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Radiating Flows

In a radiating fluid, radiation affects the energy and momentum balance in
the flow, and can drive the thermodynamic state of the material out of
equilibrium. In this chapter we consider a few interesting examples of
radiating-flow problems in both the linear and nonlinear regimes.

For small-amplitude disturbances we focus on radiative energy and
momentum exchange; we first examine the radiative smoothing of temper-
ature fluctuations in a static medium, then the eflects of radiation on
acoustic waves in a homogeneous medium, and finally the effects of
radiation on acoustic-gravity waves in a stratified medium. We shall draw
our examples primarily from astrophysics where considerable attention has
been given to radiative effects on the propagation and dissipation of waves
in the atmospheres of the Sun and stars.

For nonlinear disturbances we meet a much richer variety of
phenomena. We consider first the conceptually simple problem of penetra-
tion of radiation into a passive static medium as a thermal wave. We then
examine the effects of radiMiVe transport across steady shocks and in

propagating shocks in both the weak- and strong-shock limits, including
the case of a propagating non-LTE shock, where radiation determines the
state of the material. We next examine the interplay of radiation and
hydrodynamics in propagating ionization fronts. Finally, we consider the
dynamics of radiation-driven stellar winds, where the primary effect of
radiation is on the momentum balance in the flow.

The reader should note that in most of the applications to be discussed
the treatment of radiation falls far below the standards set in Chapter 7,
although reasonably complete and consistent solutions are obtained for one
or two simple problems. We make this remark not as a criticism of the
existing literature, but rather to call attention to the rewarding oppor-
tunities that exist for new research exploiting the more complete formula-
tion of the dynamical behavior of radiation that is now available.

8.1 Small-Amplitude Disturbances

100. Radiative Damping of ‘Temperature Fluctuations

Valuable insight into the effects of radiative energy exchange on small-
amplitude disturbances can be obtained by examining the smoothing of
temperature fluctuations in a radiating fluid.
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QUASJ-SIATIC RADIATION ‘WUWSPOR~

Consider a field of temperature perturbations imposed on a static, grey,
LTE ambient medium, initially in radiative equilibrium. We assume there
are no fluid motions (v= O), and that heat is exchanged only radiatively.
Under these assumptions the gas energy equation (96.7) reduces to

p(de/dt) = 47TK(~-~), (100.1)

where, from (52.21 ), (de/dt) = c. (dT/i)t)in a static medium. The thermal

source is B = (a~c/47r) Td, and the mean intensity is 4rr.1 = $1 dco. We
assume that the characteristic time scale associated with the disturbances is
so long that the radiation field can be taken to be quasi-static. Then 1 is
given by the static transfer equation

(dr/ds) = K(B -1)> (100.2)

where s is the path length along a ray. In using (100.2) we neglect all
dynamical effects of the radiation field.

For small disturbances we linearize, writing

T(x, t)= TO(X)+ T,(x, t), (100.3)

B(x, t)= BO(X) + (a~cT~/m)T, =130+ 131, (100.4)

and

K(X, t) = KO(X)+ (tIKo/W)T1 G Ko+ K]. (100.5)

The linearized energy equation is then

PcU(dT, /dt) = 4~K~(~1 ‘~1)+4wK1(~o–~o), (100.6)

where .TI is the local perturbation of the mean intensity induced by
pert urbations in the source–sin k terms throughout the medium. Because
we assume that the material is initially in radiative equilibrium, JO= BO,

hence the term containing K1 in (100.6) vanishes identically.
.TI is the angle average of 1,, the local change in the specific intensity,

which can be calculated from the linearized transfer equation

(d[L/dS) = K@[ ‘~,) + K1(&-~o). (100.7)

If we now make the simplifying assumptions that the ambient medium is
homogeneous and of infinite extent (appropriate for a study of, say, pure
acoustic waves), then the unperturbed radiation field will be isotropic,
which implies that 10 =.TO= BO = constant. Hence the term containing K1 in
(100.7) vanishes identically. Thus in a homogeneous medium, both the
energy equation ancl the transfer equation are unaffected (to first order) by
a perturbation in the opacity.

1, is found directly from the formal solution of (100.7):

I

.
ll(xO, n) = ~l(X~–ns)e-<’’sKo d. (100.8)

o
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The energy equation for a field of temperature perturbations in an infinite,

homogeneous, static medium is thus

[ H 1
[dT,(XO)/tIt] = –u TI(xO) – (4n)-1 dti mT, (xO- n~)e-K(sKO d~ ,

0
(100.9)

where

(100.10)~ ~ 4aRcKOT;/pCu = 16 CTRK~]T~lPC.

is an inverse time scale characterizing the rate of energy loss by radiative
emission in the absence of reabsorption.

Suppose now we have a field of planar temperature disturbances varying
as e ‘k”’. Choose k as a preferred direction defining the x axis (which is
otherwise arbitrary in a homogeneous medium), and let Cos–] p be the
angle between k and n. We can then rewrite (1 00.9) as

where the sign in the argument of the integrand is chosen opposite to the
sign of p.

Equation (1 00.11) admits separable solutions of the form

T,(x, t)= O(k, t)eik(X-X~. (100.12)

Note that because (100.11) is linear, any linear combination of solutions of
the general form (100.12) will satisfy (100.1 1), hence we can synthesize the
behavior of an arbitrary field of fluctuations by a suitable superposition of
its Fourier components. Using (100,12) in (1 00.1 1) we have

((M,/dt) = -n(k)&, (100.13)

where, by virtue of symmetry considerations that simplify the integral,

n(k)= v[l-jjd~J~cos(~ky/~o)e-dy]. (100.14)

Thus a spatially harmonic temperature disturbance with waven umber k
decays exponent ially from its initial value ~ (k, O) according to

(~(k, t) = O(k, 0) exp [–t/tK~(k)] (100.15)

where the radiative relaxation time is tR1<(k) = 1/n(k). It is clear on physical

grounds that n must always be positive because in the situation we are
considering I.JT\ is always less than or equal to IBll (equality occurring only
in the limit of infinite optical thickness), and therefore regions of enhanced
temperature always tend to cool while cooler regions tend to heat, thus
damping the disturbance.
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Table 100.1. Radiative Relaxation Rates and
Eddington Factors

K~,1k n(k)/u ~E(k)/1~ f(k)

0.0 1.000 1.000 0.000
0.2 0.725 0,893 0.106
0.4 0.524 0.676 0.176
0.6 0.382 0.481 0.222
0.8 0.283 0.342 0.253
1.0 0.2J5 0.250 0.273
1.5 0.118 0.129 0.301
2.0 0.073 0.076 0.314
5.0 0.013 0.0”13 0.330
m 0.000 0.000 0.333

From standard tables one has

J“
cos (/.L/iy/Ko)C -y dy = [l+(k/Ko)’~’]-’, (100.16)

o

which gives the angular distribution of 11(~) for a given (k/Ko). Using

(1 00.16) in (100.14) we obtain the dispersion relation for the thermal
relaxation mode of a radiating fluid:

n(k) = v[l –(KO/k) cot-] (KO/k)], (100.17)

a result first obtained by Spiegel (S18).
The ratio KO/k = KoA/27r = rA/2T, where 7A is the optical thickness of

one wavelength of the perturbation. As shown in Table 100.1, n(k)
decreases monotonically from u to zero as ~~ varies from zero to infinity;
that is, optically thin disturbances damp rapidly whereas optically thick
disturbances damp slowly. To understand this result intuitively one notes
that in an optically thin perturbation II -+ O because positive and negative
fluctuations of TI contribute equally along each line of sight, and average
to zero. In this case .TI-+ O, hence the damping rate is set entirely by local
emission losses, independently of k. In contrast, in an optically thick
perturbation J,= B,, the difference between the two being set by radiation
diffusion; therefore thermal emission is closely balanced by reabsorption,
and the cooling rate is slow. By expanding (100.17) we find that as
(Ko//c) + CXI, n(k) + uk2/3K~; therefore tm ~ 3K~/k2v ~ (pcUT,,/aRfi) x
(l’/cA,,) = (2/E)t~ where Z is the material energy density, E is the radiation
energy density, and t~ is the radiation diffusion time.

Unno and Spiegel (U9) clarified the physical significance of the exact
solution obtained above by using moments of the radiation field and
invoking the Eddington approximation. In the 1im it that both hydro-
dynamic motions and the dynamics of the radiation field (specifically the
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rate of change of the radiant energy density) can be ignored, the first law of
thermodynamics for the radiating fluid (96.9) yields an alternative energy
equation:

pcU(dT/dt) = –V . F. (100.18)

It is important to remember the restrictive assumptions on which (1 00.18)
is based. Next, making the Eddington approximation Kij = ~J i3ij and drop-

ping the time-dependent term in the radiation moment urn equation, we
obtain an explicit expression for F [cf. (97.68)], by means of which we can
rewrite (100.18) as

PCv(d~/dt) = V “ [(4 W/3K) VI]. (100.19)

The a.pproximations made here are the same as those used in the nonequi-
librium diffusion approximation (cf. $97). Then substituting for J from
(100.1) we have

Pcu(dT/dt) = V - {(1/3K) V[a~CT4+ (PC0/K)(dT/dt)]}, (100.20)

which describes the thermal behavior of a static radiating medium, in the
Eddington approximation, when time evolution of the radiation field is
ignored. Finally, linearizing (100.20) and using the fact that V7-0 = O
(homogeneous medium) we find

(V2–3K2)(2T1/dt) =–VV2Tl, (100.21)

where v is defined by (IOO.1O)I.
The essential physics emerges when we examine (100.21) in the opaque

and transparent regimes. In opaque material K/ -+ CD, where 1 is a charac-
teristic length, and (100.21) limits to the diffusion equation

(dT1/dt) = (V/3K2) V2TI, (100.22)

which shows that radiative relaxation occurs on a characteristic time

scale ~ 3 K2i ‘/v, as found above. For transparent material K~-0 and
(100.21) limits to Newton’s law of cooling

(dT, /dt) = –vT,, (100.23)

according to which the rate of cooling is linearly proportional to the size of
the temperature fluctuation, and has a characteristic time scale tRR= 1/v.

Using a trial solution of the form (100.12) in (100.21) we recover
(100. 13), but with the exact n(k) replaced by

?tE(k) = v/[l+3(K0/k)2]. (100.24)

Equation (100.24) has the same limiting behavior as (100.17) when
(KO/k) -+ O and (KO/k) ~ ~, and, as shown in Table 100.1, provides a
reasonably good approximation in between.

