
6
Radiation and Radiative Transfer

In the preceding chapters we treated the physics of nont-adiating fluids; we

now extend the analysis to radiating fluids comprising both material and

radiation. Radiation adds to the total energy density, momentum density,

stress, and energy flux in the fluid. We must therefore define these
quantities for radiation and derive actuations that describe the coupling

among them and their coLIpling to the material.

Our first goal is to develop an understanding of the “microphysics” of
the radiation field and of transport processes in the combined matter-

radiation fluid along lines conceptually similar to our study of gases in

Chapters 1 and 3. For this purpose il sLIffices to assume that the material is
static, which is what we generally do in this chapter. Detailed discussion of
how radiation transports energy and momentum through moving media,

and couples to the dynamics of flows, is reserved for Chapter 7.

In S6.1 we derive expressions that specify the basic dynalnical properties

of the radiation field, in particular its energy density, energy flux, and stress
tensor; we specialize these to the case of thermal equilibrium in $6.2. We

then turn to the principal task of this chapter: the formulation and solution

of the transfer equation, which determines how radiation is transported
through the material. In $6,3 we descl-ibe the interaction of 1-adiation with

material in terms of macroscopic absorption and emission coefficients.
Then in S6.4 we derive the transfer equation, which is the ecluivalent of the

f301tzmann equation for photons (cf. S92), and discuss the significance of its
moments.

In i6.5 we discuss methods for solving the transfer equation. in opaque

material, such as the interior of a star, photons are trapped and the
radiation field is nearly isotropic and approaches thermal equilibrium; the

photon mean free path Au is much smaller than a characteristic structural

length L in the material. In this limit, radiative energy transport can be

described as a diffusion process, and we can derive an asymptotic solution

of the transfel- equation, which is similar to the Chapman-Enskog solution
of the Boltzrnann equa[ion describing transport phenomena in gases (see
also $97). Like the Chapmatl— Enskog solution, radiation diflusion theory is
valid only for A,, <<1.

BLIt as we approach a boundary surface of a radiating medium (e.g., the
atmosphere of a star), the material becomes transparent, and photon mean
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310 FOUNDATIONS OF RADIATION HYDRODYNAMICS

free paths can vastly exceed characteristic structural lengths. Here a
nonlocal treatment is needed. We must solve the full transfer equation

describing photon exchange within the fluid, thereby in effect constructing
a nonlocal kinetic theory for photons. The nonlocal nature of the transfer

problem is exacerbated by the scattering of photons by matter. After

being thermally emitted, a photon may scatter many times, changing
essentially only its direction of travel, before being absorbed and destroyed

by reconversion into thermal energy. In doing so, a photon migrates a large
distance called the photon destruction length. The radiation field is then no
longer uniquely determined by local conditions but at any point may be

determined by conditions within a large interaction vohwne whose size is set

by a photon destruction length, not a mean free path. Hence the radiation
field is not, in general, a local variable.

Because the transfer equation is (superficially) linear in the radiation
field, it is possible to solve it for very general physical situations by

powerful numerical techniques. Actually the transfer problem is linear only
to the extent that we consider the material absorption and emission

coefficients as given. But in reality these coefficients depend on the internal
excitation and ionization state of the material, and, as we discuss in $6.6,

this state is fixed in part by radiative processes that populate and depopu-

late atomic levels. We therefore find that in general the radiation field and
the internal state of the matter musl be determined simultaneously and
self -cons istendy.

In the diffusion regime, the radiation field and level populations have

their them~al equilibrium distributions and the coupling between radiation
and matter presents no difficulty. Somewhat nearer to a radiating surface

we reach a regime in which significant nonlocal radiation transport occurs,

but collisional processes still dominate the state of the material, which can

be calculated from the equations of statistical mechanics evaluated at local
values of the temperature and density—the local thermodynamic equilib-
rium (LTE) regime. When the medium is very transparent, and photons

escape freely from a boundary surface into space, the radiation field takes

on a strongly nonequilibrium character. We must then reconsider the
microphysics of the gas, allowing for a nonequilibrium interaction between

the radiation and material: this poses a difficult problem both mathemati-

cally and conceptually because the local state of the material is then
coupled by photon exchange to the state of the material within an entire
interaction volume. The techniques required to solve this interlocked

problem are discussed in $6.7.

This chapter forms essential background for the discussion of radiation
hydrodynamics in Chapter 7. Conceptually the goal of these two chapters is
to develop formalisms that describe accurately the strong interactions

between radiation and matter in radiating fluids. It will pay the reader to
reread this chapter after reading Chapter 7, having the benefits of insights
gained there. Although it is our intent to give a self-contained account of
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the topics treated in this chapter, some of the material is technical, and we
must sometimes omit details. We recommend that the reader consult

references such as (A2), (A3), (Jl), (Kl), (M2), (PI), (P3), (S1), (T2), (Ul)
and (Wl) for further background and amplification.

6.1 The Radiation Field

63. The Specific Intensity and Photon Distribution Function

The radiation field is, in general, a function of position and time, and at

any given position has a distribution in both angle and frequency. We
define the specific intensity I(x, t; n, v) of radiation at position x and time t,

traveling in direction n with frequency v, to be such that the amount of
energy transported by radiation of frequencies (v, v + dv) across a surface

element dS, in a time dt, into a solid angle dco around n, is

dz$ = 1(x, t; n, v) dS cos a dw dv dt, (63.1)

where a is the angle between n and the normal to dS. In cgs units, 1 has

dimensions ergs cm-2s- LHZ-l sr-l.

In most of what follows, we confine attention to one-dimensional struc-

tures and flows in p] anar or spherical geometry. In the planar case, we
assume that the material is homogeneous in the horizontal direction, with

properties varying only as a function of z and t.The intensity then has

azimuthal symmetry around the unit vector k; its angular distribution can
be described completely in terms of the polar angle @ or v = cos @ = n . k.
Hence 1 = 1(z, t;K,v).We assume that z is positive in the direction
opposite to gravity, and explicit merition of z and t will normally be

suppressed.
In spherical geometry, a position is specified by (r, 13,@), and the direc-

tion of radiation at that position by polar and azimuthal angles (@, Q)
measured with respect to the radial unit vector f. For spherical symmetry I
depends on r only, and is independent of 0; therefore 1 = I(r, t; p, v)
where now K = n . i. Explicit mention of r and twill usually be suppressed.

The specific intensity provides a complete macroscopic description of the

radiation field. From a microscopic view, the radiation field is composed of
photons, and we define the photon number density $ such that

Y(x, t; n, v) da dv is the number of photons per unit volume at (x, t)with

frequencies (v, u + dv), traveling with velocity c into a solid angle do

around n. The number of photons crossing a surface element dS in time dt
is then @ (n . dS)(dco dv)(c dt). Each photon has energy hv, so the eneigy

transported is

d~ = chv$ dS COSa dw dv dt. (63.2)

Comparing (63.2) with (63.1) we find

1(x, t; n, v)= chv@(x, t;n, v). (63.3)
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A relative of tlI is the photon distribution function f~, defined such that

fR(x, t; n, P) d’~ is the nulllber Of Photons Per unit volume at (x, t) with

momenta (p, P+ alp), where p = (hv/c)n. Using d3p = p’ dpd~ =
(h/c)3v2 dv dco, we find (h’v2/c3)~R clv do = @ dv dco, and therefore

1(x, t;n, v)= (h4v3/c2)f~(x, t; n, v). (63.4)

The function f~ is a relativistically invariant distribution function (cf. $43)

describing certain massless, extreme-relativistic particles (photons) in a

six-di tensional phase space; it is complete] y analogous to the invariant
particle distribution function used in $43 to construct a kinetic theory for a
relativist ic gas. In $$90 and 91 we use a kinetic theory approach to develop

expressions for the radiative energy density, energy flux, and stress in terms

of fR and its moments. Furthermore, in $$92 and 95 we describe the
interaction between radiation and matter by a Boltzman n equation for ,fR.

But for the present, we emphasize the continuum \iew, and most of the

analysis in this chapter is done in terms of 1.

64. The Mean Intensity and Radiation Energy Density

The mean intensity J is defined as the average of the specific intensity over

all solid angles, that is,

4JV= .J(x, t;v)=(47r-L 1(x, t; n, v) dco. (64.1)

.JUhas dimensions ergs cm-2 S-l Hz-’ sr-’. The mean intensity is the zeroth
moment of the radiation field over angles.

In a planar atmosphere 1 is independent of cD. Thus, noting that

do = sin @ d@ d~ = –dW do, we then have
27T

((

1

[

1

~(Z, t;v]= (4Tr-’ do dpf(z, t; ~, v)= $ ~(Z, t; K> v) d~.
Jo J_, J–,

This result also holds in spherical symmetry with z replaced by r.

The monochromatic radiation energy density at frequency v

number density of photons at that frequency, summed over all solid

times their energy hv. That is,

$
Eu =E(x, t; v)= hv V(X, t;n, v) do.

Using (63.3) and (64.1) we see that

$
E.= c-’ 1(x, t; n, u) dti = (4n/c).Tti.

