
The Equations of Radiation
Hydrodynamics

In astrophysical flows, radiation often contains a large fraction of the
energy density, momentum density, and stress (i.e., pressure) in the radiat-
ing fluid. Furthermore, radiative transfer is usually the most effective
energy-exchange mechanism within the fluid. To describe the behavior of
such flows we need conservation laws that account accurately for both the

material and the radiative contributions to the flow dynamics.
To estilmate the importance of radiation in fixing the local properties of

a radiating fluid, consider the ratio R of the material internal energy
density 2 to the radiation energy density E; for a perfect gas and equil ib -
rium radiation

R = i2/E = (3k/2a~)(iN/T3) = 2.8 x 10-2N/T3.

R also gives a measure of the relative importance of gas and radiation
pressure because p =52 for a perfect gas, and P = ~E for radiation. Clearly
radiation is most important at high temperatures and/or low densities. The
two energy densities are about equal when T~.v = 2pl’3, where Tkev is the
temperature in kilovolts (1.2x 107 K) and p is the material density in
g cm-3. Therefore, when temperatures reach a few keV (e.g., in X-ray
sources or stellar interiors), radiation dominates the energy and pressure in
the radiating fluid even at high densities.

In astrophysical systems R has a large range. For example R -10’ in the

solar atmosphere, so radiative contributions to the energy density can be
ignored; in an O-star atmosphere R -0.1, and radiation is overwhelmingly
important. This striking difference reflects both factor-of-ten larger tem-
peratures and much lower densities in the O-star atmosphere compared to
the Sun. Similarly, at the Sun’s center R – 500, but at the center of an

O-stal- R – 1. The large value of R in the solar interior reflects high
densities (-100 g cnl-3) and temperatures of only about a kilovolt; in
contrast the central temperature of an O-star is a few kilovolts and
densities are a few g cm-3.

The situation for energy transport in radiating flows is quite different.
Radiative energy transfer usually dominates all other mechanisms even
when temperatures are only about 1 eV and E <<2. I n particular, radiative
transport usually greatly exceeds thermal conduction because in equilib-
rium the photons and material particles have the same average energy, but

409



410 FOUNDATIONS OF RADIATION HYDRODYNAMICS

photons travel at the speed of light, whereas material particles move only

at about the sound speed; moreover, photons usually have much longer
mean free paths than particles.

A semiquantitative measure of the relative importance of radiative and
material energy transport in a radiating flow is given by the dimensionless
Boltzmann number

BO = (pcPTv)/(crRT4]>

which is the ratio of the material enthalpy flux to the radiative flux from a
free surface at temperature T. The Boltzman n number plays the same role
for radiating fluids as the Peclet number does for nonradiating fluids [cf.
(28.4)]. Recalling that cr~ = ~a~c, one sees that near a radiating surface

Bo is of the order of (v/c) times the ratio defined above. In the solar
atmosphere (u/c) -2 x 10-s, and in an O-star atmosphere (v/c) -10-4,
whence we conclude that radiative transport is dominant in the outer layers

of most stars. In the interior of a star we must replace o-~T4 with cr~T~fi,
the net radiative flLIx; here energy transport by convection can dominate if
the fluid moves at even a small fraction of its sound speed. If, on the other
hand, the material is stable against convection (C5, Chap. 13), then
radiative transport clom inates in the interior as well.

Thus far we have discussed radiation as if it plays only an incidental role
in a flow. But, in some cases, radiation can drive flows. For example, in the

ou~er layers of a star radiative energy and momentum transport can drive
or damp waves, drive stellar winds, and inhibit gravitational accretion.

Furthermore, the temperature and density response of the opacity in the
envelope of some stars allows radiation to drive stellar pukat ions.

The equations of radiation hydrodynamics can be formulated in a variet y

of ways; each has advantages and disadvantages. One fundamental issue is
whether to write the equations in an inertial frame fixed relative to an

external observer (or the center of the star), or in the comoving fluid frame.
Another concerns how best to describe the dynamical behavior of the
radiation field. Thus in a stellar interior the radiation and material are in
ecluilibrium, and we can treat the radiating fluid as a composite gas whose
total energy, pressure, etc. are simple sums of the radiative and material
contributions. But such an approach is virtually useless in the outer layers
of a star where the radiation field has a strongly nonlocal character; here
we must couple the dynamical equations to a full radiation transport
equation.

In a moving fluid, the equation of transfer contains O(v)c) frame-
dependent terms that lead to similar terms in the dynamical equations for
the radiating fluid. In contrast, the frame-dependent terms for a nonradiat-
ing fluid are only O(02)C2) (cf. S42). One can understand how O(u/c)
effects arise in a radiating fluid from simple classical considerations. First,
there is an advection effect: a fluid element tends to “sweep LIP” (“leave
behind”) photons traveling against (along) its velocity vector, thus increas-

ing (decreasing) the radiation energy density with which it can interact.

Second, Doppler shifts affect the spectral distribution of the radiation field



THE EQUATIQNS QF RADIATION HYDRODYNAMICS 411

incident on the material. Consider a reference state with two fluid elements

at rest, between which a certain energy and Imomentum exchange occurs.
Now move one. element relative to the other. “rhen, in addition to the
change in the photon number density produced by advection, each photon
will be blue (red) shifted, hence will have higher (lower) energy, when the

two elements approach (recede from) one another. Both of these O(o/c)
effects can significantly affect the energy and momentum balance in a
radiating fluid when the radiation field is intense.

The arguments advanced above are qualitative, and only serve to moti-
vate a thorough mathematical analysis. In this work we will be guided by

two precepts. First, we will pay close attention to the frame in which the
equations are being written. In the past, failure to discriminate caref u]]y
between frames has led to confusion in the formulation of the dynamical
equations, to misapplication of results valid in one frame to others in which
they are not, and to serious conceptual errors. Second, we will retain
mathematical consistency among various sets of equations to O(u/c). The
analysis is sometimes tedious, and may test our readers’ patience. We

assure them that this effort is not merely a quixotic obsession, but is
essential to achieve equivalence among different forms of the radiating-
fluid dynamical equations, both in a given frame, and between frames. The
effort is vindicated by the surprising result [hat in certain regimes of
interest, terms that are forlmally only O(u/c) actually dominate over all

others in the equations.
For didactic simplicity we ignore scatt~ring and assume LTE. Though

these restrictions afford considerable simplification, the resulting equations
are complicated, and methods for solving them are not yet full y developed.

Nevertheless it is essential to derive physically accurate equations, for it is
clearly more useful to solve the correct equations, however approximately,
than to solve incorrect equations, even exactly.

We first discuss (S7. 1) the Lorentz transformation properties of quan -
t ities appearing in the transfer equation. In S7.2 we first write the transfer
equation for moving media, then derive the energy and momentum

equations for the radiating fluid (i.e., material plus radiation). We treat
inertial-frame equations first because the derivation of the comoving-frame

transfer equation is more complicated. We next discuss (37.3) methods for
solving these equations in one-dimensional flows. Here we consider first
the import ant limiting case of diffusion, which offers penetrating insight
into the dynamical behavior of the radiation field. We then discuss the

comoving-frame equations, which are ideal for one-dimensional Lag-

rangean hydrodynamics calculations. Finally we consider two important
versions of the inertial-frame equations.

7.1 Lorentz Transformation of the Transfer Equation

In order to write the transfer equation in different frames, we must
determine the Lorentz transformation properties of its constituents: the
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specific intensity, opacity, emissivity, and photon directions and energies.
Jn the formulae below the affix “0” denotes the comoving frame, in which
material properties are isotropic.

89. The Photon Four-Momentum

Jn $37 we showed that the photon four-momentum is

Ma= (ho/c) (l, n) (89.:1)

where v, hv, and n are the frequency, energy, and direction of propagation

of the photon. The photon propagation four vector is

Ka = (27rv/c)(l, n). (89.2)

Both K“ and M are null vectors.
The components of M in (89.1) are in Cartesian coordinates, hence are

physical components. Later we will also need the contravariant compo-
nents of W in spherical coordinates having a line element

cls2= –cz dt2+dr2+ r2(d02+sinz Ockb’). (89.3)

[Jsing equation (A3.4] ) we find

MC)= hvjc, (89.4a)

M’ = (hv/c)~, (89.4b)

M’= (hu/c)[(l – K2) ‘/2 cos @]/r, (89.4c)

and

M3 = (hv/c)[(l – K2)]’2 sin @]/(r sin 0), (89.4d)

where @ = Cos–’ p and @ are the polar and azimuthal angles of n relative
to k.

Jf a photon has frequency v and travels in direction n as measured in the
lab frame, it will have some other frequency VO and direction no as
measured by an observer attached to a fluid element moving with velocity v
relative to lab frame. Because Ma is a four-vector, its components in the
two frames are related by the general Lorentz transformations (35.33) and
(35 .34), whence we obtain

VO= YV(I –n . v/c) (89.5)

and

no= (u/vO){n–y(v/c)[l –(yn ov/c)/(y + 1)]}, (89.6)

or, equivalently,

v = yvO(l +nO v/c) (89.7)

and

n = (vO/v){nO+ y(v/c)[l + (ynO “v/c)/(y + l)]}. (89.8)

For the special case of motion along the z axis, (89.5) and (89.6) simplify
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to

(v,, van.,, v,n,,o, w)n,,) = [Yv(l - JIJ3)>WL.,v~,, yv(nz - ~)], (89.9)

which implies

[%; w,; (l-l-L:)’”; %1= [W(1 -m); (LL-D)/(1-hL);

(1-p2)’’2/y(l- fl/.L); @]. (89.10)

Similarly the inverse transformation gives

[v;w; (1 - w’)’”]= [Tlh(l + h%); (1-b+ P)/(l + l%%); (1 - P:)’’2/7(l + Ml)].

(89.11)

13quations (89.10) and (89.11) describe the Doppler shift and aberration of
light between frames in relative motion; the classical formulae are obtained
by retaining terms only to O(v/c), that is, by setting y =1. These equations
also apply to radial flow in spherical geometry.

From (89.1 O) one finds civO= (vO/v) dv, d~o = (v/vO)2 d~, and do= d~o.
Then recalling that dco = d~ d@ we see that v dv dw is a Lorentz invariant:

u dv dm = V. dvo do+,> (89.12)

a result we will use repeatedly. Equation (89.12) has a deeper physical
sign ificance. In $43 we showed that for particles of any kind

d3plZ = pz dp d& (89.13)

is an invariant. In particular, for photons p = hu/c and Z = hv = cp, hence
the invariance of (89.13) implies (89.12).

90. Transformation Laws for the Specific Intensity, Opacity, and
Emis,siuity

To determine the transformation properties of the specific intensity, we
follow L. H. Thomas (Tl) and calculate the number of photons PJ in a

frequency interval dv, passing through an element of area dS oriented
perpendicular to the z axis, into a solid angle do along an angle @ =
Cos– ‘ ~ to the z axis in a time intervaJ dt. Let dS be stationary in the lab

frame. Then

N = [~(~, v)/hv](dco dv)(dS COS @ dt). (90.1)

To an observer in a frame moving with velocity v along the z axis, dS
appears [o be moving w’ith a velocity u in the negative z direction. This

observer Would therefore count

No= [IO(WO,VO)//IVo](dmo dvo)[dS COS 6)0 dto + (lJ/C] dS dtc,] (90.2)

photons passing through dS; the first term gives the number of photons
that would have been counted if dS had been stationary, while the second
is the photon number density @o= (lo/chvo) times the volume (dS v alto)
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swept out by dS in a time dto = y dt. But both observers must count the
same number of photons passing through dS, hence N = NO. Equating
(90.1) and (90.2), and usil]g (89.11) and (89.12) we find

I(LL,v)= (v/vo)3fALo, m). (90.3)

That is, the quantity

J(K, v)== J(W, v)/v3 (90.4)

is a Lorentz invariant, called the invariant intensity.
We can obtain the same result by applying to the photon distribution

function ~R the general arguments of $43, which led to the conclusion that
the particle distribution function ~(x, p, t) is Lorentz invariant. From (63.4)
we then immediately see that Y = 1/v3 = const. X fR is an invariant.

Now consider the emissivity. Observers in all frames will count the same
number of photons emitted from a definite volume element into a particu-
lar solid angle and frequency interval in a specified time interval. Hence

T(I-L>~) d~ dv dVdt/hv = TO(VO)dtio dVo dVO dto)hvO. (90.5)

Then using (89.12) and recalling that dVdt is an invariant we find

m(w>~)= (d~oh?o(vo)j (90.6)

where we noted that q is isotropic in the comoving frame.