When the effects of scattering are included, K. is replaced by (K + a). in
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(100.19), hence (100.24) becomes

n~(k) = v/{1 +3[KO(K +cr)o/k2]}. (100.25)

From (1 00.25) one sees that for a given total opacity XO= (K+ a)o, increas-
ing ~0 relative to K. afways increases the relaxation time. Indeed in the

limit of pure scattering (KO= O) we have the noteworthy result that n~(k) =
~ = (), hence the medium behaves adiabatically, as one wou]d expect

because photons are conserved by a pure scattering process. When the
effects of energy exchange by thermal conduction are included (A6), (Dl),
the relaxation rate becomes n = n,.~ + nCO.~,where n..n~ = (K/pcv) k2; here
K is the material thermal conductivity. Comparison of nr.~ and nCOn~shows
that radiation dominates only in long-wavelength disturbances, specifically
when

k2< (16 UKKOT~/~)–3KO(K +U)O. (100.26)

From the fairly close agreement of n~ (k] and n(k) many authors have
concluded that the Eddington approximation is valid for the perturbed
radiation field in both the optically thick and thin limits. We can examine
this conclusion critically by calculating the Eddi ngton factor directly from
(100.16), obtaining

J

1
f(k) = L~’[1 + (k/KO)’/&’]-’ dp

IJ
[1+ (fdKo)2~2]-’ d~ ~10027)

o 0

= (Ko/k)[l–(KO/k) cot-’ (KO/k)]/cot-’ (Ko/k).

Numerical values for f(k) are given in Table 100.1.. For optically thick
disturbances f ~ ~. But for optically thin disturbances f actually vanishes,

indicating that the perturbed radiation field is far from isotropic. In fact,
the perturbed radiation field has a “pancake-shaped” distribution around
the normal to the plane of the disturbance, because in the plane (K = O),

~J(W)=B~, but as w ~ 1 (i.e., afong k) 11 -+ O because contributions from

the sinusoidal variation of B sum to zero when there is no attenuation
along the ray.

The real reason that n~ = n when Ko/k = O is not that the Eddington
approximation is valid in this limit, but rather that J, x (KO/k) ~ O in an
optically thin disturbance. Hence the absorption term KJ1 i n the energy
equation vanishes, and the relaxation rate is set solely by the emission term
K@I, which is independent of both k and f. Indeed, ret=i ng the deriva-
tion of (~00.24), one finds that n~ = v when %/k = O no nlatter what
numerical value is chosen for the closure ratio K/J; that is, the Eddington
approximation is irrelevant in the optically thin limit.

Spiegel’s formula for t~~ has been extensively applied in estimating the
effects of radiative cfalmping on waves in stellar atmospheres (cf. $$101 and
102), But it is we]] to emphasize the restrictive assumptions on which it

rests: an infinite, grey, homogeneous medium in LTE; initial radiative
equilibrium: and no dynamics of either the matter or the radiation field. It
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entirely neglects boundary and nonlocal transport effects arising from
inhomogeneities in the medium. The conditions under which the formula is
known to be valid are therefore very limited, and one must be careful not
to misapply it.

As an example of the consequences of dropping some of the assumptions
made in deriving (100.17), consider an ambient homogeneous, static, LTE
medium not initially in radiative equilibrium, but in a steady state under
the action of radiative energy exchange and a constant nonradiative (e.g.,
magnetic) energy input (or loss) ~. Then

(dddt)o = &TKo(~o - ~.) + q = (), (100.28)

which implies JO # BO. (Such a state can be realized only for a finite

homogeneous medium, for otherwise .TOwould inevitably saturate to Be.)
In this case we cannot omit the term 47rK, (J. – Bo) from the linearized
energy equation, nor the term K1(~o — BO) from the Iinearized transfer

equation. Retracing the analysis we find that the effect is to replace BI in
both (100.6) and (100.8) by an equivalent source

(100.29)

and therefore u in (100.10) et seq. by

fi = (4mq/pco)[(aRc/m)T~ + (d in Ko/dT’)(& –Jo)]. (100.30)

When q >0, then Bo> JO, and the nonradiative energy input is balanced
by excess emission. Then if (dKo/dT) >0, we have J > v, as one expects
because an increase in opacity produces an increased rate of emission. If,
on the other hand, (dKO/d T) <0, so that the material radiates less efficiently
as it is heated, then J <v, and the relaxation time increases. Indeed if the
second term in (100.30) is sufficiently negative, Z can become negative and
an initial fluctuation will grow rather than decay; in this case the material is
thermally unstable.

TIME-DEPENDENT RA D rATTON TRANSPORT

To extend the analysis we now allow for the finite propagation speed of

light and consider time-dependent radiation transport; we thereby allow the
radiation field to have a dynamical character. As before, we assume no
material motions, which means that the material will respond only pas-
sively to the radiation field. Intuitively we expect to find again a thermal
relaxation mode, but modified by the finite photon flight time tx = LP/c =

l/cK, and in addition, other new modes arising from the dynamical nature
of the radiation field, including attenuated propagating radiation waves
that correspond to the flow of radiation through an absorbing medium.

We adjoin the radiation energy and momenttum equations to the gas
energy equation and for steadily driven disturbances in an infinite homo-
geneous medium derive a dispersion relation (which is independent of
global initial-boundary conditions) for the coupled set (A6), (Dl). TO close



514 FOUNDATIONS OF RADIATION HYDRODYNAMICS

the system of moments we invoke the Eddington approximation, encour-
aged by the good results it gives in the quasi-static case.

For an infinite, homogeneous, grey, LTE medium initially in radiative
equilibrium the perturbation equations to be solved are (100.6) and

(l/CK)(d~l/dt)+ (l/K) (d~[/dX) = ~,–~1 (100.31)

and

(l/CK)(dH,/dt) +(l/3K)(dJJ/i)X) = –H,, (100.32)

where we noted that JO= BO and HO= O. Assuming plane-wave perturba-
tions of the form @~= @eik’e-”[ we obtain the system

[

ntA– 1 —ikjK

)()

1 J,

–ik/3K ntk–l 0 H, =0 (100.33]

v o n—u B,

which has a nontrivial solution only if the determinant of coefficients is
zero. From this requirement we obtain the dispersion relation

z3–(a+2)z2 +(a+p+l)z–ap =0, (100.34)

where zs ntk, a = vtA, and ~ = k2/3K2.

In general, (1 00.34) has either three real roots or one real root and two

conjugate complex roots. Given the roots A, (i = 1, 2, 3), one finds that the
eigenvectors of the system have components

Vi(k) = (.~l, HI, B,)i =[1, (init~K/k)(ni– v–til)/(v–ni), v/(v–~)]x J,.

(100.35)

To gain physical insight we examine (~ 00.34) in various limiting cases.

Suppose first that tk -+ O, which implies that c ~ CO,hence quasi-static
radiation. We then recover (1 00.24) and thus have the same thermal
relaxation mode as before. We find

.T, = ~,/[g + (k2/3K2)] (100.36aj

and

H, = –(ik/3K)J1. (100.36b)

Note that J1--+Bl ancl H1-Oas~A ~~; and.T~--+O, H[~OasrA-+O;
HI lags J, by T/2 as a function of x.

Next, suppose that v ~ O, which corresponds to material with infinite
heat capacity. Here the state of the matter is frozen, and a disturbance in
the radiating fluid can propagate only by radiation. The dispersion relation
reduces to

2[(2–1)2+/3]=0, (100.37)

which yields roots z, = O and 22.3 = 1 + ik/& K. For n = O we can impose an
arbitrary 5,, which does not decay in time; J, and H, are again given by
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(100.36), and merely represent the static adjustment of the radiation field
to an imposed source perturbation (constant in time). The other two roots
are more interesting; we find BI = O and

H,= +J1/fi (100.38a)

where
~~ ~ ~-t/tLeik[x&(c/>6)Ll (100.38b)

These are damped radiation waves propagating along the +x <axis with a
phase and group speed cIJ~, attenuating in time at a given spatial position

on a time scale tA, or in space following a particular phase crest with a
spatiaf scale (~ K)–’. These modes were rejected by previous authors
(A6), (Dl), (F5), but are~in fact, legitimate modes in a radiating ffuid. The
propagation speed is CIJ3 instead of c because we have used the Edding-
ton approximation and therefcm-e obtain the telegrapher’s equation in the
optical] y thin limit instead of the exact radiation wave equation [cf. the
discussion following (97. 11 O)]. To obtain a better sojution we would need
to calculate an accurate Ecidington factor for the time-dependent radiation
field.

Next consider a homogeneous disturbance (k= O). From (1 00.33) we find
the dispersion relation

Z(z–l)[z–(a+l)]=o (100.39)

which has roots Z1 = O, Zz = 1, ancl Z3 = a T 1. For the nondecaying mode
nl = O we find that .J~= B ~ and 111= O. Here we have merely reached a new
equilibrium in the radiation field by making identical, constant changes in .1
and B; HI is zero by symmetry. For the root n2ri = 1 we find that
.T1= I?l = O, whereas HL is arbitrary. Thus we may apply any nonzero
perturbation in the specific intensity of the form II(w) = ZaiPi(~) as long as
aO = a2 = O, which imp] ies that J, = K1 = O (Eddington approximation); al
and a, for i a 3 may be arbitrary. Alternatively we may impose an
azimuthal an isotropy such that J, and K, are zero (F5). Here we have an
isotropization mode, in which an initial angular anisotropy of the radiation
fielcl is removed by absorption and isotropic re-emission on a radiation-flow
time scale t~; the process is analogous to the establishment of an isotropic
velocity distribution function for material particles in a deflection time tD
(cf. $1 O). Finally, for the root n,= v + t:’ we find .J1 = –B1/vt,, which yields
exact energy conservation in the linearized gas energy equation, and

Ifl = O. Here we have an exchange mode in which a given amount of energy
is removed from the radiation field and temporarily deposited in the
material (or vice versa) thus conserving the total fluid energy, but destroy-
ing radiative equilibrium. The disturbance decays back to equil ibri urn at a
rate even faster than the relaxation rate of a transparent disturbance
because we have simultaneously increased B (hence the emissivity) and
decreased .J (hence the rate of absorption), or vice versa, which results in a
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larger temperature imbalance (hence relaxation rate) than in an optically

thin disturbance where B is altered but the ambient .TOis unperturbed.
Consider next the opaque h-nit, ~<< 1, where (100.34) yields three real

roots. We find that to first order in ~ the smallest root of (100.34) is

nl(k)= v(k2/3K2)/(1 * Vti), (300.40)

which is just the thermal relaxation mode, but with an effective relaxation

rate v/(1 + zll). The decreased relaxation rate is what one would expect
intuitively because the radiation now takes a finite time to flow. In this
mode J, and B] always have the same sign. For ~<< 1, J, and B., are nearly
equal and \HI I<<I.JII; and .TIe B, while H, + O when k ~ 0. The
isotropization-mode root in the limit of small ~ is

n2(k) = v{l – [(k2/3K2)(ut~ – l)/vtk]}. (300.41)

Again we have both IJII <<IHII and IB,]<< IHII. Finally, the exchange-mode
root in the limit of small ~ is

rzq(k) = v + t~’ –[(k2/3Kz)/vtf(l + utA)]. (100.42)

In this mode J, and B, always have opposite signs, and 111 is small and 90°
out of phase with .TI.

