded u necessary zones in the
downstream flow. In contrast, Lasker (L5) used an algorithm that smears
the discontinuous I-front over a few zones, a method analogous to using
pseudoviscosity to smear shocks. In present-day computations it would be
preferable to handle the I-front with an adaptive-mesh technique.

“Lasker’s calculations follow the evolution of an H II region well beyond
the R-critical stage studied by Vandervoort and by Mathews. The exciting
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star is assumed to start radiating instantaneously in an infinite homo-
geneous cloud with an initial temperature TO= 100 K. The results shown in
Figures 106.4 to 106.7 apply to a model with an initial number density
NO= 6.4 cm-3. Models A to C cover the initial stages of R-front propaga-
tion; in model C the shock has just formed and is slightly separated from

the I-front. The shock compresses the neutral material as it passes over it,
and in model D a distinct shell of compressed neutral gas is evident. This
shell, which is driven outward by excess pressure in the H II region,
becomes thicker and thicker in subsequent models as the shock progres-
sively moves away from the I-front. The strength of the shock decreases in
time both because of geometrical divergence and because the pressure and
density drop in the H II region as it expands. The temperature immediately
behind the shock and the velocities of the I-front and shock as functions of
time are shown in Figures 106.6 and 106.7.

107. Radiation- Driven Winds

The main effect of radiation in the radiation-driven flows we have consi-
dered so far is to provide an energy input to the gas, which heats it, hence
raises its pressure, and thus drives a flow, perhaps explosively. We now

—.—
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consider an example of a flow driven by radiative momentum input to the
gas, that is, a flow that results from the work done by the radiation force on
the material, even in the absence of net energy exchange between the gas
and the radiation field.

In recent years a variety of observations from spacecraft and ground-
based observatories have shown that hot, luminous, early type stars have

massive stellar winds. Analyses of line profiles and infrared emission (A4),
(AS), (Gl), (Ll) imply mass-loss rates.& of order 10-’ to 10-5M0 /year for
O-stars, and perhaps up to 10-4.M0 /year for Wolf–Rayet stars; recall from

!61 that the mass-loss rate in the solar wind is only 10-’4& /year. The
observations indicate transonic winds, with flow velocities that rise from
near zero in the stellar photosphere to highly supersonic values within one

stellar radius from the surface. ‘For O-stars the observed terminal velocities
vm are typically about three times the escape velocity v..,-, which is about
1000 to 1500 km s-l for a main-sequence O-star and 600 to 900 km S-l for
an O-supergiant (Al), (Gl). The sound velocity in the atmospheres of
these stars is about 25 km S-l.

Lucy and Solomon (L1O) recognized that these flows cannot be ex-
plained by the thermal wind model described in $61 because if the specific
enthalpy at the critical point is to provide the observed terminal kinetic
energy flux, then the critical-point temperature would have to be T. –
3X107K for o.= 3000 km s-’. This high value is excluded because lines
from ions that would be destroyed by collisional ionization at temperatures
greater than about 3 x‘105 K are present throughout most of the flow.
(However, soft X rays are also observed from O-stars, hence there must be
at least some material at coronal temperatures embedded in the flow;
nevertheless the bulk of the flow is too cool to be a thermal wind.)

The most natural way to explain the flow is that it is driven by
momentum input to the gas from the intense radiation fields of these
extremely luminous stars, in particular by the radiation force exerted on
strong spectrum lines. We emphasize that, as in $61, our goal here is to
elucidate some of the underlying physics of radiation-driven winds, not to
develop realistic models of the winds of particular stars.

THE EDD lNCrTON-LJMIT LUMINOSITY

Radiative momentum input to the gas results when photons are absorbed
from the anisotropic (indeed almost purely radially streaming at large
distances from the star) stellar radiation field, and then scattered isotropi-
tally. The absorbed photons deposit all their outward-directed momentum
into the material, but because the scattering process is isotroPic, the
reemitted photons produce no net change in the momentum of the material,
which therefore experiences a net gain of outward momentum. The ions
scattering the radiation are thus accelerated radially and they drag along
the rest of the plasma through momentum exchange in Coulomb collisions.
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Therefore the outward acceleration of the gas

J
gR= m/yVFvdV/pC,

o

629

is

(107.1)

where X. is the total extinction from all sources (continua, electron
scattering, and lines) and FV is the radiation flux. Note that a photon is not
destroyed when it is scattered, but is merely redshifted by at most Av =
vOv_/c; because A-v/vO<<l, each photon can in principle be scattered many
times before it is extinguished.

The outward radiative acceleration g~ is to be compared with the inward

acceleration of gravity, g = G.4t/r2; if g is everywhere greater than g~ then
the atmosphere remains in hydrostatic equilibrium and does not expand.
For convenience define the force ratio

r = gR/g. (107.2)

In O-stars the continuous opacity is dominated by electron scattering in
those spectral regions where most of the flux emerges. We therefore obtain
a reasonable lower bound for r if we assume that the opacity is pure
Thomson scattering, namely

I-e = seL14rrcGJl(, (107.3)

where s. = rt.cr./p is the electron scattering coefficient per gram.

Consider now a spherically symmetric steady flow from a star.
Parametrizing the radiation force as in (107.2), we write the momentum
equation (96.2) as

pv(dddr) = –(dp/dr) – G.41(1-r)p/r. (107.4)

The pressure can be expressed as p = azp, where a is the isothermal sound

speed, assumed to be, in general, a function of r. [For brevity we drop the
subscript “ T“ used in (51.26); no confusion should result because we will
not be referring to the adiabatic sound speed in this section.] From the
equation of state and the continuity equation we find

p-’(dp/dr) = (da’/dr) – (2a2/r) – (a2/v)(dv/dr), (107.5)

whence we can rewrite (107.4) as

[1 - (a2/v2)]v(dv/dr) = (2a2/r)-(da2/dr)- GM(1 -r)/r’. (107.6)

We now ask under what conditions one can have a continuous transonic
flow under the combined action of gravity and radiation (M3). For simplic-
ity, assume the envelope is isothermal and drop (da2/dr). It is then evident
that to obtain a smooth transition from subsonic flow at small r to
supersonic flow at large r, the right-hand side of (107.6) must (1) vanish at
the sonic radius r, where v(r,) = v, = a; (2) be negative for r < r,; and (3) be

positive for r > r,. The condition for r <r, can be met only if ~ <1 in that
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region; that is, in the subsonic flow region the radiation force must be less
than that of gravity if a steady flow is to accelerate outward. In contrast, in
the supersonic flow region (r> r,) r may become arbitrarily large; indeed
the larger it is, the greater is the momentum input to the gas, and the larger
(dddr), hence u, will be.

If r is greater than unity everywhere in a stellar envelope, steady
transonic flow is impossible; one must have either an initially subsonic
flow that decelerates outward, an initially supersonic flow that accelerates

outward, or (most Iikely) a time-dependent flow. As Eddington pointed
out, if re (which always underestimates the radiation force because x. a
n.cr. ) rises to unity at some point in the envelope, one can expect r 21
throughout the remainder of the stellar interior because both the radiation
flux and the force of gravity scale as r-z. In this event the material is
unbound gravitationally, so the star becomes unstable, and can freely
expand homologously on a short time scale. The critical luminosity

L~ = 47-c GM/s. (107.7)

is called the Eddington - limit luminosity. Objects of radius R having L 1} L~
can be expected to be blown apart by radiation pressure on a dynamical
time scale of order

tL– (47TcR3/seL)’”. (107.s)

Numerically (107 .3) gives 1’<=2.5 x 10-5(L/Lo )(J%~/.,ti); for an 0-star

L=lOGLO and A =60MC , hence ~e = 0.4. Thus the radiation force frolm
continuum opacity alone does not exceed gravity, which implies (1) that
normal O-stars are stable against radiative disruption, and (2) that the
continuum radiation force can not drive a transonic wind by itself. We
must therefore look to spectral lines to provide the required force.

THE R~\DIA-HON FORCE ON SPECTRAL LINES

In order to focus on the momentum (as opposed to energy) transfer from
radiation to the material, we assume pure conservative scattering lines. At
great optical depth where the diffusion approximation is valid, F. cxxZ’,
hence in this regime the product xvFu in (1 07.1) is independent of the
value of xv, and lines are no more effective than the continuum in
delivering momentum to the gas. “rherefore at depth r remains essentially
equal to r.. However in optically thin material the situation is quite

different. Near the surface of a star FUcan rise far above its diffusion-limit
value because intense radiation emerges from the material below, and none

is incident frolm above.

To estimate the maximum force that can result from a single line, assume
that some optically thin material is irradiated from below with unat-
tenuated continuum radiation, that is, Fu= FC= mB,,(TcfJ. Then an upper
limit to the acceleration of the gas produced by a single line of an atom of
chemical species k, in excitation state i of ionization state j, is

g:= (m2e2/mc2)fB. (Te~)(n~ik/Nlk)(Nik/Nk)(ak/X}~~~I)> (107.9)



RADIATING FLOWS 631

where }tii~ is the population of the particular level, Njk is the total number

of ions in all excitation states of ionization stage j, N~ is the total number
density in all ionization stages of species k, ci~ is the abundance of species k
relative to hydrogen, and X is the mass fraction of the stellar material that
is hydrogen. For example, Lucy and Solomon (L1O) considered the C IV
resonance line at A1548 ~; adopting an oscillator strength f = 0.2, Te~ =
25,000 K (to maximize B.), ac = 3 x 10-4, X= 1, and (n,,C/Nit) = I they
found

10g (gg)L1,4g= 5.47 +1og (Nit/Nc) (107.10)

For an O-supergiant log g =3; hence in the outer layers of such a star the
upper limit for the radiation force from even this one line exceeds the force
of gravity by a factor of 300!

The estimate just derived is (purposely) a gross upper limit because ions
in the under] ying stel Jar photosphere produce a dark absorption line in

which F.<< FC.To account for this effect, Lucy and Solomon solved the line
transfer equation in detail and found that above a certain level in the
atmosphere the radiation force given by (107,1) for the C IV line above
still exceeded gravity. Similar results are also obtained from model atn~os-
phere calculations for early type stars, where the radiation force from a
realistic line spectrum is often found to exceed gravity at the surface of the
model. Thus for O-stars the radiation force obtained when the atmosphere
is assumed to be static is incompatible with that assumption; hence
hydrostatic equilibrium in the outermost layers is not possible, and an

outflow of material must inevitably occur.
To understand how the ffow develops, consider the following scenario.

Once the gas in the uppermost layer begins to move outward, its spectrum

lines will be Doppler shifted away from their rest wavelengths and will

therefore begin to intercept the intense photospheric flux in the adjacent
continuum, which enhances the momentum input to the material, hence
increases its outward acceleration. The underlying layers must expand to
fill the ramfaction left by the Outwrard motion of the upper layers. Further-
more, the absorption lines in these lower layers begin to desaturate

because the lines in overlying layers have been Doppler shifted, hence the
underlying layers also begin to experience a radiative force that exceeds
gravity, and behave, in turn, in the manner just described. Clearly a ffow
can be initiated by this mechanism; we now must inquire whether (1) the
rate of mass loss so produced is significant, and (2) the variation of the
radiation force with depth will be consistent with the requirements for
transonic flow.

Jn connection with the latter point, one should note that the radiation
force on the continuum plus lines has precisely the right behavior to
produce a transonic wind. That is, r is less than unity in the cliffusion
regime inside the star, approaches unity in the atmosphere as some lines
begin to desaturate a]ld the gas begins to flow, and reaches very large

. . .. . ,.,.



632 FOUNDATIONS OF RADIATION HYDRODyNAN.flC$j

values in the supersonic flow region where the Iines are sufficiently dis-

placed from their rest frequencies to absorb con tin Llum radiation from the
underlying photosphere. Moreover, we will shortly see that to a good
approximation the radiation force on lines varies as a power of the velocity
gradient in the ffow; this dependence allows the force and the flow it drives
to accommodate to one another, so that a steady transonic flow can be
attained.

The first attempt to obtain quantitative results was made by LLICy and
Solomon, who evaluated (107. 1) numerically for scattering Iines formed in
an expanding envelope above a hydrostatic photosphere. In solving the
transfer equation, re-emissions can be ignored because they contribute
nothing to the net force exerted by radiation on the material. Therefore,
the incident photospheric intensity is simply attenuated exponentially as it
scatters in a line, hence lV(~V) = 1.(0) exp (–7Jw), where 7,,, is the optical
depth, at lab-frame frequency v, from the base of the envelope to the test
point, allowing for Doppler shifting of the line profile along the path. Then

I

SRI = (2dcPl xj 4-Lj Ciq,(v) [.(o) &l.e-”* (107.11)
10 0

where the sum extends over all lines considered.
Lucy and Solomon coupled (107. 11) to the equations of steady flow to

construct radiatively driven wind modeJs for O- and B-stars. They assumed
planar geometry (adequate for the flow inside the sonic point), isothermal
material, a simple nebular photoionization-recombination ionization
equilibrium, and that the radiation force results from absorption in the
resonance lines of a few abundant ions. The solution was obtained by an
iteration procedure that yields the mass flux as an eigenvalue. A large
number of models were constructed for a wide range of stellar parameters.
These models successfully produced transonic flows having reasonable

terminal velocities, V-- 3000 kms- 1, but the computed mass-loss rates
were only 10–8W0 /year or less, which is two orders of magnitude smaJler
than the observed values.

The source of this discrepancy was identified by Castor, Abbott, and
Klein (Cll) who pointed out that hundreds of lines in the spectrum make
important contributions to the total radiation force, so that Lucy and
Solomon’s estimate, based on only a few lines, is roughly a hundredfold too
small (C12). As it would be hopeless to calculate the aggregate radiation
force from hundreds of lines by a direct numerical solution of the transfer
equation, recourse must be had to an approximate analytical method. The
essential point is to account for saturation in the lines, so that the correct
transition is made between the optically thick and thin limits. This problem
was solved in detail by Castor (C9); here we make only a simple heuristic
argument to recover the main result.

We assume that the incident photospheric radiation field on the lines is
essentially radial, and approximate the momentum absorbed, per unit
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mass, by a line of opacity XL and width Av~ from the unattenuated
continuum flux Fc as gR,L(0) = XLAv~FJcp. We ignore re-emissions, as
before; then the incident flux is attenuated as e-”l where, as in (107.1 1), T,
is the line optical depth in a layer, allowing for Doppler shifts. The average
rate of momentum input to a layer of optical depth 71 is then

(107.12)

01

(gR,l) = (XlA%FJCP)(l – e-”’)/7[. (1.07.13)

In their work Castor, Abbott, and Kfein approximate ~~’ (1 – e-’) by
min (1, ~~ 1,. In the optically thin limit, (107.13) reduces to

(gR,l)thin = XLAvDFc/cP, (107.1.4)

so that, as in (107.9), the force on a line is proportional to its opacity,
hence strong lines are more important than weak lines. In the optically
thick limit (1 07.13) reduces to

(gR,l )thick= XLAYCJF./CP~L, (107.15)

which shows that the force on a line is independent of its strength (because
~[ scales as XL), hence all lines are of equaf importance, as expected in the
diffusion ]imit.

We must now specify the effective optical thickness of the envelope. For
a static medium

~

.
~L= XLdr, (1.07.16)

R

hence ~~ is determined by the strength of the line and the amount of
material in the line-forming layers.

For an expanding medium the situation is quite different. Here photons
emitted at one position are always reclshiftecl when they arrive at some
other positi& in the flow by an amount proportional to the average
velocity gradient times the distance between the two positions. Therefore
photons emitted at line center at some point can interact with the material
only within a localized resonance region; beyond this region they fall too
far in the wing of the line profile of the material at the remote position to
be absorbed effectively, hence they escape without further interactions.
Line transport in such a flow regime is described by Sobolev theory (S14),
(S15), (C8). We cannot discuss this theory in detail here, but from mere
dimensional considerations one can see that for an idealized square-topped
line profile of width AU= vOv,Jc (where ~,b is the thermal speed of the
absorbing atoms), the characteristic distance with in which radiative inter-
actions can occur must be of order 1— vtJIVu 1. Hence for radially stream-
ing radiation in an expanding medium we can take

~1= XLvJ(dv/dr). (107.17)
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The important difference between (107.16) and (107.17) is that a large
velocity gradient serves to reduce ~[ from its static value, hence to
desaturate the line, and thus to increase the radiation force on that line,
perhaps by orders of magnitude.

In estimating the total radiation force from an ensemble of lines, we will
use (107.1 7) throughout the entire wind, even though it becomes invalid in
the nearly hydrostatic photosphere (because the line radiation force is
unimportant there anyway). It is convenient to use a depth variable that is
independent of line strength, so we define & = n.oJxL and introduce an
equivalent electron optical depth scale

The total radiation force is obtained by summing (107.13) over all lines,
which gives

g~,t = (sJ7c)M(L) = (seL/477cr2)M(/) (107.19)

where

(107.20)

is the line force multiplier. The calculation of the radiation force is thus
reduced to the evaluation of M(t) which, for a specified temperature and
density and a given set of lines, is a function of only the one parameter J.
The local excitation and ionization equilibrium enters through the parame-
ter /3~.

It is important to note that (107.20) has only limited accuracy because
two important approximations have been made in deriving it. (1) We
assumed radially streaming radiation, and ignored the angular integration
over the finite solid angle subtended by the stellar photosphere. The effect
of this omission is to overestimate the radiation force close to the photo-
sphere. (2) We assumed that each photon is scattered only once in one
resonance region, and ignored the possibility of multiple scattering in

several (perhaps overlapping) lines. The effect of this omission is to
underestimate the total amount of momentum that a photon can deposit in
the gas in the high flow-velocity region. We return to these issues later.

LINE- DRIVEN WIN DS

A comprehensive and internally consistent analytical theory for line-driven
winds was first developed by Castor, Abbott, and Klein (Cll), which, for
brevity, we call the CAK theory. They assumed that the flow7 is steady and
spherically symmetric, that the gas is a single fluid, and that conduction and
viscosity can be neglected; these assumptions are justified in detail in
(C12). The flow is calculated for a given temperature distribution T(r),
which ultimately is determined in an iteration procedure by imposing



RADIAHNG FLOWS 635

radiative equilibrium. The latter assumption is reasonable because the
thermal relaxation time of the gas is much shorter than a characteristic flow
time, but may lead to an unrealistic temperature distribution (e. g., if the
flow is unstable and disintegrates into shocks) and to an unrealistic pre-
dicted spectrum. But we emphasize that the temperature distribution can
have essentially no influence on the gross dynamics of the wind unless
temperatures rise to order 107 K, and/or there are extreme temperature
gradients. Gas pressure, hence temperature, is important only in the
subsonic flow regime, which is also the part of the flow where radiative
equilibrium is most likely to be a good approximation; it is inconsequential
in the supersonic flow regime.

Castor, Abbott, and Klein evaluated the line force multiplier M(l) for
the spectrum of the representative ion C-r--, and assuming that those results
were typical they scaled them to account for the total abundance of C, N,
and O. The occupation numbers were computed from LTE. Their results
are well fitted by the formula

M(;) = kk-” (107.21)

with k = ~ and a = 0.7. An exhaustive analysis (A3j based on a complete
line list for all relevant ions of the elements H to Zn yields a more accurate
expression valid for 104 K < “~efis 5 x 104 K, namely,

M(i) = 0.28(N, ,)009;-0’6. (107.22)

Here Nll =(nJW)X 10-” and W is the dilution factor of the radiation
field [the fraction of 4rr steradians subtended by photospheric radiat ion, cf.

(M1O, 120)]. Substituting (107.21) and (107.18) into (107.19] we have

~R=(*)(&$)m”:(’2”2)” ‘10723)
The second equality follows from the equation of continuity, and the

constant is

C = (s.Lk/4mc)(4m/s. u,,&)m. (107.24)

Using (107.23) for the line radiation force we can rewrite the equation of
motion (1 07.6) as

~_< ~*=20.’

()

_da2 G4Z(l-~.) C

dr – r’ ()
+= rzv~ ‘“. (107.25)

V2 dr r r

Unlike (61 .13) for thermal winds, (107.25) is nonlinear in (do/dr); as a
result it has quite different mathematical properties. In particular, notice
that the sonic point (u = a) is not the critical point of (107.25) because
when the left-hand side vanishes, the right-hand sicle can be made to
vanish as well with a suitable choice of (dv/dr), which need not (1) vanish,
or (2] become intinite, or (3) be discontinuous. This difference from
thermal wind theory results from our use of a force law that has an explicit



636 FOUNDATIONS OF RADIATION HYDRODYNAMICS

dependence on (dv/dr). Had we used some generic g~,, (perhaps obtained
from a numerical line transfer computation) which depends explicitly on r
but only implicitly on (dv/dr), we would again conclude that the sonic point
r$ is the criticaf point. The solution would then proceed as in thermal wind

theory, but at the cost, as we shortly see, of losing important physical
insight (and possibly of poor numerical convergence as well).

Equation (107.25) is equivalent to

F(U> w, w’)= [1.–~(a’/w)]w’– h(u)– C(w’)a = o, (107.26]

L 2 u =–l/r, w’=(dw/du), andwhere w = ~v ,

h(U) =–G.A(l –~.)–2(a2/u)– (da2/du). (107.27)

The differential equation (107.26) has a singular point at which solutions
terminate, have cusps, or show other discontinuities; it is defined by the
condition

m(u> w, w’)/dw’ = I–;(a’lw)–ac(w’) ”-’ = o. (107.28)

One may eliminate w’ between (107.26) and (107.28), and for a given
value of C thus determine the locus of singular points w (u, C). To guaran-
tee that the solution passes smoothly through the singular point we demand
that w’ be continuous there; this requirement can be met only if the
solution is tangent to the singular locus at its point of contact, which is
guaranteed by imposing the regularity condition

(dF/du)C = [(d~/&4) + w’(d~/dw)]c = O. (107.29)

Equations (1 07.26), (107.28), and (107.29) uniquely determine the critical

point u. (or r,-) for a given C, or, conversely, C for a specified r..
A detailed analysis (Cll), (~) of the behavior of (107.26) and (107.27)

shows that the (u, w) plane is divided into five regions, in each of which

there are zero (regions IV and V), one (regions I and 111), or two (region
H) mathematically valid solutions. An example is shown in Figure 107.1
for a case with v.,== 4.9a and r~,t = g~,t/g = 0.76( w’)”2; the photospheric
radius is denoted as R. We see that there is a unique transonic solution in
which the subcritical and superc.ritical branches join smoothly at tangency
with the 10CL1Sof singular points.

Figure 107.1 shows that a line-driven wind is already supersonic at the
critical point. It thus appears that the critical point is located beyond the
position in the flow where information can still be propagated upstream,
and it is not obvious how conditions at r. are able to determine conditions
in the entire flow. We must therefore examine the physical significance of

the critical point carefully. Abbott (A2) developed a physical interpretation
of the critical point by examining the beha~ior of small-amplitude distur-
bances of the flow in its vicinity. Thus consider a time-dependent planar
flow with velocity u (z’) and radiation force f~(z’, v, dv/dz’) directed along
the z’ axis. For simplicity ignore stratification effects. In the neighborhood
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Fig. 107.1 Topology of racfiatively driven wind solutions, showing singular 10CUS,
critical point, and regions with ZeI-O,one, or two mathelnatically valid solutions.
From (A2), by permission.

of some point z: make a Galilean transformation to a frame moving with a
uniform velocity VO= o(z&), so that z = z’ – vOf. Write the perturbed veloc-
ity as u ==U.+ VI. Then the linearized continuity equation is

(@,/EM) + pJdq/dz) = 0, (107.30)

and the vertical component of the momentum equation is

where we assumed fL= f~(./) = fl [P–l (dv/dz)l, and f j denotes the derivative
of fl with respect to (du, /dz ). We restrict attention to vertically propagat -
ing disturbances; Abbott analyzes obliquely propagating disturbances as
well.

