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fall midway between the nodes of Iw] 1, with two nodes per vertical

wavelength, and the amplitude would be exactly zero at each node.

Figure 54.7 ill ustrates refraction of acoustic-gravity waves in response to
the continuous variation of properties of the solar atmosphere. Because the

sound speed changes little with height, high-frequency waves show 1ittle

bending of the direction of the phase velocity VP or group velocity v~.
Gravity waves, in contrast, show strong refraction from the large changes
in co~v, with VP bending away from the vertical as mBv decreases, and v~

bending toward the vertical. Though the direction of v, tends toward the
vertical, the magnitudes of both u~ and WE decrease to zero as ~~v

decreases to O.

5.3 Shock Waves

The theory developed in $$5.1 and 5.2 applies only to small-amplitude

disturbances, which propagate essentially adiabatically and are damped

only slowly by dissipative processes. As the wave amp] itude increases, this

simple picture breaks down because of the effects of the nonlinear terms in

the equations of hydrodynamics. When nonlinear phenomena become
important, the character of the flow alters markedly. In particular, in an

acoustic disturbance a region of compression tends to overrun a raref actio n

that precedes it; thus as an acoustic wave propagates, the leading part of
the profile progressively steepens, eventually becoming a near discon-

tinuity y, which we identify as a shock.
Once a shock forms it moves through the fluid supersonically and

therefore outruns preshock acoustic disturbances by which adjustments in
local fluid properties might otherwise take place; it can therefore persist as

a distinct entity in the flow until it is damped by dissipative mechanisms.

The material behind a shock is hotter, denser, and has a higher pressure
and entropy than the material in front of it; the stronger the shock (i.e., the

higher its velocity) the more pronounced is the change in material proper-

ties across the discontinuity. The rise in entropy across a shock front
implies that wave energy has been dissipated irreversibly; this process

damps, and ultimately destroys, the propagating shock (sometimes rapidly).

In contrast to acoustic waves, internal gravity waves do not develop

shocks. Instead in the nonlinear regime they break and degenerate into
turbulence. We will not discuss these phenomena in this book; see for

example, (M3) and (M4).
Shock phenomena are of tremendous importance in astrophysics. As we

saw in $5.2, the growth of waves to finite amplitude occurs naturally and
inevitably in an atmosphere having an exponential density falloff. Thus, as
Biermann (B3), (B4) and Schwarzschild (S8) first recognized, small-
amplitude acoustic disturbances generated by turbulence in a stellar con-
vection zone can propagate outward with ever-increasing amplitude until

they steepen into shocks that dissipate their energy, thus heating the
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ambient atmosphere. Indeed, this mechanism is thought to provide part of
the heating responsible for the outward temperature rise in stellar

chromospheres (A2, Chaps. 9 and 10), (B1O, Chap. 7), (K3), (S5), (S6),

(S7), (U4), (U6).
Most of the shocks formed by spontaneous growth of randomly gener-

ated acoustic waves are rather weak. Much more impressive phenomena

are produced in pulsating stars (e.g., Cepheids and RR Lyraes) in which a
coherent velocity pulse generated by a radial motion of the entire stellar

envelope propagates outward and drives a shock strong enough (1) to alter

radically both the thermodynamic properties (e.g., degree of ionization)
and the dynamical state (e.g., some layers are lofted outward and subse-

quent y free-fall back) of the atmosphere and (2) to produce interesting

spectroscopic phenomena (e.g., emission lines). Even more dramatic are
the exceedingly strong shocks, essentially blast waves, generated in super-
nova explosions, which blow away the entire outer envelope of a star.

Similar phenomena also occur in laboratory situations, for example:
when a projectile or aircraft moves supersonically y through the atmosphere,

when a piston is driven rapidly into a tube of gas (a shock tube), in the

blast wave produced by a strong explosion, or when rapidly flowing gas
encounters a constriction in a flow channel or runs into a wal 1.