Finally, consider the transparent limit /3~ ~. We find that (100.34) has
one real root

n, (m)== L’ (100.43)

and two complex roots

n2,3(~) = CK * ick/&. (100.44)

The real root corresponds to a pure damped disturbance; as we will shortly
see, the mode by which it decays depends on the value of a. The complex
roots correspond to two damped radiation waves propagating with phase
and group speed c/N@. In these modes the sign parity of ~, relative to 131 is
opposite to that in the surviving mode corresponding to n,. This fact and
the conjugate relation of the complex roots guarantees that with the three
modes we can always synthesize an imposed perturbation in which .TJ and
BI have arbitrary relative amplitude and phase.

The analytical results discussed above are represented in Figure 100.1,
which shows n(k) obtained from numerical solutions of (100.34). For
optically thick disturbances we always find three real roots, corresponding
to the exchange, isotropization, and thermal-relaxation modes. For small
optical thickness we always fincl one real root and two complex roots

correspond ng to damped radiation waves. When a <1 the real root
corresponds to the thermal relaxation mode; when a >1 it corresponds to
the exchange mode. The connectivity of the various branches changes
abruptly at a = 1, as illustrated. For the special case a = 1 the dispersion
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Fig. 100.1 Decay rates, as a function of optical thickness, of temperature fluctua-
tions in a static medium.

relation

(z-l) (z2-2z+p)=o (100.45)

can be solvecl exactly; one finch Z1 = 1 anct 22,s = 1 *(1 – B)J’2. The first
root corresponds to the isotropization mode, which survives into the
transparent limit in this case; the other roots yield damped radiation waves
when /3 >1, and the thermal-relaxation and exchange modes when /3 <1.

For a specific choice of ldr< and vt~, an arbitrary disturbance can be

projected onto the three eigenvectors of the system, yielding three compo-
nents of the perturbation. The ith component decays away on a time scale
1/Re (nt), hence the mode wit!h the smallest root dominates the long-term
time evolution of the radiating fluid. For example, in the opaque limit,
local imbalances in radiative equilibrium will be removed first by direct
exchange between radiation and material energy, next the radiation field
will isotropize, and finally the residual perturbation will be smoothed by

thermal relaxation. For optically thin disturbances energy transport in
radiation waves becomes eflicient, and two of the modes that exist for
optically thick disturbances will be replaced by these modes. For small a,
ti< tR[<,hence the radiation field will adjust essentially instantaneously to

the stale of the material via damped radiation wa~’es; the final rate of
relaxation (in the thermal relaxation mode) is set by the heat capacity of
the material. In contrast, for large a, tk > tJZ17,hence the radiation is
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essentially “frozen” and the material adjusts rapidly to the local radiation
field via the exchange mode; final global smoothing of the initial distur-

bance then proceeds via damped radiation waves.
All of the results discussed above are based on the Eddington approxi-

mation, which, as we saw from (1 00.27), breaks down for optically thin
disturbances. Delache and Froeschle (Dl), (F5) attempted instead to find
an exact sol ut ion. They obtained a dispersion relation that yields only one
or two real roots, and concluded that the complex roots of (100.34) must
be rejected, thereby discarding the damped radiation waves. However,
their solution encounters a severe difficulty in the optically thin regime
because they find only one mode, which has the unacceptable implication
that one is not free to impose an arbitrary initial disturbance, but only one
with the correct relationship (both in sign and relative size) between .TI and
B ~. This lack of a complete set of modes indicates a deficiency in the
analysis.

In fact, the formal solution in (Dl) is invalid when ntk 21 because
initial-boundary conditions are not accounted for correctly [cf. (79.35)].
The mathematical symptom is that a certain integral diverges unless
nt~<1 ; physically the divergence occurs because the integral is swamped
by an exponentially divergent source when the integration is extended to
t ~ –~ instead of being truncated at t = O (the instant when the initial

perturbation was imposed). The solution in (F5) suffers from a similar
problem. Furthermore, when correct limits are applied in the formal
solution it is no longer possible to use a separable solution of the form
(1 00.1.2). Thus the proposed “exact” solution appears to have only limited
applicability y.

In our opinion the Eddington approximation should always yield results
that are at least qualitatively correct. For example, suppose ntl <1. Here
we expect the Eddington approximation to be valid in the opaque limit,
and to become irrelevant in the transparent limit. As a test we replace the
factor ~ in (100.32) to (100.34) with the quasi-static f(k) given by (100.27).
As shown in Figure 100.1 we find little change in the modes with nt, <”1.
The same remark holds for modes with nt~ s 1, but in this case we cannot
guarantee that (100.27) is valid. However, we know that for a mode with
ntL>1 the material equilibrates to the local radiation field via isotropic
emission and absorption processes on a time scale shorter than that
required for radiation to flow to (or from) adjacent regions. Therefore if we
assume (legitimately) that the initial radiation perturbation is isotropic, we
can argue that it must remain isotropic during the lifetinle of the mode,
hence that the Eddington approximation will apply. Similarly, for ntA= 1

the effect of the isotropization mode is to isotropize an initially anisotropic
distribution. Likewise the damped radiation modes will propagate an initial
isotropic disturbance isotropically. In all cases the Eddi ngton approxima-
tion appears reasonable.

The radiative relaxation of a medium comprising non-LTE two-level
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atoms, radiation, and an ambient LTE gas is discussed in (L7), (F5), and
(F6). Appropriate rate equations are adjoined to the gas energy and
radiation transport equations. The resulting dispersion relation is more
complicated and yields a richer spectrum of modes, which now depend on
characteristic time scales governing the kinetics of statistical equilibrium
(e.g., radiative and collisional rates) in addition to the parameters entering
in the cases discussed above.

Virtually all astrophysical discussions of the radiative damping of tem-
perature fluctuations and/or waves are based on (100.17) or (100.24), and
thus ignore the time dependence of the radiation field. This simplification is
usually justified because the dynamical time scales of many astrophysical
phenomena are enormously longer than a photon flight time, hence the
radiation field is indeed quasi-static and the fast exchange, isotropization,
and damped-radiation-wave rmodes are of little interest. A similar situation
is encountered in fluid dynamics where in order to follow the evolution of
flow phenomena having long time scales, one can make the anelastic
approximation and adopt modified equations of hydrodynamics that sup-
press sound waves, thereby filtering out variations on short time scales that
otherwise are a nuisance computation ally.

THERMAL RESPONSE OF THE SOUR P.TMOS PH ERE

In attempting to apply (100.17) to estimate the radiative relaxation time of
temperature fluctuations (or waves) in a stellar atmosphere, one must
account for two important effects: (1) the variation of material properties,
hence v, with height, and (2) the presence of an open boundary.

Estimates of the relaxation time for an optically thin disturbance, tRR(~),

have been made by several authors [e.g., (B6, 326), (S17), (S24), (U3)]
using realistic model solar atmospheres. Allowing for continuum opacities
only, one finds that t~~(m) in the photosphere (~COn,= 1) is about 1 s, and
rises rapidly with height, reaching a maximum of about 800s at about
700 km above the photosphere. At greater heights the relaxation time
begins to drop because of rising temperature, then passes through a
secondary maximum as hyclrogen ionizes, and finally plunges sharply.
These results are modified drastically when radiative losses in spectral lines
are included (G5); one then finds that tRR(o$ rises to about 500 s just
above the temperature minimum, then falls to only 90 s in the mid-

chromosphere where line losses a~e large, before rising again to about
400s when hydrogen ionizes. Unfortunately it is difficult to allow properly
for self-absorption in the spectral lines, hence to estimate accurately their
net cooling rate, and the line-loss term is uncertain by at least a factor of 2.

Below rCO.,= 1, tR1<(~) drops rapidly as K rises sharply. But for a
disturbance of finite wavenumber k, the increase of ~,1 with increasing K

implies that tRR(k) increases rapidly, in accordance with (100. 17). Ulti-
mately, tRR(k) becomes so large that a time-periodic disturbance behaves
essentially adiabatically (wtRR >>1). Because the atmosphere has an open
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boundary the effective relaxation rate of a disturbance depends on its
optical depth ~ in the atmosphere, as well as on 7A. Thus a horizontal
perturbation will relax by horizontal radiative exchange between crests and
troughs if ~A<<T, but if ~A>>~ it relaxes more efficiently as a result of
vertical radiative losses through the open boundary. Ulrich (U8) suggested
that in calculating tRR from (1.00.17) we use an effective optical thickness
given by

In physical terms (100.46) gives the harmonic mean of the number of
absorption a photon requires to cross one wavelength of the disturbance,
and the number to escape from the atmosphere. For a vertical disturbance
one can use (100.46) or simply choose ~ef = min (~, 7A). In an exponential
atmosphere ~,, :7 = A: H, hence 7A sets the relaxation rate only for short-
wavelength disturbances (or for long-wavelength disturbances deep in the
envelope where H becomes large).

The thermal response of the solar atmosphere to periodic time variations
of the radiative flux incident from below is examined numerically in (W5).
The atmosphere is assumed to be motionless, but allowance is made for an
inhomogeneous vertical structure. A sinusoidal variation with a 10 percent
amplitude in the radiative flux is imposed at the lower boundary. Initial
transients (the subjects of study elsewhere in this section) are allowed to
die out, and the final periodic solution driven by the boundary condition is
obtained. From the numerical results one finds that (1) the amplitude of
the temperature fluctuation decreases with increasing height, (2) there is a
phase lag between the imposed flux and the temperature response, (3) the
lag increases with height, and (4) the lag is an increasing fraction of a
period as the period decreases.

To understand these results qualitatively, consider the optically thin part

of the atmosphere, and assume that

7-(2, t)= 2-.[1 +f(z)ei-”] (100.47)

and

J(t) = -TO(l+ &e’”’), (100.48)

where TO is a suitable average and JO = 130= ~~T~/m. The perturbation s is
constant because the region considered is optically thin. The linearized
energy equation then reduces to

io.$(z) = (4 UR(K)T~/CU)[C –4&(z)]. (100.49)

In general both E and f are complex, but we can choose the time
coordinate so that s is real, whence we have

& = –~1/&dJ/(@’+ ZJ2) (1.00.50a)

and
[R/[, = –v/m. (100.50b)
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Therefore

1.5(Z) I = Mz)d[@2+ J’2(Z)J”2 (100.51a)

and

c$(z) = –tan-’ [@/v(z)].

Here ~ is the phase angle between J, and T,;
lags .T. In the high-frequency limit, o/v - ~,

Igl -+ +v&/co+ o

and

~+.2
2’

(100.51b)

negative @ indicates that T

(100.52a)

(100.52b]

so the thermal response lags the input by 90° and its amplitude vanishes. In
the low-frequency limit, ~/v e O,

l~l~~E (100.53a)

and

@+o, (100.53b)

hence the atmosphere passes through a series of quasi-equilibria with
vanishing phase lag. Equatic)n (100.5 la) shows that the phase lag must
increase with height because v decreases outward through the photo-
sphere; the approximate results given by (100.51) are in good agreement
with the numerical results.

The radiative relaxation of a two-dimensional checkerboard distribution
of temperature and density fluctuations simulating a hydrodynamic model
of convection cells in the solar atmosphere is discussed in (L8). The
relaxation rate is found to depend on the cell size, the size of the velocity
field, and the amplitude of the initial temperature fluctuation.