Similarly, observers in all frames will count the same number of photons
absorbed by a definite material element from a particular frequency
interval and sol id angle in a specified time interval. Hence

X(K> v) I(LL, U) dv da dVdt/hv = xo(Po)fo(WO, UO)duo d~o dVO dto/hvo,
(90.7)

when ce

X(W>~)= (vo/v)xo(v13). (90.8)

We can also derive (90.8) from (90.3) and (90.6) by arguing that to achieve
energy balance in equilibrium we must be able to equate the number of
emissions and absorption by a material element in all frames.

In deriving (90.3), (90.4), (90.6), and (90.8) we made use of the special
Lorentz transformation for simplicity. The same results apply for arbitrary
relative motion of the two frames provided that p, is replaced by n, and we
use (89.5) to (89.8) to relate (v, n) to (vo, no).

91. The Radiation Stress-Energy Tensor and Four-Force Vector

THE STRESS-ENERGY TENSOR
We now seek an expression for the radiation stress-energy tensor R, the
spacetime generalization of the radiation stress tensor P defined in $65.
We can infer the form of R by requiring that the space components l?’; be
the rate of transport of the ith component of the radiative momentum per
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unit VOIume through a unit area oriented perpendicular to the jth coordi-

nate axis. Thus we write

which is the integral of (number of particles per cm3 per unit phase
volume) x (momentum in i direction per particle) X (velocity component in
j direction) over all phase space. But for a photon Cni = c2iVfi/Z, so we
tentatively generalize (91. 1) to

(91.2)

Ra@ is obviously a four-tensor because it is the integral of the outer

product of the four-vector h4a with itself, times the invariants fR and
d3M/Z.

We have already seen that the space components of (91.2) are the
radiative stress. The component

~
ROO= f~hv d3M (91.3)

is the integral of (number of particles per cm3 per unit phase volume) x
(energy per particle) over all phase space, and hence equals the radiation
energy density. Likewise

R“’= Wd(fd-’ d3M (91.4)

equals (1 /c) times the energy flux density in the ith direction, while

J
Rio = c f~n’(hv/c) d3M (91 .5)

equals c times the momentum density in the ith direction. Thus R as given
by (91 .2) is a one-to-one analogue, for radiation, of the material stress-
energy tensor defined in $40.

Note that (91 .2) can also be applied to material particles, for which
pi = moi and 2= nIC2, where m is the relative lmass of the particle. Thus
(91.2) is the covariant generalization of the particle momentum flux density
tensor (43 .45), and provides a general expression for the stress-energy
tensor in kinetic theory. The discussion above is purposely heuristic; a
much deeper analysis that emphasizes the geometric aspects of the problem
can be found in (S6, Chaps. 1.–3).

Using (63.4) to replace f,, with the specific intensity, and noting that
p2 dp dw = h3v2 du dw/c3, we can write a continuum version of (91.2) as

(91.6)
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where we define no= 1 as in (89.2). R“@ as given by (91.6) is manifestly
covariant because it is the outer product of the photon four-momentum
with itself, times the invariant fv–3 and v dv do, integrated over all angles
and frequencies. An equivalent form of (91 .6) is

( E
R=

C–l F

)~–lF p ‘ (91.7)

where E, F, and P are the radiation energy density, flLIx, and stress tensor
as defined in $$64 to 66. The elements of (91.7) can obviously be
interpreted in exactly the same way as (91 .3) to (91.5).

using (66.6), one finds that in planar geometry (91.7) reduces to

where i = 1, 2, 3 denote (x, y, z) respectively. The components in (91 .8) are

physical components, and are identical to the components measured with
respect to an orthonormal tetrad in a curvilinear (e. g., spherical) coordinate
system. Using the transformation rules (A3 .47) we can write the con-
travariant components of R in spherical symmetry as

(
E C–JF o 0

R@ = C-’F P o 0

00 +(E - P)/r’ o

)

(91.9)

00 0 ~(E– P]/r2 sin’@

where now i = 1, 2, 3 denote (r, 0, ~). Equations (91 .7) to (91.9) also give

the comoving-frame radiation stress-energy tensor RO if al I quantities are
measured in that frame.

The connection between R and R. is obtained from the Lorentz trans-
formations (35.41) and (35.42). One finds

E = y2(Eo + 2c-2viF& + C-2 ViVj~:), (91.10)

F’= Y{F& + y~oVi 4 VjP~+ [~/C2(y + 1)][(27 ~ l)viF& + ~ViVkP~’]V’}>
(91.11)

and

Pii = p:+ yc-2(viF~ +ViF:)+y2C-2EoViCi

+ [y2/c2(y + l)](v@J$i- viv~P:i+ 2yc–*vkF&JW (91.1.2)

+ [y2/c2(y - l)]2(vkv,P:~)o’v’.

For one-dimensional flow in planar geometry, (91.10) to (91 .12)
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reduce to

E = y2(EO+2fl-lFO+ /32PO), (91.13)

F = 72[(1 + (32)F0 + OEO+ VPO], (91.14)

and

P=y’(Po+2~c-’Fo +p’Eo). (91.15)

These equations also apply in spherical symmetry for radial flow. We can
further reduce (91.1 3) to (91.15) to O(v/c), obtaining

E= EO+2~c-’F0, (91.16)

F= FO+m!ZO+vPO, (91.17)

and

P = PO+2&-’F0. (91.18)

The corresponding inverse transformations are

(Ec,, FO,PO)= [E-2~c-’F, F-v(E+P), P-2&1 F]. (91,19)

Equations (91.16) to (91.19) can also be derived by using (89.11),
(89.12], and (90.3) expanded to first order in v/c. Thus Iv dv dcu =
(v/vO)’I:(, dvo dcoo=(1 + 2@wO)I~0dvO dOJO,from which (91.16) follows by
integrating over solid angle and frequency. Similar] y, @U dv dw =

(~.+ /3(1 + BWO)[~(,du. %=[wO+ B(I + w3]I!,, dvo dcoo leads to (91 .17),
while W’II, dv dti = (WO+ (3)21~0dvo dtio = (K:+ 2(3pO)1~,, dvO dmO leads to

(91.1 8). Note that (91.1 O) to (91 .19) apply only to frequency-integrated
moments.

THE FOUR- FORCE DEWJ7_Y VECTOR

By analogy with (42.1) we expect the dynamical equations for the radiation
field to have the general form

R;; =–G”, (91 .20)

where Ga is the radiation four-force density acting on the material. Thus
the time component Go equals c–’ times the net rate of radiative energy
input, per unit volume, into the matter, while the space components Gi
equal the net rate of radiative momentum input. From these physical
interpretations it is easy to write G~ in terms of macroscopic absorption

and emission coefficients as

~“J
G“ = c-’ dv dco[x(n, u)I(n, v) – q(n, v)] (91.21a)

o
and

J4
G, =C-l mdv dco[x(n, u)[(n, v) – q(n, v)]n’. (91.21b)

o

Gti is manifestly a four-vector, being the integral of the four-vector



418 FOUNDATIONS OF RADIATION HYDRODYNAMICS

v(I, n), times the invariants (xI/v2) or (W/V2] and v dv do, over all angles
and frequencies. Thus (91 .20), with R given by (91.7) and Gm by (91.21),
is indeed a covariant conservation relation for the radiation field. For
example, (91 .20) in Cartesian coordinates yields the moment equations
(78.4) and (78.11 ) derived in Chapter 6, consistent with the physical
interpretation of those equations.

The relationship between Gc and G: is obtained by Lorentz transfor-
mation. For one-dimensional flow in planar or spherical geometry,

G“ = -y(G:+ ~G/J
and

G’ = y(G~+L3G~),

or equivalently,

G~=-y(GO-~G’)
and

G&=y(G’–~GO).

Here

~m J

1
cGO= 2rr dv d~[x(p, v)I(P, v)– ~(W, v)],

o –1

H

. 1

cG’=2rr dV d/_L[x(f_L, v) I(f_L, v) – Tf(p, u]]~>
o –1

rcG~ = [CXO(VO)EO(VO) – 4?rqo(vo)] dvo,
o

and

&; = rXo(vo) Fo(vo) duo.
o

(91.22a)

(91.22b)

(91.23a)

(91 .23b)

(91.24a)

(91.24b)

(91.25a)

(91.25b)

92. Covariant Form of the Transfer Equation

THE PIHOTON BOLTZMANN EQLIATION

For convenience, in this section we use units in which h = c = 1 and work in

Cartesian coordinates. The standard Boltzmann equation for particles is

(df/N) + ‘u’(df/dx’) + p’ (df/d[2’) = (Df/Dt)co,,. (92.1)

An obvious covariant generalization of (92.1) is

(3s+(%s=(3..,1 (92.2)

where (6/tir) is the intrinsic derivative with respect to proper time. Because
photon world lines lie on the null cone, proper time is not a useful variable
for the photon Boltzmann equation, so we replace r by a new afine
path-length variable 1?defined such that

pm= (dx’’/dZ). (92.3)
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[See (S7, $2.4) for a similar approach for geodesics, to which we return in

$95.] We can then rewrite (92.2) as

pa(13f/dx&) + pm(df/spa) = (f3f/8<)co,,, (92.4)

where

pa= (dpa/d#). (92.5)

For photons we identify p“ with M“, and write the right-hand side in
terms of a source .s and a sink –af~, representing photon emission and
absorption by the material. Thus the photon Bokzrnann equation is

M“ (dfR/dx” ) + AZ” (rlfR/dM”) = & – afR, (92.6)

or, in terms of the invariant intensity,

M“ (dY/dX”) + A& (dJJ/dM”) = e – LA. (92.7)

Equation (92.7) applies in all frames, in particular in inertial frames. In
the absence of general relativistic effects, photon trajectories in inertial

frames are straight lines, hence I@ = O (i.e., the photon four-momentum is
conserved). Thus in an inertial frame (92.7) reduces to

M“P,. = e – o.JJ. (92.8)

Substituting J = l/v3 and noting that v is now a constant, we find that the
left-hand side of (92.8) is
dependent transfer equation
can identify

and

v ‘2 times the left-hand side of the time-
(76.5). Therefore on the right-hand side we

e = q,,,/v2 (92.9a)

(/.= J+(U. (92.9b)

That is, e and zo are just the invariant emissivity and invariant opacity
discussed in $90.

[.0 RENIZ INVARIANCEoi= ‘r[i~ TRANSFEREOUATrON

Let LISnow show that the transfer equation is covariant under Lorentz
transformation between inertial frames. We stress that this statement holds
only between frames moving uniformly relative to one another (see below
and $95).

One approach is to argue that because Y is a Lorentz invariant, J.a must
be a covariant four-vector, hence h4”Y,a is an invariant. ‘Thus between two
inertial frames we can write

+ [q(n, V)-x(n, v)~(m v)]=* [+%+n” vUw P)]
(92.10)

[

,,,

1
=M”J,a=IW”Y’ =+ ‘a~(n ‘ v ‘+n’ .V’~(n’, v’) .,m

Vc dt’

Equating the left- and right-most expressions in (92.10), and applying
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(90.3), (90.6), and (90.8) we have

1 dT’(n’, u’)— +n’ . V’f’(n’, v’) = ~’(n’, v’)–x’(n’, v’)~(n’, v’), (92.11]
c dt’

which is identical in form to the transfer equation in the unprirned frame,
as asserted.

Alternatively, we can use equations (35.39) and (35.12) to infer the
transformation properties of the four-gradient (a covariant vector); for the
special Lorentz transformation

(92.1 2)

Combining (92.12) and (89.9) we then have

c-’(d/~t)+ (n . V) =(v’/v)[c-’(dtd)+( n(n’ . V’)]. (92.13)

Therefore

c- ‘(dI,,/dt)+ (n “V) Iv = q,, – x.1. (92.14)

transforms to

(v’/v)[c-’ (d/dt’) + (n’ . V’)][(v/v’)31’(n’, v’)]
(92.15)

= (v/v’) 2[q’(n’, v’) - X’(n’, v’)1’(n’, v’)],

and because v/v’ is constant for uniformly moving frames, we recover
(92.11).

NONINERTIALFRAMES
When we transform from the lab frame to a noninertial frame such as the
comoving frame of a fluid whose velocity varies in position and time, we
can no longer take the ratio (’d V’)3 to be constant and remove it from the
differential operator as we did in (92.15). Instead, new terms appear that
account for changes in the Lorentz transformation from one point in the
flow to another.

Put another way, a photon moving on a straight line with constant
frequency in the lab frame suffers differing amounts of aberration and

Doppler shift as measured in different fluid elements. Thus, in the ensemble
of frames composing the comoving frame, we do not have M = O, and
(92.8) ceases to be valid. Instead, we must start from (92.7) and generalize
the transfer ecluation to an equation of the form

M“$lw = e–d (92.16)

where the operation ,Wdenotes a derivative taken subject to the constraint

that photon paths remain on the null cone in the fluid frame. Equation
(92.1 6) is the Lagrangean transfer equation, which we discuss in detail in
$95.
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7.2 The Dynamical Equations for a Radiating Fluid

We arc now in a position to derive the dynamical equations for a radiating
fluid. As our interest centers primarily on radiative effects, we will assume,

for simplicity, that the materiaf component is an ideal fluid; the effects of
viscosity and heat conduction in the material can be included by using the
results of Chapters 3 and 4.