Using the isothermal equation of state to eliminate the pressure pertur-
bation p, = a.’p,, we can combine (107.30) and (107.31) into

((Y7J,/M~)- (a2(t?v1/dz’)-fi(d’v, /dt dz) = o. (107.32)

Equation (1 07.32) is a wave equation that can be recast as

(thJ,/f3p dq) = o (107.33)

by transfornling from (z, t) tO new coordinates p ~ z + C_t and q ~ z – C+t,

where

c-= ;f; + [(*fi)z + a2]L’2 (107.34a)

and

C+= ‘+f’~+ [(YJ2+ a2]”2. (107.34b)
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The solution of (107.33) is composed of the two traveling waves

I), (Z, t)= V,(Z + c_t)+ V2(Z – C+t), (107.35)

where V, and V2 are arbitrary functions of their arguments. In the CAK
model it follows from (107.1 8), (107.21), and the planar version of
(107.28) that near the critical point fl/a - v/a>> 1, hence C_ =fl >>a, and

C+.= a (a/H)<< a. Thus we have a slow radiation-modified acoustic wave
traveling outward and a fast radiation-modified acoustic wave traveling
inward. This result applies only to long wavelength disturbances, for which

the CAK force law cou]d be valid (06).
Abbott showed (Al) that the full nonlinear continuity and momentum

equations for a line-driven wind have characteristics in the (r, t) plane given
by

(dr/dt) = (v -+fj) * [(+fi)’+ a’]’”. (107.36)

These characteristics define the speed at which a disturbance will propagate
in the flow. Transforming (107.35) back to the rest frame we have

I),(Z’, t)= Vl[z’ –(vo– C-)t]+ V2[Z’–(VO+ C+)t], (107.37)

which represents disturbances propagating outward with speeds VO+ C+

and VO– C.; from (107.34) we see that these speeds are in exact agreement
with (107.36).

Now at the critical point, the CAK singularity condition (107.28) implies
[1 - (a’/v~)]vC = H. When this relation is substituted into (107.36) we find
that the velocity of the radiation-modified acoustic waves as seen by an
observer in the rest frame is

v+= +(vC5=Vc)[l + (a2/v~)], (107.38)

01

v+= IJc[l+ (a2/vj)] (107.39a)

and

v_=o. (~07.39b)

Thus for the adopted force law the flow speed at the critical point of a
Iine-driven wind just equals the inward propagation speed of small distur-
bances, hence beyond this point information can no longer propagate
upstream in the flow. Therefore, as is true for thermal winds, the critical
point is, in fact, the point farthest downstream that can still communicate
with all other points on a streamline. The main difference between the two

theories is the characteristic signal speed: in the absence of radiation the
signal and sound speeds are the same, hence the sonic and critical points
coincide, whereas in a radiating fluid they differ, hence the sonic and
critical points are distinct. These conclusions depend sensitively, however,
on the force law adopted, and may not be valid in general (06).
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MOMENIWM TRANSPORT 1.NTHE WIIND

A line-driven wind deposits momentum (originally photon momentum) in
the interstellar medium at a rate fivm. If we assume that every photon
emitted by the star scatters exactly once in the wind, then an upper bound
on the mass-loss rate is

A < L/vmc = 7 x lo-’2(L/Lo )(3000/vm) (107.40)

where M is measured in .440 /year and rJmin km s–’. For a typical o-star

L ~ 106L0 and v~=3000 km !s-’, hence & = 7 x 10-6J40 /year, which is, in
fact, a typical observed value. The parameter

provides a measure of the efficiency with which matter is radiatively
ejected in a wi ncl; for single scattering of all photons s cannot exceed
unity.

A more complete picture of the momentum distribution in a wind
emerges from integrating the momentum equation (1 07.4) over all mass in
the envelope (A2). For a general force law f~(r, v, dv/dr) we obtain

(107.42)

The first integral in (107.42) is simply fiv~. To evaluate the second integral
we argue that inside the sonic radius the gas is very nearly in hydrostatic
equilibrium, in which case the integrand vanishes, whereas outside the

sonic radius the gas pressure gradient is negligible compared to gravity
because the line force dominates. Using (107 .3) we can then approximate
the second integral as

[L(I -reymel
J“

~euedr = L(l–r. )7e/cre, (107.43)
r,

where ~. is the electron-scattering optical depth exterior to the sonic point.
Finally, using (107.18) and (107.19), we can write the third integral in
(107.42) as /3L/c where

(
B = vii?’ ‘“M(/)/ dv (107.44)

o

is essentially the line optical depth of the envelope, and equals the
equivalent number of strong lines a photon encounters as it traverses the
wind. For a single-scattering model, ~ ~ 1..

Thus momentum conservation in the wind implies that

AtI=+ [7. (I –re)/rel(L/~) = ,BL/C, (107.45)

which shows that the momentum transferred from photons to the gas goes
partly into the momentum lost in the wind and partly into supporting the

. .
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extended envelope against gravity. One sees that the parameter s defined
in (1.07.41) underestimates the total photon momentum consumed in
driving a wind of a given ~vm because it omits the momentum transfer rate
required to support the envelope.

msu”~~S HIO~ CAK THEollY

For the CAK radiation-force law, explicit analytical expressions can be
obtained for the mass-loss rate, the velocity law, and the critical radius
(Cll). Assuming that vc~C>>a and taking the radius at which the velocity
vanishes to be approximately the sonic radius r, (which in turn is nearly the

same as the photospheric radius F?) one finds

(107.46)

2GJzl(l-re)a 1 1
v==

()(1-a) r, r ‘
(107.47)

and

rJr, = 1 +{–~n +[&2+4-2n(n+ 1)]] ’2}-1. (107.48)

Equation (107.48] is based on the assumption that a2 w T ~ r–n; likely
values for n lie between O (isothermal) and ~ (radiative equilibrium), hence
1.5s (rC/r, ]s 1.74. From (107.47) we have

vm/ve,c = [a/(l– Cl)]”z; (107.49)

thus for 0.5 sa sO.7, CAK theory predicts 1 =vJv.SC= 1.5.
For the CAK model one can also evaluate ~. in (107.45) analytically

(Al), obtaining
~. = [(I – ~)re/a(l –re)](&,c/L). (107.50)

Hence a momentum transfer rate (1 – cY)fivJa is needed just to support
the envelope in the CAK model. Combining (107.50) and (107.45) we find

(Jk&AK = C!p(L/c), (107.51)

or sc~~ = c@; inasmuch as 0.5s as 0.7 and /3s 1 for single scattering,

&cA~ can never exceed unity, and is more likely of order 0.5.
To construct a complete stellar wind model with CAK theory one

chooses L, A, R, and an assumed temperature distribution T(r); for a
given choice of k and a in (107.21) the mass-loss rate is determined almost
entirely by M and L via r,. One next makes an initial guess for r. from
(107.48) with r,= R; equation (107.25) is then integrated numerically, and
the run of optical depth with radius is computed. The value of r. is
adjusted until an optical depth of about $ is reached at the photospheric
radius R. Having constructed a dynamical model, one may use the resulting
density structure in a spherical model atmosphere code and calculate the

temperature structure by enforcing radiative equilibrium. This new temper-
ature distribution can [hen be used to reconstruct the dynamical model,
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and the procedure iterated. Because the dynamics is insensitive to the
temperature structure, the iteration process converges rapidly.

Castor, Abbott, and Klein published a solution for parameters appro-

priate to an 05 star: A =60.M0, L =9.7x 105L0, R =9.6x 10” cm =
13.8F!0, T.fi= 49,30C K, log g = 3.94, and r. = 0.4. The resulting mass-
10SS rate is ~ = 6.6x 10-6J4G /year, a reasonable value for a star like ~
Puppis. The terminal velocity is v= = 151.5 km s-’, so & =~Llvmc, which

shows that about one half of the momentum originally carried by radiation
is transferred to the flow. Stellar evolution theory gives main-sequence
lifetimes of about 3 x 106 years at this mass, which implies a total mass-loss
in the wind of about one-third the original mass of the star. Thus the stellar
winds from O-stars may have very significant effects on their evolution.

Some results for this model Me shown in Figure 107.2. The letters P, S,
and C designate the photosphere, sonic point, and critical point respec-
tively. The velocity variation (Figure 107.2a) is quite abrupt, with highly
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permission.
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supersonic flow being achieved within a fraction of a stellar radius above
the photosphere. The density distribution (Figure 107.2b) has a decided
“core-halo” nature: inside the son ic point the density gradient is nearly
hydrostatic, while outside the critical point the velocity is essentially

constant at v-, hence p ~ r-z. As seen in Figure 107.2c the halo is
transparent in the continuum, and radiates mainly in strong spectral lines.
The run of the radiation-force multiplier is shown in Figure 107.2d. In the

outer envelope M= 5, which implies that the radiation force on the lines is
about twice the force of gravity (recall that r, = 0.4); adding the radiation
force on the electrons and subtracting the force of gravity we find that the
gas outside the critical point experiences a net outward acceleration of
about I.5 times gravity.

COMPARISON WITH OBSERVATIONS

On the whole, CAK gives a coherent and satisfying account of the basic
dynamics of line-driven winds. Nevertheless it also shows significant dis-
crepancies with observations, an analysis of which leads to a deeper

understanding of the physics of the flow. (1) A critical comparison of
observed mass-loss rates with those computed from CAK theory shows
(A3) that for a comprehensive line list the radiation force is sufficient to
drive the observed mass flux; if anything the computed values of M are
about a factor of 2 too large. Furthermore, the predicted scaling of & with
L agrees with observation over about four orders of magnitude. (2) [n
contrast, the computed values of %/ti.,C are systematically too low.
Whereas the observations show that UJZJ.,C is about 1 to 1.5 for early-A
and late-B stars, and rises to about 3.0 for early-B and O-stars, CAK
theory always predicts 1 s vJv.,. s 1.5 [cf. (107.49)]. Thus (107.20) fails to
provide sufhcient radiative acceleration in the high-velocity part of the

flow. (3) the CAK velocity distribution (107.47) likewise rises much too
sharply inside the critical point. A variety of observations (B2), (C7), (L~)
inciicate a “softer” velocity law, rising like

v = vm[l – (R/r)]. (107.52)

Evidently (107 .20) gives too large a radiation force in the low-velocity
regime near the stellar photosphere. (4) The CAK model cannot provicle
the total momentum flux observed in the winds of some stars. Using
empiricaf values of v~, T., and re, Abbott (A2) shows that for two

well-observed stars, (3 in (1 07.45) exceecls unity even though e in (107.41)
is less than unity. This result is in conflict with CAK theory and demon-

strates the need to account for multiple scattering of the stellar photons.

TRANSFER AND MULTTPLE-SCATTERING EFFEC13

To improve upon the CAK models one must use a more accurate
radiation-force law, which implies that the transfer problem in the lines

must be solved more accurately. A step in this direction was made by
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Weber (W3) who calculated self-consistent, line-driven, steady-flow models
by solving the comoving-frame line transfer equations numerically [cf.
(M1O, Chap. 14), (Mll)] for a prechosen distribution of line strengths. This
approach is expected to yield better results because: (l.) it removes the

Sobolev approximation inherent in (107.17) and (107.20) (which surely
breaks down near the photosphere because the velocity gradient becomes
small and continuum sources and sinks become increasingly important),
and (2) it accounts accurately for the angular distribution of the radiation
field instead of assuming radial streaming (again, an effect that is important
near the stellar surface).

Weber’s results are encouraging. First, the velocity rise is softer, mimick-
ing (107 .52) fairly closely near the surface of the star, and shifting towards
a relation like (107.47) at large distances. Second, the terminal velocities
are larger, by about a factor of 4, than the CAK results for the same line
strengths. Weber finds that these improvements result mainly from ac-

counting for the radiation field’s angular distribution, in particular for the
finite solid angle subtended by the stellar photosphere. This result is in
harmony with the analysis by Castor (C1O) who showed that neglect of the
angular distribution causes CA.K theory to overestimate the line force by
about a factor of 2 near the stellar photosphere. In fact, the radiation force
calculated from the CAK formula (with an optimized choice of k and a)
using the wind structure obtained from the transfer solution agrees closely
with the force given by the transfer calculation. Therefore the ve]ocit y

distribution in tbe flow is quite sensitive to even small departures from the

CAK force law; Abbott shows (A2) that this sensitivity to small changes is
a peculiarity of the CAK moclel and is not a general property of line-driven
winds.

In Weber’s approach each line is modeled in detail. It is hopeless to use
such a method to obtain the force law for a realistic line spectrum having
hundreds to perhaps thousands of important lines, each of which may have
a distinctive response to variations of temperature and density. It is
therefore necessary to develop a simpler theory that still accounts for the
important physics. The problem has been addressed by Castor and Friend

(C1O), (F3) who calculate the line radiation force allowing for multiple
scattering in an ensemble of lines described by a statistical model for the
distribution of lines over frequency and line strength, and also accounting
for the angular distribution of the radiation field. They perform a consis-
tent sol ution of the dynamical equations and random-fine transfer equa-
tions to evaluate a correction factor to the force computed for radially

streaming radiation.
As predicted by Castor (C1O) the resulting force is substantially smaller

near the star and much larger at large distances. Most of the discrepancies
between theory and observation are removed by Friend and Castor’s work
(FC). For example, for a model that close] y resembles the one published by
CAK, uJFC) = 3900 km S-l instead of vJCAK) = 1515 km s-’, while near
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the star the velocity behaves like (J 07.52) instead of (107.47), as desired.

The mass-loss rate is nearly unchanged: & (FC) = 8.6x 10-6M0 /year,
&(CAK) = 6.6 x 10-GMO /year. The velocity at the critical point drops from
VC(CAK) = 950 km S–l to VC(FC) = 275 km s–l, and the critical point moves
inward from rC(CAK) = 1.5R to rC(FC) = 1.06R. The radiation force at rCin
the FC model is only two thirds as large as the force in the CAK model,
but the total momentum flux in the wind is much larger, e(FC) = 1.71
compared to e (CAK) = 0.51. Likewise, the effective number of scattering
is = 1.93; both of these results vividly illustrate the effect of multiple
scattering.

Recent models of line-driven winds include the effects of rotation and
magnetic fields; see (C1O), (F4), (N2).

ALT13RNATWE WIND THEORIES

The cool (i.e., radiative equilibrium), line-driven wind model appears to

provide a good basic picture of the dynamics of the flow, but yields little, if
any, information about the temperature structure and excitation-ionization
equilibrium of the material. The latter are quantities of considerable
interest because observations show spectrum lines from “anomalously”
high ions such as N V and O VI, as well as soft X rays, all of which
indicate gas temperatures far in excess of T,m of the star.

A variety of models have been suggested to explain these observations
including (1) the rnodijied cool wind model in which the gas temperature is
about 6 x 104 K and the wind is optically thick in the He 11 resonance
continuum; (2) the warm wind model in which the gas temperature is of
order 2 x 105 K; and (3) the hybrid corona plus cool wind model in which a
thin (– O.l R) hot corona with T-5 x 106 K is surrounded by a cool
(T= 0.8 Tefi) envelope. All of these models require a source of non radiative
energy input, such as heating by shocks that grow from instabilities; their
relative merits are discussed in (C4), (C5), (C6) and the references cited
therein.

All of the models mentioned so far have difficulty in explaining the soft
X-ray data. Models developed by Lucy and White (L9), (Lll) to explain
the X-ray data invoke the growth of instabilities into the nonlinear regime.
In the more recent version of the theory it is argued that small flow
perturbations are radiatively amplified into shocks, which survive until
“shadowing” by following shocks deprives them of the radiation force that
drives them, thus allowing them to dissipate and decay.

Observations show variations in the spectra produced by winds on
time-scales from hours to years. They strongly suggest that the winds may
in fact be unstable. The stability of line-driven winds has been examined
theoretically by several authors (A2), (C2), (K2), (Ml), (M5), (Nl), (05).
The results obtained depend sensitively on the radiation force law adopted.

For example, in an optically thin disturbance, a velocity-induced Dop-
pler shift from the rest position of a saturated line produces a net radiation
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force ~g~,~= Awl, where A is positive. This force is like that for a damped
harmonic oscillator, but with a negative “damping coefficient”, hence one

expects the perturbation to be unstable; this can indeed be the case. Nelson
and Hearn (Nl) and Martens (M5j showed that under certain conditions an
initial disturbance varying as eio[ is absolutely unstable (i e., co is complex
with a negative real part), and grows exponentially. Under similar assump-

tions MacGregor et al. (Ml) showed that a driven disturbance (real O,
complex k) is subject to a drift instability, and grows in amplitude as it
propagates outward in the wind. These results can be understood int ui-
tively by noting that in this case w, and i3g~,~are in phase, hence the work
done by the radiation force, which is proportional to {w, ~g~,l ) is necessar-
ily positive (05). In contrast, Abbott (A2) considered optically thick
disturbances and assumed that the line radiation force depends on the
velocity gradient, not the velocity perturbation. As discussed earlier, he
found stable radiation-modified acoustic waves. His results can also be
understood intuitively by noting that in this case WI and ~g~,( are 900 out of
phase, hence (W1 ~g~,,) = O, so that the radiation force does no net work on
the perturbation (05). However Abbott’s result applies only to long-
wavelength disturbances, assuming the validity of the Sobolev force law,

and may not be achieved in real stellar winds. A more complete theory that
recovers these two limiting cases and works at intermediate optical thick-
nesses as well has been constructed by Owocki and Rybicki (06). They
conclude that the wind must inevitably be unstable to short-wavelength
disturbances.
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APPENDIX

Elements of Tensor Calculus

The equations of radiation hydrodynamics are most naturally expressed in
terms of vectors and tensors. We summarize here the concepts used
elsewhere in this book. While reasonably complete derivations are given,
no attempt at mathematical rigor is made; the reader should consult the

references listed at the end of $A3 for further details.

Al Notation

The three types of geometrical objects with which we will deal are scalars,

vectors, and tensors (of the second rank). Scalars will be written as italic or
C~reek symbols, usually without an afFix. Sufiixes may be used in some
instances to denote a quantity evaluated at a particular position or time, or
in a particular reference frame. Vectors and tensors will be distinguished

by the use of a special type font or by indices that denote components.
Vectors will be written in boldface type (e.g., v); tensors will be written in

Gothic type (e.g., R). Individual components of vectors and tensors will be
denoted by italic or Greek symbols with one more suffixes (e.g., v’, R“B).
in the text, Roman indices range from 1 to 3, and denote components in a
three-dimensional Euclidian space, while Greek indices range from O to 3,
and denote components in the four-dimensionaf spacetime of special

relativity, O indicating time. To avoid confusion with powers of scalars,
specific components of vectors and tensors with definite numerical (or
symbolic) values assigned to their indices may be written e.g., V(”) or
R(w)(’). Finally, matrices, two-dimensional rectangular arrays such as ap-
pear in a transformation of coordinates (e.g., rotation or Lorentz transfor-
mation) will also be written in boldface type. These may be of arbitrarily
large dirnensionality, depending on the use to which they are put. The

distinction we make between a matrix and a tensor (which sometimes is
represented by a matrix of its components) is that the latter is a physical or

geometrical entity whose components transform, under a change of coordi-
nate systems, according to particular transformation laws, while the former
is merely an array of numbers defined in such a way as to systematize
algebraic manipulations involving systems of equations or coordinate trans-
formations.

As we will see below, in curvilinear coordinates vectors and tensors can

650
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be described by abstract components of two different kinds, called con-
travariant and covariant, which have different transformation properties
under a change of coordinates. Contravariant components will be denoted

T“6 ) and covariant components with subscriptswith superscripts (e. g., v’,
(e.g., Vm, R,j). In general these abstract components differ from the
physical components, which give the vaJues of the components in physical
units along the directions of the coordinate curves. Physical components
will be labeled with subscripts that indicate the relevant coordinate [e.g., v,,
O., U+ for the spherical polar coordinates (r, 0, 0)].

In Cartesian coordinates, all three kinds of components (contravariant,
covariant, and physical) are identical, and usually no distinction is made
among them by changes in the positions of component labels. We will often
depart from this practice, however, and write even Cartesian tensors with
subscripts and superscripts when it serves our purposes to do so (in
particular we always write the coordinates themselves as contravariant
cluantities xi). An advantage is gained by this device because one can then
see by inspection the invariance and transformation properties of an
equation under a change of coordinates. As we will see, the power of
tensor notation is that it allows us to write equations in a covariant form,
which means that the equation has the same form in all coordinate systems.

This formalism is thus responsive to the demands of relativity, which insists
that equations expressing genuine physical laws must remain valid in all
coordinate systems.

The Einstein summation cc)nvention, by which repeated indices imply
sums over the appropriate range, will be used throughout. For example

a’bi=a’ b1+a2b2+a3b3, (All)

and similarly for Greek indices. Summed indices are dummy and may be
replaced by any other symbol without changing the meaning of the
expression (e.g., sib’ = akbk, etc.). In cases where repeated indices appear
but summation is not implied we will write the indices in parentheses [e.g.,

g(;)(,) denotes that particular tensor component].
Ordinary partial derivatives d/dxi will often be abbreviated to the nota-

tion ,t thus: (duj/dx’) = ~~i. When convenient to do so we will sometimes
abbreviate t)/dtto ,t. Covariant derivatives (cf. $A3.10) will be written ,a
thus: T::.

A2 Cartesian Tensors

Let us now consider vectors and tensors in a three-dimensional space with
orthogonal Cartesian coordinates. It is straightforward to generalize most
of the results obtained to n dimensions, but we will not pursue this matter.

A2. 1. Vectors and Their Algebra

Choose an origin O and three mutually perpendicular coordinate axes with
a right-handed orientation. A vector a is a directed line segment drawn
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T
X3

a
k

o >

R

x’

X2

Fig. Al Right-handed coordinate system.

from O to some point P whose coordinates are (al, CL2,CL3).This number
triple completely specifies the vector by giving the components along each
coordinate axis, that is, the length of the projection of the vector onto that
axis (see Figure Al).

By applying the Pythagorean theorem to triangles OPQ and OQI? in

Figure Al we see that the

Unil vectors are vectors of

length (or fnagnitude) ‘of a is

a = Ial= (aiai)l’2. (A2.1)

unit length. In particular we may choose basis

vectors

e(l) =i= (l, O, O); e(z)= j=(O, 1, O); and e(3) =k=(0, O, 1).
(A2.2)

Then

a = ali+ azj + aqk. (A2.3)

If we multiply a vector A by a scalar a we obtain a new vector B = CYA
with components 13i= aAi. B lies along A, has magnitude IBI= a IAI, and
points in the same direction (or opposite to) as A according to whether a is
greater than (or less than) zero. Vectors may be added and subtracted; thus
C = A*B has components Ct = Ai *Eii. Furthermore, A+B = B+ A;
(A+ B)+ C= A+(B+C); A–(–B)=A+B; and a(A+B)=aA+aB.

If some vector quantity, say velocity v, can be assigned a definite value at
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each point X=(X(l), X(2), X(3)) within some region during a definite time
interval, then v is a uector field. Similarly we may have sccdarfiekls [e.g.,

‘q) t)] and tensor fields (e.g., the radiation stress-pressure p(x(l), x(z), x- ,
energy tensor R).

A2.2. Scctlar Product

Consider two vectors a and b and their difference c=a–b, as shown in
Figure A2. Then from the familar law of cosines we know that C2’=

az+ b2–2ab cos 0, hence

2ab cos O= aiq + bib, –(a, –bi)(ai – b,) = 2a,bi. (A2.4)

The quantity

a.b=aibt (A2.5)

is called the scalar (or inner, or dot) product of a and b. If m and n are unit
vectors along a and b, we see from (A2.4) that

cos 0 = m on = aibJ(ab). (A2.6)

This is a convenient way to determine the angle between any two vectors.
Notice that when two vectors a and b are orthogonal, 0 = Tr/2, hence
a “b = O; in particular i “ j =i” k = j “k= O as would be expected from
(A2.2). If b= a then O = O and (A2.4) yields (A2.1) for the length of a
vector. In general the scalar p~oduct gives the length of one vector tilmes

the projection of the length of another vector onto the first.

–b

Fig. A2 Vector subtraction.