101. Propagation of Acoustic Waves in a Radiating Fluid

In this section we examine the effects of radiation on acoustic waves
propagating in an infinite, homogeneous medium in LTE, initially in

radiative equilibrium. We first consider wave damping by radiative energy
exchange, which is generally very efficient, especially near boundary sur-
faces (e.g., the solar photosphere) where radiative relaxation times are very
short compared to typical wave periods. By comparison, wave damping by
viscosity and thermal conduction is negligible in most situations of astro-
physical interest. We treat the spatial damping of driven harmonic distur-
bances (i.e., real w and complex k) as opposed to the time decay of a
transient initial disturbance (i.e., real k and complex co). We then consider
the more fundamental role played by radiation through its contributions to
the total energy density and pressure in the fluid; we find that radiation can
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radically alter the dynamical properties of wave modes in the fluid. Finally,
we consider briefly the effects of radiation forces on acoustic waves.

NEWTONIANCOOLING (OmIcALLy THIN PERTUR13A-IIONS)

Consider first an optical] y thin disturbance in which radiative energy
exchange is adequately described by the Newtonian cooling approximation
(S16), (S25). We assume that the radiation field is quasi-static and ignore
the dynamical behavior of the radiation component of the radiating fluid.
From (1 00.23) the net heat input to the gas is then

(Dq/Dt) = –pcov-r, (101.1)

where v is given by (100.10). Using (101 .1) in (52.19) we can write the gas
energy equation as

(Dp/Dt) -u2(Dp/Dt)=–16(r, - l)a~KOT~(T,/TO). (101.2)

For the special case of a perfect gas with constant specific heats, we can
rewrite the right-hand side of (101 .2) in a more convenient form. For such
~gasr~=y,(y—~)~u ‘R~a 2 = -YP/P, and T1/To = (PJPOI –(PI/Po), and the
linearized version of (1 O1.2) reduces to

(dpl/dt) = a2(@Jdt) + v - (a’ Vpo - Vpo) – (a2Po/ytRR)[(pI /po) - (pl/P.)l,

(~ol.3)

where for brevity we write tRR= tm (CO)= V–l.Note in passing that for an
ionizing gas the linearized energy equation is

(dpl/dt) = a2(dpl/dt)+v” (rX2Vp0-VPo)– a2po[a2(pl/po) –al(pl/po)l,

(101.4)

where, from (54.84a), CYland a2 for a pure hydrogen gas are

al =[16(r3– l)crRKoT$/r LpO]/{l +~x(l – x)[~+(&r/kT)]} (101.$

and

cK2=[l-E;x (l-x)]a L. (101.6)

For a homogeneous medium the gradient terms in (101 .3) vanish, hence
the dynamics of a radiatively damped acoustic wave is determined (in the
Newtonian cooling approximation) by

(ap,/dt)=pQv” v,, (101.7)

Po(fN’1/at) = –vPI, (101.8)

and

(dpl/i3t) - a2(@L/dt) = -(a2po/7tRR)[(p1 /pO) - (dpo)]. (101 .9)

Taking (d2/dt2)of (101 .9) and using (48.6), which follows from (10~ .7) and



RADIATING FLOWS

(101 .8), we obtain the wave equation

{[(d’/dt2) – cl’ Vz](d/LJt)+ t~~[(d2/dt’) -

For plane waves (101 .10) yields the clispersi

523

a2/y) V2]}p, = O. (101.10)

,n relation

( )[
~2= $ (1+ ‘y@’t&) – i(y – I)@tR.

1 (101.11)
az 1 + y~@3& ‘

Because k is complex we find damped progressive waves varying as
e i(a[—k Rx)e —lcrx

In the high-frequency limit, wt~~ >>1, and

k = (@/a){~ – z[~(Y – 1)/Y@tKR]}> (101.12)

which corresponds to acoustic waves traveling with the adiabatic sound

speed, having a characteristic damping length

L== [27/(7 – l)]atRR. (101.13)

Note that L/A- o&~ >}1, hence in the limit of high frequencies and/or
long damping times, acoustic waves behave essentially adiabatically and

suffer only a small damping per cycle. Note, however, that (101.13) shows
that the geometrical distance over which the wave damps can be made
arbitrarily small by making the relaxation time sufflcientl y short; in this
sense high-frequency waves can be heavily damped.

In the low-frequency limit, dRL<cc1,and

k = (co/a-,.)[1 – i~(y – l)~t~~], (101.14)

where a.-,. is the isothermal sound speed a/-y 1!2. We now have acoustic
waves traveling with speed aT, with a damping length

L = [2/(7 – 1)]a-rt,<~/(oN~~)2, (101.15)

which implies that L/A– (@tM. )“ >>1. Thus according to Newtonian cool-

ing theory, in the limit of low frecluencies and/or short radiative relaxation
times radiative exchange obliterates temperature fluctuations in the gas,
and acoustic waves propagate isothermally with negligible spatial damping.

For arbitrary @tRR one solves (101.10) numerically. As shown in Figure
101.1, the phase speed vu = o.dk~ rises abruptly from a-r to a near
cotm = 1. At the same time, the damping length L/A= lk~/2wkr\ passes
through a minimum. Indeed, near cot~~ – 1, L/A= 1, so these waves decay

after traveling only a few wavelengths.
It must be emphasized that all of the above results apply only for

optically thin disturbances, ~/k <<1, A/& <<1. The significance of this

remark will become clear shortly.

.
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Fig. 101.1 Damping length and phase speed of acoustic mode in Newtonian
cooling approximation.

EQUrLJ13RIUM DIFFUSJON (OFWCALLY THICK DKTURBANC13S)

In extremely opaque material (e.g., inside a star), radiation comes into
thermal equilibrium with the matter, and energy exchange proceeds by
diffusion; in this regime radiation can have important dynamical effects on
wave propagation. In treating the radiation field we can apply the equilib-
rium diffusion approximation provided that the disturbance is sufficiently
optically thick, that is, that K/k >>1.,and A/Ap >>1.

The dynamical equations for a radiating fluid in the equilibrium diffusion
regime were derived in $97. From (97.5) and (97.6) the momentum
equation is

p (Dv/Dt) = –Vp (101.16)

and the energy equation is

P{(W~~) + FID(HP)i~~l} = v . (~ VT). (101.17)
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Here p, Z, and ~ are the total pressure, energy density, and conductivity of
the fluid:

~ = Pw,+ Pr,~ = PRT+ iaRT4 = (1 + a)pRrr, (101.1.8)

.z = cc,,, + (a~T4/p) = 2RT+ (a~T4/p), (1.01.19)

and

R = K,,.,”,:,, + I’c,.a., (101.20)

where K,z,c{is defined by (97.3). Using (52.19) we rewrite (1 OI.1.7) as

(Dfj/Dt)-a2(Dp/Dt) = (17-I)V” (~VT) (101.21)

where

a2=171p/p = (1 +~)rl(ag,L,/7), (101.22)

and rq and rl are given by (70. J 8) and (70.22).
For a small disturbance we linearize these equations. The linearized

continuity and momentum equations are the same as (101.7) and (101..8)

(with p, replaced by ~,), and therefore again yield (48.6). The linearized
energy equation is

(ap,/at)– a2(dpJdt) = (r, - l)I? V*T,. (101.23)

We can eliminate T1 in favor of ~, and PI by means of the linearized
equation of state

T,/TO= [(l+ Ix)(~I/Do) ‘(PI/Po)l/(1+4~) (101.24)

Thus using (101.24) in (101 .23) and making use of (70.16), (70.18), and
(70.22) we find

(tq3,/at)- a’(dddt) = rx[v’pl- (a*/r)V2p,] (101.25)

where we defined an effective r as

r=(l +a)r, (101.26)

and the thermal diffusivity is

x = K/pocv. (101.27)

With these definitions (101.25) is formally identical to (51.5) for a heat-

conducting gas. Taking (d2/dt2)of (101.25) and using (48.6) to eliminate PI
we obtain the wave equation

{[(a2/dt2)-a’ V2](d/dt) -17x[(d2/dt2)- (a2/I’)V’] V2}@l= O. (101.28)

For a plane wave (101 .28) yields the dispersion relation

(ak/co)4 -[r - i(a2/Xw)l(ak/w)2– i(a2/xO) = 0, (101..29)

which is quadratic in (ak/co)2, and contains two dimensionless numbers: 1-
and Xco/a2. This dispersion relation is formally identical to (51.16) for a
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thermally conducting inviscid material gas. Hence we obtain the same
modes and physical interpretation as before: an adiabatic (isothermal)
radiation-modified acoustic wave, and a slow (fast) radiation-diffusion wave
in the low (high) frequency limits, respectively. These waves have the same
propagation characteristics as described in $51 (cf. Figures 51.1 and 51.2);
only the thermodynamic parameters (x, 17,a) differ from their earlier
definitions. Thus in the equilibrium diffusion regime radiation is an in-
separable part of the radiating fluid, with photons behaving dynamically
like “honorary material particles”. *

It should be noted that as a ~ ~, 17, a, and CP diverge, but this is an
artifact of having ignored the rest energy of the ffuid in our analysis [cf.

(48.32) and (70.27) for a]. The divergence occurs only at extremely high
temperatures where relativistic effects are major and a relativistic anaJysis
is required. In contrast, it follows from (101.22) and (101.26) that a2/r =

(a%)U,,, hence the phase speed of the isothermal acoustic wave depends on
gas properties only.

The analysis can be extended to include the effects of electromagnetic
fields in an ionized plasma; see (PI, $8.2).

TIM13-TNDEPENDEN-rTRANSPORT (EDDrNGTONAPPROXIMAr[ON)

The Newtonian cooling and equilibrium diffusion approximations conflict
with each other in that they predict opposite variations of the propagation
speed (i.e., adiabatic versus isothermal) of the acoustic mode in going from
low to high frequency. This contradiction arises because each scheme
breaks down in one or the other limit. Thus at a sufficiently low frequency
the wavelength of a disturbance is so long that it becomes optically thick
(no matter how transparent the material), and the Newtonian cooling
approximation no longer applies. Conversely, at very high frequencies the
wavelength of a disturbance becomes so small that it is optically thin (no
matter how opaque the material) and the difision approximation is no
longer valid because a photon mean free path exceeds the characteristic
spatial scale of gradients in the disturbance (recall the discussion of flux
limiting in $97j.

These considerations show that it is imperative to account for transport
effects arising from finite photon mean free paths in the disturbance. Our
qualitative expectation based on the diffusion approximation is that waves
should be adiabatic at very low frequencies, and become isothermal above
some critical frequency; but then at some sufficiently high frequency the
waves should again become adiabatic, as predicted by the Newtonian
cooling approximation. Precisely this behavior was found by Stein and

Spiegel (S23) in their analysis of the time decay of an initial disturbance,
allowing for transport effects (but ignoring the time dependence and
dynamical behavior of the radiation field). in keeping with the rest of the

* we are indebted to Dr. J. I. Castor for this felicitous exmssion
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discussion of this section, we consider instead the spatial damping of a
driven disturbance along the lines explored by Vincenti and Baldwin (V6),
(V7, $$12.5-12.8).