We first develop an Eulerian formulation, in which all radiation quan-
tities are measured in the laboratory frame, and both radiation and
material properties are considered to be functions of (x, t). The Eulerian
equations are conservation relations for the total (material plus radiation)
energy and momentum in a fixed volume element. We can cast these
equations into “quasi-Lagrangean” or “modified Eulerian” form by group-
ing time and space derivatives into the Lagrangean time derivative (D/n).
However, the resulting equations are not truly Lagrangean because radia-
t ion quantities are measured in the lab, rather than comoving, frame; we
develop the fully Lagrangean view in $$95 and 96.

The Eulerian equations are easier to apply in multidimensional flows;
indeed, except in the diffusion approximation the Lagrangean equations
have been used only for one-dimensional flows. On the other hand,
complexities in the physics of the material properties and/or the radiation-
material interaction are most easily handled in the Lagrangean frame;
moveover the Lagrangean formulation often affords deeper physical in-

sight.

93. The Inertial-Frame Transfer Equation for a Moving Fluid

Consider now the inertial-frame transfer equation for a moving medium,
from which we will derive inertial-frame radiation energy and momentum
equations. The main question that arises is how best to account for the
Doppler shift and aberration of photons from the lab frame into the
moving fluid frame, where they interact with the material.

In most astrophysical flows, v/c is so small that it is tempting to ask
whether we could simply ignore velocity-dependent effects in calculating
the radiation-material interaction (at least in the continuum where cross
sections change slowly). This procedure has often been used; nevertheless
we will shortly see that the answer is actually “no”, and that we rnusl retain
the distinction between x and Xo, and q and qOto O(v/c), and solve the transfer
equation to this level of accuracy.

In principle we could solve the lab-frame transfer ecluation by brute
force, using a large number of angles and frequencies and transforming
these into the comoving frame via (89.5) to (89.1 1) when computing
material absorption and emission coefficients. But this approach is unsatis-
factory for two reasons. (1) The interaction terms are cumbersome double
integrals over both angle and frequency [cf. (91 .21)] that are cost] y to
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evaluate. (2) It obscures important underlying physics. We therefore seek
other methods of treating the matter-radiation interaction.

FoRMLrLATroN
The simplest way to handle the lab-frame angle-frequency dependence of
the absorption and emission terms is to use first-order expansions to
evaluate the material coefficients at the appropriate fluid-frame frequency.
That is, writing

7Jv0 = 1+(n “v/c), (93.1)

equation (90.8) expanded to O(v/c) yields

X(n, v)= xo(v) – (n . v/c)[xo(u) + v(EJxo/dv)], (93.2)

and (90.6) yields

~(n, v)= qO(v)+(n . v/c)[2qO(v)– v(+qO/dv)]. (93.3)

Notice that in (93.2) and (93.3), v is the kzb -frame frequency of the
radi ati on.

The transfer equation in Cartesian coordinates can then be written

1 dX(n, u)——+n . VI(n, v) = qO(v) – XO(v)I(n, v)
c dt (93.4)

( ){

aqo
+ & 2-qo(v)– v=

[ 11
+ xo(v)+ v% I(n, v)

The advantage gained in this approach is that both XOand -qOare isotropic,
which simplifies the calculation of angular moments of (93.4). While it is

reasonable to expect (93.4) to be satisfactory for smooth continua, it will
not be adequate for spectral. lines because a first-order expansion in AU
cannot accurately track the rapid variation of x and q over a line profile,
unless the velocity-induced frequency shifts are smaller than a line width
(which is not the case for most problems of interest).

Integrating (93.4) over do we obtain the monochromatic radiation energy

equation

(dE,,/at) + (dF;/dx’) = 47rrfO(v) – Cx’(V)~V + (f_@:/C)[A’o(v) + v(dxo/dv)].
(93.5)

Integrating (93.4) against n d(o we obtain the monochromatic radiation
momentum equation

c-2(dF:/dt) + (dP2/&x’) = –C-lXO(V)F~+fmC-2 V;[2qO(V) – v(aqO/dv)]

+ c-’ u, [xO(v) + v(dxo/av)]P~. (93.6)

Here we noted that
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Finally, integrating (93.5) and (93.6) over frequency we obtain the radiation

energy equation

rm
E,, +J?i=

J
[4,rqo(v) – CXO(V)EV] dv

o
l-cc

J+c- ‘o, [xO(v)+ u(dxo/dv)]F: (iv = –cG”
o

and the radiation momentum equation

J

.
C-*F, +P;=- C-1 Xo(~)F; dv + 4mc–2vi

Y
~ To(u) ~~

c1

+ C-%i
!“

[X()(~) + v(dxo/du)]Pj dv = –Gi.
o

(93.8)

(93.9)

It is important to notice that the first terms on the right-hand sides of

(93.8) and (93.9) are not cG~ and G: as defined in (91.25), despite their
superficial resemblance. In G: and GA all quantities are evaluated in the
comoving frame; in contrast, in (93.8) and (93.9) the material coefficients
are in the comoving frame while radiation quantities and Frequencies are in
the inertial frame. To call attention to this combination of frames we refer
to (93.4) to (93.9) as mixed-frame equations.

To obtain the corresponding equations in spherical symmetry we merely

replace the left-hand sides of (93.4) to (93.6), (93.8), and (93.9) with the
left-hand sides of (76.9), (78.5), (78.6), (78.13), and (78.14) because only
the interaction terms are affected by the expansion procedure. Scattering
terms are complicated in the mixed-frame equations; we therefore ignore
them and set x = K for the remainder of $93. A detailed discussion of
scattering is given in (F2) [see also (M8)].

ON THE IMPORTANCEOF O(v/c) TERMS
Let us now examine the physical importance of the v/c terms in (93.8) and

(93.9). To simplify the discussion we specialize to grey material:

E,, +F’, = K(417~ ‘C~)+ (K/C)L@ = –cGO (93.10)

and

C-zF,, + p:; = (K/C)[–~ + vi(47rB/c) + viP’i] = -Gi. (93.11)

Consider first the energy equation. We instantly see that if we omit the
O(u/c) terms, we lose a term equal to the rate of work done by the
radiation force on the material, a serious error when the radiation field is
intense. Furthermore, in the difl%sion regime -!30- (47rB/c), hence from
(91.16) and (91 .17) 47rB – CE = -2v “F/c +0(v2/c2). Eqtlation (93.10)
then becomes

E,, + Z’, = ‘(K/C) U,FL, (93. J 2)

.—
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which is essentially the first law of thermodynamics for the radiation field.
Tt states that the rate of change of the radiation energy density in a fixed
volume plus the rate of work done by the radiation force on the material
equals the net rate of (radiant) heat influx through the boundary surface of
the volume. Thus in the cliffusion regime we reach three important concl u-

sions. (1) Omission of the O(v/c) terms from the radiation energy equation
produces an error equal in size to ignoring the net absorption-emission
term, which is unacceptable. (2) We arrive al the physically correct
statement (93. 12) only by retaining O(u/c) terms. (3) Dimensional analysis
suggests that KV oF/c is O(hdAT,c) relative to V . F; hence the velocity-
dependent te~m may actually dominate the energy balance in the dynamic
cliffusion regime where v/c= kP/ 1.

Next consider the momentum equation in the diffusion regime. On a
fluid-flow time scale the time derivative is on] y O(APv/ lc) relative to KF/c,
hence is negligible. We can therefore write

~ = ‘( C/K)P:j~7J’(47Tf3/C) +Vip’i, (93.13)

In $97 we will shovv that in the diffusion limit EO a (47rB/c), Pii -

P:+ O(APv/lc) = *EO 8“ + O(APv/lc), and FO-+ –(c/K)V “ PO. Thus to O(v/c)
equation (93.13) reduces to

F“ = F; +viEO+v,P{= F: +$vIEO, (93.14)

which is just the Lorentz transformation from FO to F, cf. (91.1.7). Hence if
we were to omit O(v/c) terms in (93.11) we would fail to discriminate

between the inertial-frame (Eulerian) and the comoving-frarne (Lag-
rangean) radiation flux. To appreciate the importance of this point, recall
from $80 that in a stellar interior (vEO/FO) - (v/c) (T/T&)a – 10’2(o/c),
which implies that even a minuscule velocity produces a huge. difference
between F and FO. In short, the O(v/c) terms in (93.11) are essential if we
are to obtain the correct lab-frame flux in a moving fluid.

RELATIVESkZESOF TERMS
The thrust of the discussion above is that terms that are formally O(v/c),
and which therefore appear, at first sight, to be negligible can sometimes
dominate all others in the equation. Hence we must undertake a detailed
analysis of the relative sizes of terms in (93.4) to (93.9] in all regimes of
interest. In the streaming limit we consider both radiation-flow and fluid-
flow time scales; in the diffusion limit we consider both static and dynamic
diffusion.

We assume that (u/c)<< 1, and agree that terms that are always of O(v/c)
or smaller relative to the dominant terms can be dropped. The key word
here is “always” because terms that are negligible in one regime may
dominate in another, and because any real flow spans both the optically
thin and thick limits. As we desire our calculations to be accurate in both



THE EQuATIoNS OF WINrroN HYDRODYNAMICS 425

limits and successfully bridge the gap between, any term found to be

essential in one regime must be retained in all regimes.
[n the streaming limit &/1= 1., E = P, and F = cE. In the diffusion limit

E = 3P. For static diffusion tf >>t~ and (o/c)<< (AP//); in this case the first
term on the right-hand side of (91.17) dominates and F -+ FO, hence F/cE
is O(&,/1). For dynamic diffusion ~ 5 t~ and (v/c)= (AP/l); in this case the
last two terms in (91 .17) dominate, and F/cE is O(v/c). Similarly the net
absorption-emission term [i.e., K(cE – 47rB)] is O(cAu/ lZ)E for static cliffu-
sion (cf. $80), and O(v/l)E for dynamic diffusion (cf. $97).

Consider first the transfer equation (93.4). In the streaming regime,
dimensional analysis suggests that on a fluid-flow time scale the five terms
in the equation scale as (u/c): 1: (l/A,,): (l/Ap): (u/c) (l/Ao). Here we can drop

both the time derivative (the radiation field is quasi static) and the
velocity-dependent term on the right-hand side, retaining only the spatial
operator and the absorption-emission terms. For radiation flow on a time
scale tR,the (d/dt)term becomes 0(1) and must be retained. Now consider
the diffusion regime, grouping the net emission ~ – K~ into a single term.
For static diffusion the terms scale as (u/c): 1: (AP/l): (v/c) (l/AP); for
dynamic diffusion they scale as (u/c): 1: (o/c): (o/c) (l/AP). In both cases the
time derivative can be dropped. For dynamic diffusion the velocity-
dependent term may actually dominate all others in the equation. Even for
static diffusion it will dominate the net absorption-emission term if (u/c)=
(A,,/1)2. Inasmuch as we always retain the absorption-emission terms, we
must retain the velocity-dependent term as well. Tn short, to obtain a correct

solution of the inertial-frame transfer equation on a fluid-flow time scale we
must retain the spatial operator otz the left-hand side of (93.4), and all terms

on the right-hand side. To follow radiation flow on a time scale t~, we must
also retain the time derivative.

Next consider the radiation energy equation (93. 10), starting with the

streaming limit. Dimensional analysis suggests that on a fluid-flow time

scale the five terms in the equation scale as (v/c): 1: (l/AP): (l/AP): (v/c)
(l/Ap); thus we need retain only V “F and the absorption-emission terms. To
follow radiation flow, we also need to retain (d/dt),which becomes 0(1) on
a time scale t~. An exceptional case arises if the medium is nearly in

radiative equilibrium; here the absorption-em ission terms may cancel
almost exactly, and (~/?t) and the velocity-dependent terlms can then fix the
energy blance. In this event we must retain all terms in the equation.

Now consider the static diffusion limit. Here the terms scale as

(dc)(UA,,): 1:1: (dc)(l/AD), where the net absorption-emission terms are
grouped together. In this regime we can drop both the (d/dt) and
velocity-dependent terms because (v/c) <<(AP/l). But when (u/c) -+ (A,,/1), all
terms in the eq uat ion become of the same order and must be retained. In
the dynamic diffusion limit the terms scale as 1:1:1: (v/c) (I/AO); here the
velocity-dependent term may dominate all others.