(64.2)

is the

angles,

(64.3)

(64.4)

E,, has dimensions ergs cm-3 HZ-l. The total radiation energy density is

E = E(x, t)=
J“

E(x, t; V) dv = (47T/c)
~“

J(x> t;v)du = (47r/c)J(x, t),
o 0

(64.5)
which has dimensions ergs cm–3.
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65. The Radiative Energy Flux and Momentum Density

We define the monochromatic radiation flux F(x, t; v) to be a vector such
that F . dS gives the net rate of radiant energy flow per unit frequency

interval, at frequency v, across dS. The net number flLLx of photons

crossing dS per unit time and frequency interval from all solid angles is

(J )N= O(X, t; n, v)cn dco . dS, (65.1)

which, multiplied by the energy per photon, hv, gives the energy fhLx.

Recalling that f = chin) we see that

!F. = F(x, t; v)= 1(x, t; n, v)n da+ (65.2)

or, in components

F.= (Fx, F,, F=). = ($1,,~ da, ~1.n,, dc+
1)

IVnzdw , (65.3)

where n< =(1 – K*)”2 cos cD, ]%,= (1 – p,2)”2 sin ~, and n, = I-L.In cgs units

F“ has dimensions ergs cm-2 s-l HZ-l. The flux is the first moment of the

radiation field over angle. Summing over all frequencies we obtain the

integrated radiation flux

!
.

F = F(x> t)= F(x> t;v)dv (65.4)
o

which has dimensions ergs cm–2 s–’.

For azimuthal symmetry around k, FX and F, are identically zero; the

remaining component F= is therefore often called “the” flux

J

L
F“=F(z, t;v)=27T ~(Z, t; ~, v)~ d~, (65.5)

–1

as if it were a scalar. Following Eddington it is customary to define

I

1

~,, = ~(Z, t; V)= (4m)-’F(z, t ; 2’)=; ~(Z, c; p,, V)~ dw, (65.6)
–L

which is similar to (64.1) for J,,. Equations (65.5) and (65.6) also apply in

spherical symmetry with z replaced by r.

The momentum of a photon with energy hv is (hv/c)n; therefore the net

rate of radiative momentum transport across dS at frequency u is
c “F. . dS. This transport is effected by particles moving with a speed c,
hence the monochromatic radiation momentum density vector is

gu = C-zF,,. (65.7)

Integrating over all frequencies we see that the total radiation momentum
density is

~=c-2F (65.8)
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where F is the total radiation flux. This result also follows from considera-

tions of the form of the radiation stress-energy tensor (cf. $91).

66. The Radiation Pressure Tensor

As for material particles, we define the radiation stress tensor, or pressure
tensor, P such that Pi; is the net rate of transport, per unit area of a surface

oriented perpendicular to the jth coordinate axis, of the ith component of

momentum. The number of photons of frequency v, moving in direction ni,
crossing a unit area in a unit time, is ~ucni; each has momentum (huni/c) in

the ith direction. Thus summing over all solid angles we obtain the

monochromatic radiation pressure tensor

$P’j(x, t; U)= @(x, t; n, v)(hzm’/c)(cn’) do, (66.1)

or

Pii(x, t; “v)= c
$

“ 1(x, t;n, v)nin’ da. (66.2)

In dyadic notation

$
P. = P(x, t; v)= C-l 1(x, t;n, v)nn dco. (66.3)

P“ is manifestly symmetric, and is clearly the second moment of the

radiation field over angle; the components of Pu have dimensions dynes

cm-2 Hz-l.
The rate of momentum transport across an oriented surface element dS

with normal 1, by photons of frequency v, is P~li dS. Integrating over a

closed surface S surroundhg a volume V, we find that the total rate of flow

of the ith component of radiation momentum at frequency v out of V is

~~p:lids=~v(p!),jdv- (66.4)

In the absence of momentum exchange between radiation and matter (and

of body forces that affect photons, that is, general relativity effects), this
flow decreases the momentum density g. in V. We therefore must have

(dgv/dt)= c-2(dF,,/dt) = -V “ Pu, (66.5)

which is identical to the momentum equation (23.5) for an ideal fluid in
the absence of body forces. We emphasize that (66.5) applies only in the

absence of material; interactions with matter are treated in $s78, 93, and

96.
Because lU is independent of @ in a one-dimensional medium, direct

calculation from (66.2) yields

‘=(!”; ;)-+rp”jE”3P;-EU;) ‘666)
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Here the scalar P. is defined as

P., = (4rr/c)K,,,

315

(66.7)

where, in turn,

J
~u=; ‘ 1(Z, t; p, V)W2 d~. (66.8)

–1

In planar geometry PI,, P22, and I?qq in (66.6) represent PXX,P,,, and P==;
in spherical geometry they represent the physical components P80, Pti, and
P., relative to the orthonormal triad (6,$, i). Equations (66.6) show that

in the special case of a one-dimensional medium two scalars, P. and E.,
suffice to specify the full tensor P,,. Moreover, derivatives with respect to

(x, y) or (6,+) must be identically zero by symmetry. Therefore, in planar
geometry the only nonvanishing component of V “P. is

(v. P.)= = JPJdz, (66.9)

and, from (A3 .91.), the only nonvanishing component in spherical sym-

metry is

(V s PV), = (t)PU/dr) + (3PU - Eu)/r. (66.10)

From (66.9) and (66. 10) one can understand why in one-dimensional
problems it is customary to refer to the scalar P. as “the” radiation

pressure. But it is important to bear in mind that because the second term
in (66.6) is not necessarily zero, P. is not, in general, isotropic, and
therefore does not reduce to a simple hydrostatic pressure. The an isotropy

of P,, reflects an anisotropic distribution of 1(w, v), which is induced by
efficient photon exchange between regions with significantly different phys-

ical properties, particular] y in the presence of strong gradients, and/or an

open boundary.
Because the trace P; of P. is an invariant, it is sometimes used to define

a mean radiation pressure

~,, = ~(x, t; v) =+P’’(x, t; v) =4E(x, t; v), (66.11)

the last equality following directly from (66 .6). While (66. 11) is true in
general, note that ~u does not, in general, equal P., nor does it have any

particular dynamical significance.
The radiation pressure tensor will be isotropic for any distribution of the

radiation field [(w, u) that yields P. = *E,,. A particular example is isotropic
radiation, for which K,, = ~.lv from (64.2) and (66.8), hence P. = $EV from

(64.4) and (66.7). In this case

()

P“oo

P(x, t; v)= o P. o (66.1 2)

o 0 P,,

and, for computational purposes, the entire radiation pressure tensor can be
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replaced by a scalar hydrostatic pressure PV =&,. This is a case of great

practical importance because it holds true in the difision regime (cf. $80),
which shows why one can always use scalar pressures in stellar interior

calculations. Note also frolm (66.10) that in this case (V -P). reduces to
just (dP/dr). The small departures of P,, from isotropy in the diffusion limit
in moving media are discussed in $97.

On the other hand, at the boundary of a medium with a positive
temperature gradient inward, the radiation field is peaked (i.e., is largest)
in the direction of outward flow (cf. $S79 and 82). Moreover, from (66.7)

and (64.4) we see that such radiation, with K =1, is lmore heavily \veightecl
in P,, than in E,,,. Hence near boundary surfaces the ratio P,,/Eu usually

exceeds ~. The extreme example is a plane wave traveling along the z axis,
for which I(p) = 10 8(K – 1). 1n this case, called the streaming limit, JP=
flu = Kv, hence P.= Eu, and P. has only one nonzero element, namely P==.

From the discussion above, we see that it is useful to define the

dimensionless ratio

f.= f(x> ~; V) = ~(x> ~; v)/E(x> t; v) = K./.T., (66.13)

which is known as the variable Eddington factor, to give a measure of the

degree of anisotropy of the radiation field. For an opaque medium with a

boundary, f. typically lies in the range ~ to 1. We will see in $578 and 83
that f. can be used to close the system of moments of the transfer

equation; this important idea was first suggested by B. E. Freeman (F2),
and cast into an easily applied form by G. R. Spillman (S4).

All quantities defined in tb is sect ion have frequency-integrated counter-
parts. For example, the scalar describing the total radiation pressure in a

one-dimensional medium is

I
.

P = P(X>t)= P(X>t; v) dv = (47r/c)
J“

~(X, t; v) dv, (66.14)
~ o

which is also the total hydrostatic pressure for isotropic radiation; it has

dimensions dynes en-z. Similarly, the tokd radiation. pressure tensor is

P= P(X>t)= c-’
J“ $

dv dtiI(x, t; n, v)nn. (66.15)
o

6.2 Thermal Radiation

In the important limiting case of thermodynamic equilibrium, the radiation
field is described by a unique distribution function that depends on only

one state variable, the absolute temperature T. Such thermal radiation
exists in a hohkaum, an isolated enciosure in thermal equilibrium at a
uniform temperature; in the laboratory, close approximations to a hohl -
raum are provided by carefully insulated o\lens. Another close approxima-

tion is the deep interior of a star. For example, in the SLln the mean
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temperature gradient from center to surface is about 107 K/l O1i cm=

10-4 K cm-’, while photon mean tree paths are a fraction of a centimeter;
the radiation field is thus in ecluilibrium with material at a very uniform

temperature, and approaches perfect thermal radiation very closely.