The dynamical behavior of the material is governed by the continuity
equation, the material momentum equation

p(Dv/Dt) = –Vp, (101.30)

and the gas energy equation

(@/Dt)– a2(Dp/Dt) = 47r(y– 1) K(F13). (101.31)

Here p refers to the gas pressure only, and a2 = yp/p. In (101..30) we have
neglected the radiation force on the material.

We assume that the radiation field is quasi-static and make the Edding-
ton approximation. The radiation energy equation is then

(d~/dX)=K(~-~) (101.32)

and the radiation momentum equation is

~(~~/~~) = ‘K~ (101 .33)

Equations (10 ~.32) and (101.33) provide a significant improvement over
the Newtonian cooling approximation because they apply in both the
optically thick and thin limits. They are also an improvement over equilib-
rium diffusion because they discriminate between J and 1?, which is crucial
when the disturbance becomes optically thin. However they sacrifice some

of the logical consistency inherent in the equilibrium diffusion analysis
because they ignore the dynamics of the radiation field; we will remedy
that flaw later.

In linearizing the radiation equations we note that JO= BO and HO= O,
and introduce nondimensional radiation variables j, = -f~/f30, h 1~ H~/BO,

and l?l/Bo = 4T1/To = 461. Combining the linearized forms of (101.32) and
(101.33) we have

(3 K2)-L(d2j,/dX2) ‘jl ‘401. (101.34)

In linearizing the continuity and material momentum and energy equations
we use a velocity potential U1= (~~, /3x) which implies that (dpl/dt) =

–po(d2d1/dx2) and, from (101.30), PI = –po(&$l/r3t). Using these expres-
sions in the linearized gas energy equation we find

(d2{$1/at2] – a2(tt2&/~x2) = (4a3K/Bo)(40, ‘j,) (101.35)

~,here Bo is the Boltzmann number obtained by setting the characteristic

flow speed equal to the sound speed:

Bo - pOcUa/m~T~. (101 .36)

Similarly the linearized equation of state for the material can be written

(r12+,/dt2)– (a2/y)(d24,/dx2) +(a2/7)(dol/at) = 0. (101.37)



528 FOUNDATIONS OF RADIATION HYDRODYNAMICS

For a plane wave (101 .34), (101 .35), and (101.37) imply

[

o –4

)(1

1 +(k2/3K2) ~,

(a’k’/co’) – y ia’lw o e, = O. (101.38)

(a’k’/w’) -1 –16a3K/C02B0 4a3K/a2B0 j]

Setting the determinant of (101.38) equal to zero we obtain the dispersion
relation

[1 - Z(167a/BO)](ak/LO) 4-[1 -3T~– i(16y~a/Bo)](ak/co)2- 37:= O.

(101.39)

Here

T. = CLK/@ = TAIZ’TT, (101.40)

where 7A is the optical thickness of one wavelength of a disturbance of
frequency o traveling with the adiabatic sound speed a. Like (101 .29),
(101 .39) is quadratic in (a’k’/co’), hence we again get two distinct wave
modes. One is a radiation-modified acoustic wave; the other is a nonequi-
libriurn radiation diffusion wave analogous to a thermal wave.

The importance of radiation to the behavior of these waves is measured

by Bo. In the limit Bo e ~ radiative energy exchange with the material
ceases. In this special case the dispersion relation factors into

[(ak/co)2- l][(ak/~)2+ 37:] = O, (101.41]

and we obtain (1) an undamped adiabatic acoustic wave in which 01 and VI
are related by (48.24b), and .~l and B] are related by (100.36), and (2) a
radiation-field pert urbation j, decaying as exp (—W KX) [as one expects for
the Eddington approximation, cf. (83.7)], while ~1 = 01 =0.

Solving (1 O1.39) for ~a <<1 (small optical thickness and/or high fre-
quency) we find a weakly damped acoustic wave with

k = (du)[l – i87u(y – 1)/Be], (101.42)

which implies that Vp= a and L/.A = [BO/167rTa(y – I)] >>1, and a fast,
strongly damped radiation diffusion wave with

which implies that vpla = Bo/8& yr~ and L = I /w@K or L/A = 4yr./7TBo.
Note that as ~. e O, the clamping length for the acoustic mode becomes
infinite, whereas the diffusion mode has an infinite phase speed and a fixed
geometrical damping length, while L/A ~ O. The infinite propagation speed
of the diffusion mode reflects the failure of the quasi-static radiation
equations to provide flux limiting in opticafly thin material.

For 7.>>1 (i.e., large optical thickness and/or low frequency) we find a
damped acoustic wave with

k =(w/a)[l – i8(y– 1)/37.Be], (101 .44)
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which implies that V. = a and L/A = [37a Bo/16w(y – ])]>> 1, and a slow,
heavily damped diffusion wave with

k== (co/a) (3~.Bo/32)’’2(l – i), (101.45)

which implies that vp/a = (32/3 ~aBo) 1’2<<1 and L/A ==l/27r. The prediction
by (101 .44) that the acoustic-mode speed always equals the material sound
speed independent of the radiation energy density (i. e., Bo) is in contradic-
tion with equilibrium cliffusion theory (which is valid when ~a >>1) and
reflects the failure of (101 .32) and (101 .33) to account for the dynamics of
the radiation field.

In general, (101 .39) must be solved numerically. Results for various
values of Bo are shown in Figures 101.2 and 101.3. For context, Bo is of

order 10 in the solar photosphere and at the Sun’s center, 10–2 at the
center of an O-star, 10-5 in an X-ray source, and 10–lQ or smaller in a
solar flare. Figure 101.2 shows that the acoustic mode is indeed adiabatic
at high and low frequencies, and is isothermal over a range approximately
inversely proportional to Bo. Furthermore, we see that the damping length
is large when the phase speed is constant, but drops shqlY where VP
makes a transition between a and al-. Figure 101.3 shows that v. in the
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Fig. 101.2 Damping length and phase speed of acoustic nlode for quasi-static
radiation field, allowing for transport effects.
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Fig. 101.3 Damping length and phase speed of radiation diffusion mode for
quasi-static radiation field, allowing for transport effects.

radiation difision wave is always a decreasing function of T., and increases
with Bo when T. is small, but decreases with increasing Bo when T. is
large. Near the low-frequency minimum of L/A for the acoustic mode, L/A
for the radiation-diffusion mode has a local maximum like that of thermal
waves as shown in Figure 51.2. At high frequencies, L is fixed but LIA
decreases because A increases [because v, increases as @z, see (101 .43)].

‘rrME-DEPENDmrr TRANsPoR-r (EDDINCWON APPROXrMATlON)

The two main defects of the analysis just presented are that (1) the time
dependence of the radiation field is ignored, hence propagating radiation
waves are spuriously suppressed and the radiation diffusion wave is not flux
limited, and (2) the dynamical effects of the radiation (work done by
radiation pressure and the rate of change of the radiation energy density in
the radiating fluid) are neglected. Therefore, to complete the physical
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picture we account for these phenomena by including the radiation pres-

sure gradient in the material momentum equation

p(Dv/Dt) = –Vp –VP (101.46)

and by using the Lagrangean radiation energy and momentum equations

c-’(DJ/Dt) - (4J3cp)(Dp/Dt) + (d~/dX) = K(B -J) (101.47)

and

c-l(DH/Dt) +~(dJ/dX) = ‘KH. (101.48)

The gas-energy equation (10 1.31) remains the same as before.
In (101.47) and (101.48), we have made the Eddington approximation,

so in (101.46) P = *E = (47r/3c).I In (101.46) we have neglected the time
derivative of H, which is permissible because that term is at most O(a/c)

relative to VP, which in turn produces terms that are only O(a/c) relative
to the dominant terms in the dispersion relation (except at very small
Boltzman n numbers).

The linearized continuity ecluation again yields (dpl/~t) = –pO(d2&/~x2),

while the linearized material momentum equation is

Po(~u@) = “(~P ,/Jx) – (47Tf30/3c)(dj1 /dx)) (101.49)

which implies

P ~= ‘Po(MJdt) – (4d30/3c)j~. (101.50)

Using these expressions in the linearized gas-energy equation and material
equation of state we find

(a2@l/dt2) - a2(d2C$,/dX2) + [4a 3/3c(y - l)Bo](dj,/dt) = (4a3K/BO)(401 - j,)

(101.51)
and

(d2&/dt’) - (a’/y)(d’@,/dx’) + (a’/’y)(a6Jdt)
(101.52)

+ [4a3/3c(y – l) Bo](djl/dt) = O.

For a p~ane wave, (101.51) and (101.52) become

(azk’-co’)+, –(16a3K/BO)01 +(4a3K/Bo)[l+ i~(y - l)-’ ~~’]jl = O,

(101.53)
and

(a’k’-yco’)+, + ia’dl+ (4a3K/BO)[i~Y(Y - l)-’ ~;”’]jl = O. (101.54)

By analogy with (101.40) we have defined

Tc = CK]O+ (101.55)

the optical thickness associated with a disturbance of frequency o traveling
at the speed of light (not sound). Notice that ~C: ~. = c : a, hence in an
acoustic wave of any appreciable optical thickness ~C}>1.
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The linearized radiation equations are

(CK)-’(@,/dt)+ (4/3 CK)(d2&/dX2)+ K-l(dhI/dX) = 46, - j, (1.01.56)

and

(CK)-l(~h@)+ (3 K)-’ (dJ,/dX) = ‘h,, (101.57)

where we noted that JO= BO and HO= O. For plane waves, (101 .56) and

(101.57) become

–(4k2/3cK)c$L-4tl, + (1 + i’ri’)jl - i(k/fc)h, = O (101.58)

and

–i(k/3K)jl +(l+i~~l)hl =(), (101.59)

which, when combined, yield

-(4k2/3cK)(l+ i~:’)+l -4(1 + i~;’)dl+[(l + i~~’)2+(k2/3K2)]j1 = O.

(101.60)

Thus we have

(

–(4k2/3cK)(l+ i~;’) –4(1 + i~;’) (l+i~j’)2+(k2/3K2)

(a’k’/co’)-y ia2/w i(4a3K/@2Bo)~y(y–1)-17:1

(a2k2/w2)-l –16a3d@2Bo (4a3K/@2BO)[l+ i~(y – l)-’ I-;’] )

()

41

x (31 = O. (101.61)

/1

From the determinant of (101.61) we obtain, after some reduction, the
dispersion relation

[1 - i(16Ta/Bo)]z4

+{3-r~(l+ i~;l)z– 1 + i(16y~a/Be)+ (16a/cBo)~~(l+ i~~’)
(101 .62)

x [5 + i~(y– 1)-17~1 + (16a/3 cBo)-y(y – 1)-1]}z2

–373[(1+ i~zL)2+ (16ya/cBo)(l+ i~;’)] = 0,

where z = ak/co. Equation (101.62) is more complicated than (101.39) and
admits a richer variety of wave modes. It is easy to study analytically only

in limiting cases. Notice that (101.62) contains yet another dimensionless
parameter r = a/cBo; we consider the cases of small and large r separately.