Finally, consider the radiation momentum equation (93.9), starting with
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the streaming limit. On a fluid-flow time scale the terms scale as
(v/c) :1: (l/AO): (v/c) (l/AP): (ZI/C)(l/AD). We need retain only V . P and the
integral over F, all other terms being at most O(v/c). On a radiation-flow
time scale we must also retain (d/~t). In the static diffusion limit, the terms
scale as (v/c) (AO/l): 1:1: (u/c) (l/Ap): (l)/ C)(l/AP). In this regime we can drop
both the time-derivative and velocity-dependent terms. But as (v/c) -+
(AP/l), the velocity-dependent terms become of the same order as V . P
and must be retained, while (d/dt) is only 0(vz/c2). Finally, in the dynamic
diffusion limit, the terms scale as (v2/c2): 1: (v/c) (l/A,,): (V/C)(VAP):
(v/c) (I/Ap). Here we can drop (d/dt), but must retain V o P, and all three terms
on the right-hand side, which are of the same size and may actually dominate

the solution [cf. discussion of (93.14)].
In summary, to solve the inertial-frame radiation energy and momentum

equations correctly on a j?uid-fiow time scale we must retain all terms in both

equations except (d/dt) in the momentum equation, which can be dropped. To
follow radiation flow we must retain (d/fJt) in the momentulm equation as
well. Unfortunate y, these requirements make the equations cumbersome
to solve.

94. Inertial-Frante Equations of Radiation Hydrodynamics

The radiation energy and momentum equations discussed in $93 are to be
solved simultaneously with conservation equations for the material, which
we now derive.

GENERAI.FORM
The dynamical equations for the radiation field can be written (cf. $91)

This expression is manifestly covariant and applies in all frames. In an
inertial frame the covariant derivative can be evaluated immediately in any
coordinate system, using the formulae in $A3. In a noninertial frame, we
must first construct the spacetime metric before we can compute the
Christoffel symbols needed to evaluate the covariant derivative of the
stress-energy tensor (see $95).

In Cartesian coordinates, substitution of (91.7) into (94.1) immediately
yields the radiation energy ecpation

E,r + ~i = –cG” (94.2)

and the radiation momentum equation

c-2i@L+Pj = –G’, (94.3)

where Go and GL are given in general by (91.21), or to O(v/c) by (93.8)
and (93.9). In spherical symmetry we can apply equation (A3.89) to (91.9)
or (A3.91) to (91..8), noting that only (d/rIt)and (d/dr) are nonvanishing, to

.



TFIE EQUATIONS OF RADIATION HYDRODYNAMICS 427

obtain

(dE/EM)+ r-2[d(r2F)/dr] = –cGO (94.4)

and

c-2(dF/dt) + (dP/~r) + (3P - E)/r = -G 1. (94.5)

To obtain dynamical equations for a radiating fluid wc use a similar
approach, adopting either of two equivalent physical pictures. on one
hand, we can consider the radiation field as providing an additional
four-force acting on the material, and modify the dynamical equations for
the material to read

Alternatively we can consider the externally imposed four-force FW to act
on a radiating fluid, comprising matter plus radiation, which has a total
stress-energy tensor

we then obtain the dynamical equations

(M”” + R“G);@= F“. (94.8)

In view of (94.1), equations (94.6) and (94.8) are mathematically equival-
ent. As we will see, (94.8) provides a conceptually more satisfying formula-
tion in the diffusion regime, whereas (94.6) is more natural in the stream-
ing limit.

Writing (94.6) and (94.8) in Cartesian coordinates for an ideal material
fluid plus radiation, we obtain the relativisticall y correct equations

(pLc2-P),t +(PIC20i),i = ‘Vifi +cG” (94.9a)

and

(pl~i),t +(pl~i~i),i =fi– P,i+ Gi, (94.10a)

or

(PlC’– p + E),, +(P1C2V; +Fi),i = Ujf; (94.9b)

and

(p, v’ + C-’P),L + (p,l.liv; +P’j),i =f’ –8’ip,j. (94.10b)

Here pl = y2pO00, poOOis defined by (40.9), and fi is the Newtonian force
density. Comparable expressions for general three-dimensional flows in

spherical coordinates are given in (P3, 230–23 1).
If we subtract C2 times the continuity equation (39.8) from (94.9) we

obtain

[(Y - 1)PC2+ ype +(Y2- ~)p],t +{[(7 –l)pc’+ype + y’p]u’},i = ~~’ +cG”
(94.lla)
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or

[(Y - l)P~2+ ype +( Y2- l)P+H, +{[(7 - 1)PC2+ we +T2p]tIi +F}i = ~ifi,
(94.llb)

which will prove useful below; here, as in (39.5), p = ypo.
The flows with which we deal are nonre]ativistic; let us therefore reduce

(94.9) to (94.11) to expressions correct to O(v/c).

TUE MOMENTUM EC)UATION

We can cast the molmentum equations (94.10) into a simpler form (as we
did for a nonradiating fluid in \42) by
subtracting from (94. 1.0) to obtain the
(W2):

px(Dv/Dr) =f –Vp –c?v(p>,

or

At ‘“f)-(v”P*g=f–vp–z z+

multiplying (94:9) by v ‘/cz and
relativistic all y correct equations

tv. f)+ G–c-]vGO, (94.12a)

‘+%)+$(%”)
(94.12b)

Here p~ = ypOOO,and G denotes the space components of G“.

In 542 we saw that the distinctions between t and r, and p and p~, are
0(v2/c2), as is v(p,, + v . f)/c2 relative to other terms. Hence for a non-
radiating fluid, the Newtonian momentum equation is correct to O(v/c).

In contrast, for a radiating fluid the frame-dependent term vGO/c can be
O(v/c) relative to the radiation force G in the streaming limit, hence the
radiating-ffuid momentum equation correct to O(v/c) is

p(Dv/Dt) =f– Vp +G–(v/c)GO (94.13a)

or

~(b/~t) = f–Vp – [c-2(dF/dt) +V . P ]+ c-2v[(dE/dt) +V . F].
(94.13b)

On a fluid-flow time scale the term containing (d.E/dt)is 0(v2/c2) relative
to V . P and can be dropped. These equations are quasi-Lagrangean in the
sense defined earlier.

The first two terms on the right-hand side of (94.13) account for
externally imposed and pressure gradient forces. The third term accounts
for the radiation force, expressed either as the momentum absorbed by the
material from the radiative flux, or as the divergence of the radiation
pressure tensor. The last term accounts for changes in the equivalent mass
density of the material, as measured in the lab frame, resulting from any
net gain or loss of energy by the material through its interaction with the
radiation field. This term has often been omitted in discussions of radiation
hydrodynamics [see, e.g., equation (9.83) in (P3)], but at a sacrifice in
logical consistency. In particular, we will see in $96 that it is essential to
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retain this term in order to make an exact correspondence between the
inertial-frame and comoving-frame momentum actuations for a radiating
fluid.

While grant ing the logical importance of the O(v/c) terms in (94.13), we
have agreed that because (v/c) cc 1 we can drop terms that are always of
this order, or smaller, for practical computations. In (94.13a), vGO/c is at

most O(v)c) relative to G in the streaming limit, and even smaller if the
material is in radiative equilibrium. In the diffusion limit vG()/c is
O(Lpv/lc) or 0(v2/c2) relative to G in the static and dynamic diffusion
regimes respectively. Thus in all cases this term may be dropped. Similarly,
in (94.13 b), F/c is 0(1) relative to P in the streaming limit, and is O(LU/l) or

O(v/c) relative to P in the static or dynamic diffusion limits; hence on a
fluid-flow time scale both terms containing F are at most O(v/c) relative to
V . P and can be dropped. Thus the inertial-frame momentum equations

suited to practical computation are

p(Dv/Dt) = f –Vp + G (94.14a)

or

p@v/Dt) =f– Vp–V . P, (94.14b)

that is, the standard Newtonian equations of motion including a radiative
force.

Expressions for (94. 13b) in spherical geometry, with the v/c term

omitted, are given in (P3, 231).

“WE ‘rOrAL ENERGY EQUATION

To obtain the total energy equation for a nonrelativistic radiating fluid we
simply let y ~ 1 and (y – 1) ~ ~v2/c2 in (94.1 1). We then have

be +%v2),, +{[p(e +lv2)+p]vi},i = Vifi+ CG”, (94.15a)

or

(pe +$pv2-i-E),t +{[p(e +~v2)+ p]v’ +~}, = Vif”. (94.15b)

These Eulerian equations are correct to O(v/c). Equation (94. 15aj states
that the rate of change of the material energy (internal PI us kinetic) in a
fixed volume equals the rate of work done by externaf forces and fluid

stresses, plus the net rate of energy input to the material by absorption and
emission of radiation, minus the net flux of material energy through the
surf ace bounding the volume. Similarly, integrating (94. 15b) over a fixed
volume element and applying the divergence theorem, we obtain the.

statement that the rate of change of the total energy (internal, kinetic, and
radiative) in the volume equals the rate of work done on the elelment by
external forces and fluid stresses, minus the flux of total energy (material
plus radiative) out of the volume. Detailed expressions for (94. 15b) in
spherical coordinates are given in (P3, 232).
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~sing (19.13) we can rewrite (94.15) in the quasi-Lagrarrgean form

p~(e +~v2)/13t +V - (pv) = v . f+ cGO (94.1.6a)

or

p13(e+@2)/llt +(dE/dt)+V . (pv+F) =V cf. (94.16b)

These equations will prove useful later.

“~HE MECHANICAL ENERC,Y EOUATION

To obtain a mechanical energy equation for a radiating fluid, we form the
dot product of (94.13) with v and drop terms of O(02/c2), which yields

@(&)2)/~t = ‘V . (Vp)+v - (f+G) (94.17a)

or

pD(@2)/Dt = –V . (Vp)+v - f–v “[c-2(dF/dt)+V “P ]. (94.17b)

These (quasi-Lagrangean) equations state that the rate of change of the

kinetic energy per unit mass in a material element equals the rate of work,
per unit mass, done by applied external and radiative forces, minus the
work done against fluid stresses.

On a fluid-flow time scale the (dF/dt) term in (94. 17b) is at most O(u/c)
relative to V . P ; hence this term is O(v2/c2) overall and can be dropped.

On a radiation-flow time scale this term is of the same order as V . P in the
streaming limit.

TEE GAS-ENERGY EQUATION

In $42 we derived the relativistically correct gas-energy equation for a
nonradiating fluid. By exactly the same analysis, using (94.6), (94.9a), and

(94. 10a) we find that the relativistic gas-energy equation for a radiating
fluid is

“oB+p%(:)l=-v~”-vG”
(94.1 8)

AS before, VtiFa = 0, while – VdG” = -y(cG”-v . G). The inner product
Va@ is not zero for radiation as it is for ordinary body forces because the
radiant energy absorbed by the material pl”oduces a change in its total

proper energy (cf. $37). Recalling that (dt/d~) = -y, we see that the lab-
frame gas-energy ecluation for a radiating fluid is

d%+Ai)l’cGo-v”G
(94.19a)

or

~o[%+p%(i)l”-R+v”F) +v”($%+v” ‘)
(94.1.9b)
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Recalling (91 .23a), we see that (94.19a) is the first law of ther-
modynamics for matter in the presence of radiation. It states that the rate

of change of the internal energy per unit mass in a material element plus
the rate of mechanical work done by the material in expansion, equals the
net rate, per unit mass, of “heat” input from the radiation field, evaluated
in the comoving fluid frame (cf. $96); compare with (93.12).

We emphasize that in (94.19) all radiation quantities are measured in the
lab frame, while the material properties e, p, and pO are all measured in the

comoving frame. But for the latter the distinction between frames is
0(u2/c2) and hence can be ignored to O(v/c]. Thus (94.19) could also be
derived simply by taking the difference between the O(v/c) actuations
(94.16) and (94.1 7).

Dimensional analysis suggests that in (94.19a) v “ G is of the same order
as cGO in the dynamic diffusion regime, and may exceed cGO in the
streaming limit if the material is approximately in radiative equilibrium.

Hence both terms on the right-hand side must be retained. In (94.19b),
C–2V . (dF/i3t) is 0(02/c2) relative to V oF on a fluid-flow time scale, and
hence can be dropped. The remaining three terms are all of the same order
in the dynamic diffusion regime, hence all must be retained. Thus for

practical calculations the inertial-frame gas-energy equation is

(94.20a)

01”

“[%+%(:)1=–V. F–~~+v” V.P. (94.20b)

Equation (94.20b) can be rewritten in either the Eulerian form

(pe+-E),, +V” [(pe+p)v+Fl=v” (Vp+v”p) (94.21)

or, using (19. 13), in the q uasi-Lagrangean form

“[He+3+’wl+v”(F-vE)=v”v”p ‘9422)

By straightforward manipulation (94.22) can be recast as

“[He+3+’M+;p’vvl+v”(F-vE-v”p)=O’
(94.23)

compare with (96.9). Here P: Vv denotes the contraction Pi;ui,i.