A2.3. Orthogonal Transformations

Let LN now inquire how vectors are affected by changes in the coordinate
system. Having fixed the origin O, the only significant change we can make
is to perform a rigid rotation of the three axes around O. (We could also
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reflect, that is, reverse the direction of, axes, but we will not consider that

case in this book.) We then obtain new basis vectors ei. Let lii be the cosine
of the angle between ei and @j. Then ei can be resolved along the old basis
set and expressed as

@i = liiej. (A2.7)

Similarly, we can resolve e, along the new basis set to find

ei = ~ii~.
1. (A2.8)

Now cb.oose some vector a; we can express a in terms of its components
in either system. Noting that we get the same vector in either case, we see
that

a= a~ei ‘ii= iilei = tiiliet, (A2.9)

hence

a, = lijiij. (A2.1 O)

By reversing the argument we find

(ii = liiaj. (A2.11)

The matrix L whose element in the ith row and jth column is lij is the
transformation matrix from basis set ei to set ei. From (A2.7) and (A2. 8) or
(A2.10) and (A2.11) we see that the inverse transformation L-’ has a
matrix L’ that is the transpose of L. This implies that L must be an

orthogonal matrix. It is easy to prove that this is so. Let the Kronecker 8
symbol be defined such that t5ii= O if i #j, and ~(,l(i) = 1. Then e, . ei = 8ii =
@i . ~i. Hence

titj = e, - ei = (likek) “ (lj,,te,n) = Likli,n(ek. ew,) = liklin,?& = likllk.
(A2.I 2)

Thus the row vectors of L are orthonorrnul (i.e., of unit length and mutually
orthogonal). Starting from Qi “ Qj one can show that the co] umn vectors of L
are also orthonorrnal. Therefore L is in fact orthogonal, and (LL’) =

(L)i~(Lr)~i = ~i~ll~= dii = (I)ii where I is the identity matrix.
Although here we started with the geometrical notion of a vector and

then deduced its transformation properties, a perfectly consistent set of
results is obtained if one proceeds in the opposite direction and defines a

vector a to be an object whose components (al, a2, a3) become (d,, tiz, zQ,
where iii = lliai, under a rotation of axes having a transformation matrix
(L)ii = lij. The naturalness of this approach becomes evident when one
considers general vectors and tensors in curvilinear coordinates.

A2.4. Transformation Properties and Algebra of Tensors

We define a Cartesian tensor of rank n to be a geometrical object with n
indices, which transforms according to the rule



ELEMENTS OF TENSOR CALCULUS 655

Vectors as defined above are obviously tensors of rank one. Scalars do not
change their value under coordinate transformation (d = a) and thus can
be considered to be tensors of rank zero. Aside from scalars and vectors,
the tensors we shall most frequently encounter in this book are of rank two

(e.g., Aii or T.,~, having 9 or 16 components in three- and four-dimensional
spaces, respective] y). For example, the Kronecker 8 symbol ~ij is a tensor
of the second rank, which has the property of being invariant under
coordinate transformation:

Z; = lk,l,miak,,, = lkilki= 13ii. (A2.I 4)

For this reason it is sometimes called the iso~ropic tensor.

Tensors obey simple algebraic rules. Thus if B = CYA then B,l = aAii.
Tensors of identical rank may be added and subtracted; thus if C = A+ B,
Ci, = A,i +J3ii. Similarly, A+ B= B+A; A+(Bt C)=(A+B)+C; and
ct(A+ B) = a A+ aB. Tensors may also be multiplied. Thus if Aab...,,, and

B ~,,, are tensors of rank m and n, respectively, then the sel of products
A B,q,,,,,Ub...$m are the components of a tensor of rank m + n. In particular if
we form the outer (or tensor) product of two vectors ai and bi we obtain a
second-rank tensor Tii = a,bi.

A2.5. Symmetry

A tensor is symmetric with respect to two indices, say i and j, if interchange

of the indices does not change the value of the tensor component (e.g., if

A ah...j...j...n=A ~~ii,l). A tensor is antisyntwtetric (or skew syrnrnetric) with
respect to two indices if their interchange produces a component of the
same magnitude but opposite sign.

Any tensor “fij of rank two can be uniquely decomposed into a symmet-
ric part Sii and an antisymmetric part A,i. Thus defining

Sii =$(Tii + Tii) (A2.15)

and
Aii a~(~ii – Tii) (A2.16)

we have

T,i = Si; + A,j. (A2.17)

In three dimensions a second-rank symmetric tensor has only six distinct
components and a second-rank antisymmetric tensor has only three distinct
nonzero components.

A2. 6 Contraction

Given a tensor of order n, wc may form a new tensor of order n – 2 by
contraction in which we set two indices to the same value and sum over
their range. The ran k of a tensor is thus equal to the number of free
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indices. For example, if we contract the second-rank tensor Tij = aibi we

get the scalar (tensor of rank zero) T,i = aib~, the usual inner product of a
and b. We can verify directly that the inner prod LICt k. in fact a scalar
invariant under coordinate transfolmlation:

di~ = liiail~ib~ = (liil~i)~b~ = ~ikajb~ = ajbj. (A2.18)

By contracting a tensor Aii of rank two we can form a LInique scalar Aii,
called the trace, the SLIJII of the diagonal elements. From an argument
similar to (A2.18) we can show that AiL is invariant, a fact we exploit in our
discussion of fluid kinematics in $21. Notice that for the Kronecker 5
tensor, 8ii = n where n is the dimensionality of the space.

Contraction of the fourth-order tensor formed by the multiplication of
two second-order tensors, e.g., Aij~~= BiiC~l, yields four distinct “inner
products,” each of which is a second-order tensor, namely BijCL~,BijC~i, BiiCki,

and BiiCi~. Thus while a . b has a unique meaning for vectors, a similar
notation for tensors is ainbiguous, and we will avoid it, preferring instead
to use component notation, which is explicit.

A2. 7. The Permutation Symbol

[n a space of three dimensions we define the permutation symbol eii~ such
that

[

i-l if ijk is an even permutation of 123,

etf~= –1 if ijk is an odd permutation of 123, (A2.19)

~ O if any two indices are the same.

The generalization to n dimensions is obvious. This symbol proves to be
extraordinarily useful in a variety of contexts. A result of particular
importance is the statement

eii~ei,,,,= 81,&W– 8,,,Z8~,, (A2.20)

wh icb follows immediately from a direct enumeration of cases. From
(A2.20) we easily have eii,eiiL= 2&L. We show below that eii, is a tensor of
ran k three whose value is invariant under coordinate rotation.

A2.8. Determinants

The cleterminan( of the (n x n) matrix a with components aii is defined to

be the sum of the n ! disti ncl products composed of one element from each
row (in order) and column, each given a positive or negative sign according

to whether an even or odd number of permutations is required to restore
the column indices to ascending numerical order. “rhe same definition with
the words “row” and “column” interchanged also holds. Thus

la1,a12.,. a,, Tl

azl azz . azn
Ial= Ia,il = ,,, ‘a

. ..
a,,, a,,z a,,,.

(A2.21)
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can be written compactly as

ace..
f) f2... i,, ali, a2i2 . . a,,i,,=ei, ei, . . . ei,,al,laizz -. . al,lrl. (A2.22)

For simplicity in constructing proofs, let LIStemporarily set n =3, so that

a = eijkaliazia~k = eiikaila, za~-. (A2.23)

From (A2.23) one sees immediately that the determinant of the transpose

of a matrix equals the determinant of the matrix itself. Let us now show

that the sum eil~al,iaaia,~ is skew symmetric under interchange of two rows,
say p and q:

‘,jk”piaqiark = f+ikdpidq, ark = f?iikdaidoiar(c = ‘eiikaq, apiark. (A2.24)

A similar result is obtained for interchanges of the other indices. It follows
that

%lk%,,al,lakr = ew, ra. (A2.25)

By a similar analysis we find

‘Qkapiaqiark = eDq,a. (A2.26)

Equations (A2.25) and (A2.26) show that if any two rows or columns are
identical (or even scalar multiples of one another) the determinant is zero.

Determinants can also be expanded in cofactors. For example, expanding

along the first row we have

where the cofactor

A!u=ekj,...i,azi, ari,. (A2.28)

From (A2.28) we immediately see that a(~~kApi)= ~iia.

Consider now the determinant of the matrix c, which is the pI”odLlct of
two matrices a and b, so that Cii= ai,Cbkj.Then

~ = Iciil = epq...(~,11~q2. . h = epq...t(api~Ji,)(aqi~i2) . (%bn)

= (e,lq...t%i%i. ad )bLLbi2 b,,. = 1(2,11eii,,.[~Ll~f2 . h, (A2.29)

=Iaiillbii{,

where we have used (A2.25). We thus recover the f almiliar rule that the
determinant of the product of two matrices ecluals the product of the
determinants of those matrices.

Applying this result to the transformation Imatrix L introduced in $A2.3
we find

L’= ILLIILI= IL(LI = \L-lLl = III= 1, (A2.30)

so that L = *1. The case L = +1 applies to rotations of coordinates, and
L = – 1 applies if an odd number of the coordinate axes undergoes reflec -

tion, thereby changing the system from right handed to left handed; we

.
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consider only rotations. We can now see that the permutation symbol is
invariant under rotations:

11Ziik= lL,i~i ,keoq, = ei,k I/iil= Lei,k = eijk. (A2.31)

A2.9. Cross Products; Triple Products

We define the cross (or vector) product of a and b to be the vector c = a x b,
whose components are

Ci= eilkaibk. (A2.32)

Note then that b xa= –(axb) and that ax a= O for any a. Using (A2.2) in
(A2.32) one finds ixj=k; jxk=i; kxi=j; ixi=jxj=kxk=O. From

(A2.32) we see that c can be written symbolically as the determinant

ijk

c= ct~ a~ cl~ . (A2.33)

b[ bz b~

Consider now the geometrical interpretation of a x b. Without changing
a, b, or c we can rotate the coordinate axes so that i’ lies along a, and i’ and
j’ lie in the plane defined by a and b. We can then write a = ai’ and
b = b cos t?i’+ b sin tlj’ where O is the angle between a and b. Therefore

c= ai’ X b(cos di’+sin Oj’) = czb sin Ok’. (A2.34)

Thus c is a vector perpendicular to the plane of a and b, whose magnitude
is ab sin @; this is the area of the parallelogram generated by a and b (i. e., a
and b along two of its sides).

We can define two kinds of triple products of vectors. The scalar triple

product is

a . (b x c) = eijkaibick. (A2.35)

This product has a simple geometrical interpretation: it is the length of a
projected onto a vector perpendicular to the plane of b and c, times the
area of the parallelogram generated by b and c, and hence is the volume of
the paral Ielepiped whose sides are a, b, and c. Notice that (A2.35) is
unaltered by cyclic permutation (i. e., i ~ ~~ k - i), hence

a“(bxc) =b:(cxa)=c”(axb), (A2.36)

which is also self-evident from the geometrical lneaning of the scalar triple

product.
The vector triple product is d = a x (b x c). Because (b X c] is perpendicular

to b and c, while d is perpendicular to (b x c), it follows that d lies in the
plane of b and c. We see this explicitly by using (A2.20) to show that

d[ = eiikai(e~l,7,blcW,) = (Si~~i}ql– ~;,m~i[)aiblc,,t = bi(aici) – ci(~ibi)>

(A2.37)
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and hence

ax(bxc) =(a. c)b–(a. b)c. (A2.38)

By simdar use of (A2.20) it is easy to prove the useful relations

(axb). (cxd)=(a .c)(b. d)-(a-d)(b. c) (A2.39)

and

(ax b)x(cxd)=c .(dxa)b–c. (dxb)a
(A2.40)

=a’(bxd)c– a”(bxc)d.

AZ. 10. Gradient, Divergence, Laplacian, and Curl

Thus far we have dealt with the algebra of individual vectors. We now turn
to the calculus of (continuous and differentiable) vector fields. First, notice
that (A2.1O) and (A2. 11) can be applied to the position vector of a point,
from which it follows that

and

Starting with the scalar field f = f(x, y, z), form the vector

(A2.41a)

(A2.41b)

(A2.42)

which is called the gradient of ~. We can verify that Vf is, in fact, a vector
in the sense of $A2.3 by noting that in a new coordinate system the

component (Vf)i = (df/dxi) = f,i becomes

(Vf), = (df/Wi) = (df/dxi)(dxi/Wi) = lji(df/~xj) = lii(Vf)l (A2.43)

which is consistent with (A2. 10). Now choose a level surface on which

f(x, y, z) -a constant; then for any dr = (dx, L@, dz) lying in this surface

df=~dx+~dy +~dz=(Vf)”dr=O.
,

(A2.44)

Thus geometrically Vf is a vector field perpendicular to level surfaces of f,
and (Vf) “ dr, for arbitrary dr, measures the change in the value of f along
the increment dr.

In Cartesian coordinates, n successive differential ions of a tensor of rank
n yield a new tensor of rank rn + n. For example, consider Aii, M, which we
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see is in fact a tensor of rank four because

= 1,,,ljJkJLdAii,k, (A2.45)

Here we have USed (A2.41a) and the constancy of the lij’s under a given
rotation of coordinates.

We may regard

(A2.46)

called del, as a sylmbolic vector. The dot product of de] with a vector field a
yields the divergence of a:

V “a= (dal/dx)+ (du2/dy)+(daJdz] = a,,, (A2.47)

The divergence of a vector is obviously a scalar, a fact also indicated by the
notation ai,i which shows that it is the contraction of the second-orde~-
tensor ai,i. By direct calculation it is easy to see that

V “ (aa) = (aai),i = a,iai +aai,i =a” (Va)+aV “ a. (A2.48)

If we calculate the divergence of the gradient of a scalar field ~ we obtain

the ~aplacian of ~:

Vzf = V. (vf) = (f,,j,, =f,,,= (a’f/axz) + (a2f/dy2) + (t12f/tJz2)

(A2.49)

where the summation convention holds. The Laplacian of a vector a is a
new vector b = V2a whose components are bi = ai,ij (sum on j).

The symbolic cross product of V with a vector field a yields a new vector
field called the curl of a. lt has components

bi = (V X a), = eil~(2/PXi)U~ = etika~,,. (A2.50)

Thus b, = (as,a – Uz,q), etc. The curl is sometimeswrittenas the symbolic
determinant

i jk

Vxa= ~/dX dldy d/dZ , (A2.51)

UJ az a~

but in practice (A2.50) is more useful in establish ng vector identities. For
example, to calculate the curl of the curl of a vector we write

[V x (Vx ii)],= ei;k(ekh,a,n,),j = ekiiekka,m,j, = (8iL ~jl,.- ~ilt8iL)an..jl

= ai,ii – %,,; = [V(v “ il)]i– (v’a),, (A2.52)

hen ce

VX(VXa) =V(V. a)– V2a. (A2.53)
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By similar reasoning it is easy to prove the useful relations

V“(Vxa)=O, (A2.54)

V.(axb)=b .(Vxa)–a. (Vxb), (A2.55)

Vx (Vf) = o, (A2.56)

Vx(aa)= (Va)xa+a(Vxa), (A~,57)

Vx(axb)=(V .b)a–(V .a)b+(b .V)a–(a. V)b, (A2.58)

and

V(a. b)=(a” V)b+(b” V)a+ax(Vxb) +bx(Vxa). (A2.59)

AZ. 11. Duals

Consider an antisymmctric second-rank tensor flij in three-space. With any
such tensor we may associate a. vector by the definition

w,= +ei,kflik. (A2.60)

The vector CO,is called the dual of Qik because of the reciprocal relation

that

flii = eijkq.,, (A2.61)

which can easily be verified by substitution from (A2.60) and use of
(A2.20). Thus

‘=(:: :: ‘~)

(A2.62)

The dual concept can be generalized to spaces of higher dimension and
tensors of higher rank, see (S2, 134–135) and (S2, 245–247).

A result of considerable importance is that

Q,kai = eiiktiiai = (m X a)~, (A2.63)

which shows that this particular sum of a vector against an antisymmetric
tensor is identical to the cross product of the vector with the vector dual of
the tensor. We exploit this result in our discussion of fluid kinematics in
$21.

Vectors of the type described above are called axial vectors (or
pseudovectors because they are “really” tensors of rank two). Important

examples of axial vectors are the cross product, c = a x b, for which the
associated tensor has components C;, = a~bl– aihi, and the curl, b = V x a,
for which the associated tensor has components IIii = aj,i – ai,i. An interest-
ing distinction between axial vectors and vectors of the type defined in
$A2. 1, called polar vectors, is that under reversal of the directions of the
coordinate axes, the components of polar vectors change sign whereas the
components of axial vectors are unaltered. This statement is obviously true



662 FOUNDATIONS OF RADIATION HYDRODYNAMICS

for the two examples given above. As discussed in $21, the angular velocit y
w of a rigid body or an infinitesilnal element of fluid may be considered to
be an axial vector.

AZ. 12. The Divergence Theorem

The divergence theorem (also known as Gauss’s theorem or Green’s

theorem) is one of the most useful tools of tensor calculus, and is employed
frequently in almost all branches of theoretical physics. Let V be a simple
convex volume with surface S. Let n be the outward-pointing normal at
any point cn S. Then at each position on S we can write an oriented surface

element as dS = n dS. It is easy to see that the projection of dS onto a plane
perpendicular to any particular direction I is 1 “ dS = I “ n dS.

The divergence theorem states that for any clifferent iable function f,

J“ fdv=!s‘rids (A2.64)

To prove this theorem, choose i = 3 and partition S into upper and lower

surfaces S’- and S with respect to the (x([), X(2)) plane (see FigLlre A3).
Consider an elementary vertical rectangular tube within V, having a
volume 8V and a projection Z on the (X(’), x(z)) Plane. l-et s+ be given b
X(3J= ~-(x~’), ~fz)) a17d s- by X(’)= g-(x(’), X(2)). Then carrying out the

integration over 8V we have

~
f>3dx(ll dx(al dx(~l =

Sv [
~[x(’), Y&, g+(x(’), Jq]

: (A2.65)
-f[x(i), X(2), g-( X(l’, X(2))]} dX(”) dx(z).

But from the definition of the oriented surface element we see that on S

X3
T

s+

_—_——~-+~~-_-

>X2

x’

dx2

Fig. A3 Geometry of surface and volume integrals.
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we have dx(]) dx(z) = n~- dS+, and on S–, dx(l) dx(”) = —n; ds–. Hence

j f,. (iv= J f[xf’), x(’), g+(x(’), Xqln: ds+
Sv 6.s’

+
J
~_ f[x(’), X(2’, g-(x(’), xq]n; ds- (A2.66)

—
-J

f+n; dS-’+
J

f-n; dS->
8s+ 8s–

where now f’- and f– denote the value of f on S+ and S–, respectively.
Finally, by summing over all elementary tubes, and recognizing that S is
the union of S+ and S–, we recover (A2.64) for i = 3; the choice of i is
arbitrary, hence the theorem holds for all i.

Perhaps the most familiar form of the divergence theorelm is that for a
vector, say F. Writing f = Fi in (A2.64) and summing we have

or

J
V. FdV=

J
F.ndS.

v s

(A2.67)

(A2.68)

As another exalmple, if we choose f = ei,ka,, then f.i = e~ijaj,i = (V x a)k, while

f~i = eijkn;uj= (n x a)k, so that

J J
(Vxa)dV= (n Xa)dS.

~ s
(A2.69)

It is very important to note that (A2.64) is quite general, and holds for
any differentiable f, whether scalar, vector, 01” tensor (the lattel” usually

being considered one component al a time, or as the contraction of a set of
components against the clerivative). In fact the theorelm is actually a resull
from analysis, and has no roots in vector or tensor analysis per se.

A2. 13. Stokes’s Theorem

lf S is a caplike surface bounded by a closed curve C, Stokes’s theorem
states that for a differentiable vector field a,

J !$
(Vxa). ndS= a.tds, (A2.70)

s c

where t is the unit tangent to C. To prove (A2.70), cover S with a
rectilinear coordinate mesh (u, v) so that S is a collection of points r(u, u).
Consider the integrals in (A2.70) for an element @.3yS bounded by the
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curve r, where ct=(u, v), P=(u+du,v), y=(u~du, v+dv), 8=
(u, u + do). Then to first order

a(ui-duo’=a(uo’+[(:du)”vla
(A2.71)

and similarly for a(u, v + du). Then, calculating the line integral to first

order we have

$r ““’~’= {[(:”v)al”:-[(: ”v)al”:}~u~” ‘A272’

But by using component notation and (A2.20), (A2.32), and (A2.50) we
see that

~ dr~ dri dr~
a~,f———

%,i — = (81Lakm – tii,,t t5kL)aki ~ ~
au au dv du

(A2.73)

Frolm the geometrical meaning of the CIOSS product we know that [(dr/du) x

(ch/6w)] du do is just the oriented area 8S of c@y8. We therefore find that
(A2.70) holds for the element @@. Now sum over all elements. The line
integrals on the interior mesh lines cancel in pairs, leaving only the line
integral around the bounding curve C; the surface integrals sum to the
integral over the whole surface. Thus (A2.70) is valid as stated.

As was true for the divergence theorem, Stokes’s theorem is quite
general, and can be wl-itten

J
eiikuk,in, clS =

$
aiti ds (A2.74)

s c

where a~ may be the components of any chfferentlable tensor (e. g., rk[!,t
with bn fixed).

A3 General Tensors

We now consider general tensors in curvilinear coordinates. We will not
usually specify the dimensionality of the space, and most of the results are
valid in n dimensions. in this section, unless specified otherwise, both

reman and Greek indices are assumed to run from 1 to n.

A3. 1. Transformation Properties

In order to deal with vectors and tensors in curvilinear coordinates, we
must now consider transformations of a quite general, but not arbitrary,
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kind. Werestrict attention to what we shall call admissible transformations,
which have the following properties.

1. “rhey are real, single-valued transformations of the form

jj =f~(x(’), ,x(’”), (ill,..., n). (A3.1)

2. They are reversible so that

xi=g~(l(’j, . .,2(1’)), (ill,..., n). (A3.2)

3. The gi are single valued so that the direct and inverse transformations
are one to one.

To guarantee these properties it is sufficient to demand that the ~’ and g;

be continuous and have continuous derivatives, and that the Jacobian

determinant

(A3.3)

be non zero everywhere in the domain of the transformation.

Under general transformations, vectors and tensors are represented by

two different kinds of abstract components, called contravariant and
covariant, each of which will in general differ from the physical conlpo-
nents of the tensor. We emphasize that all three sets of components
represent the same physical qtantity, and all are related by definite rules (cf
$$A3.5 and A3 .7]; the three representations can be used interchangeably
as convenient.

A contravariant tensor of rank w has components A “~’m that transform
according to the rule

(A3.4)

In particular a contravariant vector transforms as

ii” = (&i”/t)xa)A’L. (A3.5)

The archetype for a contravariant vector is the set of coordinate differen-

tials dxi for which we obviously have d~a = (~za/dxu) dx”.

A covariant tensor of rank m has components A ab...m that transform
according to the rule

(A3.6)

Jn particular a covarian t vector transforms as

~,. = (dxa/dzm)Ao. (A3.7)

The archetype for a covariant vector is the gradient d,. for which we
obviously have ~,ti = (dx C1/dICt)@,~.
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tensor of contravariant rank m and covariant rank n has
A ~~:,~ that transform according to the rule

In general we suppose that tensors of the kinds defined above can exist
throughout a finite region of space, and thereby constitute a tensor field.

A3.2. Tensor Algebra

General tensors obey sin~ple rules of algebra. We may multiply a tensor
whose components are A ~~:~c. by a scalar a to obtain a tensor whose
components are aA ~“:~c. We can add and subtract tensors of identicaf
contravariant and covariant ranks (which are shown by the nulnber of free,

that is, unsummed, indices of the appropriate kinds); these operations are
associative. For a tensor A fi~”~cof contravariant rank c and covariant rank
k, and a tensor B~; of contravariant rank n and covariant rank r, the
outer product

CUI). ..clrn...n __ A ;h:kCB bm...!T
tl... krr. -r w... (A3.9)

is a tensor of contravariant rank (c+ n) and covariant rank (k + r), as can
be verified immediately by application of (A3.8). The outer product is
distributive.