In most laboratory experiments and familiar stellar astrophysical re-

gimes, temperatures are low enough to guarantee that r<<1 because
a/c <<1, even though Bo may be much smaller than unity and radiation
makes a significant contribution to the energy-momentum balance in the
fluid. For example, at the center of the Sun Bo -10, a/c -10-3, hence
r- 10-4; at the center of an O-star Bo - 10-2, a/c -2 x 1.0-3, hence r- O.2.

In the small-r regime we drop terms in r and rz from (101.62), and
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analyze

[1 - i(16~a/Bo)]z4+[3 ~~(l + h:’)’- 1+ i(16y~~Bo)]z2-3 ~~(1 + i~;’)’ = O.

(101.63)

It is evident that for large ~a, (101.63) reduces to (101.39) because 7C>>7..
Hence for ~a >}1 the behavior of the modes is essentially the same as
discussed above for quasi-static radiation. On the other hand, for Ta << Tc <1,

the time dependence of the radiation field becomes important. In this
limit (10 1.63) factors approximately into

(z’- 1)[22+ 3T~(l+ k;’)’]==o. (101.64)

Equation (101 .64) has two roots: k = ~/a, corresponding (formally) to an
adiabatic acoustic wave, and

k ‘lfi [(@/~)– iK], (101.65)

corresponding to a damped radiation wave propagating with speed cj~
(Eddington approximation). This (flux-limited) radiation wave displaces the
radiation diffusion wave at moderate-to-small values of ~C.The geometrical
damping length of this mode remains fixed at L = l/fi K, whereas L/A=
(1/27r7-c) ~ ~ as ~C-+ O. The acoustic mode is also damped; analysis of
(101.63) shows that to first order in ~a we recover (101.42). This result is,

of course, only formal, as an acoustic wave cannot exist at frequencies
characteristic of light waves because internal processes in the gas invalidate
the inviscid continuum description of the fluid at much lower frequencies.

As the temperature of the ffuid is raised, (a/c) increases and Bo
decreases. Thus the ratio r may eventually become of order unity or
greater; for example, in an X-ray source (a/c) -2 x 10-3 while Bo -10-5,

hence r -200. “In this regime we must therefore analyze the full dispersion

relation (1 01.62). The analysis shows that for ~a <<1 we recover (101 .42)
and (101 .65), so we again have an attenuated radiation wave and (for-
mally) an acoustic wave propagating at the sound speed of the gas
component of the fluid.

The limit ~a >>1 is more interesting. Here we find a weakly damped

radiation-dominated acoustic wave with

k =(co/a)$[a/(y – l)cBo]J/2[1– i~(y – l)(c2Bo/a2~.)], (101 .66)

which implies

vp/u ‘$[u/(Y - l)~Boll’2 (101.67)

and L/A =[36/3m-(-y —1]](a2/c2Bo)~ti >>1; and a strongly damped, slow,
radiation diffusion wave with

k = (a/a) (a/c130)[8y~aBo/3(y – 1)] ’’2(1 – i), (3.01 .68)

which implies vO/a = (cBo/a)[3(-y – 1)/877aBo]’12<< 1 and L/A= l/27T.
To appreciate (101.67) physically, recall from (101.22) that the sound
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speed in a radiating fluid is aflui~= [(1 + a)rl/y]’’2UgaS, where a = pTad/p@ =

[47/3(7 – 1)](a/cBo). For large r, a>> 1 and 171~ ~; hence (101..67) simply

states that the radiation-dominated acoustic mode propagates at the sound
speed appropriate for a radiating fluid whose pressure and energy density
are dominated by radiation. The acoustic-mode phase speed obtained from
numerical solutions of (101.62) for large ~a does, in fact, agree precisely
with aflui~ as computed from (1.01 .22).

As shown in Figures 101.4 and 101.5, for r<< 1 the material dominates
the dynamical behavior of the fluid, with only one difference from the
results given by the quasi-static theory: at small ~a the fast radiation
diffusion mode, found before, is transformed into a propagating radiation
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wave as the flux-limiting properties of the time-dependent radiation equa-
tions come into play.

In contrast, for r a 1, the radiation field dominates the dynamics of the
fluid. When 7. is small the modes have the same behavior as for small r
because the radiation and material are essentially uncoupled. But as ~.
increases it is the propagating radiation wave that merges continuously into
the radiation-dominatecl acoustic mode, while the material acoustic mode
first changes from adiabatic to isothermal and then merges continuously

into the slow radiation diffusion mode.

RADIATJVE AMF’LI FICATION OF ACOUST(C WAVES

The propagation of optically thin acoustic waves in a homogeneous

medium with a large radiation flux has been analyzed by Hearn (HI). He
finds that under certain conditions the waves can be amplified by the work

_——-
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done by the radiation force on wave-induced variations of the opacity of
the material. If the wave frequency is sufficiently low (but not so low that
the disturbances become optically thick), radiative energy exchange oblit-
erates temperature flactuations and the wave propagates isothermally. In
this case the opacity varies only in response to changes in density, hence is
largest when the material is compressed, which is also when it has the

greatest forward velocity. Thus the gas is most strongly accelerated when it
is moving fastest in the same direction as the radiation flux, that is, when
the radiation force is in phase with the velocity perturbation. Therefore the
work done by radiation forces tends to increase the ve]ocit y amplitude of

the wave. On the other hand, high-frequency waves are essentially adiaba-
tic, and the decrease in opacity with increasing temperature (which occurs
in hot, e.g., stellar, material) more than offsets the density-induced in-
crease; hence these waves are damped by radiative energy losses. Unfortu-
n ate] y man y approximations were made in this exploratory discussion, and
a complete analysis using consistent Lagrangean radiation equations re-
mains to be done.

An approximate theory describing the development of waves into the
nonlinear regime under the action of this mechanism is contained in (H2).

102. Propagation of Acoustic-Gravity Waves in a Radiating Fluid

In this section we consider the propagation of acoustic-gravity waves in a
stratified radiating atmosphere. Unfortunately relatively little work has
been done on this important problem, and at present the state of the
analysis is far less complete and consistent than that presented in $101 for
pure acoustic waves.

WAVEDAMP[NG BY NEWTONIANCOOLTWG
Consider first the propagation of optically thin acoustic-gravity waves in
which the radiative energy exchange produces Newtonian cooling. We
assume the radiation field is quasi-static, hence ignore its dynamical
behavior. Under these assumptions the main effect of the radiation is to
damp the waves. An additional effect, as we will see below, is that we no
longer obtain either pure progressive or pure standing (evanescent) waves

separated crisply into distinct regions in the diagnostic diagram as in the
adiabatic case discussed in $53.

(a) [sotherrnal Atmosphere Following Souffrin (S16), (S17) we first as-
sume a planar isothermal atmosphere composed of a perfect gas having
constant specific heats. The linearized gas energy equation (10 1.3) then
reduces to

(dp,/dt] + w,(dpo/dZ) - a2[(dpJdt)+ w,(dpo/dz)] = –t~L[p, –(a2/y)p,].

(102.1)
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For simplicity we assume that the radiative relaxation time tRR is constant

with height. Assuming that p,, PL, and WI are of the form (53.30) we can
reduce (1 02.1) to

i@P[l – (i/@tW)]– ia21wR[l – (i/y@tRR)]+ a2(@:/g) w = o> (102.2)

which differs from (53.3 Id) only by the imaginary terms in the coefficients
of itiP and ia20R. Here we used the fact that w; = (y – l)g/yFI for a
perfect isothermal gas.

Although we can again use (53.30) for P, R, W, U, and 0, the vertical
wavenumber k= will now be complex. For this reason we replace, for the
time being, ikzW and ikzP in (53.31a) and (53.31c) by –(dW/dz) and
–(dP/dz), and combine those equations with (102.2) to obtain the follow-
ing differential equation for W:

{(a2/a2) -[1 - (ti~/w2)]k~ - (1/4H’) + (d2/dz2)
(102.3)

-(i/-y~t~~)[(yco2/a2)- k:- (1/4H2) +(d2/~z2)l}w= o

or

{hO+ (d2/dz2) - (i/-yatK~)[hO+ (d2/dz2) + (-y - l)(co2/a2) - (cd~/w2)k~]}W= O.

(102.4)

Identical equations hold for P or R. In the isothermal, adiabatic limit
hO= k: [see (54.89)].

Again following Souffrin we note that in general we can write kZ =

k~ + ik, and, assuming W K exp (–ik.z),

(d2W/dz2)--(h~ i- ih[) W= -(kK + ik1)2W= –[(kfi - k~)+2ik,kK]W.

(102.5)

Then substituting ‘(h* + ihI)W for (d2W/dz2) in (102.4) we find that h~

and h, are given by

where, as in 552, co. = a12H”. Tbe real and imaginary parts of k= are
determined from hr = 2k~k[ and hR = k~– k?, which yield

k~ =~[h~ + (h:+ h?)’”] (1.02.8)

and

(102.9)

The positive sign was chosen for the radical to make both k~ and k:

positive (i e., k~ and k, real) whether h~ is positive or negative.
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There remains an ambiguity about which sign of (k~)’/2 and (k;) ‘1’ to
choose. Souilrin imposes the requirement that the energy flux be positive
in the positive z direction, that is, he requires that energy be carried
upward from a source. The vertical component of the energy flux is given
by

WW’cok. (w’- gzk;)
(Ow)z = i(p”w+ Pw”) =

co4{k; +[k, – (1/2 H)+(gk;/ti2)]2}

(102.10)

which is positive if and only if

cok~(~4– g2k;)>0. (102.11)

If we multiply both sides of h,= 2kKkr by ~k~(~’– gzk~) and use (102.6)
we find

k~k,o(~’– g’k;) =~hlco(a’– g’k;)
(102.12)

= –[ytKR@2g2(l + 72w2t~K)](04- g’k;)’ <0,

which is negative because both factors in the right-most expression are
intrinsically positive. Comparing (102.11) and (102.12) we conclude that
k, s O. Moreover we see that gravity waves, for which g’k~ > a4, have
k~ <0 for upward propagation of energy, whereas acoustic waves, for
which C04> g’k~, have positive k~, which was also the case for adiabatic
acoustic-gravity waves as discussed in $54.