COUPLING TO TTHE RAOIATrONEQUATIONS
The radiating-fluid momentum and energy equations written above are to
be solved simultaneously with the radiation energy and momentum equa-
tions of $93 [i.e. (93.8) and (93.9) or perhaps (93.1 O) and (93.11)]. When

.
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simplified for practical computations on fluid-flow time scales, the fluid
momentum, total energy, and mechanical energy equations are all standard
Newtonian equations which include radiative terms in exactly the way one
would expect from heuristic arguments. Only the gas energy equation
contains a velocity-dependent radiation term that would be unanticipated
from simple Newtonian arguments; this term, often ignored in inertial-
frame formulations of the equations of radiation hydrodynamics, is re-
quired to convert the net rate of radiant energy input into the material to
its value in the comoving fluid frame (cf. 596). Thus the @id equations
contain few surprises (the exception being the gas energy equation) and can
be handled in the usual way. In contrast, it is in the. radiation energy and
momentum equations that special care is required, for, as we have seen, it
is essential that cdl velocity-dependent terms be retained if we are to
obtain the correct radiation energy and momentum balance. [t is at this
juncture that most Eulerian-frarne treatments of radiation hydrodynamics
are flawed, for the velocity-dependent terms are usually dropped, and the
radiation equations are treated as if the material is at rest, which is simply
incorrect.

95. The Cornooing-Franze Equation of Transfer

RATIONALE FOR I“H E COMOV [NG FRAME

In radiation hydrodynamics the comoving frame of a fluid parcel comprises a
set of inertial frames, each of which has a velocity that instantaneously
coincides with that of the parcel. Clearly this frame is identical to the
Lagmngean frame of fluid dynamics, and further is the proper frame in the
relativistic sense, and is therefore the frame in which microscopic descrip-
tions of material properties by thermodynamics and statistical mechanics
apply. It is also the frame i n which details of the interaction between
radiation and matter (e.g., partial redistribution by scattering) are most
easily handled (M13). Moreover, it offers computational advantages be-
cause it is the frame in which material properties are isotropic, and in
which the frequency mesh can be tailored to describe accurately the

absorption spectrum of the material; the latter point is especially important
in line-formation problems (Mll). ‘~LIs the comovi ng frame is the natural
frame for one-dimensional flow problems sLIch as stellar pulsations, and is
the frame always used (whether explicitly or implicitly) in stellar evolution
calculations that invoke the diffusion-] imit solution of the transfer equa-
tion.

Because the velocity field in a flow is, in general, a function of both
position and time, the comovi ng frame associated with any particular fluid
element is a noninertial frame. Photon trajectories in the comoving frame
are therefore not Euclidian straight lines, but are geodesics whose shapes
are determined by the metric of the curved (i e., non-Minkowskian)
spacet ime through which the photons move. In addition, photon frequen-
cies are not constant in this spacetime. As a result, the comoving-frarne
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transfer equation is more complicated than the lab-frame equation, and
contains derivatives with respect to angle and frequency in addition to
space coordinates and time.

There are two routes by which the comoving-frarne ecluation of transfer

can be derived, each having certain advantages. In the first we use special
relativity in an inertial spacetime to derive an equation correct to all orders
in (u/c); the results can then be reduced 10 O(z/c). At this point one can
safely invoke Gali]ean relativity because all O(v/c) terms have been
accounted for, and all remaining special relativistic terms are 0(v2/c2) or
higher; hence a fullly Lagrangean formulation can be constructed simply by
grouping terms to form the Lagrangean time derivative (D/LXj. Alterna-
tively we can derive the equation in a noninertial Lagrangean frame from
the outset, using the techniques of general relativity; here we obtain results
accurate only to O(v/c), but enjoy a more direct hold on the physics and
deeper insight into the geometrical aspects of the problem. We will develop
both approaches, limiting the discussion to one-dimensional spherically
symmetric flows.

The main goal of $$95 and 96 is to obtain equations in which all physical
variables, for both radiation and matter, are expressed in the Lagrangean

frame. But we emphasize that this choice of frame is critical only for the
dependent variables, and that the dhoice of grid (ie., independent variables)
on which the equations are to be solved is a matter of complete indiffer-
ence. Indeed we may choose Eulerian coordinates fixed in space, Lag-
rangean coordinates fixed in the fluid ($98), or a freely moving coordinate
system that is neither [e.g., an adaptive mesh that moves both in inertial
space and with respect to fluid elements (T3), (W3)]. in practice the
adaptive-mesh schemes have proven to be extraordinarily powerful tools in
solving astrophysical radiatiomhydrody narnics problems.

SPIZCIAL RELATIVISTIC FORMULATION

In deriving relativistic equations of hydrodynamics, we expressed the
material stress-energy tensor in terms of proper quantities and calculated

derivatives in an inertial spacetirne. We can do the same for radiation,
obtaining a transfer equation containing intensities, material properties,
angles, and frequencies in the comoving frame only.

The inertial-frame transfer equation for spherically symmetric flow is

Using (90.3), (90.6), and (90.8) we can rewrite (95.1) as

(-)[

v 1 1310(fLo,W)) dIo(/-L.o,Uo) (1– f.L*)dro(wo, vo)— +/-L +—
1)0 c dt F))’ r d~ 1

( )[

J dvO
–3 ;

?Vo (1 –~’) avo
---+ w=+—

1
~ m%> ~o)

~o r

= 7fo(”L’”)– xc,(w))Io(wo>

(95.1)

(95.2)

Vo).
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When the derivatives in (95.2) are calculated, it is assumed that both w and
v are held constant (with the exception of d/tiw, of course). Because the
fluid velocity varies in space and time, the comoving-frame quantities PO

and VOare not constant, and we must account for their variations.
To calculate the derivatives of 10(KO, VO)we apply the chain rules

and

(95.3)

(95.4)

(95.5)

By repeated use of equations (89.10) and (89.11) one can evaluate all the
derivatives written above in terms of comoving-frame quantities on] y; one
finds

(dw./at) = -72(1 - f-L:)(dB/dt), (95.6a)

(dV,/at) = -y2wo”w)(dB/at), (95.6b)

(dl-@r) = -72(1 – w:)(aB/dr)> (95.7a)

(@-Jdr) = --y2~ovo(Wdr), (95.7b)

(dK,/a&) = y’(1 + (?po)’, (95.8a)

and

(du./dw) = –py’(1 +Dwo)vo. (95.8b)

Substituting (95 .3) to (95.8) into (95.2) we find, after some reduction,

the comoving-frame transfer equation

(95.9)

2

1
+x [2~o + p(l + ~:)]}: Io(p., v.) = qo(vo) – xo(~o) ~o(wo>Vo).

c
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We have grouped terms so that the angle and frequency derivatives are in
conseruutive form (i.e., such that they vanish when integrated over their full
ranges). Equation (95.9) is valid for Os 1~1<1, and hence can be used in
relativistic flows.

Integrating (95 .9) over comoving-frame angles we obtain frequency-
dependent moment equations. Define

~

1

Qo(uJ = 27T ~o(wo> ~o)l-d &o. (95.10)
–1

Then integrating (95 .9) against dcoo/4m we obtain the rnonochromutic
radiation energy equation

[

ELq(vo) + : (WJVO)

1[

dFO(vo) + v dEo(vO)
l’— —+’y — —

at C2 dt dr dr 1

{ [
+ Y : [2Fo(u0) + 3vEo(u0) – VPO(VO)]+‘Y*: Eo(vo) + PO(VO)+$ FO(VO)

1

+ $; [%(q))+ v~o(vo) + @o(~o)]
}

(95.11)

[{ [
–; Wo ; [~o(%) – ~o(~o)l + 72: ~o(~o) +; ~o(~o)

1

+$: [Fo(vo] + VPO(VO)]
)1

= 47rqo(vo) – CXO(UO)EO(VO).

Integrating (95 .9) against Lo d~o/4m, we obtain the monochromatic radia -

tion momentum equation

[

-y dFo(uo) + v aPo(vo)

1[

dP&o) + ~ dF&o)
7 —+y — —

atc- — at dr c2 dr 1

(95.12)

{[ 1
+ Y ~ 3Po(VO) – Eo(~o) +? ~o(~o) +$ $ [2Fo(vo) + @I(~O) + d’o(vo)]

r
2-

[
+3: Eo(vo) + Po(vo) +% Fo(vo)

1)

‘[ {
– & Yvo -& [Fo(vo) - Qo(vo)I+$ ; [Qo(~o) + @o(~o)l

dvo
2-

[ 1}1
_ xo(~o)+3; Po(vo)+; Qo(vo) – –= Fo(vo) .

Note that these equations contain four moments, unlike the inertial-frame
equations in which Q does not appear.

Integrating (95. 11) and (95. 12) over comoving-frarne frequency we
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obtain the radiation energy equation

(~EO v dFO

)(

aFO dEO
Y —--—t=_ +7 ~+v —

)[
+-y ; (2FO+ 30E0– UPO)

at c at dr

au

( )

2

+yz$ EO+PO+L; FO +&(2 FO+vEO+vP0
1

(95.13)
c

r= [47r~O(vO) – CXO(VO)EO(VO)]dvO,
o

ancl the radiation momentum equation

(ydFO 13P~

)(

a ?’~ v dFO

)[(

1 2U
~ ~+v — +y ~+~~ +Y – 3Po– Eo+7Fo

dt r )

~z dv -y2as

(

2V
+FX(2FO+ VEO+VPO)+FX EO+PO+7F0

)1
(95.14)

--J

1-—— xo(~o)~o(~o) ~~o.
co

Notice that the third moment Q. has vanished from these equations.
To check (95.13) and (95.14), start with the inertial-frame radiation

energy and momentum equations

(d E/dt) + (dF/dr) + 2F/r = –cGO (95.15j

and

c-2(dF/dt)+(dP/dr) +(3 P–E)/r = –G’, (95.16)

and use (91 .13) to (91.15) to eliminate (E, F, P) in favor of (Eo, Fo, Po),

and (91 .22) to express Go and G1 in terms of G: and G:. One then finds
that (95.15) equals (95.13) plLls P times (95.14), and that (95.16) equals

(95.1 4) plus P times (95.13) [cf. (M4]]. We are thus assured of exact
consistency between the inet-t ial - and comovi rig-frame equations.

Equations (95.9) to (95.14) apply in the high-velocity limit and hence
can be used to describe radiative transfer in, say, the cosmic expansion,
supernova blast waves, and other high-velocity flows. But for most flows
(v/c) <<1 and it suffices to work only to O(t/c). To first order in 13, the
transfer equation reduces to

= qo(vo) – XO(W)JO(I-LO>Vo).
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Here a = (dv/dt), the fluid acceleration. In (95.17) we have grouped terms
to form the Lagrangean time derivative (11/Dt) and have written the spatial
derivative in conservative form.

Similarly, the monochromatic radiation energy equation to O(v/c) is

DEO(VO) 1 d

Dt
+7 ~ [r2~o(Vo)l+~ [3 E@(vo) – PC)(UO)I

+: [Eo(vo) + po(~o)l + ~ FO(I+))

a

--u {
~o ; [~o(~o) - Po(vo)l+; PO(%)+; ~o(~o)

d“vo 11

= 47rqo(vo) – CXO(VO)EO(VO),

and the monochromatic radiation momentum equation is

1 DFO(VO)+ dPo(vo) + 3F’O(VO)– Eo(vo)
>c Dt Jr r

(95.18)

()+ $ ;+; Fo(vo) +: [EO(UO)+PO(VO)]

a

[{
—— Vo : [~o(~o) – Qo(~o)l ++ : C?o(~o)+ ; f’o(~o)

dVo }1

(95.19)

1—— –; xo(vo)Fo(vo).

Finally, the radiation energy equation to O(v/c) is

DEO 1 a 2a
—+7X(r2FO) +2(3 EO– PC,)+~(EO+PO)+~F0
Dt r

J

. (95.20)

= [4mqo(vo) – CXO(VO)EO(VO)]clvo,
o

and the radiation momentum ecluation is

1 DFO \ ?Po ~ 3P0– E0
T ()

++ ~+; FO+$(EO+PO)
c Dt dr r c c

J

1-
(95.21)

—
c o XO(~olFo(Vo) dvc,.

———

Equations (95.17) to (95.21) are equivalent to those derived by Castor

(C3) and Buchlel- (B2), except that Castor omits the acceleration terms. On
a fluid-flow time scale these terms are O(v/c) compared to those in (v/r) or
(W/dr), hence 0(v2/c2) overall and can be dropped; however if the velocity
evolves on a radiation-flow time scale they should be retained. Moreover,
as we will see in $97, these terms have an interesting physical significance.