From a tensor A ~~~:~of contravariant rank k and covariant rank t one
may construct a new tensor of contravariant rank (k – 1) and covariant

rank (t —1) by the operation of contraction, in which one covariant and one

contravariant index are set to the same value and summed. For example,
contract A ~~ to form A~j. Then

implies that

But

(A3.10)

(A3.11)

(A3.12)

where 8; is the mixed tensor that represents the Kronecker 8 symbol.
Note in passing that 8; is the isotropic tensor whose value is the same in all
coordinate systems (which is trivial to prove). Using (A3.12) in (A3.11) we
have

~:;_a~a ax’ Ad]
dxc’ dzA

lb> (A3.13)
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which is the correct transformation for tensor whose contravariant and

covariant ranks are unity (and hence reduced by one from those of the
original tensor, as claimed above).

The null tensor is that tensor whose components are all zero in some
coordinate system. It follows from (A3.4), (A3.6), and (A3 .8) that its
components must remain zero in all other admissible coordinate systems.
This result is of great importance in physics, for it implies that if we can
express a physical law as a tensor equation in some frame, say A &~~ =
B &:::~, then this equation remains true in all coordinate systems (hence the
physical law is covariant) because (A~~;:~ – B&~) = O in the first frame,
and hence in every frame.

If the interchange of two contravariant (or covariant) indices of a tensor
does not alter the value of any of its components, the tensor is symmetric
with respect to those indices. A tensor is antisymrnetric with respect to a

pair of indices if their interchange changes the sign but not the magnitude
of the tensor’s components. The symmetry properties of pure contravariant
or pure covariant Lensors are intrinsic (i.e., they remain the same in all
coordinate frames). Symmetry (or antisymmetry) is not intrinsic to mixed
tensors, however, because the relationship A ~= A:, for example, in one
coordinate system will not in general carry over to another. These state-
ments may be proved d irect]y by application of (A3 .8).

A3.3. Relative Tensors

The tensors described above are absolute tensors. Relative tensors trans-
form according to a more general law: a relative tensor of contravariant
rank n!, covariant rank n, and weight W transforms as

—m d?” dxk~ ;:::::. Jw ~ ——
~xn

~ A ::::;m,
ax” “dx’r’ aiK “ “ “ax

(A3.14)

where J is the Jacobian of the transformation, J = l?Xi/~IVI. ~bSO]ute

tensors are obviously relative tensors of weight zero; similarly a relative
scaiar of weight zero is an abSOlute scalar. Scalars and tensors of weight
one are often given the special names scalar and tensor density for reasons
indicated in $A3.4.

A3.4. The Line Element and the Metric Tensor

In a Euclidian three-space Eq the length ds of the line element correspond-
ing to an infinitesimal displacement vector dyk in orthogonal Cartesian
coordinates is given by

ds’=dy’dy ’ (A3.15)

where k is summed. Generalizing, we aclopt (A3. I 5) as the definition of
dsz iTl En, ~,here k now rLlns fronl ~ tO n. SUppOSe now W transform ‘0 a
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curvilinear coordinate system x’, and that we can express y k = y k(X(‘),
x(2

,. ... x(”)) and hence cly’ = (dyk/dx’) dx’. Then in terms of the new
coordinates the line element is

~“=t%)g)d’’dx’=~idx’dx’(A3.16)

where k is sumlmcd from 1 to n.

The tensor gii is the metric tensor; any space characterized by a metric
tensor is called a Riewannian space. The metric tensor is obviously
symmetric in its indices, and is an absolute covarianl tensor of rank two,
which implies that the line element is a scalar. We verify these statements
directly by transforming to a new coordinate system ,ti; then

which is the correct transformation law for a second-rank covariant tensor.
The fact that ds is a scalar is then obvious. In Cartesian coordinates the
elements of the metric tensor are gij = ~ti (the Kronecker 8), and hence are
everywhere constant. Any coordinate system in which the elements of gtj
are constant, but not necessarily Qj, may also be considered to be Cartesian
because in this case one can reduce g,i to tiii by a suitable Iinear trarlsfor-
mation.

As an example of a metric in curvilinear coordinates, consider spherical

polar coordinates (x(’”, X(a, X(3)) = (r, 0, d), for which y(’)= r sin @ cos &
V(2)= r sin (3sin [$, ancl y(3) = r cos 6. Then from (A3.16) we find

ds’= dr’+- r2 dO’+ r’ sin’ Od~z, (A3.18)

so that g,, = 1, gzz = r2, g33 = rz sin’ 0, and gti = O for i#j.
Given the covariant tensor gii, we can construct a second-order con-

travariant tensor g;i, which is called the reciprocal (or conjugate) tensor,

defined such that

gijg “’=8:. (A3.’l9j

Equation (A3.19) states that the components of g’i are the elements of the
inverse of the matrix whose components are g,,. As long as g is nonsingular

(i.e., g = Igijl # O), its inverse is unique; therefore (A3.”19) uniquely deter-
mines g“, i~nd specifically implies that g;’ = Gii/g where Gi; is the cofactor

of element gii in Igiil.
The determinant g appears in many tensor formulae. We can show that g

is a relative scalar by taking determinants in (A3.17) and using (A2.29) to
find

where I is the Jacobian of the transformation; this is the transformation
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law for a relative scalar of weight two. It follows that g’r’ is a relative
scalar of weight one.

The factor g also appears in definitions of volulme elements via the
formula

dV= dy(’) dy(z) dy(n)=
Jrl) ~v(d d“).

‘ (1) &’(2) “ “ax ~xol) I

= ~lm~x(u ~x(2) . . . dx “’” (A3.21)

where the yi again denote orthogonal Cartesian coordinates. We can
justify (A3 .21) in two clifferent ways. First, wc can regard it as a result from
analysis obtained by a direct evaluation of an n-clime nsion.al iterated
integral (Jl, 183 et seq.). By direct transformation y i 4 xi one finds

~~
~ = dv(l.) dy(~-l) . . .

I
dy~’)f[y(’~, y@), . . . . yf’”]

1[
~ dx(fl) dx(ll-l) . . .

J
dx(’’f[y(’), y(2), . . . . y(’’)]~(y(’), . . . . ~(”)/X(’), . . . . x(n))

(A3.22)

where in the second integral yi is regarded as yi (X(l”, . . . . x(’’)), and J
denotes the Jacobian of the transformation. Alternatively we can recognize
that (A3.21 ) is the natural generalization of (A2.35) to an n-dimensional
space, and view it as giving the volume of an n-dimensional parallelepipeci
whose sides are spanned by the elementary vectors (dx(’), O, . ., 0),

. . . . (O, 0, . . . . dx(’’)). Under the transformation xi= y’ these vectors

(

(1) ~v(z)
become

– ~%)dx’(%$%)d’(”)

t)y
~x(ll ‘,]’

which again leads to (A3 .21). We thus identify the rightmost member of

(A3.21) as the inuarianr ?mhwne elewtenr; the zwkwne of any finite region
is then

JJ J
v= . . . g“z dX(’) dx(z) dx(”). (A3.23)

Finally, suppose we calculate the mass within some volume containing
fluid of density p; then

J~ ~
M= . . .

JJ J
pdy(’) dy(mj= . . . pg”z dX(’) . . . dx(’t)

‘H J

(A3.24)

— . . . 0 dx(’” . . . dX(’L”.
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Thus in terms of ~ = g’”p, a relative scalar of weight one, the integral
giving the mass assumes an invariant form. It is this result that lmotivates
the name scalar “density” for relative scalars of weight one.

A3.5. Associated Tensors

Ha\ing at our disposal the metric tensor and its reciprocal we can carry OLIt

the operation of raising and lowering indices to construct new tensors
associated with any given tensor. To lower a contravariant index (say j) we

muItiply the tensqr by gii and sum against j; for example

~ii~.!~b = T.%. (A3.25a)
.

Notice that it may bi necessary to use a notation that shows explicitly
which index is affected, as was do-ne here by filling vacant positions with
dots, because in general the tensors g,jTik = T~k and gijrrki = T! will be

ditlerent. The operation of raising covariarrt indices proceeds similarly; for
example

Tki ~,giiTfu~= .. (A3.25b)

which shows expl icit]y that the operation of raisin’g is the direct inverse of
lowering. These operations can also be performed on relative tensors.

[n the case of vectors the notation is unambiguous, and we can write

Ai = gijA i (A3.26a)
and

A t = giiAi. (A3.26b)

Moreover we have

At = giiAi = g,;gikAlc = 13;A~ =AL (A3.27)

which shows the complete reciprocity of contravariant and covariant com-

ponents,
The fact that we can raise and lower indices at will shows convincingly

that, as mentioned before, the contravariant, covariant, and physical com-
ponents of a tensor are all merely different representations of the same
physical entity. A direct geometrical interpretation of this relations ip can
be most easily provided for vectors. Choose a set of basis vectors along
coordinate curves:

ai -r. .,. (A3.28)

‘Then

ds’==dr “ dr= (r,, dx’) “(r,i dxi) = (a, oai) dx’ dxi = gii dx’ dx’
(A3.29)

shows that ai . ai = gii. Furthermore we see that these vectors are not in
general unit vectors because a(i) . a(il = g(i)(i) is not necessarily unity. NOW

resolve A along this basis: A = Atai. Then we can see ihat the geometrical
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interpretation of the contravariant components of A IS that (g(i)(i) )l,2Ai is

the length, along the unit vector ei = ai/(gci)(iJ”2, of the ith edge of the
paral Ielepiped whose diagonal is A.

Alternatively, define the reciprocal basis set

ai -(ai Xak)/g”2 (A3.3CI)

where (ijk) is a cyclic permutation of (123). Then clearly ai . a; = 81, and by
using (A3.30) in (A2.40] it is easy to show that

~i = g]lz(ai Xak), (A3.31)

where again (ijk) is a cyclic permutation of (1.23). Moreover, because

ds2 = h “ dr = (a’ dxi) “ (a’ dxi) = (a’ “ai)gi~gil,. dx~ dx’” = g~,ndxLdxr~,
(A3.32)

we see that g~,m= gi,gi,,l(ai . a;). Contracting both sides of this equality
against gipg’na we find

FPi’n%.= & ~?=& = gL@g’nmgiLg,n.(a’ . aJj = 8? 8~(a’ “ai) = am “ae,
(A3.33)

so that we must have ai “a; = gi’.
Now resolve A along the a’ as A = Aia’. Then

A.a, =(A~ak) “ai=A~8~=Ai-(A~a~) “ai =(a, “ak)A~=gi~Ak
(A3.34)

which shows that the Ai are in fact the covariant components associated
with the contravariant components A‘. In addition we can now see that

Ai/(g(,)(,,) “2= A” ei so that the geometrical interpretation of the covariant
112is the lellgth of the orthogonal projec-components Ai is that Ai/(gti)(i))

tion of A onto the LLnit vector that is tangent to the xi coordinate curve.
[See (A2, $37.22 and 7.35) and (S1, $45) for further details.]

The geometrical interpretations given above show that in orthogonal

Cartesian coordi natcs, for which the g(i)(i)= 1, the contravariant and
covariant coordinates of a vector are identical. But in curvilinear coordi-

nates one sees [e.g., from (A3. 18) and (A3.26)] that the two types of
abstract components can be quite different, and moreover, from the
discussion above, that individual components of a given type do not
necessarily even have the same physical units (cf. $A3 .7).

A3.6. Scaiar Product

The natural covariant generalization of (A2.5) is

a . b = aibi = giiaibi = giiaibi. (A3.35)

This expression is manifestly invariant under coordinate transformation:

tii~ = (dx P/dIi)aD(d2i/dxq )b” = 8~aobq = Uabq. (A3.36)
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The natural covariant generalization of (A2.1) for the magnitude of a
vector is

Iai = (aiai)”z = (giiaia’)]’z= (g’iaiai)”z. (A3.37)

Furthermore, this suggests that we take as the covariant generalization of
(A2.6) the expression

cos 9 = (aiht)/[(qai)’’2 (bibi) “2] = (giia16; )/[(giJaiai) “2(gijbibi)~’2].

(A3.38)

As before, two vectors are considered to be orthogonal if cos 6 = O.

‘1) O O), (O, dx(z), O), and (0, O, dx(3))Choosing displacement vectors (CLX , ,
along the coordinate curves of a three space we find from (A3 .38) that the
angles 0,2, (31s, and 02~ between these curves are

Cos f)L*= g,J(g, ,g22)”2 (A3.39a)

Cos t?L3= g,3/(g,l g33)”2 (A3.39b)
and

Cos f3*3= g* J(g22g33)2. (A3.39c)

From (A3.39) it immediately follows that the necessary and sufficient
condition for a curvilinear coordinate system to be orthogonal is that gij -0
for i #j. In this important case, which is the on!y one we considel- in OLLr

work, the metric tensor is diagonal and its reciprocal is simply g(i)(i)=
l/gcil(i). For example, in spherical polar coordinates g 11= 1, gz2 = I/rz,
g33 = ~/r2 sin2 %,

A3.7. Physical Components

Consider an or~hogonal coordinate system in three-space. The metric is
diagonal and the line element can be written

dsz = (h, dX(’))2T (h2 cfx(2])2+(hg dX(3’)2, (A3.40)

where hi = (g(,) (L))l’2. lt is clear that the increment of path length associated

with a coordinate increment dx’ is not dxi itself, but ds(’) = Ii(i) dx(i). More
generally, using (A3.37) to calculate the length of a vector we have
CZz= (h, a(l’)z+ (h2a(2))2 - (hqct[q))2. To obtain consistency with the
Pythagorean theoram, we find that with the abstract contravariant compo-
nent a ‘i) we must associate the physical component

(i)a(i) = h(i)c~ (A3.41)

Using (A3.37) again, now for covariant components, and noting that

g “)(i) = (l./h,)z, we have az = (a(,,/h1)2 + (a(21/hJ2T (a(.)/h3)2 which shows

that the physical components are related to covariant components by the
expression

a(i) = a(i~/h(i). (A3.42)
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To compute the physical components of a tensor T we notice that in

Cartesian coordinates if k‘ anti I-LL are unit vectors along some coordinate

axes, then the expression

~ = -fii~;Wi (A3.43)

gives the physical component of the tensor along those axes. But this
expression is an invariant, and can be applied in curvilinear coordinates as
well. If k is to be a unit vector, we mast have h?(Ai)2 = 1. Thus if we
choose three unit vectors along the X(l), X(2J, and X(3) coordinate curves, we
must have k(, ) = (1/hl, O, O), h(z) = (O, l/hz, O), and k(q) = (O, O, l/hq), re-
spectively. Using these vectors in (A3 .43) we find that the physical compo-
nents of T in terlms of its covariant components are

T(i, j) = T(i)(i) /(h(i) ~(])]. (A3.44)

Carrying out the same analysis for contravariant components we have

T(i, j) = h(ilh(jl T(i](’). (A3.45)

Generalization of these expressions to nonothogonal systems is discussed in
(AZ, $$7.42 and 7.43).

As a specific example, the relations between the abstract and physical
components of a

and

For a symmetric

~11=

vector in spherical coordinates are:

~(u=v V(2)=
l’> Valr, u ‘3) = O+/(rsin 0);

V,=vr, 1+ = ru& 03 = (r sin O)v@;

tensor in spherical coordinates we have

T,,, Tlz = “rrO/r,T13 = T,+l(r sin 9), T22 = TJr2,

T2S = TOb/(r2sin 0), and T33 = T&,/(r sin 0)2,

with analogous formulae for covariant components.

(A3.46a)

(A3.46b)

(A3.47)

A3.8. The Levi- Ciuita Tensor

In curvilinear coordinates where index position is

priate generalizations of (A12-5) and (Az.’2@ are

eo~,,, la~l = e,,,,tU~U& . . . a;,

and
ew’ la~l = eii’’a?a~ . . . a:,

significant, the appro-

(A3.48)

(A3.49)

where a: is the element in the bth row and cth column. In particular, if we

set a:= (tJX’’/d2c), (A3 .48) becomes

Cp.....J=($)(~)eij~.eij.... (A3.50)

—...
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which shows that the covariant permutation symbol is a relative tensor of
weight –1. By a similar analysis one finds that e ~“f’ is a relative tensor of
weight +1. Recalling from (A3.20) that J = (~/g)l’2 ancl that g is a relative
scalar of weight two, we then see that

Eii.,,k=g “zeii...~ (A3.51)

and
~ii...k=

–g
–1/2eij,.. k (A3.52)

are of weight zero, and hence are absolute tensors. These are the covariant
and contravariant components of the Levi -Civita tensor, which is skew
symmetric in all indices.

Using the Levi-Civita tensor we can write a covariant generalization of
the cross product (A2.32) as

CL= ei,ka;b~

01”

c’ = siikajb~.

Similarly the covariant generalization of
associated with an antisymrnetric tensor in

~i = ~eii~~;l’,

and
Qik = ~LJk@i.

A3.9. Christoffel Symbols

(A3.53a)

(A3.53b)

(A2.60) for the vector dual
three-space is

(A3.54)

(A3.55)

As will be seen in $A3.1O, certain combinations of partial derivatives of
the metric tensor appear when we attempt to construct a covariant
generalization of the operation of differentiation. Thus we define the
Christoffel symbol of the first kind to be

[i/, k] ‘~(gik,, + gjk,i - gij,k)> (A3.56)

and the Christoffel sylwbol of the second kind as

Hi
=g’’[jk, 1].

jk
(A3.57)

The rather cumbersome (and customary) notation employed here em-
phasizes that the Chris [oflei symbok are not tensors (see below). By inspec-
tion of (A3.56) it is obvious that [ij, k]= [ii, k], and hence that {; ‘~} ‘{k’ j}.

Notice that in Cartesian coordinates all Christo~el symbols (of both kinds)

are identically zero.
From (A3.56) we easily find the useful result

gii,~ = [ik> ~1+ [~k, i] (A3.58)
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and hence

~’k=gf{i’k}+g{,’k)
(A3.59j

We can also write an extremely important formula for the derivative of the
determinant g in terms of Christoffel symbols of the second kind. From the
fact that g = g[t)iG(’)i, where G ‘i is the cofactor of gij, and recalling that

G ‘i = ggii, we see frolm (A3.59) that

‘J( { ‘ }+g{,’kl)g,k = (~d~gii)~ii,k = GiiKj,k = g& gJ~ ~ ~

‘g({iikl+{j~lzl) =2g{iilcl
(A3.60)

Therefore

{“],,‘k =(ln g’z),~. (A3.61)

For orthogonal coordinate systems, the Christoffel symbols can be

written in a very compact form that is useful for computation. If gii = O
when j+ i one easily finds from (A3.56) and (A3.57) that

{1

i
= ~(ln g,,),,, (A3.62a)

ii

{1i=+(hlg,ij,j,
i~

(A3.62b)

{}

i
= ‘+(gji),J~ii> (A3.62c)

/j
and

{1i =0.
jk

(A3.62d)

in (A3.62), i, j, and k are distinct, and there is no sum on repeated indices.
In particular, for spherical coordinates we find, using (A3. 18) and (A3.62)
that the nonzero Christoffel symbols are

(11 {}

1

22 ‘–r’ 33=
—r Sinz (3,

{}

2 {12= —sin O cos 6, and = I/r, (A3.63)
33 12

{1

3 {13= cot 0, = I/r.
23 13

Last, we must develop the transformation law for Christoffel symbols.
Consider two curvilinear coordinate systems y L and Xti with metric tensors
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hii and ga~,

and
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respectively. Then

hti = (dXti/d~’)(dX@/d~i)gm~‘X~X~~~ (A3.64)

Differentiating hij we have

The second step follows because a and ~ are dummy and ga~ is symmetric.
Now permuting i ~ j -+ k ~ i in (A3.66) and adding, we find that

[~~, ~]= ~(hik,i + hki,j – hii,k) = ‘yx?xyk[@, Y]+ ‘~ix!kfb, (A3.671

which shows that [c@, y] is, in general, not a tensor. It would be a tensor
only if the second term on the right-hand side were to vanish identically,
which happens to be true if the coordinate transformation is linear (i. e.,
x C’= C;yt where the c’s are constants), but not in general. Using (A3.57)
and (A3.65) in (A3.67) we find

Equation (A3.69) shows that {~i} is also not in general a tensor, although
it would be if the coordinate transformation were linear. Finally, by
contracting (A3.69) against x~. we obtain the useful result

‘;i=x:k{;jl-x;x:{;/31
(A3.70)

A3. 10. Cozxwiant Differentiation

We are now in a position to generalize the notion of differentiation into a
covariant form. Suppose we clifferentiate the covariant vector

E?i= (dx”/dy ’)Aa = x~AW. (A3.71)

We obtain

Bi,i = .X~X~AcK@+ x~iAa. (A3.72)

It is obvious from (A3.72) that B,,i is not a tensor. But if we use (A3.70) in



(A3.72) we can

or
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rewrite the equation as

B,,; –

Thus the combination

(A3.74)

{1B,;i-B, j– k B~
~~

(A3.75)

is a covariant second-rank tensor, and reduces to the ordinary partial
derivative of B, in Cartesian coordinates. We therefore take (A3.75) as the
definition of the cocarictnt derizxttiue of the vector Bi.

By a similar analysis, one can show that the covariant derivative of a
contravariant vector is a mixed tensor of the second rank:

(A3.76)

The extra terms containing Christoffel symbols that appear in equations
(A3.75) and (A3.76) account for the effects of curvature of the coordinate
system [see (S1, $46) for a detailed discussion].

l-hese formulae are easily extended to mixed tensors of arbitrary rank.
We find that the covariant cierivative of the mixed tensor A ~~:k’ is

Jk+{:q}A~b’’c+{:q)A~’’c++{:qlA~h’” ,A377,
,,k;q= A?.bcAUb...C

‘{iaqlA:f’’’{YqlA~A:’’’:--{~qiC;h’iC

In particular, for a contravariant tensor of the second rank,

(A3.78]

INote in passing that the covariant derivative of a scalar is identical to its
ordinary partial derivative, and that the operation of covariant differentia-
tion increases the rank of the resulting tensor by one relative to the original
tensor. Furthermore, it is straightforward to generalize (A3 .77) to relative
tensors [see, e.g., (Ll, ~36) or (S2, $7.2)], but we will not rec{uire this result
in our work.

The derivation of formulae for covariant ditlerentiation given above
proceeds by direct analysis. While this approach has the merit of brevity, it
fails to communicate the deeper geometrical significance of the process,
which raises questions concerning parallel transport and transplantation of
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vectors in a curved space. Discussions of these important and interesting

matters, and generalizations of covariant differentiation to nonmetrical
spaces, c~anbe found in (Al, $$2.1, 2.2, and 3.1), (L2, $$33–36 and 39–41),
and (S2, Chap. S).

Let us now calculate the cov-ariant derivative of the metric tensor; from
(A3.77) we have

gil ;k = gij,k
‘{i;lgi-{j’klgf

(A3.79)

But from (A3.59) the right-hand side is identically zero. Thus we have
Wcci’s theorem: the covariant derivative of the metric tensor (or its
reciprocal) is identically zero in any coordinate systelm. This implies that in
tensor equations we may freely interchange the operations of raising and
lowering indices and of covariant differentiation. By a similar calculation
we find that the Kronecker delta also behaves like a constant under
covariant differen tiat ion:

Suppose now that through some region in which a tensor field A ~“i’ is
defined, we choose a specific path, parametrized in terms of a path-length
variable s as xi(s). Then we define the intrinsic (or absolute) derivative of
the tensor field along this path to be

Here we have written (dA~!:iC/ds) = (2A~h:iiC/dXc’l(dxa/ds). In pal-titular, for
a contravariant vector Ai,

~Ai dAi

—+
{1

L A’:.
(% = ds j k

(A3.82)

In (A3.81) and (A3 .82), s is an arbitrary path-length parameter. But in
problems of ffuid flow, it is natural to describe the path followed by a fluid
element in terms of the time t, so that xi = x:(t), and (dxi/dt)=x~, = u;, the
\elocitY of the fluid element. in addition we must then allow for the

possibility that any vector or tensor field may be an explicit function of
time as well as of position, say A’ = Ai(r, t).Suppose now we choose time
as the independent variable; then the intrinsic derivative with respect to
time is the derik’ative with respect to time along the path followed by the
fluid, that is, as measured in a frame moving with the fluid. In physical
terms it is therefore identical to the Lagrangean derivative employed in
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descriptions of fluid kinematics and dynamics (cf. $15). For example

{“1(8A’/8t)=(DA’/Dt) = A: L+A~izi + t Aiv’. (A3.83)
/k

Equation (A3 .83) is the covariant generalization of the customary Lag-
rangean derivative for the vector field Ai; similar formulae can be written
for tensors.