From (102.8) and (102.9) we see that when h~ = O, lk~l = Ikfl; when
hK>O, lk~l>lk[l; and when hl<<O, IkKl<lkrl. Thus when h~<O, the
waves are heavily damped over a single vertical wavelength, and were

classified by Souffrin as mainly damped or mainly evanescent, whereas
waves with h~ >0 are classified as rnuinly propagating. The boundaries

separating these propagating and evanescent regions in the diagnostic
diagram are defined by the curves h~ = O, and are shown in Figure 102.1
for several values of tRR,ranging from O (isothermal) to cz (adiabatic).
Damped, propagating acoustic waves lie above the upper curve, which
asymptotes at small values of k. to

@k(4uJ=W- (v&7) +{[@:- (Nwk)]z + (4@:/72&J}”2&
(102.13)

which is the effective acoustic cutoff frequency in the Newtonian cooling
approximation. Note that O.N varies with tRR.The curve bounding the
region of propagating low-frequency waves asymptotes at large kX to

fiJ;N(tRR)= co- (1/y2t:R), (102.14)

the effective gravity-wave cutoff frequency in the Newtonian cooling
approximation. Thus if ti~ < (1/yt~~), gravity waves cannot propagate even
when the atmosphere is connectively stable. Equation (102.14) is modified

-. ---
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when o is allowed to be complex, and Stix finds (S24) that an impulsively
generated packet of gravity waves can propagate if Ogs (1 /2yt~~), a
slightly less stringent condition.

In the expression for the energy flLlx, equation (~ 02.10), WW* is not
constant with z but contains the factor exp (–2 Ikr] z), hence the wave
energy flux diminishes with increasing height. When Ikrl is large, the

decrease is very rapid. In the limit of instantaneous temperature smooth-
ing, that is, when t~~ -+ O, we find hr -+ O and

h~ - (Y– l)(ti2/a2]– (@a2) – kf, (102.15)

which vields the dispersion relation for propagating isothermal sound,
waves; in this limit gravity waves are absent altogether.

Physically these results are not surprising, because (in the absence of
gradients in the composition of the gas) the buoyancy force that drives
gravity waves arises solely from horizontal temperature fluctuations, which
vanish when tRR -0. In contrast, acoustic waves are driven by pressure
gradients whether there are associated temperature perturbations or not.

The polarization relations (!53.32) are also modified by radiative energy

exchange, and can change drastically when t~R is small. Defining
0! = (y@tRR) –‘ and r = (y@’– azk~)/(~2– a’k~), we find the polarization rela-
tions fol- waves in an isothermal atmosphere under the Newtonian cooling
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approximation are

(dLLql + h)

p = (ti2- a2k~)(l + r-2a2) {’.+”(’r-k)+’[(s)+ ’[-”’.l}~

cd(l+ira)

{R = (co’ -a’k~)(l + r2a2) ‘R

++[(;)(%)-:l+’(’-~ ”’.)}w

“+-iii)
(102.16)

(102.17)

and, noting that (T1/TO) = (pl/pO) –(pi/pO) implies @ = (y P/az) –R,

@= 13(-y– 1)(1+ im)

(Q2- a’k~(l + r2a2) { ‘R+ ’’++[i-+(%)l}w ‘10218)
The leading real and imaginary terms in (102.16) to (102.18) are the same
as in (53.32). The quantity r is of the order unity except when ti2 or -yti2 is

nearly equal to a2k~, while a can range from very small values (for nearly
adiabatic propagation) to very large values when 2mytRR is much less than
a wave period.

(b) Solar Model Atmosphere In a nonisothermal atmosphere, use of the
Newtonian cooling approximation provides a simple but, unfortunately,
inconsistent method for studying the interaction between linear waves and
the radiation field. Some of the inconsistency arises from the fact that the

model atmospheres [e.g., HSRA (G3) or VAL (V4), (V5)] chosen to
represent the ambient medium in which the waves propagate are not in
radiative equilibrium. Because the physical mechanisms that determine the

temperature structure of the solar atmosphere are not actually known, we
have little choice but to include an unspecified nonradiative source-sink
term in the gas energy equation and write

Here F,,, represents some sort of nonradiative energy flux chosen such that
V - Fn, exactly balances the net radiative gains and losses in the static
atmosphere, that is,

[J
.

4%- Ku(~u – S“) du 1o=(V oF,,,)O.
o

(102.20)

Because we do not know how to write Fri., we cannot do more than guess
at how a wave-induced perturbation (F.,), would depend on T] and p,.
Therefore, in the linearized gas energy equation we have no choice but to
ignore this term altogether.

A second problem is that whenever the departure from radiative equilib-
rium in the ambient atmosphere is large, the term f K,,,~(J,, – S.)O du, which



RADIATING FLOWS 541

is ignored in the Newtonian cooling approximation, can be large and
important (cf. $100). Furthermore, in the Newtonian cooling formulation,
the net radiative gain term 4rr ~ KVO(.~,,– SV)l dv is approximated in terms of
the local cooling time, which is derived as if at each height the atmosphere
were optically thin over a wavelength and infinite, isotropic, homogeneous,
and isothermal at the local temperature. The cooling time is then calcu-
lated from (1 00.17) and (100.10) using the local values of T(z), P(z), K(z),

etc. at each height; except in the low photospbere (KO/k) = O. However as
can be seen from Figure 54.1, each of the assumptions underlying (100.17)
is poor in some region of the atmosphere, with the most serious errors
occurring at continuum optical depths Tc - 10–2 to 1, where both T(z) and
K(Z) vary rapidly with height, and where the gas is neither very optically
thick nor optically thin. Unfortunately this is also the region where the
radiative damping effects are the most import ant.

Retracing the arguments of $100 it is clear that (100,17) is a poor

approximation to the solution of’ (1 00.7) for a highly inhomogeneous and
an isotropic medium. Tn particular, in the solar photosphere and chromo-
sphere the perturbations of J are essentially determined by the perturba-
tions in S at an optical depth of abOUt unity, not locally. Hence the
nonlocally driven part of J1 (which is lost in the local cooling-time
formulation) may dominate over the locally driven part.

In treating the propagation of linear acoustic-gravity waves in the solar

atmosphere we can take inlo account the variations of temperature,
density, sound speed, buoyancy frecluency, and ionization properties of the
atmosphere. The resulting varmtions with height of the real and imaginary
parts of the vertical “wavenumber” of a wave of given w and kX imply

height-dependent variations in all properties of the wave. To describe
radiative-exchange effects the best treatments available all use the Newto-
nian cooling approximation despite the criticisms we have just leveled at it;
we merely caution the reader to remember the caveats expressed above
when evaluating the results of this work. Whether the results obtained are
even qualitatively correct can be determined ultimately only by computa-
tions that treat the radiation field self-consistently with the fluid equations.

lf we assume the density to be fixed by the requirement of hydrostatic
equilibrium, then, as in S54, the density is given by (54.75) with H(z)
defined by (54.68). [See (M8) for a discussion about p(z), H, ti&, and u
when a “turbulent pressure” is included in the model.] The amplitude

functions are again as in (54.77) with E(z) defined by (54.76), and the
Brunt–Vaisiilii frequency co~v(z) is given by (54.67), ~o(z) by (54.69, and

r1{2jby (14.19).
The linearized continuity and momentum equations are unchanged from

their adiabatic forms (54.78a) and (54.78b). The linearized energy equa-
tion, written in terms of amplitude functions, becoines

i(d[~– (i/@tRR)]P(Z)– i@~2[l – (i/r@ tKR)]~(i)T (a2dV/g) ‘(z) = 0,

(102.21)
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or
h(l- iary(2]- icoaz(l – i~)R(z)+(a20~V/g) w(z) =0; (102.22)

here CY= (r~t~~)-’ and 17= cP/cV including ionization effects as in (14.15)
and (14.18). Combining (102.22) with (54.78a) and (54.78b) yields the

following rather unwieldy equation for P(z):

{($-l)k,+$-&+($)

[
r(oz

– ia
–-’:-*+($)+(+-+)($+31}’(Z)a=

‘{%F%%%) (102.23)

-+%J-(%$+%%%)
(igr dlna+dlnr

)11P(z) = o.
az dz dz

The expression in the first set of braces is identical to that in (102.3) except

that w~v and r replace w; and y, and a new term, which is identically zero
in an isothermal medium where H = HP, has appeared. The second set of

braces contains the derivative terms that arise because all the atmospheric
properties now vary with height. The terms containing derivatives of az,
co~v, r, and (1/2H) are not exactly the same in the corresponding equa-
tions for W(z) and R(z).

To obtain numerical results for a realistic model atmosphere it is easier
not to use (102.23) but to either (1) solve (102.22), (54.78a), and (54.78b)
simultaneously at all depth points or (2) regard the atmosphere as a set of
thin layers, chosen such that no atmospheric property changes much
through a layer, and that the layer thickness is small compared to a vertical
wavelength of the wave being studied. Within each layer all atmospheric

properties are taken to be constant, but the derivatives (dT/dz) and (dw/dz)
obtained from the model are used to calculate H and O;v (which in turn
are taken to be constant within a layer).

We will describe results obtained by using method (2). All terms in the
first set of braces in (102.23) were calculated as they would be for a

continuous model; the value for each layer was then chosen to be either
the midpoint of the layer or at an interface. All terms in the second set
of braces were assumed to be negligible and were dropped. Because
the approximations inherent in the original equations imply that at best
only qualitative results will be obtained, the small inaccuracies incurred in
this implementation of the 1ayer method are not important.

We will discuss only gravity waves, t’or which the region of propagation
lies above about 100 km, where t~~ > l/rco,zv [cf. (102.14)]. The adopted

radiative relaxation times are given by the linear relation shown in Figure
102.2, which closely approximates the relaxation times computed by Stix
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(S24) in the region 100 to 500 km, and provides a

1500

time in a mode~ solar

continuous extension
into the chromosphere where radiative relaxation times are not known very
accurate] y (cf. $100). For the smallest values of tRR that still exceed
(ro~v)-l, the real part of k= is much smaller than its adiabatic value, hence
the vertical wavelength of the wave increases and the group velocity
decreases. The change is greatest for waves that already have small values
of k= in the adiabatic limit.

Energy loss occurs most rapidly from gravity waves with large k=, that is,

from waves with large k. for a given ~, or with small ~ for a given k.. This
fact is evident in Figure 102.3, where waves A to D all have A. = 2000 km
and form a sequence of decreasing frequency, whereas waves D to G have
a fixed period of 500s, and form a sequence with decreasing k.. The least
damped waves are A, B, and G, while the energy flux decreases most
rapidly with height for D.

Recalling (53.24b) for the vertical energy flux, we see that the energy
flux can decrease both as a result of a decrease in the amplitudes of p, and

w,, and from an increase in the phase lag 18Pwl toward m-/2. The phase lags
and relative amplitudes of the perturbations can be found from the
polarization relations, which are now given by

P=
[–-(l-iakkalw ‘10224)

k12C0(K1+ ~CLKZ) @~v

(K~+CK2K~)– g

R=
[

‘@(K’+ ‘a”) a2:~k:-(1- iIh)(&-:)] W, (102.25)
(K~+CY2Kj]

. ... .
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Fig. 102.3 Height dependence of energy fltlx for radiatively damped gravity waves
with horizontal wavelength 2000 km and periods of 700, 800, 1000, and 1500 s

(curves A to D), and for gravity waves with period 1500 s and horizontal
wavelengths 2000, 3000, 5000, and 7000 km (curves II to G).

an cl

@=;(%~)= (.,+.2.;, [~+d-alw ‘10226)
i@(K1 + iCtK,) @:vK~

where Kl=w2—a2k~, K2~~~2 – azk~, and Q is given by (14.33).
When a > ~, the terms (Kl + iCIK~) and (1 – ia) are dominated by the

imaginary part. In the low photosphere (102.14) implies that t~~ must be
greater than about 25 s for gravity waves to propagate, and we find that
a >1 for 25 s< tRR<100 s if the wave period is 600 s, and a >1 for
25 s < tRRs 170s if the period is 1000 s. Each of the complex terms, and

(d/dz) ~ –ikz~ + k=,, can thus show a phase change frolm the adiabatic
value that approaches 7r/2 when t~~ S=25 s, particularly if the wave period
is large.