67. Planck’s Law

Thermal radiation is described by the Planck function 13U(T). The func-

tional form of BU(T) follows immediately from Bose–Einstei n quantum

statistics [see, e.g., (C5, Chap. 10) or (H2, Chap. 12)]; but for our purposes
a brief semiclassical derivation suffices [cf. (S2, Chap. 6)].

Planck hypothesized that radiation comes in discrete quanta of energy
hU, and that the radiation field in a hohlraum is a superposition of

quantized oscillations or modes. In a rectangular cavity of dimensions

(X, Y, Z) each mode is characterized by positive integers (nX, ~~, n=) such
that the propagation vector k has components (~m/X, ~w/ Y, nzm/Z),
which guarantees that the lmodes are standing waves. For each k there are

two senses ot’ polarization of the field, with electric ~ec~ors orthogonal to
each other and to k, defining two lmodes.

Let us count the number of modes with frequencies on the range

(v, v t dv). The magnitude of k is k = 2n-1.k = 27ru/c; hence

v = (ck/2~j = +c[(nx/X)2 + (K,/Y)2 + (nz/Z)2] “2. (67. 1)

Surfaces of constant frequency are thus the ellipsoids

(nJax)2+(nJaJz+ (nz/aZ)2 =1, (67.2)

where (aX, cq,, a, ) = (2~/c)(X, Y, Z). The number of normal modes with
frequencies u’= u equals twice (for two polarizations) Lhe number of points

with integer coordinates within one octant (all n’s20) of the ellipsoid

(67.2). The volume of an ellipsoid is (4naX~aZ/3), hence

IV(v) = 2 xix (4m/3)(8XYZv3/c3) = (8mu3/3c>)V, (67,3)

where V = XYZ is the volume of the hohlraum. Therefore the number of

modes with frequencies on (v, v + dv] is

dN=(8nvz/c3)Vdv. (67.4)

To calculate the a\erage energy associated with these modes we assume,
with Planck, that the energy of n active modes of frequency v is nhv. In

equilibrium at temperature T, the relative probability of a set of modes

having total energy E,. is

7T,L
/

= exp (–E,JkT) ~ exp (–&,,/kT), (67.5)
n

whence the average energy of all modes at frequency v is

m(E)=[ ~ nhv exp (–nhv/kT) - 1exp (– nhv/kT) (67.6)
,.=0 .=0
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Writing x = exp (–hv/ kT) we can rewrite the denominator of (67.6) as

1+ X+X2+... = (l–x)-’ = (l_ &,/k-l]-l, (67.7)

while the numerator is

hv(x+2x2+3x3 +.. .)=hvx:(l +x+x2+. ..)

()

1 hvx
(67.8)

=hvx~ — —
dx l-x ‘(l-x)’”

Hence

(s) = hvx/(1–x) = hv/(eh”lk’r– 1). (67.9)

The energy density in the hohh-aum is the number of modes per unit
volume times the average energy per mode. Hence from (67 .4) and (67 .9)
we have

Et= E*(v, T)= (8mhv3/c3)/(ehu/k’r–1), (67.1.0)

where the asterisk indicates thermal equilibrium. From (64.4) we then see

that B. (T), the (isotropic) specific intensity in thermal equilibrium, is

BV(T) = (2hv’/c2)/(e’”/kT– 1); (67.11)

this distribution characterizes the radiation, usually called blackbody raclia-
tion, emitted by a perfect radiator or black body.

68. Stefan’s Law

The integrated energy density for thermal radiation is

J JE*(T) = ‘E*(v, T) dv = (8mh/c3) ‘v’(e’’”/kT– 1)-’dv. (68.1)
o 0

Writing x = hv/kT we have

E*(T) = (8rrk4T4/c3h3)
J“

x’e-x(l+e-x+e-’x+. . .) dx. (68.2)
o

Integrating the series term by term we find

6(1+2-4+3-4+. .)=6~4= 7r4/15, (68.3)

where (4 is the Riemann zeta function of order four (Al, 807). We thus

obtain Stefan’s law, which states that in thermal equilibrium the total
radiation energy density is proportional to the fourth power of the

absolute temperature, or

E*(T) = a~T4, (68.4)

where

a~ =8 Tr5k4115c3h3. (68.5)
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From (68.4) and (64.5) one sees that the integrated Planck function is

B(T) = (a~c/47r)T4. (68.6)

It is customary to define the Stefan-Boltzinann constant u~ such that

TB (T) = U~T4, (68.7)

whence aR = la~c. The rationale for this definition follows from calculating
the radiation flux emergent from a black body, namely