The planar limits of (95.17) to (95.21) and (95.9) to (95.14) are obtained
by letting (l/r) ~ O. BuchleI” (B2), (B3) also gives results for cylindrical
geometry.
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Finally, to demonstrate explicitly the consistency between the inertial-
and cornoving-frame dynamical equations for radiation, consider a grey,
planar, pure-absorbing lmedium in LTE. Equations (95.20) and (95.21)

become (omitting acceleration terms)

(dE,/at) + (~F,/dz) + ~(~Erj/az) + (~ddz)(%+ P,) = Ko(4@- @,
(95.22)

and

c-’(dFC,/dt) + (d~o/tJZ] + (v/c2)(5Fo/dz) + (2/c2)(dv/tJz)~0 = ‘C-l KOFO.

(95.23)

On the other hand, using (91.16) to (91.18), we can rewrite the inertial -

frame equation (93.10)

(dE/dt) + (dF/dz) = K0(4mB0 – cE) + (v/c)K,F (95.24)

as

(95.25)

Regrouping terms and using (95 .23) we find

DEO dFo ?U

(

aPo
—+ Z+ Z(EO+PO) ”KO(4TB0– CEO)– V ~Fo+~
Dt )

2

()

(95.26)

= Ko(4~f30 – CEO)+ O ~ ,

which is identicaf to (95.22). Similarly the inertial-frame equation (93.11)

c-z(dF/~t)+(dP/dz) = (Ko/c)[– F+(4nv/c)~O+VPl (95.27j

becomes

1 dFo ~Po 2vdFo 2 ~v
2

K oFo
—— +—+=T+=— FO= —

C2 at ()
—++ Ko(47rBo-cEo)+o >

dz C dz c az c c

(95.28)

Regrouping terms and using (95 .22) we find

1 DFO dPo 2 dV KOFO

[

dFo
~ —+z+PZFO=– —-+; K0(47T& – CEO)‘~

Dt c c 1
2

H

(95.29)
KOFO——–—--+0 > ,

c c

which is identical to (95.23).

NON IN ERTIAL FRAME FORM ULAIION

Following Lindquist (L5) and Castor (C3), we now derive the comoving-
frame transfer equation directly in a noninertial Lagrangean frame. Again
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for convenience we LISe units in which h = c = 1, converting to physical
units at a later stage. The photon Boltzmann equation in a noninertial
frame is (cf. $92)

LW(W/dx”) + M(3$18M”) = e–a.!J = (8.YIM)C0,1 (95.30)

where 9 = I/vy, e = qu/v2, and ~ = VXU.Furthermore, MU = (dMm/d/) where

i? is an afline path-length parameter chosen to satisfy (92.3).
Photon trajectories are geodesics in the curved spacetime of the comov-

ing frame. Therefore, the intrinsic derivative (8A4a/8t) is identically zero
along a photon trajectory, and from equation (A3. 100) we have

{1
(8Ma/&?) = (dM”/d<) + ~~ M@(dx’/dt?) = O, (95.31)

or, in light of (92.3),

{1Me = (dM”/do = – a MBMY.
@Y

Hence we can rewrite (95.30) as

Me (D~/~xti) = e – L@ = (~/8#)COIl

where the operator

{}
(D/Dxm) - (d/dX”) – ~; M“ (d/dM”).

(95.32)

(95.33)

(95.34)

The Christoffel symbols in (95.34) are to be derived from the spacetime
metric, and in general will not vanish in the (noninertial) comoving frame
even in Cartesian coordinates. We must now recast (95.33) and (95.34)

into a more useful form.
In writing (95.33) we have tacitly assumed that the invariant intensity is

defined for all possible four-momenta. But Mm is a n u1l vector, hence
.9(xa, Mm) is actually defined only for those arguments Mm that lie on the
n LI1lcone. We must therefore calculate (D/Dx~) in such a way as to assure
that Ma remains on the null cone as a photon propagates. One way of
proceeding is to treat the contravariant space components M as indepen-
dent coordinates, and to calculate (D/Dxa) as an operator for the subset of
vectors M of constant (null) length. But this approach is cumbersome,
especially for systems having special symmetries (e.g., spherical symmetry)

where simplifications are often possible. For such systems it is much more
convenient to work in an orthonorrnal coordinate frame, using ‘,ariables
adapted to the symmetries in the problem.

Thus let ?W denote the contravariant components of M with respect to
some coordinate system x“ that has a general metric gtib. Then

M= M”Ee (95.35)
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where the Em are basis vectors of the coordinate system. In the neighbor-
hood of any point x, introduce an orthonormal tetrad frame E.(x), (a =

O, 1,2, 3), such that

E.(X) “ &b(X)= ‘?la(, (95.36)

where qa~ is the Lorentz metric. Relative to this frame, we can express M
in terms of its tetrad components M as

M = M<’Ea. (95.37)

Write the transformation between the two coordinate systems as

E. = E:E. (95.38a)
and

E<,= &~Ea. (95.38b)

l-hen clearly
Ma= ~;Mm (95.39a)

and
W = c;M”. (95.39b)

Now suppose we choose the particular coordinate transformation x“ ~
f,, —x = x“ and M“ + Ma =s: (x)M& that leaves the coordinate system un-

changed, but expresses the photon momentum in terms of tetrad compo-
nents. Then if we regard .9 as a function of (xm, M(’), the transfer equation
can be written

Ma (~#/~X’) = (8.9/8/)=0,, = (d.9/dx”)(dx”/dE) + (W/dM’)(dM’’/d<)

= Mae ~ (&@/dX”)+ (d.$J/dM,)(dM’/d/).
(95.40)

The operator ~.= E~ (d/dxa ) is known as the ~affkm derivative.

To calculate (dMb/d#), we recall that photon trajectories are geodesics in
the original coordinate system, hence

Therefore

,, ~ dMc dMc dMh
—=~:—— _

‘be’ dl dt?=dt= -’~’:(’~+{p}’’)M”Mc ,95,42,
——–&:&~ E:.aMa~’y

Then defining the F!icci rotation coeficieni to be

the transfer equation becomes

M“ (D~/DXc’) = M“ [d. – r~CW (d/dM~)]J = e – 49. (95.44)
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Notice that, unlike Christoffel symbols, the rotation coefficients are not
symmetric in the two lower indices.

Because M is a n uII vector, only three of its tetrad components can be
independent, as any three suffice to determine the fourth. Therefore in the
evaluation of (95.44) we need differentiate only with three components of
M, which we take to be the three space components M“, (a= 1,2, 3).

We now specialize (95.44) to spherical symmetry. Choose a comoving-
frame metric of the general form

d~2 = –ez’p d~z+ez’y d*2+R2(d%2+sin2 0 d$z), (95.45)

where .~ is a generalized Lagrangean radial coordinate, and ~, A, and R

are functions of z and ~ only. In spherical symmetry the derivatives (d/de)
and (~/d@) are identically zero, so we need calculate only terms containing

(d/d~) and (d/dz). From straightforward calculation one finds that the
nonzero Christoffel symbols for (95.45) are:

{1
~0 = (iW/t3~), {~1 } = exp [2(A - W)](C3A/~T),

{1

o

22
= exp (–2T)ll (d R/&),

{1
o

33
= exp (–2V)17 (t)l?/d~) sinz 0,

{1
;0 = (W’/az),

{}

1
= exp [2(TJ?– A)](dT/dt),

{1
;1 = (dA/&),

00

H1

22
= –exp (–2A)R (dR/&),

{}

1

33
= –exp (–2A)R (dIVtl.L)sinz f3,

{1
o:=(dA/E)T),

{12
= R-’(aR/a4),

12

and

{1

3

23
= cot 6

2

} {12
– –sin O cos 0, = R-’ (dR/&),

33 – 02

H

3

{1

3

03
= R-’ (t)R/&), = R-’ (dR/&

13

At the event (~, ~, 0, ~) introduce the orthonormal

eO = e–’v~., c1 = e–Ac,t,, c2=R–~ee3 and

(95.46)

basis

E3 = (R sin O)–l E+.

(95.47)

. . . .. ,. . .
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One then sees that the transfomlation matrix &~ is diagonal:

.:=~;;.l(Rj,_) (95.48)

whence we have

()

eWOO o

&:=(.:)-’= : ;’ : : > (95.49)

o 0 0 Rsin O

Furthermore, write M in terms of spherical coordinates with E, taken to be
the polar axis:

kd=u, M’ = v COS@, M2 = v sin @ cos cD, M3 = u sin @ sin Q,

(95.50)

where v is the photon’s energy. We can then compute the Jacobian
.T(M’, M2, M3/v, @, ~) and its inverse

J-1= d(v, 0, @)

d(M’ , M2, M3)

(
Cos @ -(sin @)/v o

)

= sin @ cos @ (cos @ cos @)/v –(sin @)/v sin @ , (95.51)

sin @ sin@ (cos @ sin @)/v (cos @)/v sin@

whence we have

(tI/dM’) = fA(d/dV)+ P-’(l - V2)(d/@), (95.52)

(d/dM2) = (] - &L2)J’2COS @[(d/h) - V-’ y(d/@)], (95.53)

and

(d/dA43) = (1- ~2)”2 sin @[(d/~v) - v-’p(d/d~)], (95.54)

where ~ = cos 0. Here we have dropped (d/d@) because of azimuthal
symmetry.

We now must compute the Ricci rotation coefficients. Because e: and s:
are diagonal, (95 .43) reduces to

(95.55)

where there is no sum on repeated indices. We can ignore terms with b = O
because in (95.44) we differentiate only with respect to space components
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of Mh. Following (L5), define the operators

~.= e-’r(i3/i37) (95.56a)

and
Il., = e ‘A(d/8h], (95.56b)

and the auxiliary variables

U= D.R (95.57a)

and
~ = D,LR. (95.57b)

Using (95.46), (95.48), and (95.49) in (95.55) we find that the nonzero
Ricci coefficient ts are

1’:0 = D.*, ~~z = r:3 = –r/R, 1’:0 = DTA,

r:3 = –R-l cot o> r~O = r:O = u/R,

1

(95.58)

r;, =r:l = r/~, and T;Z=R-’ cot f3.

In the transfer equation (95.44) we then have

Maaa = M“E: (d/ax”) = VDT+ pvDt, (95.59)

while

wiwr:c(a/d M’) = (M”ikf”r:o + M’M’r;2 + M3M’r;3 + M* M’r; o)(d/aiw’)

+ (A43M’r:3 + M’ M*r;l + fvf~MT;o)(d/dM2) (95 .60)

+ (,kz’M3r:, + M@kfT:o + M2M’r:2)(i3/aM’).

Substituting (95.50) and (95.52) to (95.54) into (95.60), collecting terms,
and using the results along with (95.59) in (95.44) we obtain finally the
comoving-frarne transfer equation

DT.9 + pDiJ – v[~D,W+ p2D.A+(l – p2)(fJ/f?)](W/?V)
(95.61)

+(1 –~2){(1’/R) –D>W+p[(U/R) –D.A]}(dY/@) = v-’(e–d$).

Equation (95.61) is exact for the general metric (95.45). To apply it to a
particular flow we must obtain explicit expressions for the coefficients in
the metric; it is at this point that we must forsake exactness if we wish to
obtain analytical results. One sees that some kind of approximation must
be made by realizing that in general the acceleration field a(r, t)can be
arbitrarily complicated, and by recalling (hat the principle of ecluivalence
implies that this field can be viewed as resulting from the gravitational field
of an arbitrarily complex distribution of masses. Thus an attempt to obtain
an exact analytical metric for an arbitrary flow field is as difficult as solving
exactly the field equations of general relativity for an arbitrary mass
distribution, which is not possible by known methods. in practice, it is
feasible to work analytically only to O(o/c). An alternative is to construct
the metric numerically; but by doing so we forsake having explicit analyti-
cal expressions for the metric and the transfer equation. See (Gl) for a
discussion of the numerical approach in the context of radiative transfer.

. .



444 FOUNDATIONS OF RADIATION I-IYDRODYhTAMICS

For one-dimensional spherically symmetric flows, Castor (C3) adopted
inertial-frame coordinates (t’, r, 0, ~) and Lagrangean coordinates
(t, M,, 0, c~), and related them by the coordinate transformation

!

r
M,(r, t’)= 47r(r’)2p(r’, t’) dr’ (95.62)

o
and

J

r
t(r, t’)= t’–c–2 v(r’, t’) clr’, (95.63)

o

where o = (dr/2t’) = –(47rr2p)– [(dM,/dt’), is the fluid velocity, Equations

(95.62] and (95.63) provide an O(u/c) approximation to a local Lorentz
transformation between the inertial and comov ing frames in the nei,ghlmr-
hood of the event (r, t’).From these equations o~e readily finds

dx = (dMJ4n-r2p) = dr – v dt’

and

dt = (1 – I/cz) dt’ – (v/c*) dr,

where

J
[= ‘[&u(r’, t’)/dt’] dr’.

o

Solving for dr and dt’ we have

dr = [(1 – I/C2)/D] dx + (u/D) dt

and

dt’ = (v/c2D) dx + D-’ dt

where

D=l–(I~v2)/c2.