The polarization relation for @ is the simplest of the three, especially
when the vertical waven umber is small; then the phase lag is cfetermi ned
mainly by ~OJ(Kl+hK2)K2. For @z<< azk~, K, =K2=—a2k~ and @=
ICI i(l +ia)W, hence sin 8-rw=(l+a2)-’, cos 8-rw=–ci(l+ct2)-1, and
tan ?l-rw= –l/a. Thus S~w tends to rr/2 as a -0 (adiabatic) and i3.W ~ T
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Fig. 102.4 Phase shifts for gravity waves in model solar atmosphere. (1) &w. (2)

i5Pw. (3] 8-. SoLid curves allow for radiative damping in Newtonian cooling

approximation. Dashed cuwes are for adiabatic waves.

as a -+ VJ (strong radiative damping). Precisely this behavior is seen in
Figure 102.4, where the adiabatic and radiatively damped phase lags are
compared for several waves.

The polarization relations for P and R are more complicated, each
containing three terms that alre real in the adiabatic limit and complex
when radiative damping occurs. The values of 8RW and 8PW in Figure
102.4 for radiatively damped waves both reflect the interplay of the three
complex terms, as well as some interference (much less than in the
adiabatic case) between upward-propagating and reflected waves.

W+\VE DAMP [NG BY RAOl ArIVE “IWANSPORT

Near the open boundary of a radiating medium such as a stellar atmos-
phere the radiation terms in the energy equation are strong] y nonlocal, and
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should be determined from the transfer equation. To study the radiative
damping of acoustic-gravity waves in a realistic model solar atmosphere,
Schmieder (S5), (S6) coupled the linearized fluid equations to a linearized
transfer equation. Because the perturbation J,,, of the radiation field at
each depth then depends on T, at all depths, the fluid equations at one
depth become globally coupled to those at all other depths.

Several approximations were made to simplify the equations. First, the
waves were assumed to propagate in the vertical direction only, hence
k.= O and the problem becomes strictly one dimensional. Second, LTE
was assumed, so all material properties can be written as functions of p and
T. Third, the perfect gas law was used and ionization effecls are neglected.
Fourth, the radiation field was assumed to be quasi-static, hence its
dynamical behavior was ignored. Schmieder analyzed waves in the region
from an optical depth of about 3 up to a height of 500 km, that is, the top

of the photosphere. The assumption of linearity gradually breaks down
with increasing height, but should be quite good in the lower layers where
radiative damping is most important.

The run of temperature and density was taken from the HSRA model

solar atmosphere (G3]. The ambient atmosphere is thus neither in radia-
tion nor in hydrostatic equilibrium. The linearized continuity and momen-
tum equations are given by (52.24) and (52.25) (ignoring the non-
gravitational force term that is implicit in the HSRA model). These can be
rewritten in terms of the vertical displacement <1, defined by WI = (d<l /dt).
Thus integrating (52,24) over time we have

(3L+ <l(dpo/dz)+ po(d<, /dz) = o, (102.27)

while (52.25) becomes

Po(~2L1/dt2) = –(alp ,/dz) – p, g. (102.28)

The gas-energy equation (ignoring the nonradiative term that drives the

ambient atmosphere out of radiative equilibrium) becomes

PO dTI \ M, dTo _(Y-l)Po~ dL,

(poTO dt at dz–-) Pa (-)dz at
(102.29)

=47r(7-1)
[~m

Kuo@v I ‘-TU1) d~+

r 1KVI(~,,O— ~,>0) d~ .

0 0

The first term on the right-hand side results from the wave-induced

perturbations of the mean intensity and the local Planck function. The
second term arises from two effects: (1) the perturbation of the opacity,
and (2) the departure of the ambient atmosphere from radiative equilib-
rium, which i]mplies that JO # Elo. When .fO– 130 is large, the second term,
which is strongly model dependent, may also be large; thus errors in the
assumed T(z) of the unperturbed model may produce important errors in
the radiative damping calculations.
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The mean intensity is approximated by the average of the incoming and
outgoing intensity calculated frc)m the formal solution (79.14) and (79.15)
for a representative ray, using the Planck function from the model atmos-
phere. The radiative energy exchange term in (102.29) is approximated by
a quadrature sum over a few representative frequencies. Perturbed inten-
sities are computed from the linearized formal solution, which is con-

structed recursive y between successive depth points in a discrete mesh. To
pose boundary conditions for the transfer equation, it is assumed that there
is no incoming radiation at the top of the atmosphere, whereas the bottom
of the atmosphere is taken deep enough that the diffusion approximation
can be applied. The hydrodynamic boundary conditions are imposed at the
upper boundary where the value of <1 is fixed; all perturbations arc
normalized to this value. Initial relations between T~ and ~1 at the
uppermost two grid points are obtained by assuming adiabatic motion and
a pure outgoing wave at the top of the atmosphere. The resulting matrix
equation is solved numerically and iterated to consistency.

In Schmieder’s solution the general form of the radiative exchange terlm
at depth point i is

@i = ~ AiiTl,j + z Bii~[,i. (102.30)
j ;

The matrix Bii is almost diagonal. The matrix Aii, however, clear] y reveals
the strong non local effect of the radiation-field perturbations produced by
temperature perturbations up to about one photon mean free path away
from the chosen depth i. For heights above about 200 km the dominant
contributions to qi from Aii come from (1) a region between about –40 km
and +140 km, and (2) the local temperature perturbation, which prOdUCeS
the diagonal elements. The departure of the ambient ~...] osphere from
radiative equilibrium also makes an important contribution to the diagonal
elements. Below 200 km, the opacity increases exponentially, and the
largest off-diagonal elements in Aii become confined to a small range of

depths immediately above and below the point Zi. At large optical depths,
a photon mean free path becomes small compared to the grid spacing and

Aii becomes essentially diagonal.
Schmieder finds that the wave amplitudes increase less rapidly with

height for radiatively damped waves than for adiabatic waves. Evanescent
waves are less affected by radiative damping than propagating waves;
therefore akhOUgh the amplitude of an adiabatic evanescent wave grows
more slowly with height than that of a propagating wave, the difference in
growth rates between radiatively damped evanescent and propagating
waves is not large. For example, for a 140-s propagating nonacliabatic
wave, the relative temperature perturbation (lrrll/To ]w, 1) is distinctly sup-

pressed compared to that of an adiabatic wave in the region of strong
clamping. For a 300s evanescent wave, however, the relative temperature
perturbation is actually larger in the nonadiabatic case than in the adiabatic
case.
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In the isothermal Newtonian-cooling approximation, one can show that
IT1l/’TOIWll is always decreased by radiative damping, whether the wave
propagates or is evanescent. Schmieder’s result for the 300s wave thus
arises from a nonlocal effect. The wavelength of an evanescent wave is very
long, hence the phase changes little from the bottom to the top of the
photosphere. Therefore transfer of radiation from around optical depth
unity to greater heights tends to enhance IT1l/TO relative to Iw ,1.

[n a second paper (S6) Schmieder discusses the possibility of determining
an “equivalent damping time”, which could be used in the Newtonian
cooling formalism, at each height in the atmosphere. She first derives at
each height the damping time that would cause the displacement amplitude
to decrease locally at the same rate as given by the nonlocal computation;
these are shown as curves “A” in Figure 102.5 for waves ot’ different

periods. However, as we saw above for Newtonian cooling in an isothermal
atmosphere, radiative damping also alters the phase relations among the
perturbation variables. Schmieder derives another equivalent damping time
for each wave from the changes in phase lags; these are shown as curves
“B” in Figure 102.5, with error bars resulting from the uncertainties in
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Fig. 102.5 Equivalent damping times derived from amplitude variations (dotted
curves) and phase variations (dash ed curves) of acoustic waves of indicated periods.
Radiative damping is calculated from a solution of the transfer equations; error
bars (vertical arrows) indicate uncertainties in phase curves. solid curves show local
damping times computed from Spiegel’s formula. From (S6), by permission.
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assigning phases in waves that vary strongly with height. The two sets of
curves give markedly different results. Had damping times been estimated
from amplitude ratios, yet different results would have been obtained.

For comparison, damping times computed for waves of the satne periods
using Spiegel’s formula (100.17) are shown in Figure 102.5 as solid curves.
The important conclusion to be drawn is that nonlocal effects resulting
from radiative transfer produce qualitatively different propagation charac-
teristics in a wave, and that it simply is not possible to reproduce these
effects self-consistently with a single equivalent damping time.

STABILITYOF .4COUSTr C-GRAVITY WAVES IN A RADIATING FLUID

The possibility of radiation-driven instabilities in a stratified radiating
atmosphere has been discussed by Berthomieu et al. (B4) and by Spiegel
(S19). In the former paper, it is shown that above a certain critical
frequency, isothermal, optically thin pert urbations in an isothermal slab of
an atmosphere traversed by a radiation field can be amplified by radiation
in a drift instability. In the latter paper it is shown that under certain

circumstances radiation forces can drive instabilities in a stratified radiating
fluid. A detailed analysis is presented for quasi-adiabatic photoacoustic and
photogravity modes. The results are intriguing, but it would take us too far
afield to discuss them here; the interested reader should consult the
original paper.

8.2 Nonlinear Flows

103. Thermal Waves

Thermal waves result from conductive energy-transport processes within a
fluid, which give rise to an energy flux q = –K VT. For nonradiating neutral
gases it is usually satisfactory to assun~e linear conduction (K independent

of T) because the conductivity depends only weakly on temperature (cf.
$33). But in ionized plasmas where K x T5’2, and in opaque radiating fluids

where the radiation conduction coefficient depends strongly on T, we must
treat nonlinear conduction. The distinction is important because thermal
waves behave qualitatively differently in the two cases.

A prob~em of some interest in radiation hydrodynamics is the penetra-
tion of radiation from a hot source into cold material, a process that is
reasonably well described by treating the radiation field in the diffusion
approximation. Practical examples are the penetration of stellar radiation
into the interstellar medium at the instant of star formation or of a
supernova explosion, or the irradiation of a fusion pellet by intense laser
beams. Such propagating radiation fronts are called Marshak waves (M4)

or radiation difhmion waves.
Because radiative energy exchange is very efficient, significant radiation

penetration and energy deposition can occur in a time much too short for
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