!
~~~(u) = 27r ‘BL,(T)w d~ = mBV(T), (68.8)

o

which yields an integrated flux

FBB = TB(T) = m~T4. (68.9)

Note that (68.8) and (68.9) apply to radiation emerging from a hohlraum;

the isotropy of equilibrium radiation implies that the net flux within the

hohlraum is identically zero.

69. Thermodynamics of Equilibrium Radiation

The radiation field within an equilibrium cavity has associated with it both

an energy density and a stress. Energy can be fed into or withdrawn from
the cavity, and the radiation field can do mechanical work. In $$69 to 71

we examine the thermodynamic properties of equilibrium radiation, both

by itself and accompanied by material. Inasmuch as radiation has no mass,
it is awkward to work with intensive variables defined per unit mass; we

will therefore use extensive variables. Conversion of our results to quan -

tities per unit volume or mass is straightforward.
Because thermal radiation is isotropic, the monochromatic thermal radi-

ation pressure is, from (66. 12)

(69.1.)P“ = *E; = (47r/3c)Bu(T)>,.

whence the total thermal radiation pressure is

P*= $E* = ~a~T4. (69.2)

To calculate the entropy of thermal radiation we apply the first law of

thermodynamics to radiation in an enclosure. Thus

TdS,a~= d~+PdV=d(E*V)+P* dV (69.3)

implies that

dSr,. = (4a.T2V) dT+ (~a~T3) dV = d(~a~T3V). (69.4)

Hence the entropy of equilibrium radiation is

S,.~ = ~a~T3V. (69.5)
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If the volume of the cavity is changed adiabatically, dS = O, and from

(69.4) we have
TV”3 = constant, (69.6)

which from (69.2) implies that

P* V“’3 = constant (69.7)
and hence

P* T-4 = constant. (69.8)

Comparison of these results with (4.13) to (4.15) shows that the polytropic
laws for thermal radiation are identical to those for a perf ect gas with -y = ~,

as mentioned in $43. Furthermore, from (1.4.19) to (1 4.21), with p re-
placed by V-’, we find for thermal radiation that 171= rz = rq = y = ~.

The heat capacity of radiation at constant VOIume is

Co = (d~/dT)o = d(aKT4 V)/dT = 4aRT3V. (69.9)

However the heat capacity at constant pressure is not C. = YCU,and in this

sense the analogy between thermal radiation and a perfect gas with y = $
fails. In fact, C. is infinite. To understand this result physically, consider
introducing heat into the enclosure while holding P* constant. From (69.2),

T remains constant, while V increases to accommodate the increase in

energy of the system. Thus in (2.4), cK2 >0 while drr =0, hence CP = CD.
Finally, from (48.32) with “rl = $ and [p/(;+ p)],.~ = P*/(E* + P*) = ~, we

see that the speed of an “acoustic” disturbance in a gas of pure thermal

radiation is cl~

70. Thermodynamics of Equilibrium Radiation Plus a Perfect Gus

Now consider a two-component gas comprising thermal radiation and a
perfect gas of particles with mass m = KOmH. The gas occupies a volume V

and con tains M particles. To simplify the notation in this section and in S71 we

write

P,= Pg.s = ~kTIV, (70.1)

P = PLOtal= p, + P“ = (JWT/V) + ~aRT4, (70.2)

and define

a = P*/px. (70.3)

The total internal energy in the volume is

%’=$.AfkT+ aRT4V, (70.4)

hence the specific internal energy per unit mass is

e = ~RT+ (aKT4/p). (70.5)

To calculate the entropy of the system, we use the first law of ther-
modynamics

TdS=d~+pdV. (70.6)
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Substituting (70.2) and (70.4) we find

dS = A% d[ln (T3’2V)]+ d(~a~T3V), (70.7)

which implies that

S = Mk In (T5’2V) +~a~T3 V+ Constant. (70.8)

Equation (70.8) states that the total entropy of the composite gas equals

the sum of the entropies of the radiation field and of the translational
motion of the particles.

The heat capacity at constant \lolunle is

C. = (d8/dT)u =~Nk +4aKT3V
(70.9)

=~.Afk(l +8a) =4aRT3V[(l/8a)+ 1],

which clearly yields the correct limits as a ~ O and a ~ ~. The specific

heat at constant volume, per unit mass, is

C. = (:k/m)(l+ 8a). (70.10)

The heat capacity at constant pressure follows from

CD= (d%/dT),,, (70.11)

where the total enthalpy is

%’= t%+ pV = ~.NkT+~aRT’V. (70. 12)

Th US

C. = $Nk +~a.T3V+~a.T4(~ V/r3T).. (70.13)

From (70.3) one easily finds

(dV/aT). = (V/T) (l+4a)> (70.14)
hence

C, = Nk(~+20a + 16a2) (70.15)

or

CD=;(k/m)(l+8a+~a2). (70.16)

Equations (70.15) and (70.16) go to the correct limit as a ~ O, and diverge
as a -+ ~, as expected from $69.

For an adiabatic change M = O, and (70.7) implies that

( –+4aRT4)(+)d~+H+$aRT4)dv=o‘7017)
3 JfkT

5V
whence

r.– 1 -–(a in T/din V), = (p, +4P’’)/(~p~ ~ 12P*)

=(1 +4a)/(:+ 12a).
(70.18)

From (70 .3) we have

dp = (p, + 4P*)(dT/T) – pK(dV/ W, (70.19)
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hence

~J(r2- 1) = (d In p/d In T),

=[l+4a-(~ln V/din T),]/(l+ a).
(70.20)

Using (70.18) in (70.20) we have

(r, -1)/r, =(~+5a+4a2)/(;+ 20a+ 16a2). (70.21)

In the limit as a -0, (70.21) yields the same result as (4.15) for -y =:; as

a ~ cc we recover (69.8) for pure radiation. To calculate r] we use (14.22),
(70.18), and (70.21), obtaining

r,=(~+20a +16a’)/[(:+ 12cK)(l+ a)]. (70.22)

A table of r,, ra, and rq for values of ~ = p~/p ranging from O to 1 is given
in (C5, 59).

The speed of sound in the composite gas of material and thermal

radiation can be computed from (48.32), with “rl given by (70.22), p given

by (70.2), and the total energy density by

2= poc2+ (@v] (70.23)

where p. = Nm and t5’ is given by (70.4). It is easy to show that as a --+ O

the speed of sound reduces to the adiabatic sound speed of the material,

and as a * ~ it approaches c/~.
Finally, as in (1 4.31), we can define a variable mean molecular weight ~

such that the total pressure (including radiation pressure) is given by

p = pkT/Km~; we can then calculate Q as defined in (1.4.33). For constant

P> (? in ~/i)ln T), = 1 +(~ In p/din T)., (70.24)

hence

Q = –(d In p/d In T),,. (70.25)

From

p = (pkT/WOmk,)++a~T4, (70.26)

one easily finds

Q=l+4a. (70.27)

Clearly Q ~ 1 for a perfect gas (a -+ O), and diverges for pure radiation
(a+co).

71. Thermodynamics of Equilibrium Radiation Plus an Ionizing Gas

Let LLSnow consider an equilibrium gas composed of thermal radiation and

ionizing hydrogen. Writing x for the ionization fraction, the total pressure
is * — 1 + x)(./vkT/V) +ia~T4~p=pg+P –( (71 .1)

and the total internal energy is

8 = ~(1 + x)MkT+ .JVxe~+ aKT4V. (71..2)
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$14, x is determined from Saha’s equation

x2/(1 – x) = Const. VT3’2 exp (– EH/kT).

(71 .3) one finds

()ax ()X(l–x) 3 E“

‘= .= (2–x) i+= ‘

323

(71.3)

(71.4)

and from (71.1) and (71.3) one can show that

T(dx/dT)~ = ~x(l – x2)[~+ (EH/kT) + 4a] (71.5)

and

(din V/din T). = l+4Ct+~X(l-X)[~ +( EH/kT)+4a]. (71.6)

The heat capacity at constant volume is

C. = ~.Mk(l + x) + A“k[S+ (s~/kT)]T(dx/dT)O + 4a~T3V. (71.7)

Using (71.4) in (71..7), we find the specific heat per unit mass, CV=

Cu/(A”m~), is

which reduces to (14.15) \vhen a = O, and to (70.10) when x = O. It is

evident that both ionization effects and radiation pressure can make a large

contribution to co.
The heat capacity at constant pressure is obtained from (70.11), with

%=$(l+x).NkT+ .Nx&~+&~T4V. (71.9)
Then

C.= l~k(l + X) + J@+ (s~/kT)]T(ax/aT)P
(71.10)

+~a~T3[4V+ T(d V/dT)p].

Using (71.5) and (71.6) in Cp= CP/(.MmH) we find, after some algebra,

Cp= (k/rrtl.f){(:+20a + 16a2)(l+x) +~x(l–x2)[j+ (s~/kT)+4a]2},

(71.11)

which reduces to (14.18) when a = O and to (70.16) when x = O.

To compute adiabatic exponents we again require that

TdS=d~+pdV=O. (71.12)

Then, calculating d~ from (71.2), p dV from (71.1), and eliminating dx via
the logarithmic derivative of (71.3),

()3 EH dT dV(2–x) dx= ~+ti ~+—.

(l–x) x
v. (71.13)
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one readily finds

()r,–l=–~ =
l+4a+~x(l– x)[:+(s~/kT)-F4a]

dln V , ~+ 1.2a +~x(l–x){[~+ (eH/k”r)]2+~+12a}

(71.14)

which reduces to (70.18) when .x = O and to (14.30) when a = O.

Using the equation of state along with (71.12) and (71 .13) one can

eliminate both dx and dV in favor of dp and dT. After considerable

algebra one obtains

r,–1 l+4a+;x(l –x)[$+(e~/kT)+4a]

= /3{:+ 20a+ 16a2+;x(l-x)[:+ (EH/kT)+4a]2} ‘
(71.15)

r2

which reduces to (70.21) when x = O and to (14.28) when a = O. Next, from

(14.22), (71.14), and (71 .15) we find

r = /3{;+ 20a + 16a2+;x(l -x)[;+(s,.JkT)-~ 4a]2}
1 (71 .16)

;+ 12a +~x(l–x){[j+ (sE[/k’T)]2+~+ 12a} ‘

which reduces to (14.29) when Q = O and to (70.22) when x = O.

Again, the speed of sound in the composite material-radiation gas can be

computed from (48.32) with 17Jgiven by (71.16), p given by (71.1), and the
total energy density 2 by (70.27), with ~ obtained from (71.2).

Finally, rewriting (70.24) as Q = (d In Va in T),, V;e see from (71 .6) that

Q = 1 +4a+~x(l–x)[3+ (s,,/kT)+4a], (71.17)

which reduces to (14.34) and (70.26) in the appropriate limits.
More general formulae for the thermodynamic properties of a gas

composed of thermal radiation and several ionizing species can be found in

(C7, $9.1 8), (K2), and (Ml).
The formulae derived in this section and in $70 give an accurate

description of the thermodynamic properties of a radiating fluid when the
radiation field is thermalized to its equilibrium distribution function and

the material is in equilibrium at the same absolute temperature as the
radiation. These formulae apply, for example, from the deeper layers of a

stellar atmosphere down into the stellar interior. They sometimes can give