A3. 11. Gradient, Divergence, Laplacian, and Curl

Covariant generalizations of the various operations with the symbolic
operator V discussed in $A2.1O can in most instances be obtained simply
by replacing the partial derivatives with covariant derivatives. In the case
of the gradient of a scalar field, the two derivatives are identical f,i = f,i,
and we obtain a covariant vector, say F. For instance, in spherical coordi-
nates the covariant components of F are (df/~r, tIf”/df3,df/@). Then from
(A3.42) we find physical components

(A3.84)

One can of course also form the gradient of vector and tensor fields, for
example, (V7Ji)j= ~~j, etc.

The covarian t generalization of the divergence of a vector is

{}

i
V“v=v;i=v;i+ v’.

ij
(A3.85)

1n view of (A3.61) we can rewrite (A3.85) as

v:;= g–llz(gjfzu~),, (A3.86)

which is a convenient form for calculating V ov in curvilinear coordinates.

For example, in spherical coordinates g”2 = rz sin 6, and we find

(A3.87)

Converting to physical components via (A3 .46a) we recover the familiar
result

For an arbitrary tensor we can form a divergence by contracting the
covariant derivative index against any contravariant index, for example,
A\,... iL.. L

, ,.j,,, ,,:. In our work we have occasion to deal only with second-rank
tensors, which, in view of (A2. 17), we can assume to have a definite

.
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symmetry. Applying (A3.78) to a symmetric tensor we find, using (A3.61),

‘:=s:;+{kzjlsk’+ {Jj}s’k=g-’’2(2sii)>i+{ji}siksik

(A3.89)

For an antisymmetric tensor, individual terms in the last sum in (A3.89)

cancel in pairs because the Christoffel symbols are symmetric in j and k,
and we obtain the simpler result

A:~,= g-’/2 (2 Aii],j,,j, (A3.90)

Using (A3.89) and (A3.63) for a symmetric tensor Tii in spherical coordi-
nates and converting to physical components via (A3.47) we obtain the
usef u] results:

and

1

[

1 d(r2T,4) + 1 d(sin 19TO+)~Tyii. — 1 t7T6d

r sin 6 rz (3V r sin O do
r ‘in e “b (A3.91c)

1
+; (T,4, + cot 0T,4) .

The additional factors outside the square brackets accou nl for the fact that
the cluantities on the left-hand side of (A3.91) are contravariant compo-
nents, not physical components.

The easiest way to find a covariant expression for the Laplacian of a
scalar is to follow (A2.49) and take the divergence of the vector obtained

by forming the gradient of ~. Thus gii~,i is a contravariant representation of
Vf, hence

v~f= (g’;f,i):, ==g-’/2 (*g/if, L),i),i (A3.92)

where we have used (A3.86). Similarly, for a vector we could write

V2ak = (giia~),i.
As an example, the Laplacian of a scalar in spherical coordinates is, from
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(A3.92),

681

For the CLII-Iof a vector we can obtain a covariant generalization of
(A2.50) by replacing the permutation symbol with the Levi-Civita tensor
and partial derivatives with covariant derivatives. Then

(Vx a)’= &’ikak;i = g-’’’e’ika~;i = g-’’2(uk;l – al:,)

‘g-’’2(ak{k{jlaLaaik+{j{klaL)L)‘A394)
where (i, j, k) are distinct and are a cyclic permutation of (1, 2, 3). But the

Christoffel symbols are symmetric in their lower indices, so that (A3.94)
reduces to

(vxa)L = g-’’’(~k,j – ai,~), (A3.95)

which is easy to evaluate. For example, in spherical coordinates g”2 =
r2 sin 6, and converting to physical components via (A3.46) one easily finds

(A3.96a)

Finally, note in passing that (A3.94) shows
antisymmetric tensor Aii = ai,i – Ui,i.

da,

‘-1
(A3.96c)

do

that (V X a) is the dual of the

A3. 12. Geodesics

ciy ’; we know that all components

NOW consider the same operation

Suppose that a constant vector A in Cartesian coordinates is Imoved
parallel to itself through a displacement
A’ relnain unchanged, so that dA’ = O.
transformed to curvilinear coordinates in which B“ = (dxm/dyi)A’-= x~Ai.
Then

dBa = X~jAi d~i +X? dAL = .K~iAiy~6dx~ (A3.97)
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because dA i = O. Thus for parallel displacement,

Now using (A3.70) with {i’j} = O for Cartesian coordinates, (A3.98) be-

comes

If we parametet-ize a path as x’(s), then (A3 .99) shows that for parallel

displacement of B along that path the intrinsic derivative will be identically

zero:

In a Euclidian space we can construct a straight line by choosing the

curve that has the property that an arbitrary vector displaced along it

always remains parallel to itself. We generalize the notion of a straight line

in a Rielman nian space to that of a geodesic, which is the curve generated

by parallel displacement of its unit tangent vector; that is, along a geodesic

the tangents at all points are parallel, so that the curve’s direction remains

“constant” in the curved space. The equations describing a geodesic follow

immediately by substituting B’ = A; = (dxi/ds) into (A3.1OO), which yields

dzxi

–-Hi dx; dxk

ds2 +
——=0.

jkdsds
(A3.101)

Other forms are discussed in (S2, $2.4).

Another property of straight lines in Euc]idian space is that they are the

shortest distance between two points. If one requires that a geodesic have

the property of minimizing the path length between two points and

therefore that

(A3. 102)

then a variational analysis leads again to (A3. I 01 ) [see e.g. (Al, 55–57),

(Ll, $128), or (S1, $58)].

A3. 13. Integral Theorems

It is possible to generalize the divergence theorem and Stokes’s theorem to

curvilinear coordinates in n dimensions, and also to nonmetrical spaces.

We will not develop these generalizations here because we do not require

them in our work; the reader may pursue these matters in (S2, Chap. 7).
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Glossary of Physical Symbols

a
a,,

aR

a-r
aX, c~, a.
a<,
a

;
.4
A,

Ai,
Al<
A“
do
b
6,
b ,.
e
B,i

B,,
Bii
B(T), B
B.(T), B(u> T), B,
Bo
c
c,.
cl,
c.
~“

c

c AB
c,
c,i
c,.

Sound speed
Frec[uency quadrature weight
Radiation density constant
Isothermal Sollnd speed
Components of acceleration in (x, y,z) directions
Bohr radius
Accele]-ation
Invariant opacity
Atomic weight
Surface area
\/ector part Of Chapman-Enskog solution of Boltzmann

equation
Einstein spontaneous emission probability
Amplitude of kth Fourier component
Four acceleration
Avcrgadro’s number
Impact parameter in collision
NomLTE departure coef%cient, nJny
Angle quadrature weight
Dimensionless impact parameter
Tensor part of Chapman–Enskog solution of Boltzrnann

equation

Einstein absorption probability
Einstein Stimulated emission pl-obability
Integrated Planck function
Planck function
Boltzman n number
Speed of light
Specific heat at constant pressure
Specific heat at constant pressure per heavy particle
Specific heat at constant volume
Specific heat at constant volume per heavy particle
HeaL capacity
Bimolecular collision frequency
Numerical constant in Saha ionization formula
Collision rate from level i to level j
Collisional ionization rate from level i
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c“
c=

d
d.
D
D,i

%;Dt]
(Df/Dt) .<,,,
%f
D
e
e

edi.,oc

ecxc

eio,,

ero,

et..,,,

e.,),
eiik,ei,k

1?
(2

z
e

E*(J), T), E:

E(x> f)> E
E(x, t; 7))>E,,
E(z)
z%
8
8
~

g “, -1-I

g’ (m)

E

Heat capacity at constant volume
Coefficient in power-law potential
Diameter of rigid elastic sphere
Average distance between particles
Debye length

“rraceless rate of strain tensor
Covariant traceless shear tensor
Lagrangean time derivative (fluid element fixed)

Collisional source term in Boltzmann equation
Differential operator in Boltz]mann equation
Traceless shear tensor
Electron charge
Specific internal energy (per gram)
Internal energy of molecular dissociation
Internal energy of atomic excitation
Internal energy of atomic ionization
Internal energy of molecular rotation
Translational internal energy
Internal energy of molecular vibration
Permutation symbol
Jnlcrnal energy per unit volume
Intern al ene]-gy per particle
Total specific internal energy of radiating fluid, e,,,. + (E/P)

Invariant emissivity
‘rotal interns] energy per unit volume, including rest energy,

p,3(c27 e)
‘rotal energy of particle including rest energy
Radiation energy spectral profile
Energy flux per particle at infinity in stellar wind
Heat-conduction flux per particle at infinity in stellar wind
Rate of strain tensor
Energy transported in wave per period
Covariant shear tensor
Radiation energy density in lhermal equilibrium at tempera-

ture r, 4mf3/c
Monochromatic radiation energy density in thermal equilib-

rium at tempel-atu re T, 47rB,,/c
Radiation energy density
Monochromatic radiation energy density
Wave-amplitude scale factor
Energy flux in spherical flow
Explosion energy
1nternal energy in a volume V
Scalar part of Eckart decomposition of radiation slress-

energy tensor
Total energy in flow at time t“+’
Heat-conduction flux at infinity in stellar wind
Rate of strain tensor
Oscillator strength of spectral line
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fl
f,, f(x, t; u)
fo
fl

f
f(x> u, t)

fR(x, ~;w P), fl<
f
fR

{“
F13B
F<’
F’(v)

F
F(x> t), F
F(x> t; u)>F.
F
F“

g
g
g
gdccmm
gi
gii, !%!

%.
gR.1
g;

FOUNDATIONS OF RAD 1ATION HYDRODYNAMICS

Line radiation force
Monochromatic variable Eddington factor
Maxwellian velocity distribution
First-order term in Chapman-Enskog solution of Boltzrmann

equation
Dimensionless distribution function
P.aMic~c distribution function
Photon distribution function
Newton ian force density
Radiation force
Radiation flLlx spectra] profile
Radiation flLLXfrom black body
Four-force density

Spontaneous recombination probability for electrons of speed
v

Force
Radiation flux
Monochromatic radiation flux
Particle flux in spherical flow
Vector part of Eckart decomposition of radiation stress-

energy tensor
Acceleration of gravity (planar geometry)
Determinant of metric tensor
Relative speed of collision partners
Statistical weight of free electron
Statistical weight of state i
Metric tensor
Radiative acceleration
Radiative acceleration from spectral Iines
Invariant pho[on distribution function for blackbody radia-

tion at rest relative to observer
Gravitational acceleration
Relative velocity of collision partners
Newtonian gravitation constant
Radiation four-force density
1nduced recombination probability for electrons of speed v

Center of mass velocity
Space components of radiation four-force density
Amplification matrix of system of difference equations
Racliative gain rate per unit mass
Total radiation momentum density, F/cz
Monochromatic radiation momentum density, F./c’
Planck constant
h]2m
Specific enthalpy
Normalized flux perturbation, HI/Bo
Enthalpy pel- particle
Antisymmetric part of specific intensity, ;[f(+w, ~) – [(–w, P)]
Total enthalpy per particle, including rest energy, WJC,(C2+-e) +

(PIN)
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H
H,,
H(x> t), H
H(x, t;v),H.
i

1

1(x, t;n, v),
f(p, v), I,,, I

1(x, t; +n, v),
I(+w, v)>1“”

1(x, t; –n, v),
T(–w>v), I-

.9
Y(W, V),.9
I

jl
i(w, v), iwL.3r
~
J
7

‘(fL,fi)
J(X>t; v), J“
k
k
k,+
k.,
k.
kX,k,>k=
k
k
K
K.
K,.
K,
K.
K“
K.
K
Kn
1
[
L
L.
L(r, r), L(r), L,,
L
L, L;:’
9
5?
m
m

Scale height, density scale height
Pressure scale height
Integrated Edclington flux, F/47r
Monochromatic Eddington flux, F,.,/4Tr
LJnit vector along x axis
Boltzmann collision integral
Specific intensity

Outward directed intensity

Inward directed intensity

Boltzmann collision integral
Invariant intensity
Unit tensor
Normalized mean intensity perturbation, J, /BO
Symmetric part of specific intensity, ~[l(+w, v)+ 1(–K, v)]
Unit vector along y axis
Jacobian determi nan L of transformation
Mean intensity averaged over line profile, f @,,JVdu
Boltzman n collision integral for functions f, and fi
Monochromatic mean intensity
Boltzman n constant
Wavenumber

XHIXR

d KP

Dimensionless coefficient in pseudoviscosity
Components of wave vector in (x, y, z) directions
Unit vector along z axis
Wave vector

Coefficient of thermal conductivity
Electron thermal conduction coefficient
Conduction coefficient of a Lorentz gas
Proton thermal conduction coefficient

Radiative conductivity
Photon pi-opagation four-vector
(c/4m)PL
Total conductivity of radiating fluid
Knudsen number
Characteristic length
Affine path-length variable
Wave damping length
Eddington luminosity

L Luminosity passing through sphere of radius r
Linear difference operator
Lo]-entz transformation malrix
Radiative loss rate per unit mass
Thermal ization length
Mass
Column mass
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m
m
m,

m!4
m,,

m ~,
m
tii
w~d
M
M=,
M,
w
MW3

M(t)
M
k
./it
M
n
n.

n~l
n:

n,,
n,

n,, nV, n.

nti
n(k)

nE(k)

n

n

N
N,,
Ni
NLI

“v

P

P

P.> Pm

PI

PI

D

P
h
P
P

Electron Imass
Relativistic mass
Electron mass
Mass of hydrogen atom
Proton mass

Rest mass
Mass flux (planar geometry)

Reduced mass of collision partners
M? – 1,where M, is upstream Mach number in shock
Total mass of collision partners
C1-itical Mach nulmber
Mass contained within sphere of radius r
Photon four-momentum
Material stress-energy tensor
Radiation force multiplier
Mach number
Mass of star
Radial mass flux (spherical geometry)
Material stress-energy tensor
Number of moles of gas
Number density of free electrons
Number density of neutral hydrogen atoms
Number density in level i in thermal equilibrium
Number density of protons
Number density of particles of species s
Components of photon propagation vector in (x, y, z) direc-

tions
Number density of ions
Inverse radiative relaxation time for disturbance of

wavenumber k
Inverse radiative relaxation time in Eddington approximation

for disturbance of wavenumber k
Direction of photon propagation
Unit normal to SLILfZiCe

Total number density of particles
Number density of all (neutral plus ionized) hydrogen atoms
Number density of ion state j in all excitation states
Nusselt number
Total number of particles in volulme V
Jmpact paralmetcx
Pressure
Gas pressure
Photoionization probability
Pressure perturbation in wave
Total pressure in radiating fluid, pw.i, + P.,,.I

Momentum
Fractional pressure jump across shock front, (PZ– P 1)/P,
Complex amplitude of pressure perturbation in a wave

zz or rr component of radiation pressure tensor
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P*
P.
P’,
P,i
P,r, l?,,,,P&*

P.x, P.,, P,,

P“
P.UB

p@, pii

P.

p+k
“

Pe(T)
P(X> [ ; v), F“
Pe
Pr
P“’

P
P
P(X>t; v), P,,

q
4
q>)
q (~)
q

5$
,.+1

Q
Q
Q
Q<’
Q
r

r.
rc
r,
r,

rO
i
4
R
R
R
R
R,i

Thel-mal radiation pressure

Average collision probability per unit length
Photon destruction probability>
Probability of transition from level i to level j
Diagonal components of radiation pressure tensor in spheri-

cal geometry
Diagonal components of radiation pressure tensor in planar

geometry
FOLlr-lllOmentUlll
Projection tensor
Radiation pressure tensol-
zz or rr components of monochromatic radiation pressure

tensor
Monochromatic ther]nal radiation pressure
Photon escape probability
Mean monochromatic radiation pressure
Peclet number
Prandtl number
Tensor part of Eckart decomposition of radiation stress-

energy tensor
Projection tensor
Radiation pressure tensor
Monochromatic radiation pressure tensor
Heat transferred to unit mass of gas
Rate of heat input to gas
Sphericality factor
Hopf function
Thermal COLIdLlCtiO17flux
Integrated heat input to flow at time t“”’”’
Heat gained or lost by gas
Viscous pressure, pseudoviscous pressure
–(d in p/d In ‘r).

Heat-flux four-vector
pseudoviscosity tL3nSOr

Radial coordinate in spherical coordinate system
Ratio of Continuum to !ine opacity, KC/X,

cL/cBo
Core radius
Critical radius in stellar wind
Radial position of shock
Sonic radius in stellar wind
MZLXkTLLUTIcompression ratio in shock (y+ I)/(-y – 1)
Radial unit vector in spherical coordinate system

Generalized Lagrangean radial coordinate

Complex amplitude of density perturbation in a wave
Gas constant for particular gas
Spectral radius of matrix
Ste[iar radius
Radiative rate from level i to level j
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R,K Photoionization rate from level i
R“B Radiation stress-energy tensor
R(n’, v’; n, v) Redistribution function
Re
Re,l
%?
R
s
s
s
se
s.,..

sLT.,,.
s
s
s,
S,.z,d
S’x
s;
S“p
s,,
t
t=
t<’

tfJ

t~

tee

t

;D

t~c

t~

l,,r

tp~

tp.

t ,.

t,e,<=

tn-
t~,<(k), t~,<
t,
t~
t
t.,,c
L
‘T
T.
TC(,
Tii
7-,..
T~

Reynolds number
Radiative Reynolds number
Universal gas constant
Radiation stress-energy tensor
Path length
Spacetime interval
Specific entropy
Electron scattering coefficients per gram, n. CTC/p
Entropy of electronic excitation
Translational entropy
Entropy in volume V
Surface, surface area
Line source function
Entropy of thermal radiation
Entropy-flux density four-vector
Projection tensor
Total radiating-fluid stress-energy tensor, f#@ + RaB
Source function
Time

Self-collision time
Radiation diffusion ti]me, L2/cku
Deflection time
Energy-exchange time
Electron self-collision time
Electron-proton energy-exchange time
Ffuid flow time, L/v
Inelastic collision time
Radiation pressure disruption time
Nuclear time scale
Proton self-collision time
Radiation flow time, l/c
Radiative cooling time
Relaxation time
Radiative recombination time
Radiative relaxation time

Strong-coil ision time
Photon flight time, A./c
Surface force on fluid element
Viscous drag force

Equivalent electron optical depth
Temperature
Electron temperature
Effective temperature
Stress tensor
Ion temperature
Kinetic temperature
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TD
‘rr<
T,
T-
T+
T

%
u
u
v
v.
Vc,c
Vg

v;,,
up

v,
v,
v,

Vx,v>,, v=

v~

‘%
Vm

v

V!z

VI
v

v

v<’

“v
w

Wz

‘k
w)
w

Proton temperature
Radiation temperature
Temperature perturbation in wave
Temperature immediately in front of shock
Temperature immediately behind shock
Stress tensor
Fluid speed relative to shock front
Speed
Velocity component along x axis

Critical speed of D-type ionization front
Horizontal component of group velocity
Critical speed of R-type ionization front
Palticle velocity
Complex amplitude of horizontal component of wave velocity

Random particle speed
Components of particle random velocity in (x, y, z) directions
Random velocity of particle
Dimensionless random particle speed
ith component of dimensionless random particle velocity
Traceless outer product of dimensionless random velocity

components
Dimensionless random particle velocity

Specific volume (l/p)
Speed
Velocity component along y axis
Critical velocity in stellar wind
Escape velocity
Group speed
Velocity gradient tensor
Phase speed
Radial velocity in spherical coordinate system
Shock speed
Phase trace speed
Components of velocity in (x, y, z) directions
Tangential velocity in spherical coordinate system
Azimuthal velocity in spherical coordinate system
Terminal flow speed in stellar wind
Fluid velocity
Group velocity
Velocity perturbation in wave
Specific volume in shock theory (1/p)
Volume
Four-velocity
Materiaf volume (fixed in fluid)
Velocity component along z axis
Vertical component of group velocity
Quadrature weight
Vertical component of wave velocity
Complex amplitude of verticaf component of wave velocity
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w

w
w
w ,,+!

x
x
x

X.f

x

xl

x

XJf(x)]

Y

z
Zc)cc
Z1.o,
z,,.,,,,,
zv,b
o!

a
0!
a

r, r,, r2,r3
r;.

Rate of energy input from nonmechanical sources
Thermodynamic probability
Work done by gas
Boundary work term in flow at tilme t’+’

Cartesian coordinate
Degree of ionization [e.g., n$(n,l + nP)]
Dimensionless frequency displacement from line center,

(u – .o)/AvD
Position of a front
Position vector
Fluid displacement in wave
Complex amplitude of horizontal component of wave dis-

placement

X operator

Cartesian coordinate
Cartesian coordinate
Dimensionless radiative relaxation rate, nt,
Dimensionless wavenumber, ak/a
Charge number
Complex amplitude of vertical component of wave displace-

ment
Partition function
Partition function for electronic excitation
Partition function for molecular rotation
Partition function for translational motions
Partition function for molecular vibration
Angle of wave phase propagation relative to horizontal plane
Exponent in power-law potential
Exponent in radiation force law
Ratio of radiation pressure to gas pressure in thermal equilib-

rium, P*/pX

Mean photoionizatio n cross section
Bound-bound absorption cross section
Bound-free absorption cross section
Free–free absorption cross section
Photoionization cross section
Coefficient of thermal expansion
Effective line optical depth in stellar wind
l/kT
VIc

(rLcue/x,)= “1/T,
Ratio of specific heats
(1-112/c2)-”2
Dimensionless relative velocity of collision partners
Circulation
Force ratio g~/g
Generalized adiabatic exponents
Rtcci rotation coefficient
Dimensionless centel- of mass velocityr
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(J,
0

Kc

KE

K.!

KP

Continuum destruction probability
Width of shock front
Phase shift between quantities A and B in a wave
Kronecker delta symbol
Dirac delta function
1ntrinsic derivative with respect to time
Thickness of temperature relaxation layer
Line DoppLer width
Momentum flux in stellar wind normalized to momentum in

radiation field
Rate of thermonuclear energy release (per gram)
Therrnalization parameter
Transformation between coordinate and tetrad frames
Ionization potential (from ground state) of hydrogen
Energy above ground of state i
Excitation energy of state i of hydrogen
Ionization potential above state i
Ionization energy
Wave energy density
Residual energy at infinity per particle in stellar wind
Mean energy per ionizing photon
Basis vectors in orthonormal Letrad frame
Basis vectors of coordinate system
Coefficient of bulk viscosity
Bulk viscosity coefficient for radiation
Vertical displacement of fluid element in a wave
Photoionization sink term in line source function
Volulme ratio in shock, V/V, = p,/p
Line emission coefficient
Lorentz metric
Maximum compression ratio in radiation-dominated shock
Emission coefficient
Scattering emission coefficient
Lorentz metric tensor
Fluid expansion
Polar angle in spherical coordinate system
Recombination source term in line source function
Time-centering coefficient in implicit difference equation,

()<~<1

Normalized temperature perturbation, T, /TO
Unit vector in direction of increasing polar angle in sphericaf

coordi n ate system

Complex amplitude of temperature perturbation in a wave
Polar angle of radiation propagation vector relative to local

outward norm al in planar or spherical geometry
Continuum opacity
Absorption mean opacity
Absorption mean opacity
Planck mean opacity
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KP.g Group Planck mean
K, Coefficient of adiabatic compressibility

KT- Coefficient of isothcr~mal compressibility
K(X, t;n, U), Ku, K True absorption coefficient
A

A

A

A

AD

A,

A.

A,

A

A

AJf(x)], A.