Substituting (95.67) and (95.68) into the inertial-frame metric

ds2=dr2+r2(d02+sin20 d~2) – cz(dt’)’

we obtain the comoving-frame metric

(95.64)

(95.65)

(95.66)

(95.67)

(95.68)

(95.69)

(95.70)

ds2 = F(dM,/4~r2p)2+ r2(d92 + sinz (3d@2) – G dt2 – 2HdM, dt

where [see (M6)] (95.71)

F= [(1 – I/c*)*– (u2/c2)]/D2, (95.72)

G = (C2 – V2)/~2, (95.73)
and

H = vl/(4mr2pc2D2). (95.74)

Inasmuch as we are interested in final results correct to O(o/c), we may
now discard terms of 0(vz/c2). We see by inspection that H is 0(02/cz),
and hence can be dropped, while F = 1 + 0(02/c2). For G we have

G = c2/(1 –21/c2)+0(u2/c2) = C2+2~+0(7J2/C2); (95.75)
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I/c* can be O(v/c) for radiation-flow time scales tR- Ar/c or when the

fluid acceleration is comparable to (cv/r) or c (dv/cb), and hence should be
retained.

Comparing (95.71 ) with (95.45) in which dr = dt and dz - dM4, we can
make the identifications

R=r, A = –ln (4 fir2pj, and W=;ln (C2+21), (95.76)

whence we find, to O(v/c),

DT =C-’(d/dt) = c-’(D/Dt) and Dz = (47rr2p)(tl/dA4,) = (d/dr).

(95.77)

Here we noted that the time derivative calculated in the comoving frame is
jdentical to the customary Lagrangean (D/Dt). From (95.57) and (95.77)
we find t-f= (IJ/c), r-l,

and

D7A = –c-l[D(ln p)/Dt+(2v/r)]. (95.79)

Using (95.76) to (95.79) in (95.61) and expressing 5, Z, and e in terms of

1O(LLO,VO), XO(VO),and TIO(VO),we find, aftel- some elementary reductions,
the comoving-frame transfer equation

This equation is fully Lagrangean in the sense that all radiation and

material pl-operties are in the comoving frame, the jndepenctent variable
M, is Lagrangean, and the time derivatives (D/Dt) are evaluated in a
moving fluid element. Recall ing the equatjon of continuity

(D In p/Dt) = –r-2[d(r2v)/dr] = -(?u/dr) - (2v/r), (95.81)

one easily sees that (95.80) is identical to (95.17). We thus have IWO
logically independent derivations of the resull.
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Taking angular moments of (95.80) we obtain the monochromatic radia-

tion energy equation

DEO(VO)
+ 4Tp~

Dt
& [r2FJvJl -~ [3 P0(v0) - E~(vo)l

r

Dlnp
–~ [EO(VO)+ PO(VO)]+% FO(VO)

(95.82)

u{ Dlnp
+ fi VO f [3 PO(UO)– EO(VO)]+= po(~o) –: Fo(vo)III

= 4wqo(vO) – CXO(VO)EO(UO),

and the monochromatic radiation momentum equation

1 DFC,(Vo) (3PO(VO)+ 3PO(UO)– Eo(vo)
+4#p-

C2 Dt dM, r

-$(;+%3Fo(vo) +: [Eo(vo) + po(~o)]

[{

(95.83)

+: V. : [30.(.0) – Fo(vo)]+$ ~ Qo(vo) -: Po(vo)}n
c)7“0

_ Xo(vo)
–— Fo(vo),

c

which are equivalent to (95.18) and (95.1 9).
Integrating over frequency we obtain the radiation energy equation

DEO d(r2Fo) u
—+ 4mp —–#3Po-Eo)- ~ (Eo + Po) ~-~
Dt aM,

I-m (95.84)

=J [4~To(vo)-.xo(vo)~o(vo)l~vo
o

and the radiation momentum equation

1 DFO
3 —+ 4rrr2p
c Dt ‘+3p0-E[’-%+%)Fo+5(Eo+po)dM, r

(95.85)

--[

Im—— Xo(vo) ~o(~o) ~vo>
co

which are equivalent to (95.20) and (95.21). These equations also follow
directly from

where R~~ is given by (91.9) with all radiation quantities evaluated in the
comoving frame, G~ is given by (91.25), and the covariant derivatives are
evaluated in the curved spacetime of the fluid frame. Using (A3.89) with
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Christoffel symbols calculated in the metric (95.71), one can show that
(95.86) does, in fact, yield (95.84) and (95.85).

Equations (95.84) and (95.85) apply in spherical symmetry. Buchler has
shown (B2) that tensorial forms of these equations, applicable in any
geometry, are

()D EO
p— — +V. Fo+Po:Vv+~ a. Fo+cG~=O,

Dt p
(95.87)

c

and

()PDFO 1 1—— — +V. Po+z FO. Vv+7(EOa+a. PO)+ GO=O. (95.88)
C2 Dt p c c

The term P. :Vv in (95.87) is dyadic notation for the contraction of PO
with Vv. Buchler also gives tensorial forms for the monochromatic moment
equations [see his equations (9) and (10)].

lMPORTANCE OF O(v/ C) TERMS

In $93 we showed that in order to solve correctly the inertial-frame
transfer equation and its moments one must retain terms that are formally
O(o/c) (cf. $93). Building on the discussion by Castor (C3), we now show
that the same conclusion applies to the comoving-frame radiation and
momentum equations. In lmaking estimates of the relative sizes of terms we
shall ignore the acceleration terms [which are never larger than O(v/c)],
and consider (dv/dr), (v/r), and (D in p/Dt) to be O(v/1). In the diffusion
regime, we shall use results to be derived in $97 for estimating the sizes of
the net absorption-emission terms, FO, and (3F’0 – EO).

Consider first the radiation energy equation (95 .84); group the net
absorption-emission into a single term. In the streaming limit, dimensional
anal ysis suggests that on a fluid-flow tim~-scale the five terms in (95.84)

scale as (v/c): 1: (de): (de): (l/AD), hence we need retain only the flux
divergence and the absorption-emission terms; the radiation tield is quasi-
static. On a radiation-flow time scale we must also retain the (11/Dt) term. If
the material is essentially in radiative equilibrium, the absorption-emission
terms cancel almost exactly, and the (D/llt) and velocity-dependent terms,
although small, may significantly affect the energy balance; we should
then retain all terms. In the static diffusion limit, the terms scale as
(u/c) (l/A,,): 1: (v/c)2: (tdc)(l/AP): 1, hence only the flux-divergence and
absorption-emission terms need be retained. As (u/c) e (AO/l), all terms

except the one containing (3P0 – Eo) are of the same order, and all must
be kept. In the dynamic diffusion regime the scaling is 1: (c/v )(AP/l):
(v/c) (Au/l): 1:1. The dominant terms are the rate of change of the energy
density, the rate of work done by radiation pressure, and the net
absorption-emission terms; the flux divergence is of less importance than in
other regimes, and again we can drop (3P” – Eo). In summary, to guarantee
the correct radiation energy balance in all regimes, we must retain all terms in

(95 .84) except the acceleration term.
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Now consider the radiation momentum equation (95. 85). In the stream-

ing limit, dimensional analysis suggests that on a fluid-flow time scale the
terms scale as (v/c): 1:1: (u/c): (l/AO). Hence we need I-etain only V “ Pa
and the integral of XOFO/c. If we follow radiation flow, the (D/llt)
term must also be kept. In the diffusion regime the terms scale as
(v/c) (Ap/l): 1: (v/c) (AP/l): (v/c) (AP/l): 1.,hence we can drop (D/fit), (3P. – Eo),
and the velocity-dependent terms. This result contrasts strongly with that

for the inertial-frame radiation momentum ecluation (where it is essential
to retain all the velocity-dependent terms to obtain the correct inertial-
frame flLIx), and reveals an important advantage of the Lagrangean formu-
lation. In summary, in solving the cornoving-!rame radia~ion rnomemwn

equation (95 .85) on a .fluid-jlow time scale we can drop the time derivative
and all ve~ocity -dependent terms.

Castor (C3) arrives at the same conclusions for a pulsating star where
(D/Dt) is of the order of w the pulsation frequency.

96. Comoving-Frame Equations of Radiation Hydrodynamics

We are now in a position to write the Lagrangean equations of radiation
hydrodynamics. We consider one-dimensional spherically symmetric flows;
the corresponding planar equations are obtained by taking the limit
(l/r) ~ (!. We ignore the acceleration terms in the radiation energy and
momentum equations, which are 0(v2/c2) on fluid-flow time scales (but see
$97).

THE MOMENTUM EQUATION

The simplest way to obtain the comoving-frarne momentum equation is to
reduce the relativisticall y correct equation (94.12a) to the proper frame, in
which v = O instantaneously. We then have, to O(v/C),

(xmo(Dv/~t) = f–vp + Go. (96.1)

For nonrelativistic fluids (P+ pee)<< pOC2, and we can ignore the difference
between pooo and p. Specializing (96.1) to one-dimensional spherically

symmetric flow we find

rp(DdDt) = –(GMrp/r2) – (dp/dr) + (l/c) xO(vO)FO(vO) dv~, (96.2)
o

which states that a fluid element accelerates in response to applied external
forces (e.g., gravity), the pressure gradient, and the force exerted by the
radiation on the material as measured in its rest frame. The velocity-
dependent terms in the inertial-frame momentu]m equation vankh in the
Lagrangean frame.

To obtain the comoving-frame analogue of (94. 12b), we use (95.85) to
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eliminate the integral in (96.2), which yields

Dv 1 DFo _ GM,p _~—+=—
Dt C Dt rz ( :+%+3P”:E”)+$(:’-%)F0

(96.3)

We can also derive (96.3) by evaluating (94. 12b) directly in the comovi ng

frame provided that we replace [c-2(dF/dt) + V . P] with (R~@),~ and calcu-
late the covariant derivative using the (nonzero) Christoffel symbols ob-
tained from the metric (95.71). Regrouping terms in (96.3), we can write it
in the more instructive form

%[”’-($91’-7- dr - r -H%

GA4.P d(p + PO) 3?’0 – EO

(96.4)

which states that the rate of change of the total (material plus radiative)
momentum density in a radiating fluid equals the applied force minus the
divergence of the total stress, minus an additional (relativistic) term that
arises because the radiant energy flux has inertia (cf. $97).

On a fluid-flow time scale both terms containing F“ in (96.4) are O(v/c)
in the streaming limit, and O(APv/lc) in the diffusion limit, relative to
(dPO/dr), and can be dropped in practical calculations. Hence another
useful form of the Lagrangean momentum equation is

p(Dv/Dt) =f–vp –v . P,. (96.5)

Equation (96.5) is slightly more approximate than (96.2), but assumes a
particularly simple form in the diffusion limit, where V “ P. reduces to VPO,
so that the fluid acceleration depends on the total (gas plus radiation)
pressure gradient.

THE G.4S-EYERGY EQUATIQN

The comoving-frame gas-energy equation follows directly from the re-
lativistic equation (94.18) by evaluating VmFa and VaGa in the proper
frame. We obtain

po{(DdDT) + PID(MPo)/DTl} = c(R+ G~), (96.6)

where G: is given by (91.25a). For ordinary body forces cm= (v “ f). = O.
But in the presence of nonmechanical energy sources cm equals the rate,
per unit volume, of energy input to the material, as measured in the fluid
frame (cf. $37). For example, in stellar interiors thermonuclear reactions
irreversibly release E ergs g‘1 s–’ into the material. In this case

[

De

OIJ

Dl”
P, ~+p — — . [CXO(V”)E”(VO)– 4m@,)] Cbo+ pus.

DT p. ,
(96.7)

Equation (96.7) is the first law of thermodynamics for the material; it
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states that the rate of change of the material energy density plus the rate of
work clone by the material pressure equals the net rate of energy input
from the radiation field and thermonuclear sources, all per unit lmass. in
what follows we work to O(v/c), hence in (96.7) we replace pO by p and
(D/D~) by (D/Dt).