useful first estimates even for a nonequilibrium radiation field, but in such

cases they should be used with caution because not only may they be
inaccurate numerical y, but the whole conceptual framework of eq uilibriurn

thermodynamics on which they are based becomes problematical, or even

invalid ($86).

6.3 The Interaction of Radiation and Matter

We now consider how radiation interacts with material. We first set forth

formulae for computing rates of absorption, emission, and scattering of
radiation in terms of atomic cross sections and level populations. As we

—..
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will see in $6.4 and $6.5, these quantities, if given, suffice to determine the

radiation field via the equation of transfer.

72. Absorption, Emission, and Stuttering

Tk[F, Exr[ N~ION COEFWCIENT

When radiation passes through material, energy is generally removed from
the beam. We describe this loss in terms of an opacity or extinction
coefficient (sometimes loosely called the total absorption coefficient)
x(x, t; n, u), defined such that an element of material of length dl and cross

section dS, oriented normal to a beam of radiation having specific intensity

1(x, t; n, u) propagating along n into solid angle da in frequency band dv,
removes an amount of energy

88 = x(x, t; n, v)I(x, t;n, v) dl dS do dv dt (72.1)

from the beam in a time interval dt. Opacity is the sum, over all states that

can absorb at frequency v, of the product of the occupation numbers of

those states (cm–3) times their atomic cross sections (cmz) at that fre-

quency. The dimensions of x,, are cm ‘1; the quantity Au =(l/xl, ) cm is the

mean free path of photons of frequency v in the material.

In the fluid rest frame, the opacity is isotropic, but its frequency

spectrum can be complicated, consisting of many overlapping continuum
absorption edges, overlaid by thousands to millions of lines, each with a

characteristic profile. In the laboratory frame, where the fluid is generally

moving, the situation is much more complex. As a result of Doppler shift, a
photon moving in direction n with frequency v in the lab frame has a
frequency

VO= v(l –n . v/c) (72.2)

in the fluid frame of material moving with velocity v. Hence radiation
moving in, say, the direction of the fluid flow interacts with the material at

a different fluid-frame frequency than does radiation of the same lab-frame

frequency moving in, say, the opposite direction. It is thus absorbed at a

different rate beCaLISe atomic cross sections vary with frequency; the
lab-frame opacity therefore becomes anisotropic. (Strictly speaking we

should also allow for the effects of aberration between the two frames;
these can be ignored for our present purposes, but will be accounted for in

Chapter 7.)

THl EMISSION COEFFICrEN1-

The emission coefficient (or ernissivity) q (x, t; n, v) of the material is
defined such that the amount of radiant energy released by a materiaf
element of length dl and cross section dS, into a solid angle cko around a
direction n, in frequency interval dv in a time dt is

iM=q(x, t;n, v)dldSdcodvcZt. (72.3)
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The dimensions of q are ergs cm-3 s-’ &-] sr-l. The emissivity may be
isotropic in the rest frame of the material, but is anisotropic in the lab

frame when the material moves, for the same reasons x is.

We will sometimes add a subscript c for “continuum” and 1 for “line” to

both x and q.

SCATTERING

It is important to distinguish between “true” or “thermal” absorption-

emission processes, and the process of scattering. In the former case,
energy removed from the beam is converted into material thermal energy,

and energy is emitted into the beam at the expense of material energy.
Examples of “true absorption” processes are these: (1) A photon ionizes

an atom; its energy goes into the ionization energy of the atom plus the
kinetic energy of the free electron. (2) A photon excites an atom, which is

subsequently de-excited by a collision with another particle; the photon’s
energy goes into the kinetic energy of the collision partners. The inverses

of these processes produce “thermal emission “ in which energy is extracted

from the thermal energy of hot material and converted into radiation.

Other examples are given in (M2, $2.1).
In contrast, in a scattering process a photon interacts with a scattering

center and emerges from the event moving in a different direction, gener-

ally with a slightly different frequency. Little or none of the photon’s
energy goes into (or comes from) the thermal energy of the gas. Examples

are as follows: (1) A photon excites an atom from state a to state b; the

atom decays radiatively back to state a. (2) A photon collides with a free

electron (Thomson or Compton scattering) or with an atom or molecule in
which it excites a resonance (Rayleigh or Raman scattering).

It is thus convenient to define a true absorption coefficient K(x, t; n, v) and
a scattering coefficient cr(x, t; n, v). The extinction coefficient is then

X(X, t;n, v)= K(x, t;n, v)+m(x, t;n, v). (72.4)

Similarly we break the total emissivity into a thermal part v‘ and a scatter-
ing part q’:

q(x, t;n, v)=~’(x, t;n, V)+qs(x, t;n, v). (72.5)

ln certain simple situations we can write explicit expressions for q‘,
which provide useful archetypes for later discussion. We will assume that

the scattering is consei-oatioe so that all of the energy removed from the

beam by the process is immediately re-emitted. For example, consider a

spectrum line with total scattering cross section ml, and profile @(v)
normalized such that in the fluid frame

rI#)(vo) dv, = 1. (72.6)
o

The suffix “O” on any quantity implies that it is measured in the comoving
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frame. If cr[ is isotropic, the total energy removed from the beam is

I
.

u, (x, t) $dv~@(x, t; vA) d~&(x, t; n~, v&)
o

J“

(72.7)

= 47r~L(X,t) @(X, t; v&)Jo(X,t; V:) dv~.
o

In general the re-emission of this energy is described by a redistribution
function R(n’, v’; n, v) giving the joint probability that a photon (n’, v’) is
absorbed and a photon (n, v) is emitted. We will not discuss the complicat-

ion of partial redistribution [cf. (M2, Chaps. 2 and 13)], but will assume for
simplicity that the photons are emitted isotropiccdly in angle and are

randomly redistributed (also called complete redistribution) over the line

profile, in which case the fluid-frame emission by scattering is

v% t; pa)= a[(x> t)4(% t; Vo) J“4(x, t; W~)~(,(X, t; vi) dV:, (72.8)
o

In view of (72.2), the lab-frame emissivity is then

H’
m

qs(x, t;n, v) = crL(x, t)o(x, t; n, Vo) du’ dw’~(x, t; n’, v/J1(x, t;n’, v’),
o

(72.9)

where (again ignoring aberration)

4(x, t;no, VO)=4[X, t; n, v(l–n ov/c)]. (72.10)

The assumption of complete redistribution is a good approximation in

many cases of interest, for example, within the Doppler core of a line

(where Doppler shifts efficiently scramble the frequencies of absorbed and

emitted photons), or when excited atoms suffer many elastic collisions

before a photon is re-emitted (the excited electrons are randomly redistri-
buted over the substates of the upper level, destroying any correlation

between absorption and emission frequencies in the line profile). The
extreme opposite case occurs when the scattering is isotropic and coherent;
then the emissivity is

q 8’(X,t; ‘O)= ~O(x, t)~dx,t;~o). (72.11)

This expression is often uSed to describe Thomson scattering of cent inuum
photons by free electrons. One can assume coherence because the Thom-
son cross section m. is frequency independent, and the frequency variation
of continuum radiation is slow enough that Doppler shifts produced by
typical fluid velocities can be ignored. Similarly, isotropy is a good approxi-
mation because the angular variation of the (dipole) phase function is

. . .. .—
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weak. With these approximations (72. 11) can be used in either the fluid or

the lab frame.

We emphasize that the essential characteristic of scattering is that the
rate of emission depends mainly on the radiation intensity at (x, t), and but

little (if at all) on the amount of thermal energy there. Because the

radiation field may originate mainly from other points in the medium,

scattering processes are fundamentally nonlocal, and decouple the local
emission rate from the local thermal pool. We also emphasize that (72.8),

(72.9), and (72.11) are meant only to provide archetypes. In general, it is
difficult to decide to what extent any particular process (e.g., absorption

and emission of photons in a line) is a “true absorption -thenna] emission”
process or a “scattering” process. Most are a mixture because radiative and

collisional processes operate simultaneously; this is true in both lines and

continua. The true physics of the sit uat ion emerges only when the transfer

equation is coupled directly to the equations of statistical equilibrium,
which describe explicitly how atomic levels are populated and depopulated

(see $6.6).

TI+E KrRCHHOFF-PLANCK RELATION

An important relation between thermal emission and absorption coeffi-
cients exists in strict thermodynamic equilibri urn (TE). [n an adiabatic
enclosure, material (at rest) and radiation equilibrate to a uniform tempera-

ture and an isotropic radiation field [cf. (C5, 199-206) and (M5, 93-96)].
Moreover, in order to achieve a steady state, the amount of energy