A

w

F
F
t-k
!-&?,
k“
Po
~R

P@

w’

F

Pw

v

v

v

v,

Vo

$

t

(k

L

[1

n

[-I,,

m

P

P

P’

PO

Coefficient of dilatational viscosity (second coefficient of vis-
cosity)

Dimensionless potential energy in stellar wind
Eigenvalue
Particle mean free path
Photon mean free path
Free-flight distance of photon in time At, c At
Rosseland mean free path, xi’
Photon mean free path at frequency v. x:’

Ratio of maximum to minimum impact parameter
Wavelength
Lambda operator
Lorentz transformation in Minkowski metric
Angle cosine of photon propagation vector relative to out-

ward normal, ~=n ok or n .?

Coefficient of dynamical viscosity
Mean molecular weight
Electron viscosity coefficient
Angle-quadrature point
Proton viscosity coefficient
Artificial viscosity coefficient
Coefficient of radiative viscosity
Mi nkowski metric
Effective viscosity coefficient for one-dimension al flows,

~’=w++~

Momentum density
Wave momentum density
Frequency
Kinematic viscosity coefficient (p/p)
herse radiative relaxation tilme for optically thin disturbance
Occupation number of state i (number of particles in state i
in volume V)
Line-center frequency
Similarity variable
Average thermal coupling parameter
Amplification factor of k th Fourier component
Monochromatic thermalization parameter, (r+ sc$,,)/(r + @u)
Horizontal displacement of fluid element in a wave

Gas pressure ratio in radiating shock
Momentum flux-density tensor
Momentum flux-density tensor
Newtonian density
Lab density of proper mass, wo

Lab density of relative mass, -yzpo

Proper density of proper mass
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Poo

PO(IO
PI

P1
P*

a-J-, U(($

~(z)

da x); dw> Uz;
u;, u;)

cr(x, t;n, v], a,,

T

T

T

To

t-e

71
TR
TA
T,.,(X><), ‘r,

@

@

4
4,
4“>4(V)
+(r), 4

d?
h.
a

Mass density of fluid including internal energy, pO(l + e/c2)
Mass density of fluid including enthalpy, PO(I + e/c2) + p/c2

-Y2POIXJ
Density perturbation in wave

YPOOO
Thomson electron scattering cross section
Viscous stress tensor
Line scattering coefficient

Stef an-Boltzman n constant
Total collision cross section

Coil ision cross section in transport coefficient

Collision cross section
Scattering coefficient
Viscous stress tensor
Strength of vortex tube
Average COIiision time
Dimensionless temperature in stellar wind

Optical depth
Proper time

Scaled temperature in thermal front
Wave period
Opt ical thickness of disturbance of frequency o traveling with

speed of sound. CLK/OJ

Acoustic-cuioff period
Optical thickness of disturbance of frequency OJtraveling with

speed of light, CK/CIJ
Electron optical depth of stellar wind
Effective line optical depth
Rosseland optical depth
Optical thickness of disturbance of wavelength A
Monochromatic optical depth
Azimuthal angle in spherical coordinate system
Photon number fiLIx

Velocity polential
Wave phase
Line profile function
Potential
Newtonian three-force
Wave energy flux
Unit vector in direction of increasing azimuthal angle in

spherical coordinate system
Azimuthal a.ngleof radiation propagation vectoi around local

outward normal in planar or spherical geometry
PolentiaL
Viscous dissipation function
Scaled first-order term in Chapman-Enskog solution of

Boltzmann equation, f,/fo

Four-force
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Saha–Boltzmann factor of bound state i of ion state j relative
to ground state of ion j -1. [rL~= t~en(,,i-lcD,,(T)]

Phi operator
Angle of deflection in collision
Thermal diffusively, K/pc,
13ux mean opacity
Line absorption coefficient
Rosseland mean opacity

Group Rosseland mean
Opacity coefficient (per unit volume)
Dimensionless kinetic energy in stellar wind
Wave phase
Photon number density
SOIution vector in complete linearization method
Angular frequency
Solid angle
Acoustic cutoff frequency
Brun t–vaisili frequency
Brunt–Va]sala frequency in isothermal medium
Radial, tangential, and azimuthal components of vorticity
Components of vorticity in (x, y, z) directions
Opacity per gram, x./p
Effective acoustic-cutoff frequency in Newtonian cooling ap-

proximation
Effective ]naxim urn gravity-wave frequency in Newtonian

cool ing approximation
Vorticity

Solid angle
Vorticity tensor

Covari ant rotation tensor
Partial derivative with respect to coordinate x’
Partial derivative with respect to time
Covariant derivative with respect to coordinate x“
Eulerian time derivative (space coordinates fixed)
Pf affian derivative
Gradient with respect to wave-vector components
Earth symbol

Sun symbol



Aberration, 325, 467, 492
Ablation front, 618-622, 624
Absolute derivative (see Intrinsic derivative)
Absolute space, 129-130
Absolute temperature, 2–3
Absolute tensor, 667
Absorption

Cross section, 331–332
Probability, 329-330
True (thermal), 326

Absorption coefficient (see Opacity)
Absorption mean opacity, 362, 473
Acceleration

Fluid. 55–57
Four, 138-139
Radiative, 629-645
Terms in comoving-frame transfer equa-

tion, 434-437, 445–447, 46&471

Accretion

FIow,301>557, 603-607

Shock, 301, 603-607, 610

Acoustic cutoff
Frequency, 193, 598
Period, 288

Acoustic-gravity waves, 18LL2’26
In isothermal atmosphere, 19}201, 536

540
In radiating fluid. 536549
lnsolaratmosphme, 102,54&545
Mainly damped, 538

Mainly propagating, 538

Radiatively damped, 536549

Acoustic waves, 169–184

Conductive, 179-184

Gravity-modified, 190-226

In radiating fluid, 521-536

Numerical simulation of, 266268
Radiation-clominated, 521–536

Radiation-modified, 528, 638

Radiative amplification. 535-536
Viscous, 179–184

Adaptive mesh, 288, 433, 484, 604-6136

Adiabatic

Acoustic-gravity waves, 184-226

Compressibility, 5, 9-10

Compression or expansion of radialion,

474-475

Exponent, 9-10

Exponent, generalized, 52

Flow of ideal fluid in,79

Process,4. 6
Sound speed, 171-173,181-182,228,525.

534
Adiabatic exponent, 9–10

Effective, in radiating fluid, 525

Generalized, 50-53

ionizing gas plus thermal radiation, 322–

324

Perfect gas plus thermal radiation, 32}

322

Thermal radiation, 319–320

Amplification factor, 269

Amplification matl-ix,271

Amplification of waves, radiative, 535–536

Amplitude functions, wa\,e, 180, 197, 202,

541-542

Angular momentum

Conservation of, 17,72

Artificial viscosity, 8688

Tensor, 283–285

von Neumann-Ricbtmyer, 273–275, 48.<

485

Associated tensor, 67 f!-671

Atmosphere

Finite. 344

Grey, 355–359

Isothermal, 74, 19&201, 288291. 536

540, 586-591

Nongrey, 359–366

Semi-infinite, 344.346-349

Shock propagation in,58&591

Solar, 193-194,201,217-226

Spherical, 344, 35(P353

Stella[-, 201

697
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Atmosphere (contd )
Thermal response ofso1ar,519–521

Atmospheric resonance, 192–193
Atom

Equivalent two-level, 4(I1
Multi-1evel, 401–407
Two-1evel, 396-398

Avogacho’s number, 3
Axial vector, 661

BBGKY hierarchy, 15

Backward Euler scheme, 277, 394, 460:480,

486

Barotropic flow, 76

Basis, 67C671

Bernoulli–Euler equation. 76

Bernoulli’s equation, 76, 297

Bilmolecular collision frequency, 97

Binary collisions, 11–24

Black body, 317-318

Flux from, 318–319

Blast wave. 291–294, 602

Blowoff, 618

Body force, 68-77

Work done by. 77-81

Boltzmarrn equation, 11–15, IO2-106

Chapman-Enskog solution of, 107-126

Collisionless, I4

Moments of, 102–106

Photon. 418.439, 463

Boltzmann excitation formula, 41, 3W389

Boltzmann FI-Theorem, 28-29

Interpretation of. 47

Boltzmann number, 410, 527-528, 575

Analogy with Peclet number, 410

Boltzmann statistics, 3748

Boltzmunn’s relation, 35–37

Boltzmann transport eqLlation, 14, 22

Boost matrix, 136

Bound-bound absorption-emission process,

329, 330, 332–333

Bound-free absorption-emission process,

331-333

Boundary conditions, 77-81

In Feautrier method, 376

In numerical simulations, 279

Radiation transfer, 34>349. 368–370, 405

Spherical geometry, 379-380, 405
Boundary layer, 77, 94

Break-out, shock. 294

Breeze, stellar, ‘299-301
Bremsstrahlung. 332, 585
Brinkley–Kirkwood theory. 265

Brcm-Viiisalii frequency, 185, 191, 212-

213, 219

Temperature-gradient and ionization
effects on, 212–213

Bulk viscosity, 83.115, 467

Buoyancy energy density, 189, 200

Buoyancy force, 184, 185

Buoyancy frequency, 191, 212

Buoyancy oscillations, 184-186

Caloric equation of state, 80, 149

Cauchy-Stokes decomposition theorem, 64-

68

Relativistic generalization, 162

Cauchy’s equation of motion. 71, 73, 86

Cavity, chromospheric, 220

Cell, phase space, 35-37

Number of quantum states in, 37–49

Central force, 15-24

Chapma!l-Enskog solution. 107-126

Eucken correction, 1“17

Heat flux \,ector, 113

Limitations of, 115–116

Relation to radiation diffusion, 309, 351,

461-471

Viscous stress tensor, 114

Chapman-.fougLlet hypothesis, 617-618

Characteristic equation, 65

Characteristics, Method of, 81, 273, 591

Chal-ge conservation, 31-33.392

Charles and Gay-Lussac law, 2

Christoffel symbol, 85, 426, 439, 441, 447,

449, 674-677.680

Circulation, 62, 77

Circulation-preserving L’low,7677

Circulation theorem, Kelvin, 7&77

Closure problem, 340.455-456, 481-494

Coefficient

Adiabatic compressibility. 5

Bulk viscosily, 83
Dynamical viscosity, 83

Isothermal compressibility, 5

K(nematic viscosity, 87
Radiative viscosity, 464, 466

Shear viscosity. 83
Thermal conduction, 90

Thermal expansion, 5

Cofactot-, 657
Collective photon pool. 402

Collision

Cross section, 18
Frequency, bimolecular, 97

Integral
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Alternative forms, 23–24

Basic form. 21-22

For photons, 41&420

Probability, 9699

Rates, 390

Time, 97, 98

Collisionless Boltzmann Equation. 14

Collisions, binal-y, 11-24

Column mass, 75, 369

Combustion wave, 617–618

Comoving frame, 138, 144> 325–329> 432-

494

Complete linearization method (see
Linearization method)

Compressibility
Adiabatic, cocflicient of, 5

Adiabatic, in perfect gas, 10

Isothermal, coefficient of, 5

Isothermal, in perfect gas 9

Compression ralio, 235, 560, 581-582

Compressionzrl energy. 177-179, 189, 200

Conditional presenl, 135

Conditional stability, 269-273

Conduction, radiative, 351, 465

Coefficient of, 351

Conduction, thermal, 90, 96102.107-117

Coefficient of, 90.96-102, 117-126

Effects of excitation and ionization. 116-

117

Flux-1 imiting of, 302

Fourier’s law, 90, 166

In ionized gases, 124-126

In relativistic flow, 162-164

In shocks, 244-250

ln wind, 295–296, 301–302

Wale damping by, 179–184

Conduc~ion wave

Linear, 550

Nonlinear, 551

Conductivity

Radialive, 351, 465

Spitzer-Hiirm, 302

Thermal, 551

Thermal: Chapman–Enskog formulae.

117–126

Conservation laws
Angular momentum, 72

Energy, 77-81, 88-93, 102-106. 15&152,

337-341, 421-503
Entropy, 79, 166

For equilibrium flow. 106107

General, from Boltzmann equation, 102–

106

In ionization front, 614

In radiating fluid, 42&432, 448–503

In shock, 231–259, 557–585

Linearized, 170, 187–189

Mass, 6&62, 102–1 06, 145-146

Momentum, 70, 8&88, IO2-106. 150-152.

166-167, 337–341 , 421-503

Particle flux, 146

Conservation relation, discrete form, 268,

277–287. 486489

Conservation theorem, Boltzmanrr equ~i-

tion, 103

Constant flux approximation, 554

Constitutive relations, 80, 147–149

Continuity, equation of, 6G62?, 10’.-106,

145-146

Linearized, 170, “187-188

Relativistic, 146

Species, 389

Continuum

Gas as, 11–15

Ionization. 48

Continuum absorption coefficient (sr!e

Opacity)

Contraction, tensor, 655-656

Contravariant

Tensor, 664-666

Vector, 664-666

Convective stability, 185

Coronal expansion, 295-296

Coulomb fol-ce, 29-35. 12~126

Cutoff procedure for, 31-34

Courant

Condition, 270, 280, 489

Limit, 280

Time, 285

Covariance, 129-130, 651

Covariancc of laws of physics, 129-130

Covariant

Derivative, 676679

Tensor, 664-666

Vector, 664-666

Crank-Nicholson scheme, 277

Critical

Poirlts: multiple in wind, 303

Radius, 297, 636-639

Shock, 570

Solution, 298, 636639

Velocity (speed).

In radiativcly-dl-iven wind, 638
In shock, 234

In wind, 297

Cross section

Absol-ption, 331-332

Collision. 18, 390
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Cross seclion (corzld. )

Differential, 18–21

Curl, 65%661, 679-681

Curvature effects, 490

Curvature of spacetime, intrinsic, 152

Curvilinear coordinates, 73–74

Cutoff frequency

Acoustic, 193, 53S

Gravity-wave, 538

Cutoff period

Acoustic, 288

Cvcle, thermodynamic. 7–8

‘Irreversible, ;–8, 232–233, 245-24S, 585
Reversible, 7-8
Schatzman, 585
Weymann, 585, 594

D-front (see alsoIonization fronts), 611-627

Dalton’s ]aw of partial prcssures,27

DeBroglie wavelength, 12

Debyelength,32, 124,255

Decomposition theorem

Cauchy-Stokes, 64-68, 162

Eckart, 160.462

Deflagration, 617-618

Deflection time, 30,33

Degeneracy, degree of, 37
Hydrogen bound state, 48-49

Degenerate

Gas, 160

States. 37

Degree of freedom, 251–254
Degree of ionization, 5G53,251
Density

Gas, 2-3
Hydrogen plasma, 5V53
Of proper mass in lab frame, 145-146

Of relative mass in lab frame. 145–146
Power law, 588

Proper, 145-146

Density scale height, 190, 213

Departure coefficients, 394, 4f11

Derivative

Absolute, 676679

Comovirrg. 56, 145

Covariant, 57, 676679

Eulerian, 56

Fluid-tlame, 56
Intrinsic, 57, 145, 676679

Lagrangean, 56, 145

Material, 56

Pfaffian, 440
Proper time, 14* I 45

Substantial, 56

Detailed balance, principle of, 24, 387, 391

Determinant, 656-658

Jacobian, 664-666

Detonation, 617–618

Diagnostic diagram. 19 1–194, 22&221

Tempera~ure-gradient and ionization
effects on, 22}221

Difference equations (see Finite difference

equations)

Differential

Exact thermodynamic, 4
Inexact thermodynamic, 4

Differential cross section, 18-’21

Invariance properties, 2G21

Diffusion, radiation, 341–353, 421–481

Dynamic, 343, 352,431,447.458

Equilibl-ium, 457-472

Eulerian, 461

Flux-limiting of, 458, 478-481

Multigroup, 47&477

Nonequilibrium, 458, 472–478, 555–557

Relation to Chapman–Enskog solution,

309, 35 i , 461-468

Second-order, 458-459

Static, 341-343, 350-353, 457-459
Time-dependent, 341–342, 353, 479–481

Diffusion time, radiation, 342, 353, 447,

449, 458.478

Dilatation, 67–68

Direct mean opacity, 475

Discrete ordinates, method of, 358, 555

Discrete-space method, 383, 497

Dispersion relation

Acoustic-gravity waves, 19& 191

Aconstic waves in radiating ffuid, 523,

525, 531

Damped acoustic waves, 18B183

Equilibrlulm diffusion regime, 525

Radiatively-damped thermal fluctuations.

514

Dissipation

By radiative viscosity, 469

Function, 89, 91-92, 284, 469

In shocks. 236-239, 241–259

In waves, 179–184

Viscous, 8&93

Dissipation zone. 250, 582, 584

Distinguishable particles, 38
Distribution function

Boltzrnann, 37–48. 386389

Equilibrium, 37–48

[nvariance of, 153,312

Maxwe]lian, 24-28
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Particle, [4, 153, 387-388

Photon, 311-312, 414, 418-420:439.463

Photon, for black-body radiation, 463

Saha-Boltzmann. 48-49, 38&389

Divergence, 659-661, 679-681

Divergence theorem, 662-663

Doppler

Core, of spectral line, 327

Sbift, el’fec tonopacity, 325

Shirts. 333, 410.413, 474
Width, 399

Drift instability, 549, 645

Drivcnharmoni cdisturbance, 179–184,521-

549

Dual, tensor, 661-662

Dynamicaifric[ion. 30

Dynamical time (see Fluid-flow time)

Eckart col,ariant material heat-conduction
vccto]-, 465

Eckart decomposition theorem, 160, 163,
462

Eddington approximation, 357, 377, 481,

51CL519. 526-535

Eddington–Barbier relation, 346, 611

Eddington factor (see Val-iable Ecfdington

factor)

Eddingtotl–Krook boundary condition, 367

Eddington-limit luminosity, 628-630

Eddington variables, 341

Effective temperature, 351

Eigenvectors, 514

Einstein coefficients, 329–330
Einsteil]–Milne relations, 331

Einstein relations, 329–30

Electron avalanche, 258

Elecuon-isothermal shock, 257

Ellipsoid, rate of Slrain, 68, 9J

Emission
Induced, 329, 332

Spontaneous, 329, 332

Stimulated, 329, 332, 391
Thermal, 235–239, 333

Emission coefficient (see Emissivity)

Emissivity, 325

Anisotropyin lab frame,326

Continuum, 331-333

Invariant, 414, 419, 438-443, 463
Isotropy in comoving frame, 326, 413–414

Line, 329–330, 333

Lorentz transformation of, 413–414

Thermal, 326, 333

Energy

Buoyancy, 189,200

Compressional, 177-179, 189,200

Equipartiton of, 27

Excitation, 41

Gravitational, 189, 200
Inertia of, 142

Ionization, 48

Relativistic, 142, 155–J58

Rest, 142

Translational, 26, 44

Wale, 177–179, 189,200

Energy conservation, numerical, 28(L282,

489

Energy density

Material, 155-156, 177-179, 189,200

Radiation, 351–352, 317-318

Radiating fluid, 322, 324, 468

Energy dissipation, 82--85. 89-90

Ill shocks, 236239, 241–259, 585-596

[nwaves, 179-184,521-549

Energy equation

From kinetic theory, 105-106

Gas, 77-81, 89, 92, 151, 18&187, 429-

430, 449, 454, 478.484, 499, 522, 527

Linearized, 170. 187–188

Mechanical, 77-78, 89, 429–430

Radiating Iluld, 429-432, 451-455, 460,
468, 499

Radiation, 337. 422-426, 431-432, 435.

446, 450, 472, 482-483, 484, 487>491,

495>499>502, 527

Relativistic, 164166

Wave. 177-179,186187

Total, 77-78, 89, 93, 105-106, 150, 164-

166, 429–430, 451452

Energy-exchange time, 30,33

Implications for shock struclure, 255-256

Energy tlux

Matenal,78. 88,178, 189.200

Radiating [Iuid, 468

Radiation, 313, 346=348, 416, 449-450,

459–460, 462466, 472

Total, 452, 468-469

Wave, 177-179, 189,538

Energy flux density, 78, 157-159

Enthalpy

Ionizing gas, 51

Nonequilibrium gas, 395

Perfect gas, 9,26
Perfect gas plus thermal radiation, 321

Radiating fluid, 321, 469, 471

Relativistic. 148

Specific, 6, 26

Entropy, 7–8
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Entropy (contd.]
From partition function, 45

Perfect gas, 9-10, 27, 45, 47

Perfect gas plus thermal radiation, 32CL-

321

Relation to thermodynamic probability,

3&37

Specific, 7-8, 45

Themal radiation, 319

Entropy conservation, equation of, 79, 90-

91, 165-166

Entropy flux density, 79, 166

Entropy generation

By radiation conduction, 469

By radiative viscosity, 469

By thermal conduction, 89–91

By viscosity, 89-91

Equation, 90, 165

In shocks, 23&239, 241-259

Entropy jump in shock, 236, 247-248

Equation ofcontinuity,6&62, 104-105, 146

From kinetic theory, 104

Linearized, 170, 187

Relativistic, J46

Equation of entropy conservation, 79, 9fL

91, 165-166

Equation of motion

Cauchy’s, 73

Euler’s, 73

From kinetic theory, 104-105

Linearized, 170, 187

Navier–Stokes, 86, 108, 167

Radiating fluid, 42t&429, 44&449, 452–

455, 460, 468, 483, 485, 499

Relativistic, 151-152, 166167

Equation of state

Caloric, 80

Extreme relativistic, 159

Ionizing gas, 5}53

Ionizing gas plus thermal radiation, 322–

324

Linearized, 525

Perfect gas, 2, 4345

Perfect gas plus thermal radialion, 32&
32z

Relativistic, material, 159

Thermal radiation, 319-320

Equation of transfer (see Transf’er equation)

Equations of radiation hydrodynamics
Comoving frame. 448–455

Consistency of, 452-455.503

Diffusion limit, 457–481

Eulerian, 42&432, 477–478

Inertial frame, 42&t32

Lagrangean, 448-455, 457-494

Mixed frame, 422-423, 494500

Quasi-Lagrangean, 42&431

Shock frame, 55&559, 614-615

VERA form, 47&478, 50&503

Equilibrium

Flow, 10& 107

Hydrostatic. 74-75, 404
Local thermodynamic, 310, 328, 332–333,

38&389

Radiative, 338, 403

Statistical, 386, 3899402, 6J4

Thermodynamic, 3-8, 310, 316

Equipartition of energy, 27

Escape probability, photon, 399

Eucken correction, 117

Euler expanion formula, 58–60

Eulerian time derivative, 56

Euler’s equat]on of motion, 7}77

Linearized, 170, 187-188

Evanescent waves, 193, 204-207

Evaporation, 618

Event, 133

Exchange mode, 515-519

Exclusion principle, Pacdi, 44

Expansion
Euler formula, 58–59

Fluid, 58, 68, 162

Explosion
Nova, 285

Point, 291-293

Supernova, 293.596602
Radiation-driven, 622–627

Exponential integral, 347–348

Extinction coefficient (see Opacity)

Feautrier method, 374, 380, 406407, 496

Field

Scalar, 651

Tensor, 65 I

Vector, 651

Finite difference equations

Backward Euler, 277
Complete linearization, 403-406

Equations of hydrodynamics, 266288

Equations of radiation hydrodynamics,

485-489, 494503

Explicit, 268.276, 277-285
Heat-conduction equation, 275

Imp~icit, 27G277, 28~288

Radiation diffusion, 457–481

Radiation transfer, 371

Stability of, 269-273
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Statistical equilibrium equations, 38%395
Fireball. 622
First law of thermodynamics, 3–7