Tm RADw-r]0N-ENERG%EQUATION

By rearranging terms we can write (95.84) in a form that makes its physical

content more apparent:

~[:(:)+po:(;)-(’po-~o’;l

J

(96.8)

= ~[4wqo(wo] - CXC)(VO)EO(UO)]dv, ‘; ; (r’~,).
o

The second and third terms on the left-hand side of (96.8) reduce to
PjtIL ,i, the contraction of the radiation-pressure and fluid-velocity tensors,
hence equal the rate of work done by the radiation stress [cf. (27.7)]. Thus

(96.8) is the first law of thermodynamics for the radiation field; it states
that the rate of change of the radiation energy density, plus the rate of
work done by radiation pressure, equals the net rate of energy input into

the radiation field from the material, mi nLISthe net rate of radiant energy
flow out of a fluid element by transport [again cf. (27.7)], all per unit mass.

THE FIRST LAW OF 11-lERNIODYNAMrCS FOR THE R.&l)[AT[NG FLUID

Taking the sum of (96.7) and (96.8) we obtain the first law of ther-
modynamics for the radiating fluid:

which states that the rate of change of the total (material plus radiation)
energy density in a fluid element plus the rate of work done by the total
pressure in the element equals the rate of thermonuclear energy input into
the element minus the rate of radiant energy loss by transport to adj scent
fluid elements.

When the radiation field is isotropic (e.g., in the diffusion regime), (96.9)
simplifies to

D

-( ) ()

dL~
e+q +(p+Po)2 ~ =s– —

Dt p Dt p dM, ‘
(96.10)

where L! is the luminosity at radius r, measured in the cornoving frame. In
this limit, the r-adiating fluid behaves like a gas whose total energy density
and pressure are lhe simple sums of the contributions from the radiation
and material components.
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In the equilibrium diffusion limit, (96.10) is the standard energy equation
used in dynamical stellar evolution calculations [cf. (97.7)]. For a static
medium, it reduces to one of the standard eclualions of stellar structure

(d~:/dkf,) = E, (96.11)

which apply to stable stars evolving on a nuclear time scale t~, which is so
long compared to dynamical times of interes[ (e.g., the free-fall time or a
pulsation period) that the evolution is quasi-stationary and fluid motions
can be neglected.

THE MECHANICAL ENERGY I3QUATION

To obtain the fluid-frame mechanical energy equation we multiply the
momentum equation (96.2) by u, which yields

J

.

pD(~u2)/Dt= –(GA4,vp/r2) – zi(dp/dr) + (u/c) XO(VO)FO(PO)dZJO,
o

(96.12)

which is identical to (24.8) if we lump the radiative force into f, and to

(94.17a) except that here the radiation force is evaluated in the comoving
frame.

THE TOTAL ~N13RGYEQUAT1ON
To obtain a total energy equation we first rewrite (96.12) as

–(4~’2”p)=~:(:)+:J:x(””o)Fo(””o)~~og(i.2-?)+dLr
(96.13)

Next, substituting from (95 .85) for the radiation force, and ignoring terms
of O(uz/c2) we obtain

:(,u2-+7& ()[4mr2v(p +Po)] = (p+Po) ~ ~ –~ (3 P0-EO).

(96.14)

Finally, adding (96.14) to (96.9) we have

-(D E. GM,
e+ —+-$v2— —

)
~ {4mr2[u(p +Po) +Fo]} = s, (96.15)-

Dt p r r

which is clearly a statement of overall energy conservation for the radiating
fluid. All radiation quantities in (96.15] are to be evaluated in the comov-
ing frame.

Equation (96. 15) is essentially identical to equation (27.4), written in
spherical coordinates, for an inviscid but conducting (via radiation) fluid
whose internal energy density is the sum of the gas and radiation energy
densities, and whose pressure equals the sum of the gas and radiation
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pressures, with the term on the right-hand side accounting for “external”
energy input from thermonuclear reactions. This equation, with 4mr2Fo

replaced by L,, and EO and POgiven their thermal equilibrium values, is the
total energy equation used in dynamical stellar structure calculations [see,

for example, (C4, eq. 6); (Fl, eq. 3); (K7, eq. 15); or (L2, eq. 51.3)].
We can rewrite (96.15) in Eulerian coordinates as

‘( GM.p
~ pe +EO+$pv2— —

r )

[{[(

(96.16)
la

)

GM,
+7$ r2 p e+~vz–~

1 1
+p+PO+EO L)+FO = P&.

Then using (91 .17a) and ignoring 0(v2/c2) terms in converting EO to E in
the time derivative, we obtain

(~ pe+E+~pv2– —
)

GM,p

r

[{[(

~larz
p e+$.,2–

rz dr %9+d’+dll=p’ ‘96”17)

which is identical to the Eulerian result (94. 15b) when thermonuclear
energy release is allowed. in (96.17), radiation quantities are now meas-
ured in the laboratory frame.

Assuming that X is so small that we can neglect the time variation of M,,
we can write an explicit integral of (96.17) for the case of steady flow [cf.
(24.22] for a nonradiating fluid]. We find

J

r
~[h +~v’– (G-A4,/r)]+L, = 4rr paz dx.

o

That is, the total energy flux passing through a surface

(96.18)

of radius r,—.
consisting of the material energy flux (i. e., the mass flux times the enthalpy

plus kinetic plus potential energy per unit mass) plus the luminosity
radiated by the surface (measured in the lab frame) equals the total
thermonuclear energy release in the volume bounded by the sulfacc. in
physical terms, (96. 18) states that all the energy contained in radiation and
in fluid motions in a star originates ultimately from thermonuclear energy
release in the star’s interior.

CONSISl%NCYOF ~ARIOUS ~OkUS OF ‘rHE COMO~lNG-FRAM~~N~RGY AND
MOMENTUMEQUXrrONS
We now show that O(tdc) terms must also be retained in order to obtain
consistency among various forms of the comoving-frame energy equation,
and between the comoving-frame and inertial-frame energy and momen-
tum equations. Our discussion summarizes and extends a penetrating
analysis of these issues by Castor (C3). An earlier, but incomplete, treat-
ment was given by Wendroff (W2).
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In an optically thin medium, or near a radiating surface of an opaque
medium, the radiation field departs strongly from thermal equilibrium,
hence -1 can differ markedly from B, the flux is large, and the radiation
pressure tensor is anisotropic. In this regime, it is natural to describe the
energy exchange between the material and radiation in terms of dil-ect
gains and losses, as in (96.7), and momentum exchange in terms of

radiation forces acting on the material, as in (96.2).
In contrast, in the diffusion regime J + B, so that the net absorption-

emission term in (96.7) vanishes to high order, and the flux becomes a very
small leak from the large reservoir of radiant energy. The radiation energy
density and pressure both approach their equilibrium values, and the
radiation pressure becomes isotropic. It is then natural to calculate the
total energy content and pressure of the radiating fluid by adding the
material and radiative contributions, and to use (96.9) as the energy
equation and (96.5) as the momentum equation.

In any practical computation we must choose one form of the fluid
energy equation even when the flow spans both the optically thin and thick
limits. If the O(u/c) terms are retained in the radiation energy equation
(95.84), and this equation is solved simultaneously with either fluid energy
equation, the choice is immaterial because exact consistency between the
two is guaranteed. But suppose we drop the O(v/c) terms from (95.84).
Then if we use (96.7), we will obtain satisfactory results in the optically

thin regime, but will make serious errors in the optically thick regime,
where Y~ B and the right-hand side vanishes almost identically, because
we have not accounted explicitly for either the rate of change of the
internal energy in the radiation or the rate of work done by radiation
pressure. Castor concludes (C3) that in the diffusion regime the tempera-
ture determined from (96 .7) with the O(v/c) terms omitted from (95.84)
can be in error by an amount of O(P/p). If, instead, we use (96.9) the
difficulty is reversed. We then obtain an accurate solution at great depth,
but wil I make serious errors in the optically thin regime where the gas

decouples from the radiation; Castor finds that the error in the tempera-
ture is again O(P/p). In short, it is essential to retain O(rjc) terms in
(95.84) in order to bridge the transition between the optically thick and
thin limits.

The situation for the momentum equation is difierent. Here (DFO/Dt)

and the velocity-dependent terms multiplying FO in (96.3) are never larger
than O(rJ/c), and are much smaller in the cliffusion 1imit. We can therefore
drop these terms, which means that we will obtain consistency with (96.2)
even if we drop the time-derivative and velocity-dependent terms from the
radiation momentum equation (95.85). Moreover, in the derivation of the
mechanical energy equation (96.12), which when combined with (96.9),
leads to the total energy equation (96.15), all O(v/c) terms in (95.85)

become 0(v2/c2], and hence can be dropped from the outset. In short, we
do not adversely affect consistency among various forms of the energy or
momentum equations by dropping all O(v/c) terms from (95.85).

. . —..
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CONSlSl”13iCY’ OF THE INERTIALFRAME AND COMOVING-FRAME ENERGY AhrD

MOMENTUM EQUAI-JONS FOR A RADIATING FLUID

Let us now examine the mutual consistency of the inertial-frame and

comoving-frame energy and momentum equations. Consider first the
inertial-frame gas-energy equation (94. 19b). On a fluid-flow time scale the

(dF/2t) term is 0(ti2/c2) relative to V “F and hence can be dropped.
Similarly the (v/c) terms in the transformations of (E, P) into (Eo, PO) will
produce terms of 0(02/c2); we thus need to retain O(v/c) terms only to
transform F to Fo. In particular, for one-dimensional spherically symmetric
flow we have

V . F=~~ [r’(FO+ UEO+ @O)]

‘~+%+””r:+%)+r:+:)(~o+~o) “’””)

Furthermore, from (66. 10)

V o PO= (dPO/dr) + (3P0 – Eo)/r. (96.20)

Using these results in (94. 19b) we find

R+w=-[= 1
~t +~~ (r2Fo)+~ (3 EO– PO)+ (EO +Po) ~ ,

(96.21)

which, by virtue of (95.84) is identical to the comoving-frarne gas-energy
equation (96.7). If the velocity-dependent term on the right-hand side of

(94.19b] had been omitted, we would be left with an extra term in (96.21)
of the form v (dP/dr), that is, the rate of work done by the fluid against the
radiation pressure gradient. For tluids with intense radiation fields, this
term is large and would Lead to serious errors. By a similar analysis, one
readily shows that (94.22) is consistent with (96.9).

Alternatively, consider the inertial-frame equation (94. 19a), which for
grey material reduces to

J%+%;)]=
Ko(C~ – 47TB0 – 2V “F/c)+ 0(u2/c2). (96.22)

Then using (91. 16) we have

pE+p:(:)l=Ko(c~o-4~Bo)
(96.23)

which is identical to the comoving-frame equation (96.7) for grey material.
Had the O(v/c) terms been omitted from (94.19a), from (93.10) and
(93.11), or from (91.16), this exact reduction would not be achieved; the
error would equal Kov “ F/c, the rate of work done by radiation forces on
the material.
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In summary, consistency between the inertial-frame and comoving-frame
equations requires that all O(v/c) terms be retained in both gas-energy
equations, in the radiation energy equation, and in the transformation laws
between frames [see also (P4)]. In contrast, all O(v/c) terms can be omitted
from the radiation momentum equation without loss of consistency.

Finally, consider the inertial-frame momentum equation (94. 13b), which
for spherically symmetric ffow reduces to

D’u – Gkfrp dp

[

1 8F dP (3P–E) V (3E dF 2——— ~%+%+ ——
‘%= r2 ( 71

;+%+— .
~r r C2 r

(96.24)

On a fluid-flow time scale the term containing (dE/dt) is 0(v2/c2) relative
to (d F’/dr), and therefore can be dropped. Similarly all terms containing F
are at most O(o/c) relative to the terms in E and P. Hence to obtain a final

result accurate to O(v/c) it is sufficient to set F = FO, but all terms must be
retained in transforming from (E, P) to (~0, E’o). Making these conversions

we find

(96.25)

which is icfent ical to the comoving-frame equation (96.3). Thus consistency
of the momentum equation between frames is assured if, and only if, one
accounts for O(u/c) terms in both frames.

Similarly, in light of (93.10) and (93.11) the inertial-frame moment urn
equation (94. 13a) for a spherically symmetric flow of grey material is

p(Dv/Dt) = –(GM,p/r2) – (dp/~r) + (Ko/c)[F– (u/c)(J3 + F’)]+ 0(v2/c2),

(96.26)

which, from (91. 19), is identical to the comoving-frame equation (96.2) for

grey material. Again we see that the O(v/c) terms are essential for
consistency.

7.3 Solution of the Equations of Radiation Hydrodynamics

MATHEMATICAL STRUCTURE OF THE PRO13LEM

In $$93 to 96 we formulated the equations of radiation hydrodynamics in
both the Eulerian and Lagrangean frames; we now ask how to solve them.
In this connection it is instructive to count the number of variables to be
determined and the number of equations available to determine them, as in

$24. As before we must find seven fluid variables: p, p, T, e, and three
components of v; in addition we must now find ten radiation variables: E,
the three components of F, and the six nonredundant components of P.

. .
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