absorbed by the material in each range (dv, do) must exactly equal the

amount it emits in that range. Therefore in TE

(q;)* =( J%~,,)*, (72.1.2)

where asterisks denote equilibri Llm values, But l:= B,,(T), hence we

obtain the Kirchhofl-Planck relation

(q~,)* = K~B,,(T). (72.1.3)

Strict Iy speaking, (72.13) applies only in TE. But when gradients of

physical properties over a photon destruction length are very small, (72.1.3)
is valid to a high degree of approximation at local values of the ther-

modynamic state variables. Hence we often invoke the hypothesis of local
thermodynamic equilibrium (LTE) to write (in the comoving frame)

~h(x> t; %)= K;(x, t; vo)B[uO, T(x> t)]. (72.1 4)

Although (72. 14) is certainly satisfactory in the diffusion limit (see $80)
where the assumptions stated above hold, it cannot be guaranteed true,

and may lead to significant errors, when free transport of radiation occurs,

because the radiation field then acquires a nonlocal and/or nonequilibrium
character that tends to drive the state of the material away from LTE. We
shall analyze the meaning of LTE further in $84; in the meantime we



RADIATION AND RADIATIVE TRANSFER 329

regard it as a computational expedient that sometimes must be used, even
when of doubtful validity, to render a problem tractable (e.g., in most

radiation hydrodynamics applications).

73. The Einstein Relations

Consider now radiative transitions between two bound atomic states: a
lower level i with statistical weight gi, and an upper level j with statistical
weight gi, which are separated by an energy hvij = &i—&i,where SL and &j

are measured relative to the atom’s ground state. Throughout this section

all quantities are evaluated in the fluid frame.
The radiati\e processes that connect i and j are described by three

probability coefficients E?ii,Elii, and Aii introduced by Einstein. The absorp -

tion probability f?i( is defined such that the number of photons absorbed in

the line per unit volume per unit time is

rii= n@J3L,Iv (d@/4n) dv, (73.1)

where @l, is the line profile. The rate of energy absowtion per unit volume

is then

UUIV= (Btih~ii/4~)ni@UI,,. (73.2)

Here q, is the macroscopic absorption coefficient, uncorrected for stimu-

lated emission (see below).

An atom in the upper state can either decay spontaneously to the lower

state, or be stimulated to decay by radiation in the line. The spontaneous
emission probability AiL is defined such that the rate of energy emission per
unit volume is

&u (spontaneous)= (A;ih~ii/4~)ni~,,. (73.3)

Here we have tacitly assumed that the line emission profile is identical to
the absorption profile (complete redistribution). The stirntdated (or irt-
duced) emission probability Bi, is defined such that the rate of stimulated

energy emission per unit volume is

*U (stimulated)= (Bl,hvij/4m)nidUIV. (73.4)

Notice that spontaneous emission is isotropic, whereas stimulated emission
has the same angular distribution as lU. In an induced emission, the

incident photon leads to the emission of an identical photon (i. e., two
photons emerge from the event). In this sense, induced emission can be

viewed as negative absorption, and we can subtract (73.4) from (73.2) to

obtain a net absorption coefficient, corrected for stimulated emission. This
procedure is not quite correct because in general the absorption and
emission profiles differ; however for complete redistribution they are
identical.

The coefficients Bii, Bji, and Aii are related, as can be seen by demanding
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detailed balancing in thermodynamic equilibrium, which, from (73.2) to
(73.4) implies

(dk)*~ij~; = Aii + ~ji~~, (73.5)

where asterisks denote TE values. But 1: = BV, and by Boltzmann’s for-

mula (12.38)

(ni/ni)* = (g~gi) exp (-hvij/kT), (73.6)
hence

13U= Aii/[(ni/~)*Bij – Bji] = (Aji/Bji)/[(giBij/gjBj,)eh’’)k~- 1]. (73.7)

Comparing (73.7) with (67. 11) we see that

giBii = gj~ii (73.8)
and

A;i = (21zv~/c2)Bj,. (73.9)

Although our argument, for simplicity, invokes thermodynamic equilib-
rium, both (73.8) and (73.9) hold in general because the Einstein coefT-

cients depend on atomic properties only.

From (73.2), (73 .4), and (73.8) we can write the line absorption coefficient
(in the comoving frame), corrected for stimulated emission as

XZ(V) = A (Bij~~ii/4~)[1 – (ginj/gini)l& j (73.10)

in the lab frame we must account for Doppler shifts in ~, as in (72.10). In

LTE we can use (73.6) in (73.10) to obtain

Xt(v) = ‘~(B,ihv,i/4m)[l – exp (hvLi/kn]@,,., (73.11)

where n ~ is computed from (13.6) using actual values of n. and niOn.The
factor in square brackets in (73.11) is often called “the” correction for

stimulated emission; however, this identification is correct only in LTE.
The line emission coefficient in the comoving frame is

~[ (v)= n; (Aji~vii/4~)4., (73.12)

and the LTE emissivity is obtained by replacing nj with n;. In writing

transfer equations (cf. $77) it is often convenient to use the ratio of

emissivity to opacity, which is called the source function S.. For a line, the
source function is

S,= niAji/(niBii – njBj,) = (2h~~/c2)/[(gini/gini)– 1]. (73.13)

Because the frequency variation of the factor V3 is weak compared to the

variation of @v, (73.13) is often called the frequency-independent line
source function; in contrast, the line source function can have a very strong
frequency dependence if we account for the difference between the emis-

sion and absorption profdes (partial redistribution). In LTE, SI reduces to
B., as expected from the Kirchhoff-Planck relation.
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74. The Einstein–Milne Relations

The Einstein relations were generalized to continua by Milne (M4), whose
treatment we sketch; as in $73 we work in the fluid frame. Suppose an

atom is photoionized to produce an ion plus a free electron moving with

speed v. Let nObe the number density of atoms, nl the density of ions, and
n.(v) do the density of electrons with speeds on the range (v, u + dv),
assumed Maxwellian. If pu is the photoionization probability of the atom by

radiation in the frequency range (v, v + dv), the photoionization rate is

nOpWIUdv; the energy absorption coefficient is a. = hvp.. Let F(v) be the

spontaneous recombination probability and G(v) the induced recombination
probability for electrons with speeds (v, v + dv) to recombine with the ions.

Then the recombination rate for electrons with speed v is nl n. (v)
[F(v) + G(V)lV]V dv. The photon energy required to ionize the atom and

produce an electron with speed v is

hv = siOn+~mvz, (74.1)

whence we have h dv = mv dv.
In thermodynamic equilibrium, the number of photoionizations equals

the number of recombination. Therefore

n%p&. = n?n.(v)[llv) + G(v) B.l(h/m), (74.2)

which implies that

B.= [F(v) /G(v)]/{[n~pUm/n ~n@(v)hG(v)] – 1}. (74.3)

Comparing (74.3) with (67. 11) we see that

F(V) = (2hv3/c2)G(v) (74.4)

and

PJG(v) = (h/m)[n. (v)(nj/nO]*]eh’’’r’r. (74.5)

But in TE, ne(v) dv is the Maxwellian distribution

n.(v) dv = n.(m/2mkT)3’2 exp (–~mv2/kT)4mv2 dv, (74.6)

and the ratio (nlrt,/nO)* is given by Saha’s equation

(n,/nO)* = n.(gO/2g1)(h2/2mmkT)3’2 exp (eio./kT) ~ n.%(T).

(74.7)

Using (74.1), (74.6), and (74.7) in (74.5) we obtain

p.= (8nm2v2gl/h2gO) G(v) = (4mc’m2v2g1/h3gOv3) F(v), (74.8)

where the second equality follows from (74.4). Equations (74.4) and (74.8)

are the continuum analogues of (73.8) and (73.9); they apply in general,
not just in TE.

Using the above results we can write the continuum absorption coeffi-

cient, corrected for stimulated emission, as

Ku = hv[nOp,,–(h/m)n, ne(v)G(v)]. (74.9)
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Recalling that au = lavpu, and using (74.1) and (74.6) to (74.8) we find

K.= (1’Lo – J’L~e-h’’/)CIu,u, (74.1.0)

where n% is the LTE value of nO computed from Saha’s equation using
actual values of n. and rtl, that is, n: = n, n.@O(T). in LTE,

K: = ~~(1 ‘e–h’’’9CI,,,,. (74.11.)

AS before the factor (~ – e-hU/kl- ) is often called the correction factor for
stimulated emission, but this is correct only in LTE. Notice that in the

continumm the induced emission rate always has its LTE value, whereas for
a spectral Iine this rate depends on the actual upper level population, ancl

hence may depart from its LTE value. This is not surprising, because

recombination, whether spontaneous or induced, results from collisions

between ions and electrons; if these particles have an equilibrium (Maxwel -
lian) velocity distribution, recombination must occur at the LTE rate.

The spontaneous continuum emission coefficient is

~;= hvn, n.(0) ~(u)(h/fn) = [hn ,ne(v)F(v)/rnpv]au. (74.12)

Using (74.6) to (74.8) we find that (74.12) reduces to

~~ = (211v3/cz)n~~Ve–hu’kT= rt~(l – e–’’’’’k’’)aUBu(T) = K~13u(T).

(74.13)

Thus, provided that we define n ~ in terms of the actual density of electrons

and ions, continuum emission occurs at its LTE rate (as predicted by the

Kirchhoff-Planck relation) because it is a collisional process. Hence for

continua, the general formula for the opacity differs from its LTE form, but

that for the emissivity does not; for lines, the general opacity and emissivity

both differ from their LTE forms.

75. Opacity and Emission Coefficients

In addition to the bound-bound (line) and bound-free (photoionization)

processes described in $$73 and 74, radiation can be absorbed and emitted
during collisions between two free particles in free-free transitions (e.g.,

bremsstrahlu rig). Because this process is collision al, it always occurs at the