Expressed in terms of various state vari-

ables, 186-187

For equilibrium radiation, 319

For material in radiating fluid, 449

For perfect gas plus thermal radiation,

32Il

For radiating fluid, 450, 460, 469, 471, 511

For radiation, 450, 460

Gas energy equation as, 7879

Flame front, 617

Flow

Accretion, 410, 488, 603-607

Barotropic, 76

Circulation-preserving, 77

Equilibrium, 106107

Eulerian description, 55

Homentropic, 79

Incompl-essible, 61, 76

Irrotational, 62, 77

Isentropic, 79

Lagrangean description, 56

Laminar, 94

Near ionization fronr, 615–627

Nonequilibrium, 107-126 ‘

Potential, 75-76, 176172

Radiation, 341-385

Steady, 61.76, 8tY81, 93, 29&297, 452

Subsonic. 96, 298

Supersonic. 96, 298

‘rransonic. 96, 295-301, 627-645

Turbulent, 94

Viscous, 8fi93, 102–106, 107–126

Flow velocity, 56

Kinetic theory definition, 13, 104, 153

Fluctuations, thermodynamic, 41–43

Fluid

Heat-conducting, 88-93, 9G106, 107-126

Ideal, 55-81, 106I-107

Maxwcllian, 84.102-106, 107-117

Newtonian, 83

Nonideal, 70, 82–127

Non-Newtonian, 72

Noapola[-, 72

Polar, 72

Radiating, 426-432, 448-549, 557-645

Real, 70

Stokesian, 83
Viscous, 70, 82–85, 89, 102–106, 107–126

Fluid displacement, 185
Fluid-flow time, 250, 342, 426455, 479

Fluid frame (see Comoving frame),

Flux-limiting

In supernova simulation, 601

Radiation diffusion, 458, 478-481
Thermal conduction, 302

Flux mean opacity, 361, 457-481

Flux, radiation, 31Y314

Emergent from blackbody, 318-319

Emergent from star, 351
In diffusion regime, 350-353, 457-48 [

Fokker–Planck equation, 3}34. 125

Force

Body, 68-81, 88

Buoyancy, 184-185

Central, 15-24

Coulomb, 29-35, 123-126

Density of, 149

Four, 141

Gravitational, 7475

Line, 627–645

Power-law, 123

Radiation, 339, 4 17–418, 627–645

Surface, 68, 77, 88

Viscous, 82-85, 97, 467

Force density

Four, 149, 417-418

Newtonian, 147, 149, 427

Radiation, 417-418

Formal solution of transfer equation. 343–

349, 373

Four acceleration, 139, 161

Four force, 14 I

Density, 149, 417–418
Radiation, 417

Four momentum, 140

Photon, 143, 412-413

Four tensor, 137

Four vector, 136-137

Four velocity, 138

Fourier’s law of heat conduction, 90

Relativistic form, 166

Frame

Comoving, 13S, 144, 325, 432-494

Inertial, 129, 421–426

Mixed, 423, 494503

Noninertial, 420

Proper. 138, 144

Reference, 129. 130

Shock’s, 230-232, 558-559
Tetrad, 439–440

Free boundary, 279

Free-molecule flow, 99

Frequency

Acoustic-cutoff, 193

Brunt-Vaisiila, 185, 191, 212-213
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Frequency (contd. )

Lorentz transformation of photon, 412–

413

Photon, 143, 3 11–312, 412-413

Wave, I 73

Frequency groups, 364, 475+77

Frequency -shi[t of radiation by adiabatic

compression or expansion, 474475

Front

Ablation, 618–622, 624

Flame, 617

Ionization, 611-627

Shock, 227–259, 557–55
Thermal, 549–557

Galilean relativity, 129

Galilean transformation, 129, 130.558
Gas

Binary, 125

Dilute, 2, 99

Ionizing, 48-53

Mixture, 27-28, 125–1 26

Perfect, 2

Relativistic: 152-160

With internal excitation, 45–47

Gas constant, 2

Gas energy equation

Linearized, 187–188, 522, 527
Material fluid, 77–81, 89, 92, 151, 186J87

Radiating fluid, 42’+430, 449, 47S, 499

Relativistic, 151

Gaseous nebulae, 582, 618

Gauss [ormula for quadrature weights, 359

Gaussian elimination, 277, 280, 286, 375,

406, 460, 488

Gauss’s theorem, 662–663

General relativity

Dynamical equations, 152

Melric, 152

Geodesic, 419, 432, 681–682

Geometrical acoustics, 208-210

Gibbs paradox. 38

Gradient, 659-661, 679-681

Gravitational energy density, 189
Gravity waves (see Acoustic-gravity waves)
Group velocity, 175-177, 194-197

Growth factor. 269

H-Theorem, 28

Interpretation of, 47–48

H I Region, 622-627

H 11 Region, 622-627

Harmonic mean opacity, 365, 475

Heat capacity

Ionizing gas plus thermal radiation, 323

Material, 4

Perfect gas plL)s thermal radiation. 32&

322

Thermal radiation, 320

Heat-conducting shock. 244-250

Heat conduction (see Thermal conduction)

Heat flux

Inertia of, 166167, 449, 469, 471

Material, 88-89, 101, 106. 113, 162-166,

299–301

Radiation, 313, 460, 468-469
Hetit transfer coe[ficienl, 95

Heavisicle function, 349

Helmholtz’s vortex theorem, 63

Hermite integration forlnula, 372

Hohlraum, 316318

Homentropic flow, 79

Hornogencity of space, 131

Hopf function, 356

Hugoniot curve, 232, 236, 252–253, 5SG582

Nonequilibrium, 252–253

Hydrogen plasma,
Debye length in, 32

Tonizing, 4&53

Time of relaxation for, 33

Therlmal conduction in, 124-125

Shocks in, 254258, 569-570
Viscosity of, 124-125

Hydrostatic equilibrium, 7475, 404

Hydrostatic stress, 70

Ideal flu~d, 55-81, 106107.144-160

Impact parameter, 17

Impact pressure, 301

Implosion, radiation-driven, 621

Incompressible flow, 61, 76

Indices, tensor. 650, 67G671

Dummy, 651

Raising and lowering. 67&671

Induced emission (see Stimulated emission)

Inelastic collision time, 388

Inertial frame, 129, 421-432, 444

Initial conditions, 81, 344

Instability

Absolute, 645
Drift, 549.645

Numerical, 269–273

Of radiatively-d]-iven wind, 645

Of rarefaction discontinuity, 233, 239
Rayleigh-Taylor, 601, 603
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Thermal, 513, 608

Insulating layer, 620

Integral equation, 346349

Integrodifferential equalion, 335

Intensity, radiation

Emergent, 346

Invariant, 414

Lorentz transformation of, 413414

Mean, 312

Specific, 311

Interaction volume, 310

Internal energy

Extreme relativistic, 159

Ionizing gas. 5&51

Ionizing gas plus thermal I-adiation, 322

Gas with internal excitation, 46

Noncquilibrium gas, 395-396

Perfect gas, 9, 26, 46

Perfect gas plus thermal radiation. 32W

322

Internal gruvity waves (see Acoustic-gravity
waves)

Interstellar medium, shock transition, 301

Interval, spacetime, 133

Classification of, 133- I34

Intrinsic curvature of spacetime, 152?

Intrinsic derivative, 57, 145, 676679
Relation to Lagrangeart derivative, 57,

676679

Invariant emissivity, 414, 419.438-443, 463

Invariant intensity, 414

Invariant opacity, 414, 419, 438-443, 463

Invariant photon distribution function, 311.

419, 438–443 .463

Blackbody radiation, 463

Ionization, 48–49

By collisions, 390

By photons, 331, 388, 391

Degree of, 50

Effects on Brunt-VaisWi frequency, 212–

213

Effects on diagnostic diagram, 220-221

Effects on heat conduction, 116117

Fraction, 32’2

Potential, 48–49

S,aha [orrnula. 48-50, 323, 332, 388

Ionization front, 287, 611–627

Ionization potential, 48-49

FOI- Hydrogen, 49
Irrotational flow, 62, 77

Isentropic flow. 79

Isothermal

Atmosphere, 74, 19fP201, 288–291, 536-

540, 586591

Compressibility, 5, 9

Shock, 249, 582-583

Sound speed, 182.297, 526
Wind, 297–299

Isotropization mode, 51 5–519

Jacobian, 22, 58-60, 442, 664-666

Jeans unstable protostellar cloud, 604, 621

Joule–Kelvin cxperiemnt, 4, 26, 36
Jump relations

Ionization front, 612-615

Shock, 232-233, 234-236, 239-240.587

Kappa mechanism 595, 608

Kelvin’s circulation theorem, 76-77

Kelvin’s equation, 63

Kinematic viscosity, 87

Kinetic energy density, wave, 178, 189, 200

Kinetic temperature, 25.105

Kirchhoff–Planck relation, 327, 333
Knudsen number. 99, 230

Laboratory frame (see Inertial frame]

Lagrange multipliers, 40
Lagrange polynomial, 383

Lagrangean coordinate, 267, 277–278, 282,

441–445

Lagrangean frame (see Comoving frame)

Lagrangean time derivative

As proper time derivative, 144-145

Relation to Eulerian derivative, 56

Relation to intrinsic derivative, 5&57,

678
Lagrange’s acceleration [ormula, 75

Lambda-iteration, 368

Lambda-operator, 347-348

Laminar flow, 94

Laplacian, 659-661, 679–681

Lax-Wendroff method, 496

Length, proper, 133

Levi-Civita tensor. 64, 673-674

Line blanketing, 492

Line element, 134, 412, 667–670

Comoving frame: 444

Lagrangean, 441

Line force multiplier, 634
Linearization methocl, 393, 402, 460, 488-

489, 497
Liouville’s equation, 15

Local thermodynamic equilibrium (LTE),

310, 328, 332–333, 386-389
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Longitudinal waves, 171

Lorentz–Fitzgerald contraction, 133

Lorentz gas, 125

Lorentz metric, 134, 145

Lorentz transformation, 129-138

Approximate, local to comoving frame.

444

As a rotation in spacetime, 138

General, 135-136

Inverse, 132

Of emissivity: 414

Of monochromatic radiation moments,

500
Of photon four momentum, 412-413

Of opacity, 414

Of radiation stress-energy tensor, 416-

417, 462–465, 501

Of specific intensity, 414
Of transfer equation, 418–426, 432–438,

500
Special, 13C-I 33

uminosity, 338
Eddington limit, 628-630
Gradient, 353
Stellar, 351, 450

yman continuum, in shock, 583

Mach number, 96, 235–239, 244-266
Microstate, thermodynamic, 35
Markov pt-ocess, 30
Marshak wave, 570-571, 549, 552-557
Mass

Proper, 140
Reduced, 16
Relative, 140
Rest, 140

,Mass cell, 267
Mass, conservation of, 61
Mass, density or proper

In laboratory frame, 146
In proper frame. 145

Mass, density of relative, 146
Mass flux, 61, 104, 627–645
Mass flux vector, 104
Mass loss rates, 628-645
Material element, 56
Material stress-energy tensor, 147-149, 158-

159. 162–164
Material temperature, 159, 458, 463, 467
Material volume, 60

Mathematical structure of dynamical equa-

tions

Material fluid, 8@81

Radiating fluid, 455–456

Maxwell equations, and relativity, 129

Maxwellian fluid, 84, 106-117

Maxwellian velocity distribution, 24-28

Average speed in, 26

From kinetic theory, 24-29

Tn equilibrium flow. 106-107

Most probable speed in, 25

Root-mean-square speed in, 26

Mean free path

Distribution of, 96102

Ei’fective, 480, 483

Optical, 480

Particle, 96102

Photon, 309, 325, 336$350, 368, 459

Relation to shock thickness, 244, 248, 559

Relation to wave-damping Iengtb, 180

Mean intensity, radiation, 312, 34t+7

Mean molecular weight, 53

Perfect gas plus thermal radiation, 324

Mean opacily (see a[so Opacity), 355-366

Absorption, 362, 473

Direct, 475

Harmonic, 365, 475, 487

Flux, 361, 476

Planck, 362, 473, 602

Rosseland, 351, 360, 406, 464, 498, 553

Mechanical energy equation

Material fluid, 77–78, 89

Radiating fluid, 429–430, 451

Method of characteristics, 24, 273, 591

Method of discrete ordinates, 358, 555

Metric, 134, 137-138, 667-670

Comoving frame, 444

General, 443

General relativity, 152

Indefinite, 134

Inertial frame, 444

Langrangean, 444:447

Lorentz, 134, 145

Minkowski, 137

N1-front (see also Ionization front), 615.619

Microstate, thermodynamic, 35

Milne’s problem, 356

Minkowski

Coordinates, 137

Metric, 137

Spacetimc, 432
Transformation matrix, 137–138

.Mixed frame, 423, 494-500
Jhfode

Exchange, 515-5”19

[sotropization, 515-519

Of quantized oscillation, 317
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Photoacoustic, 549

Photogravity, 549

Radiation, 515-519

Radiation diffusion, 534

Thermal re~axation, 510,514-519

Wave, 179–201,507–549

Model Lagrangean transl’el- equation, 489

Molecularchaos, 21

Moment

Closure problem, 337-341, 481-482

Of Boltzmann equation, 102-106

Of radiation field, 312-316, 34Y349

Of transfer equation, 337-341

Moment equations

Closure problem, 337-34”1, 481-482

Combined, 379, 480, 483, 487-488, 492-
493

Multigroup, 493, 49%503

Radiation, 337-386, 421-426, 432-448
457-503

Momentum density

Material, 104,147, 156, 178

R~diation, 313, 339, 415, 469

Momentum equation

Cauchy’s 71

Euler’s, 71

From kinetic theory, 104105

Linearized, 170, 187-188

Navier-Stokes, 8&88, 108, 167

Radiating ffuid, 428-429, 448-449, 452-

455, 460, 468, 483, 485, 499

Radiation: 338-339, 423-426, 431-432.

435–438. 446.482, 491, 495, 499, 502

Relativistic, 151–152, 166167

Momentum fiuxderrsitytensor

Newtonian, 73, 104

Radiation, 314, 339

Relativistic, 147, 158,415

Monochromatic waves, 173-175, 19}201,

353-355

Moving mesh (.ree Adaptive mesh),

MLdtifreqUelJC~/gre~ method, 47&477, 484.

503

Multigroup

Diffusion, 475–478

Moment equations. 475, 499

Opacities, 35&365, 475-477
Transport, 478-481, 492–500

N-wave, 230, 260263.586

Navier-Stokes equations, 8&88. 108, 167

Newton-Cotes formula, quadrature weights,

359

Newto[l-Raphson method, 393–395, 4(IL&

407, 476-477, 484-489> 496497, 499-

503
Newtonian

Absolute space. 129

Cooling approximation, 522-524, 536545

Fluid, 83

Force density, 427

Relativity, 129
Newton’s law of cooling, 511

Newton’s laws, invariance of, 129–130

Nonequilibrium flow, 107–1’26

Nonequilibrium gas, 395

Noninertial frame, 420

Formulation of transfer equation, 438–447

Non-Newtonian fluid, 72

Nonpolar fluid, 72

Normal rates of strain. 65

Normal stress, 68, 105

Nova explosion, 285

Nuclear evolution time, 285, 342, 451, 488

Null cone, 135, 418, 439

Null interval, 134

Number conservation, 392

Numerical stability, 269–273

Nusselt number, 95

Occupation number, 37, 386, 397

Saha-Boltzmann formula for. 48-49

opacity (see also !Mean opacity], 325-329,
331–332

Anisotropy in lab frame, 325

Bound-bound. 332

Bound-free, 332

Continuum, 332-333

Distribution function, 365, 475, 493-495

Effect of Doppler shift, 325

Extinction coefficient, 325

Free-free, 332

Grey, 35(Y353

In stellar pulsation calculations. 486

Invariant, 414, 419, 438–443, 463

Isotropy in comoving frame, 325, 413-414

Lab-frame, 333

Line, 329–330. 332–333

Lorentz transformation of. 41Y414

Mean, 351, 355-366. 472–478

Mukigroup, 355-365, 475-477, 492-494.
49+500

Nongrey, 355366

Pickets, 366

Relation to photon mean free path, 325

Sampling technique, 366
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Opacity (contd. )

Temperature sensitivity in pulsations, 480

Optical depth, 336, 487

Packet velocity, 176

Parallel displacement. 681-682

Partial pressures, Dalton’s law, 27

Particle conservation, 389, 392

Particle flux density vector, 146, 157

Particle mean free path, 96-102

Relation to shock thickness, 259

Relation to wave-clamping length, 180

Particle path, 57
Particles, distinguishable, 38

Partition function, 4&4 1, 4447

Electronic. 45–46

Rotational, 45

Translation motion, 44-46

Vibrational, 45

Pathlengthj 345, 418, 439, 681–682

Pauli exclusion principle, 44

Peclet number, 95

Analogy with Boltzmann number 410

Pencils of radiation, 358

Perfect gas

Adiabatic compressibility, 9

Adiabatic exponent of, 9–10, 27, 44

Equation of state, 2–3, 2Q27

Internal energy of, 9, 26, 46
Isothermal compressibility of, 9
Law, 46
Specific enthalpy of, 9, 26
Specific entropy 0[, 9, 27.45, 47

Specific heats of, 9, 26-27, 44, 46

Period, wave, 174

Permutation symbol, 656

Pfzaffian derivative, 440

Phase space, 35-36

Quantum states in, 37-38, 48-49

Phase-space density

Invariance of, 14, 153–154, 413

Phase speed. 174, 181, 183-184, 191-195

Phase t{-ace speed, 174

Phi-operator, 347

Photon, 143-144

Boltzmann equation, 418-419, 439.463

Collective pool, 402
Destructive length, 310, 367-368, 400
Destruction probability, 367–368, 400
Distribution function, 31 I, 414, ~,18-420,

439, 463

Energy, 143, 412

Escape probability, 399

Flight time, 100, 342

Four momentum, 143, 412–413

Frequency, 143, 311–312, 412, 432

Mean free path. 309, 325.336, 350, 368,

459, 562

Mean free path in shock, 259

Number density, 311

pool,402

Propagation vector, 144, 412

Random walk, 342, 350, 368

Redistribution by scattering, 327

Rest energy of, 143

Thermalization length, 367-368, 400

Trajectory, 419, 432, 440

Wave number, 144

Photoionization

Process, 33 I

Rate, 331, 388, 391

Pickets, opacity. 366

Planck [unction, 317

Planck mean opacily, 362.473, 602

Group. 364, 475

Two-temperature, 476475

Plane waves, 17}174, 190201, 21~217,
221–226, 23 f&~66, 28&–29j, 354-355,

507–536

Polarization relations, 197-199, 53>540,

543–545

Poisson’s ecluation, 32

Polar fftrid. 72

Polar vector, 661-662

Polytrope, 10, 229

Thermal radiation, 320

Postshock tail, 253, 566, 571

Potential

Excitation, 45–46

Ionization. 46, 48

Velocity, 62, 170

Potential tlow, 7$76, 17&172

Power-law potentials, 17, 19, 123

Przmdtl number, 95

For monatomic gas, 123

For rigid-sphere gas, 101, 123

Prandtl relation. 235

Precursor, shock

Radiation, 565, 570-571, 576.584

Thermal conduction, 257

Pressure

From kinetic theory, 26-27, 105, 155

From partition function, 44

Hydrostatic, 70, 83.105

Impact, 301

Ionizing gas, 50

Ionizing g,as plus thermal radiation, 322
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Jump in shock, 235

Of radiating fluid, 468

Partial, 27

Perfect gas, 2–3

Perfect gas plus thermal radiation 322

Pseudoviscous, 4S5

Radiation, 315, 319, 351, 416-417. 460,

466, 468

Viscous, 86, 90

World scalar, 148

Pressure scale-height, 74, 190, 213

Principal axes of rate of strain tensor, 67, 91
Principal rates of strain, 67, 91

Probability

Absorption, 329

Induced (stimulated) emission, 329

Induced recombination, 331

Photoionization, 331

Photon destruction, 367-368, 400

Photon escape, 399

Redistribution, 327

Spontaneous emission, 329
Spontaneous recombination, 331
Stimulated emission, 329
Stimulated recombination, 331
Thermodynamic, 35, 39

Process

Adiabatic, 4, 6

Bound-bound, 329-330, 332-333, 39C-392

Bound-free, 331–333, 39 fL392

Bremsstrahlung, 332.585

Collisional excitation, 390

Collisional ionization, 390

Emission, 325-326

Free-free, 332–333

Ionization, 4&49

Irreversible thermodynamic, 8, 90-92,

23+237, 241–24’2

Photoionization, 331-332, 390-392

Photon destruction, 368, 400

Photon diffusion, 309–310, 342, 350, 457-

458

Radiative excitation. 39}392

Random walk, photon, 342, 350, 368

Recombination, 331–332, 39W392

Relaxation, 84, 250

Reversible thermodynamic, 4, 6, 7–8

Scattering, 32+32S

Thermal (true) absorption, 326
Thermonuclear, 352-353

Product

Cross, 658-659

Dot, 653

Inner, 653

Ourcr, 654-655

Scalar, 653, 671-672

Scafar triple, 658-659

Tensor, 654-655
Vector, 358–359

Vector triple, 358-359

Projection tensor, 148, 160, 465

Propagation vector

Photon, 144, 412-413

Wave, 174

Proper density, 145-146

Proper frame (see also Comoving frame),

13S, 144, 432

Proper length, 133

Proper mass, 140

Proper temperature, 149

Proper time, 133

Pseudovector, 661–662

Pseudoviscosity (see Artificial viscosity)

Pulsation, stellar, 410, 448. 47}471, 486,

490

Pulse, propagating, 263-264

Quadrature

Points, 358

Sum, 358, 372

Weights, 358-359

R-front (see also [onization front), 615-616

Radiating fluid

Gas energy equation, 429–430, 449–450,
454, 478, 499>522, 527

Ionization front in, 611–627

Momentum equation, 428–429. 448–449,

452-455, 460, 468, 483, 485, 496.499

Shocks in, 557-585

Stress-energy tensor, 426-427, 459, 462–
465

Thermal fluctuations in, 523, 536

Thermodynamics of, 320

Total energy equation, 429-430, 451-452,
460, 469.471

Two-temperature description of, 473

Waves in, 52 I-549

Radiating shock, 557-611

Radiation

Absorption, 326
Attenuated waves, 513, 533–535

Blackbody, 318

Boltzmann equation for, 418, 439, 463

Compression wave, 608

Conduction, 351, 465
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Radiation (cored. )
Diffusion, 341–353. 457-481
Dif(usion layer, 559-560
DifflLsion, nonlinear, 552-557
Diffusion, terminology, 472 (footnote)
Diffusion time, 342, 353, 424-426, 447,

449, 458, 478
Diffusion wave, 528-534, 549, 608
Effects on shocks, 557–611
Emission, 325
Energy density, 312, 3J7–318, 351-352,

416
Energy equation, 337, 422–426, 431–432,

435, 438>446, 450, 472, 482-483, 484,
487, 49 i, 495, 527

Energy tlux, 313, 346348, 416, 449, 459,
461-469.472

Energy spectral profile, 473–476, 482,

484, 492, 496

Exchange zone, 562-563

Flow time, 342, 424426. 430, 437, 445,
447, 479

Flux spectral profile. 482, 484, 492, 496

Force, 339, 427, 417418, 451, 627-645

Four force density, 417-418

Mean intensity, 312, 346-347

Modes, 317–318

Moments, 312-316, 337. 341, 34Y349,

500
Momentum density, 313, 339, 415, 469

Momentum equation, 339, 422-426, 431-
432, 435-438, 446, 448-449, 482, 486,

491, 495, 497

Noncquilibrium, 310

Nonlinear, 552–557

Pressure, 314-315, 319, 351, 416-417,

453, 460, 466, 468

Pencils, 358

Propagating waves, 513-519, 534-535
Quasistatic, 342

Quasistationary, 342

Scattering, 326328

Specific intensity, 311, 34~346. 413-414

Streaming, 316, 341, 424-426, 427, 431,
447-448, 453

Stress-energy tensor. 41&418, 459, 461.
465

Stress tensor. 314, 416, 468

Temperature, 473, 606
Thermal, 316

Time dependent, 348-349

Transfer equation, 333–335, 337–386,

39&407 .421 -426 >432-448

Viscosity, 46 J&472

Radiation diffusion wave, 528-534, 549

Radiation-flow time, 342, 424-426, 43(I, 437,

445, 447, 479

Radiation hydrodynamics, actuations of

Comoving frame, 448-455

Consistency of, 452-455, 503

Diffusion limit, 457-481

Eulerian, 426432, 477-478

Inertial frame, 426-432

Lagrangean. 448-455, 457-494

Mixed frame, 422-423, 494-5oo
Quasi-Lagrangean, 428-431, 498-500

Shock frame, 558-559
VERA form, 47{5478. 50fL503

Radiative conduction, 351, 465

Coefficient of, 351

Radiative cooling time, 602

Radiative damping

Shocks> 557–585
Temperature tfuctoations, 507-521

Waves, 521–549

Radiative equilibrium 538, 403

Radiative recombination time, 388

Radiative relaxation time, 509, 519, 522,

537–538, 541–543

Radiative Reynolds number, 467

Radius, critical, 297, 63&639

Random velocity, 13.105-106, 153

Random-walk, photon, 342.350, 353, 368,

458–459

Rank, tensor, 654-655

Rankine–Hugoniot relations, 232, 240, 273,

275, 287, 301, 558-559

Including radiation, 558-559

Relativistic, 240

Rare faction, 233

Impossibility of discontinuous, 239

Rarefied gasdynamics, 99

Rate equations, 386, 389–395. 406

In accretion flow, 624

Stiffness of, 394

Rate of shear deformation, 65

Rate of strain, 83

Ellipsoid, 68, 91

Normal, 65

Principal, 67, 91

Rate of strain tensor, 65, 67, 82–85, 91–92,

162, 466

Ratio of specific heats

Ionizing gas, 52

Ionizing gas plus thermal radiation, 322–

324

Perfect gas, 9-10, 2627, 44

Perfect gas plus thermal radiation, 32&
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322 Rigid sphere model, 19-20, 9G102
Thermal radiation, 319–320 Rocket effect, 620