LT’E rate (using actual electron and ion densities). The total opacity

(emissivity) at any frequency v is the sum of the opacities (emissivities) of
all processes that occur at the frequency. If we write ~ii (v), ai. ( v), and

a~~ (~) for bound-bound, bound-free, and free-free cross sections respec-
tively, then from (73.10) and (74.10) the total opacity is

X.= ~ ,~i[ni ‘Wg;)nilaii(v)+ Z (ni- nte-h”’k’’ki.(~)

+Z nenKaKK(u, T)(l – e-h’’’~’~ + WT. (75.1)
K

= K,, + O.,

where the last term represents Thomson scattering by free electrons.
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Similarly, from (73.12) and (74.13) the total thermal emissizity is

[
T:= (2hu3/c2) Z ~ ‘j(&/~j)aij(V)+ ~ rl~CLiK(U)e-h’’’k”r

i I>t

1
(. T]e-h,,lk”r 1

+ z %n<%< v> (75.2)
K

Both (75. 1) and (75.2) apply in the fluid frame. If the fluid moves, we must
account for Doppler shifts as in (72.2) when calculating lab-frame opacities

and emissivities, and in general we have x = X(X, t; n, V) and q =
q(x, t; n, u) in the lab frame.

In the limit of LTE, (75.1) and (75.2) simplify to

Xt={~n?[ai.(v)+ ~iaij(v)]+Znen.a..(uT)}(l‘e-hti’k-~+neu.
K (75.3)

= K : + lleCTe,

and

(q:,)* = (zhv3/C2)e-~”/kT {~~7[aiK(u)+~aij(v]] +~~~.aK(vT)}
i>i K

(75.4)

Clearly (q:)* = K ~J3u, as expected from the Kirchhoff-Planck relation
(72.11). Again (75.3) and (75.4) apply in the comoving frame; in the lab

fralme both X* and q” depend on (x, t;n, V) when the fluid moves.

6.4 The Equation of Transfer

76. Derivation of the Transfer Equation

Consider an element of material of length ds and cross section dS, fixed in
the laboratory frame. We calculate the change, in a time dt, in the energy

of the radiation field contained in a frequency interval dv, traveling into

solid angle dco along a direction n normal to dS, as it passes through the
material (see Figure 76. 1). The difference between the amount of energy

that emerges at position x+ Ax at time t+ At and the amount incident at

position x at time t must equal the difference between the amount of
energy created by emission from the material and the amount absorbed.

Thus in a Cartesian coordinate systelm

[T(x+Ax, t+ At; n, v)– I(x, t;n, v)]dSdwdvdt

= [q(x, t; n ~) -x(x, t; n, ~)~(x, t; n, u)]dsdsd~ dud~
(76.1)

If we let s be the path length afong the ray, At= ds/c, and

l(x+Ax, t+ At; n, v)= I(x; t;n, u) +[(l/c)(tWdt)+( dVds)] ds. (76.2)

Substituting (76.2) into (76. 1) we obtain the transfer equation

[(1/c) (a/at) +(~/as)ll(x, t;n, u) = 71(x, t;n, u)-x(x, t;n, v)I(x, t;n, v).

(76.3)
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~ ,24’’(’+’’’’+’’#-
/’

.’@Q/“
//’

,/’
,

/’”I(x, t;n, ~)
ds

dw

Fig. 76.1 Pencil of radiation passing through a material element.

Because s is a coordinate-independent pathlength, (76.3) applies in arbit-

rary coordinate systems, provided we use an appropriate expression to
evaluate (d/d s).

The derivation just given of the transfer equation is classical, macros-

copic, and phenomenological in character. It omits reference to such
important phenomena as polarization, dispersion, coherence, interference,

and quantum effects, none of which are correctly described by (76.3). An

excellent discussion of the approximations inherent in, and the validity of,

the classical radiative transfer equation is given in (P3, 47–49). Good
discussions of the transfer equation from the point of view of quantum field

theory are given in (HI), (Ll), (L2), (L3), (01).
The mathematical expression for (d/ds) depends on geometry. In Car-

tesian coordinates

where (nX,~, n=) are components of the unit vector n along the direction of

propagation. The transfer equation is then

[(1/c) (ddt)+(n” V)]I(X, t;n,v)= q(x, t;n, v)-x(x, t;n, v)I(x, t;n, v).

(76.5)

For a one-dimensional planar atmosphere, (76.5) reduces to

[(1/c) (d/dt)+ f-l(ddz)]l(z, t; p-, v) = w(z, t; w>~)–x(z> t; w> v)~(z> f; P’> v),

(76.6)

and for static media or steady flows the time derivative can be dropped,

yielding

P[af(z; /+ u)/azl = W(2; w>V)–x(z; w>V)I(Z; p> v). (76.7)

If the opacity and emissivity are given, (76.7) is an ordinary differential
equation, while (76.6) is a partiaf differential equation. If scattering terms
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I

Fig. 76.2 Photon propagation angle in spherical symmetry,

are present, the mean intensity (an integral over angle) appears on the

right-hand side, producing integrodijfererzticd equatzom.
In curvilinear coordinates the coordinate basis vectors rotate with re-

spect to the straight-line path determined by a fixed propagation vector n.

Therefore to allow for the changes in the components of n measured along

these basis vectors we evaluate (d/ds) as (d/ds) = n . V+ (dn/ds) . Vmwhere

V. denotes differentiation with respect to the direction cosines of n. For

example, in general spherical geometry, the derivative (d/ds) introduces

terms in d/dr, d/dO, L3/134, 13/N3, and ~/@. But for spherical symmetry the

terms d/df3, d/d4, and d/d~b all vanish identically. From Figure 76.2 we see

that dr = cos @ ds = w d and rd@ = –sin @ d = –(1– p,2)i’2 ds, hence

:=(:):+(:);=cos”:-?;=~:+v;
(76.8)

Therefore the transfer equation for a spherically symmetric medium is

[

(3 (1.–~’] d::+w;+— 1~ I(r, t; p, v)
r (76.9)

= q(r, t; W,v)–x(r, t; f_L,v)I(r, t;p,,v).

Notice that even when the d/?t term is dropped, (76.9) is a partiaf
differential equtaion, or a partial integrodifferential equation.
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77. Optical Depth and Source Function

The concept of optical depth is central to discussions of transfer. If x and x’

are two points in the medium separated by 1= lx’ – xl, the optical depth

between them is

J

1

7,, (X, x’) = X(x+ns; n, v] ds (77.1)
0

where ds is a path-length increment, and n is a unit vector along the

straight Ii ne (x, x’). Here we have allowed for the possibility that the

material may be moving, in which case ~ can depend both on the

separation between the two points, and on tbe direction in which the
integration is performed. Recalling that x”–‘ is the mean free path of a
photon of frequency v, we see that ~u(x, x’) is equal to the number of
photon mean free paths between x and x’.

For a static planar medium, optical depth is customarily measured
vertically downward from the upper boundary at z = z,,,aX, and usually

provides a more convenient depth variable for transfer calculations than

does the geometrical depth z. Remembering that z increases upward we
have

drw= ‘X,, dz (77.2)
and

r,, (Z) = jz’’’XXU(Z()’) dz’. (77.3)
z

For a slant ray emerging from the medium with angle-cosine ~ relative to

the vertical, ds = dz/~, hence the slant optical depth along the ray down to
geometric depth z is T. (z)/~. For static spherical media a similar definition

can be written for the radial optical depth, that is, the optical depth

measured inward along a radius vector.

The transfer equation is often written in terms of’ the source function

S(x, t;n, v)=q(x, t;n, v)/x(x, t;n, v). (77.4)

For example, in a static planar medium the transfer equation assumes its

“standard form”

w(dI./d7.) = 1,,– s“ ; (77.5)

we study this equation extensively in $6.5.

“rhe discussion in $6.3 suggests several archetype expressions for SV;
unless specified otherwise these apply only in the

fluid, or in static media. In LTE, (72.13) implies

SW= B.(T).

If we have a contribution from coherent isotropic

Xv = Ku + U,,

comoving frame of the

(77.6)

scattering then

(77.7a)
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and
q. = Ku~u + ml,~u, (77.7b)

hence
S“ = (KvB. T ~“.fu)/(K,, + U..). (77.8)

For a spectrum line with an overlapping LTE continuum

X,, = & + X/@u. (77.9)

If a fraction s of the line emission is thermal and the remainder is isotropic
scattering with complete redistribution, then

[1 1Vu= f@u+Xdu(l–E) ov~vChJ+E~v, (77.10)

hence

where r = KC/XL.We give a physical justification for (77.10) and (77.11) in

$87. In the laboratory frame, @u becomes O(X, t; n, u) as in (72.10], and j

becomes a double integral of the specific intensity over both angle and
frequency, as in (72.9).

We emphasize that the source functions (77.6), (77.8), and (77.13) are

meant only to be illustrative; a Imore complete discussion is given in $6.7.

78. Moments of the Transfer Equation

Angular moments of the transfer equation are both physically important

and mathematically useful. To obtain the zero-order moment equation we
multiply the time-dependent transfer equation in Cartesian coordinates,

[(1/c) (d/dt)+ n’(d/dxj)]I(x, t; n, V) = 71(x, t;n, v)–x(x, t; n, v)[(x, t;n, v),

(78.1)

by (doJ4m) and integrate over all solid angles. Using (64.1), (65.2), and

(65.6) we find

f
(l/c) (dJv/dt)+V “H. = (1/47) [q(x, t; n, V)

(78.2)
–x(x, t; n, v)l(x, t;n, v)] dw;

or, in view of (64.4),

J(r3E,,/dt)+V “FU = [T(x, t; n, u)-x(x, t; n, v)l(x, t; n, v)] do (78.3)

Integrating over all frequencies we have

H(&E/dt)+V “F= mdv da[q(x, t;n, v)– X(X, t;n, v)I(x, t;n, v)].
o

(78.4)

The reduction of these equations to one-dimensional planar geometry is

trivial.
Equations (78 .3) and (78 .4) are energy equations for the radiation field.

Integrating them over a fixed volume element and applying the divergence
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theorem we see that the rate of change of the radiant energy in the volume

equals (1) the total rate of energy emission from the material, minus (2) the

total rate of energy absorption by the material, minus (3) the net flow of