Ray (tangent ray method), 38&383, 491, Rosseland mean opacity, 351.360.464.498.
497, 503

Rayleigh formu[ac: 249. 25L3

Rayleigh-Taylor instabilities, 601, 603

Reciprocal tensor, 670671

Recombination

Processes, 331

Rate, 331, 390

Time, S4

Redistribution, photon

Complete, 327

Function, 327

Partial. 327

Reduced mass, 16

Reference frame, 129
Reflectance. 203

Reflection, wave, 201-208. 21G212

Refraction, wave, 201-207, 208-210

Relative mass, 140

Relative tensor, 667

Relativity

Galilean, 129, 433

General, 152

Newtonian, 129

Special. 130
Relativity principle, 130

Einstein’s 13fL138

Relaxation process, 84, 250

Relaxation zone (layer), 251–259

Dissociation, 251

External, 252, 583-585

In fully ionized plasma, 254258

Jn molecular gas, 251-254

Internal, 252, 583-585

Ionization, 258-259, 583-585

Radiation-exchange, 582

Rotational, 251

Temperature. 253-259

Temperature overshoot in, 253

Translational, 251

Vibrational, ’251

Rest energy, 142

Of photons, 143

Rest mass, 142

Retardation effects, 490

Retal-dedtilme, 349

Reynolds number, 94
Radiative, 467

Reynolds transport theorem, 60, 62

Rezoning scheme, 288, 433, 484, 604-606

Ricci rotation coefficient, 440,442-443

Ricci’s theorem, 676679

. .,
553

Group, 365,475

Optical depth scale, 360, 406

Two-temperature, 473

Rotation coefficient. Ricci, 440, 442-443

Rotation, spacetime, 138

Rotation tensor

Newtonian, 65

Relativistic, 161

Rybicki method, 377–378, 407

S~-methocf, 383

Sackur–l-etrode equation, 44

Saha-Boltzmann formula, 49, 396, 388

Saha ionization formula, 48, 50, 323, 332,

388

Sawtooth wave, 230

Scalar

Fielcl, 651

Gradient of. 659-661, 679-681

Product, 653, 671-672

Triple product, 658–659

World, 134

Scale-height

Density, 190,213

Pressure, 74, 190,213

Scattering, 310, 32&328

Coefficient, 326

Effects on statistical equilibrium, 396402

Implications fol- radiation transport. 36&
369, 396402

Redistribution function, 327
Thomson, 326, 332, 337, 457, 474, 629

Schatzman cycle, 585

Schwarzschild convection criterion, 185

Schwarzschild-Milne relation, 346-34S

Second law of thermodynamics. 7-8, 166,

570

Implications forshocks,23&239

Secular equation, 65

Sedov

Blast Wave, 602

Method, 291–295

Seed electrons, 258

Seed O-star, 621
Self-collision time, 34, 388

Self-propagating shock, 294

Self-similar flow, 291–295, 552-554, 587-
591, 602

Semi-infinite atmosphere, 344
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Shear deformation, rate of. 65

Shear stress, 70

Shear viscosity, 83,10&101, 115,117-126
Evaluation 0[, 117-126

Radiation, 461–467

Shock

Ablation-driven, 618–624

Accretion, 603–607, 610

Break-out, 294

Conducting, 244-250

Conduction precursor in, 257

Conservation laws, 231-232

Converging spherical, 6’21

Critical, 570

Critical strength, 248

Detection, 273, 591

Development. 227-230, 273-274

Dispersion byrelaxation processes, 253

Dispersion by radiation, S63, 577–579,

597

Electron isothermal ,257

Errthalpy jump in. 253

Entropy jump in, 247–248
Fitting, 273, 287.591

Formation distance, 261

Frame, 23(!-232, 559

Heat-conducting. 244-250

Heating, 259-266, 587, 591-596

In exponential atmosphere. 293–295

In gaseous nebulae, 582

In ionized hydrogen, 569–570

In isothermal material, 582-583, 588

In stellar wind, 295–301. 627–645

Isothermal, 249, 571

Jump relations, 232–233, 234-236, 239–

240, 587

Nonequilibrium effects in, 563-573

Non-LI-E, 607–611

Numerical simulation of, 2662S8, 288–
~91 , 591_611

Periodic, 288-291

Propagation, 259–266, 288-295, 585-611

puh2, 263–264

Radiating, 557–61 1

Radiation precursor in: 562–563, 565,

57}571 , 584

Radiation pressure in, 579-582

Rankine Hugoniot relations, 232, 240,
273, 275, 287, 301. 558–559

Relativistic, 239-241

Relaxation zones, 583, 585

Self-propagating, 294

Similarity solution, 58659 I

Stability, 239

Steady, 23(&241, 557-585

Strength, 235-236

Structure, 241-259, 562-563, 565-585

Subcritical, 565-570, 576

Supercritical, 57}573

Tail, 253, 566567, 57i-573

Temperature overshoot in, 253, 272, 276,

572, 576577
Venting, 294

Viscous, 242-244, 597

Weak, 244-248, 259–266, 290, 585–586

Shock dispersal
By material relaxation processes, 253

By radiation, 563, 577-579.597

Signature of melric, 133

Similarity paramters, 93-96, 99

Similarity solution, 265, 291–29S, 552–554,

557, 587-591, 602

Simple waves, 228

Singular point, 636

LOCUS of, 636

Slowness surface, 194

Snapshot, 343, 490, 503

Sobolev
Approximation, 643

Force law, 645

Theory. 633

Solar
Atmosphere, 193-194.201, 217-226

Chromosphere, 218, 264-265, 586, 591-

596

Chromospheric network, 596

Chromospheric cavity, 220

Corona, 218, 29$296, 303

Flare. 293

Pbotosphere, 217, 529
Plage, 596

Tempera~ure minimum, 218, 592

‘I”hcrrnal responses of atmosphere, 519-
521

Transition region, 218

Wind, 218, 295-296, 30 1–303

Solid angle. 311

Sonine polynomials, i 18, 120

Sound speed (we Speed of sound)

Source function, 33&337
Archetype, 33&337

Collision domination, 398

Discretized, 372
Frequency-independent, 330

Line, 330, 337, 397, 400

Mixed domination, 398
Photoionization domination. 398

Two-level atom, 39&402
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Space, absolute, 129

Spacelike interval, 134

Spacelike signature of metric, 133

Spacetime, 129–130

Spacetimc interval, 133

Spacetime rotation, 138

Spacetimc volume element, 133

Invariance of, 134

Specific enthalpy, 6

Ionizing gas, 51

Nonequilibrium gas. 395

Perfect gas, 9, 26

Perfect gas plus thermal radiation, 321

Radiating fluid, 469, 471

Relativistic, 148

Specific entropy, 7-8, 45

From partition function, 45

C,as with internal excitation, 47

Ionizing gas, 5&53

Perfect gas, 9-10, 27, 45.47

Perfect gas plus thermal radiation, 32C&

321

Translational, 45

Specific heat, 186-187

Constant pressure, 4, 27, 44, 47, 52, 186

187

Constant volume, 4, 27, 44, 47, 51, 186-

187

Gas with internal excitation, 46-47

Ionizing gas plus thermal radiation, 323

Perfect gas, 27, 44

Perfect gas plus thermal radiation, 321

Ratio of in ionizing gas, 52

Ra~io of in perfec~ gas, 9-10, 27, 44, 47

Specific intensity, 311

Emergent, 346

[n thermal equilibrium 318

Lorentz trmsformation of, 413–414

Relation to photon distribution function.

312

Relation to photon number density. 311

Specific internal energy, 3

Gas with internal excitation, 46

Ionizing gas, 5t&51

Ionizing gas plus thermal radiation, 322

Nonequilibrium gas, 395
Perfect gas, 9, 26, 46.106

Perfect gas plus thermal radialion, 320

Radiating fluid, 468
Relativistic, 159

Specific volume, 3

Spectral profile

Radiation energy, 473–476, 482, 484, 492,
494, 496

Radiation flux, 482.484, 492, 494

Spectral radius, 271

Spectrum line

Collision dominated, 398
Mixed domination, 398

Photoionization dominated, 398

Source function, 330, 337, 397, 400

Speed

Average Maxwellian, 26

Critical, 297

Group, 175-177, 193-197

Most probable Maxwe]lian. 25

Phase, 174, 181, 183-184, 191-195

Phase trace, 174

Root-mean-square- Maxwellian, 26

Shock, 294

Signal, 479

Sound, 171-173, 181–182, 320, 322, 324,
5~5_526 , 534

Speed of sound

Adiabatic, 171–173, 181–182, 228, 525,

534

In ionizing gas, 172

In ionizing gas plus thermal radiation, 324

In perfect gas plus thermal radiation. 322

In pure thermal radiation, 320

In radiating fluid, 322, 324, 525-526, 534

In relativistic fluid, 172-173

In solar atmosphere, 182

Isothermal, 182, 526, 297

Spherical

Envelope, 344

Shell, 344

Shock, 291–293

Transfer equation. 335, 378-386

Wave, 174-175, 355

Spherically factor, 379, 482

Sphericity factor ($ee Sphericality factor)

Spin, electron, 48

Spitzer-Hiirm conductivity, 125, 302

Spontaneous emission, 329, 332

Stability

Absolute, 645

Analysis, von Neunrann, 486

Drift, 549, 645

Numerical, 26%273
Of radiatively-driven wind, 64+645

Shock, 239
Thermal, 513, 608

Standing waves. 193.207–208,290

Star

A-type, 642

B-type, 608. 621–622

Formation, 621
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Star (corztd. )

O-type , 621-622, 629-645

O-type, Boltzmann number in, 529

Wolf-Rayet-type, 628

Statistical equilibrium, equations of, 386.

389-402, 614

Statistical weight, 37-48

Electron-ion system, 49

Free electron, 48

Hydrogen, 49

Statistics

Boltzmann, 41–43

Quantum, 44-45

Steady flow, 61, 76, 8G81, 93, 29~297. 452

Stefan-Boltzmann constant, 319

Stefan’s law, 318

Stellar

Evolution theory, 641

Pulsation, 287, 293, 410, 47&471, 486,

490

Structure equations, 352–353, 452, 459

Stimulated emission, 329, 332, 391

Correction factor for opacity, 331-333

Stirling’s formula,39

Stokes hypothesis, 84

Stokes relation, 84

Stokesian fluid. 83

Stokes’s theorem, 663-664

Strain (see Rate of strain)

Streakline. 58

Stream tube, 58

Streaming, radiation, 316, 341, 353-355,
424-426, 427, 431> 447–448, 453

Streamline. 58, 75

Stress

Fluid. 68-70

Hydrostatic, 70

Mean, 83,315, 105

Normal, 70, 105

Principal, 67, 83

Radiation, 314, 416, 468

Shear, 70

Surface, 68

Tangential, 70

Work done by, 77, 88-90

Stress-energy tensor

Material, 148, 158-159, 162-164

Radialion, 414418, 459, 461, 465
Radiating fluid, 426427.459,462-465

Stress tensor, 68-70
Newtonian fluid, 82–85

Radiation, 314,416,468

Radiation viscous, 468

Symmetry of, 71

Viscous, 70, 105, 114

Stromgren sphere, 622+24

Strong-collision time, 33

Subcritical shock, 565-570, 576

Subsonic flow, 96.298

Behind shock. 235
Near ionization front, 615–627

Summational invariants, 16, 103

Supercritical shock, 57&573

Supernova
Explosion, 293, 436, 59f&602

Presupernova, 602–603

Remnant, 602-603

Supersonic flow, 96, 298

in front of shock, 235
Near ionization front, 615-627

Surface force, 68-77

Work done by, 77-81

Symmetry, tensor, 655

Tangent ray method, 38 G383, 491, 497

Tangential stress, 70

Telegrapher’s equation, 515-516

Temperature

Absolute, 2

Critical (for shock), 570

Effective, 351

Kinetic, 25, 105, 110

Material. 159.458, 463, 467

Perfect gas, 2

Proper, 149

Radiation, 473, 606

Thermal equilibrium 467

Thermodynamic, 2

Temperature fluctuations, radiative damp-

ing, 507–521

Temperature overshoot, postshock, 253,

272, 276, 572, 576577

Tensor

Absolute, 667

Associated, 670-671

Contraction, 655-656

Contravariant, 664666

Covariant, 664-666

Dual, 661–662

Divergence of, 679-681

Equations, covariance of, 129-130

Field, 651

Form of artificial viscosity, 283-285

Form of radiation energy and momentum
equations, 447

Four, 137

Indices, 670-671

Levi–Civita, 64, 673-674
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Metric, 134, 137-138, 667-670

Mixed, 664-666

Momertum flux density, 73, 104, 147.

158, 415

Product, 654-655

Projection, 148, 160, 465

Radiation pressure. 319, 351, 416, 462-

468

Radiation stress, 314, 416, 468

Rank, 654-655

Rate of strain, 65, 82–85, 162, 466

Relative. 667

Reciprocal, 667

Rotation, 65, 83, J61

Stress-energy, material, 147–149, 158–

159, 162-164

Stress-energy, radiating fluid, 426-427,

459, 462–465

Stress-energy, radiation, 414-418, 459,

461, 465

Stress, material, 68, 82-85, 102-106, 155

S~ress, radiation, 344, 414417, 468

Symmetry. 655

Trace, 655-656

Transformations, 137
Velocity gradient, 64, 83, 161

Viscous stress, material, 70, 82-83, 105,

114, 163
Viscous stress, radiative, 468

Tensor components

Contravariant, 664666, 67(L671

Covariant, 664666, 67&_671

Physical, 664-666, 67G671, 672-673, 679-

681
Tetrad, 440

Tetrad frame, 440

Thermal conduction, 89-90, 96106, 113-

114

Coefficient of, 90, 101, 107-126

Effects of excitation and ionization, 116

117

Electron, 257

Flux-limiting of. 302

Fourier’s law, 90, 166

In ionized gases, 124-126

In relativistic flow, 163

In shocks, 244-250

In wind, 299-301, 301-302

Wave damping by, 179–184

Thermal conductivity, Spitzer-Harm, 125

Thermal coupling parameter, 366, 400

Thermal diffusivity, 525.550

Thermal equilibrium (see Thermodynamic

equilibrium)

Thermal expansion, coefficient of, 5

Perfect gas, 9

Thermal instability, 513, 608
Thermal relaxation mode, 510, 514519

Thermal waves, 181–184, 54Y557

Thermalization depth, 367.399-400

Thermalization length, 367-368, 399-400

Thermally-driven wind, 295–304

Thermodynamic equilibrium 3-8, 310, 317–

318, 319-320

Local (LTE), 310, 328, 332-333, 386-389

Thermodynamic probability. 35, 39

Thermodynamic state variables, 2–3

Thermodynamic temperature, 2

Thermodynamics

First law of, 3-7, 186-187, 319-320, 449-

450, 460, 511

Relation to statistical mechanics, 37

Second lawof,7-8. 166,23&239,570

Thermoelectric effects, 125

Thermonuclear energy release. 353, 449-

452, 460>469, 484, 486

Time

Absolute, 129

Courantj 285

Deflection, 30,33

Dilation of, 133

Dynamical, 342

Ene]-gy-exchange, 30,33

Fluid-flow, 250, 342, 424, 426, 428–432,

437, 447P449, 453-456, 458>486

Inelastic collision, 388

Kelvin Helmholtz,286

Nuclear, 285, 451, 488

Photon-flight, 342, 513

Proper, 133

Radiation diffusion, 342, 353. 424-426,

447, 449, 458.478

Radiation-flow, 342, 424-426, 430, 437,

445, 447, 479

Radiative cooling, 602

Radiative recombination, 388

Radiative relaxation, 509, 519, 522, 537–

538, 541-543

Relaxation, 29

Retarded, 349

Self-collision, 34,388

Strong-collision, 33

Universal, 1’29
Time dilation, 133
Time 0[ relaxation, 29

Time, proper, 133

Time, universal, 129

Timelike interval, 134
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Total energy equation

Material fluid, 78:89, 106

Radiating tlcrid, 429–430, 451-452, 460.
469, 471

Relativistic, 150, 164-167

Trace, tensor, 65,83, 655–656

Trajectory: photon, 419, 432, 440

Transfer eqnation

Boundary conditions, 344.368

Comoving-f’l-ame. 432-448

Conservative form, 434-435,491

Coupling to conservation relations, 402-
407

Covariance of, 418-419

Diffusion limit, 35(&353

Discrete-ordinates method, 358, 555
Discrete-space method, 383

Feautrier method. 374375, 369, 380

Finite dit’ferencc equq~ion, 371, 402

Formal solution, 343–349. 373, 382, 489-
492

Grey, 355-366
Inertial-frame, for moving fluid, 421-426,

433

In resonance continuum, 40&401
Integral relations, 345–348

Lagrangean,420, 443,445

Line, 396402, 492

Linearized, 402–407

Lorentz transformation of. 411-426, 432-

438, 500
Mixed frame, 422–423, 461, 494, 498, 500

Model Lagrangean, 489

Moments of, 337-386, 422, 435-436, 481-

483

Multigroup, 495-499

Operator formulation, 346348

Planar geometry, 334, 34&349. 366378

Rybicki rnethodofsolution, 377-378

S~-method, 383

Second-order form, 369-373

Spherical geometry. 335. 378–386, 433–

437, 491

Streaming limit, 353-355
Time-dependent, 333–335, 348–349

Wave limit, 353-355

Transformation

Admissible, 665

Galilean, 129
Lorentz. 129–138, 412426, 432-438, 462–

465, 50G501

Transmitting boundary, 279

Transonic ffow, 96, 295–301, 627–645

Transport coefficients, evacuation of, 117–
126

Transport phenomena, 96102, 107-126

Transport theorem, Reynolds, 60, 62

Trapping, wave, 207-208
Tube

Stream, 58
Vortex, 62–63

Tunneling, wave, 204-207

Turbutent flow. 94

Two-level atom, 396-402

Equivalent, 401

Two-stream approximation, 357

Two-temperature description of radiating

fluid, 473

Unconditional stability, 26Y273

Universal gas constant, 2

Universal time, 129

Upstream dif’ferencing, 270

Upwind differencing (see Upstream dif-
erencing)

Variable Eddington factor, 316. 341, 350,

354, 375, 406, 456, 479, 481>484, 489-
490, 497, 503, 607

Variational principle, 118-120

Vector

Axial, 661–2

Contra\; ariant. 664-666

Covariant, 664666

Curl of, 659-661, 679-681

Divergence of, 6599661, 679-681

Field, 651

Four. 136

Length of (magnitude), 652
Null, 144, 412, 439

Polar: 661-662

Product, 658-659

Pseudo, 661-662

Scalar product of, 653.671-672
Triple product, 658-659

Velocity
Critical, 234, 297, 638

Fluid, 56

Four, 138-139

Group, 175-177, 193-197

Packet, 176

Potential, 62, 170.537, 541

Velocity gradient tensor
In Newtonian stress tensor, 83

Newtonian, 64

Relativistic, 161

Venting, shock, 294

VERA method (see Radiation hydrodyna-
mics, equations of)
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Viscosity, artificial, 86-88
Tensor, 283-285

von iSemmanmRichtmycr, 273–275, 283–
285

Viscosity, coeftlcienL of, 83

Bulk> 83, 115

Di[atational, 83

Dynamical, 83, 101.107-126

Dynamical, 83, 101, 107-126

Evaluation of, 117– 126

Kinematic, 87, 242

Radiative, 461, 466467

Second, 83

Shear, 83, 101, 115, 117-126
Viscosity, fundamental role of in shocks,

244

Viscous energy dissipation, 88-92

In shock, 241–244

In waves, 179–184

Viscous flow, 86-93, 102-106, 107-126, 241-
242

Viscous force, 82–85, 97, 467

Viscous pressure. 86, 90, 275, 278–279, 485

Viscous shock, 242–244, 597

Viscous stress tensor

From kinetic Lheory, 105, 114–115

General, 70

Newtonian fluid, 83

Radiatiug fluid, 468

Radiation, 465-466

Relativistic, 163

Vlasov equation, 14

Volume, 3, 667-670

Invariant volume element, 67G671, 133

Material, 60

Specific, 3

Volume ratio, 247

Limiting, 247, 564

von Neunlaml-Richtmyer artificial viscos-

ity, 273–275, 485

von Neumann stability analysis, 269, 486

Vortex

Line, 62

Theorem, Helmholtz, 63

Tube. 62

Tube, strength. 63

Vorticity, 62

Flux Of, 63

Tensor, 64, 83

Wave
Acoustic. 169-173

Acoustic-gravity, 184-201

Amplitude functions, 180, 197, 202, 541-

542

Attenuated radiation. 513, 533–535

Blast, 291-294

Combustion, 617-618

Damped radiation, 515–519, 533

Detonation, 617–61S

Energy density, 177-179, 189, 200

Energy equation, 177-178, 18&187

Energy flux, 177-179, 189.199-201, 538

Evanescent, 193, 204-207

Exchange mode, 515-519

Expansion, 618

Frequency, 173

In radiating fluid, 521-549

In radiatively-driven wind, 63&638, 644-

645

Interference, 545

Linear conduction, 550

Longitudinal. 171

Marshak, 549, 552–557

Modes, J 79–201 , 507-549

Momentum, 177-179

Monochromatic, 173–175

Nonlinear conduction, 551

N-wave, 230, 26fY263

Plane, 17}177, 19(L201, 21~217, 221-

226, 230-266, 288–295, 354-355

Propagating radiation, 513, 515-519

Propagation, 190-226

Radiating shock, 559-611

Radiation, 316, 353-355, 51$519

Radiation diffusion, 528-534 549

Radiation-dominated acoustic, 533–535

Radiation-modified acoustic, 52 I–526,

528, 638

Rarefaction, 233, 239

Reflection, 201-208, 21&212

Refraction. 201-207, 208-210

Sawtooth> 230

Shock, 22&295 , 557-611

Simple. 228

Spherical, 174-175, 355

Standing, 193, 290, 207-208

Steepening, 227–230

Thermal, 181, 183, 549–557

Trapping, 207–208

Tunneling, 204-207
Wave damping

Viscosity and thermal conduction, 179–

184

Radiation, 521–549

Newtonian cooling, 511-513, 536545
Wave enel-gy, 177-179, 189
Wave equation, 169–173, 188, 213–217,

353-355>523, 525, 527, 531, 537
Wave momentum. 177-179

.-
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Wave packet, 174

Wavelength, 174

Wavenumber, 143–144. 174
Weak shock, 246248, 25%’266, 585-586,

290
Weak solution of fluid equations, 79, 233

Weymann cycle, 585, 594

Wind

CAK Theory, 634-644

Isothermal, 297–299

Line-driven, 627–645

Multiple scattering efrects, 642

Radiatively-driven, 627–64j

Singular point in, 636-642

Solar, 295–304

Thermally-driven, 295–304

Transonic, 295–301, 627–645

Viscous, 302

World line, 133

World point, 133

World scalar, 134.148

X-operator, 347
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