radiant energy through the volume element’s boundary surface.

For a spherically symmetric medi urn, (78.3) and (78.4) become

(dEJdt) + r-2[d(r2Fv)/dr]

J
1

= 2T [m(r, t; W, ~)-x(r, t; FL,v)I(r, t; p, v)] d~,
(78.5)

–1
and

(dE/i)t)+ r-2[d(r2F)/dr]

J“j
1

= 2rr dv d~[q(r, t; p, v)–x(r, t; p, v)I(r, t; p, v)],
(78.6)

o –1

which can also be obtained by direct integration of (76.9) over dw and dv.
The total luminosity passing through a spherical shell of radius r is

I,(r, t)= 47rr2F(r, t), (78.7)

so (78.6) can be rewritten as

(dE/dt) + (4m-2)-’(df./dr)

J“J
1

= 2rr dv dw[q(r, t; ~, u) –x(r, t; p, v)I(r, t; ~, v)].
(78.8)

o –1

In a static medium (i.e., no time-dependence or hydrodynamic motions)
we must have (dE/dt)= O. Furthermore, for the material to be in a steady

state it must be in radiative equilibrium (i.e., itmust emit exact] y as much
energy as it absorbs). Under these conditions the right-hand sides of (78.4)

and (78.8) vanish identically, hence V “F= O. That is, in radiative equilib-

rium the flux is constant with depth in planar geometry, and the luminosity

is constant with radius in spherical geometry. We emphasize that radiative

equilibrium occurs only in an absolutely static medium, and represents a
limiting form of the radiation energy equation. We will discuss the general

radiation energy equation and its coupling to energy equations for radiat-

ing fluids in motion in greater detail in Chapter 7.
The first-order moment equation for the radiation field is obtained by

multiplying (78. 1) by n, and integrating against (dco/4m), which yields

$c-’(dH~/?t) + (tlK~/dx;) = (1/47r) [q(x, t; n, v)
(78.9)

– X(X, t; n, v)f(x, t; n, v)]n~ dm.

Here IC~ = (c/4w)P~, as defined by (66.2). Multiplying (78.9) by (47r/c) we
obtain, in tensor notation

C–2(tJFJdt)+V . Pu = c–]
J

[q(x, t; n, v) – x(x, t; n, v)l(x, t;n, v)]n dco,

(78.10)
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which, integrated over all frequencies, yields

c-2(~F/dt)+V “P= C-’
J“ $

du cko[q(x, t; n, v)–x(x, t;n, v)l(x, t;n, v)]n.
o

(78.11)

Equations (78. 10) and (78. 11) are momentum equations for the radiation
field. To verify this interpretation, recall from (65.7) and (65.8) that the

radiative momentum density is C–2 times the flux, and from $66 that P is

the radiation-momentum flux-density tensor. Furthermore, the momentum

of a photon with energy hv moving in direction n is (hv/c)n. Thus
integrating (78. 11) over a fixed volume, and applying the divergence

theorem, we find that the rate of change of the radiant momentum in the
volume equals (1) the net rate of momentum input into the radiation field

by emission from the material, minus (2) the net rate of absorption of
radiation momentum by the material, minus (3) the rate of transport of
radiative momentum across the boundary surface of the volume. As a

by-product we see that the integral

& = ~-’ r Jdv dcdx(x, t; n, v)I(x, t;n, v)n (78.12)
o

is the radiation force, per unit volume, on the material.
In a spherically symmetric medium, (78.1.0) and (78.11) become

c-2(i3FV/dt)+ (dPU/dr)+ (3P. – EV)/r

!
1

= (2 Tr/c) [v(r, t; p, v)-x(r, t; w, v)~(r, t; W, V)IK4L,
(78.13)

–1

and

c-2(dF/r3t)+ (dP/dr)+ (3P – E)/r

JJ

1 (78.14)

= (27r/c) ‘du dp.[q(r, t; p,, v)–x(r, t;~,v)I(r, t; p., v)]w.
o –J

These results can also be obtained by direct integration (76.9) over l.Lda
and dv.

Thus far we have allowed for material motions, assuming that x and q

depend on angle and frequency. Considerable simplification is obtained for
a static medium (v= O) when, in addition, the radiation field is time
independent. These assumptions provide a good framework for the de-

velopment of basic methods for solving transfer equations (cf. $6.5).

Because both x and q are isotropic in a static medium, (78.2) in planar
geometry reduces to

(wIw/dz)= ‘q” – XJ”, (78.15a)

or
(dFU/dz) = 4m-qU– CXUEU. (78.15b)
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Similarly (78. 10) reduces to

(aK”/dz) = [dfJr,)/13z] = -X”HV (78.16a)
or

(d~l,/dz) = [d.fVE,,)/dz]= ‘(Xu/C)~u. (78.16b)

The radiation momentum equation now reads

1(r3P/dz) = -c-’ ‘xVFU dv; (78.17)
o

the integral over Vu vanishes because the net momentum loss by the

material through isotropic emission is identically zero.

Similarly, in a static spherical medium, (78.5) reduces to

r-2[d(r2Fu)/dr] = 4mqu - CXUEU, (78.18)

and (78. 13) becomes

(dPu/dr) + (3P. - E.)/r = -(xJc)Fv (78.19a)

or

d~u~U)/dr + (3fu – l) E,,/r = –(xJc)FI,. (78.19b)

In addition to their physical significance, the moment equations provide

powerful tools for solving transfer problems because they eliminate angle
variables from the problem and thereby reduce its dimension ality. On the

other hand, from (78.15) and (78.16), or (78.18) and (78.19), we see an

essential difficulty: the first n moment equations always contain all mo-

ments through order n + 1; thus we have one more unknown to determine
than there are equations. This difficulty is known as the closure problem. It is

very instructive to colmpare the closure problem for the radiation equations

with the corresponding problem for the equations of gas dynamics. Inas-

much as the specific intensity characterizes fully both the angular and

energy distribution of the radiation field, our derivation of the radiation
energy and momentum equations in terms of moments of the intensity is

conceptually identical to the derivation of the fluid equations from kinetic

theory as discussed in $30 (and in $43 for relativistic fluids). We saw there

that we can write the energy density, heat flux, and stress (inc]uding viscous
effects) in the fluid in terms of suitable averages over the distribution
function. If, as in $31, we assume that the distribution function is isotropic,

the system of fluid equations closes exactly, and both the heat flux and the

viscous stresses vanish identically. The same is true for radiation; if we

assume 1. is perfectly isotropic, we know that the radiation stress tensor

becomes diagonal and isotropic with P. = $5.,, and that F,, = O, so no
further closure is necessary. On the other hand, if we assume that the
distribution function is not isotropic, but that A/l<< 1, where L is a particle
mean free path, we are again able to achieve closure by deriving explicit

expressions for the fluid heat flux q and the viscous stress tensor U. As is
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shown in $$80 and 97, entirely analogous results are possible for radiation
in the limit that k,,/1 <<1, where & is the photon mean free path.

The real problem arises near boundary surfaces where a mean free path

(photon or particle) may exceed any characteristic structural length in the
flow. We must then find other methods for evaluating the averages that
appear as the energy flux or as nonisotropic (perhaps even off-diagonal)

contributions to the stress tensor, in the fluid and/or radiation energy and

momentum equations. We have ignored this problem for ordinary fluids

because it becomes important only in extremely rarefied flows [e.g., the
interplanetary medium (H3)]. But it cannot be ignored for radiation

because we always must deal with regions in which A/l<< 1 while &/1>> 1;
indeed these are the very layers of a radiating flow that we can observe.

Here we must face the closure problem squarely.
In one-dimensional problems we have two equations containing the

three scalars Eu, F,,, and P., and one approach is to close the system with
variable Eddington factors f,,, as in (78. 16b) and (78. 19b). When solving

the moment equations we assume that f“ is known. We subsequently
determine fU from a separate angle-by-angle formal solution of the full

transfer equation assuming that the radiation energy density (which ap-

pears in the source function) is known; we then iterate the two steps to

convergence. As the value of ~,, converges, the closure becomes essentially
exact. In radiation-hydrodynamics calculations where computational speed
is paramount, a yet-simpler procedure is sometimes adopted: one uses

approximate analytical formulae to determine f from the geometry of the
problem and from that ratio (F/E) [see, e.g., (F2), (S4)]. G. Minerbo (M6)

developed an elegant formulation of this kind; Minerbo’s formulation is

useful also in multidimensional problems where the full Eddington tensor

f= P/E must be specified.
Alternatively, we can rewrite the transfer equation in terms of angle-

dependent mean-intensity-like and flux-like variables (see $83), and obtain

exact closure of two coupled angle-dependent equations that strongly
resemble the moment equations, and have many of”their desirable proper-

ties. These equations can be discretized and solved directly by efficient
numerical methods.

6.5 Solution of the Transfer Equation

We now address the problem of solving the transfer equation. To develop

insight we first discuss the formal solution and special solutions for impor-

tant special cases; we then discuss general numerical techniques. Inasmuch
as wc now focus mainly on mathematical rather than physical content of

the equations, we will usually use the Eddington variables ~,,, IYu, and ~u in
preference to the dynamical variables E,,, FV, and PU.

We concentrate almost entirely on the solution of the time-independent

transfer equation (the exception is an analytical expression for the time-
dependent formal solution). The techniques developed here provide a
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