55. The Development of Shocks

Let us now construct a solution of the full nonlinear hydrodynarnical

equation for a pulse propagating into an infinite homogeneous medium.
We assume the flow is one dimensional (along the x axis) and is adiabatic,

thus neglecting, for the moment, dissipation. The density, pressure, and
velocity of the flow are then completely determined by the continuity and

momentum equations and an equation of state p = p(p, s) [or p = p(p)

because s is constant].
In $$48 and 49 we saw that all the physical quantities (p, p, T, etc.) and

the fluid velocity u in a small-amplitude traveling wave are functions of a

single argument x + at; this implies that any quantity can be expressed as a
function of any other [e.g., p = p(u), p = p(u), etc.] independent of position
and time. For finite-amplitude waves, the simple relationships obtained

earlier no longer apply. But, as Riemann (R5, 157) first showed, it is
possible to obtain a general solution of the full nonlinear equations for a

traveling wave, in which all physical properties and the fluid velocity are

again functions of a single argument x + vt;but now the propagation speed

v of each point on the wave profife is a function of the fluid velocity u at
that point in the disturbance. Hence, even in the nonlinear case it is

possible to express any physical property of the wave as a function of any
other; ill particular we can regard the density as a unique function of the
fluid velocity.

——
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Thus assuming p = p(u), we can write the continuity equation

(dp/du)(W/fit) +[u(dp/du) +p](du/dx) = O
or

(&J/?t)+ [u + p(du/dp)](du/ax) = O,

and the momentum equation as

%+-[”+:($%%=0
Comparing (55. 1b) with (55.2) we see that

(du/dp) = +[(tIp/@),]’’2/p = *a/p

as

(55.la)

(55.lb)

(55.2)

(55.3)

where a is the adiabatic sound speed, regarded here as a function of p
[recall that p = p(p)]. Hence, the general relation between the fluid velocity

and the density or pressure in the wave is

J J
u=+ p (a/p) dp = + “ alp/pa, (55.4)

P<, DC,

where pO and pO are ambient values in the undisturbed fluid. Note that for
a small-amplitude disturbance with p = PO+ pL, where )p~l/po<<1, (55.4)

reduces to u = &aOpl/po, where U. is the sound speed in the undisturbed

medium, in agreement with (48.18).

Using (55.3) in (55.lb) or (55.2), we obtain

(du/dt)+ (u * a)((%dd.x)= o. (55.5)

Similarly, by inverting the function p(u), we can write the continuity

equation as

(dp/dt) +[p(du/dx) + U](dp/dX)= O,

which, from (55.3), implies

(dp/dt) + (u + a)(dp/dx) = O.

Equations (55 .5) and (55.7) yield general solutions of

u =Fl[x–(u+a)t]
and

p= F2[x–(u*a)t]

(55.6)

(55.7)

the form

(55.8)

(55.9)

where FLand Fz are arbitrary functions that fix the run of u and p at t = O.
Equations (55 .8) and (55.9) represent traveling waves known as simple

waves. One sees that a particular value of, say, p or u propagates through
the ambient medium with phase speed

IJP(U)=U *CL(U) (55.10)

where a(u) is given by (55.3) and (55.4). In (55.8) to (55.10), we choose

the positive (negative) sign for waves traveling in the positive (negative) x
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direction. Because p = p(u), p = p[p(u)], etc., all physical variables in the
wave propagate in the same manner as u.

To make the results derived above more concrete, consider a simple
wave in a perfect gas. Then az K pjp ~ p‘-’ implies that (-y – l)(dp/p) =
2(da/a), hence (55.4] yields

u = &2(a – aO)/(y – 1) (55.1 1)
or

c~=aO+2(y–l)u, (55.12)

which implies

v(u) =i(y–l)u&aO, (55.13)

Using the polytropic gas la\w we readily find from (55.12) that

(55.14)~ = (%[1 +;(Y – l)(u/aO)]2/(~-’”,

(55.15)P = Po[l *XY – I)(u/aO)]’Y’(v-’J,
and

T = To[l t~(-y – I)(u/aO)]’. (55.16)

Consider a finite pulse having an initial sinusoidal shape as sketched in
Figure 55.1, moving to the right. In the small-amplitude limit, we recover

the acoustic equations (48. 18), (48.24a), and (48.24b) from (55.14) to

(55.1 6), and the disturbance propagates to the right with unchanged shape
at speed ao. But in the finite-amplitude regime, (55.10) to (55.16) plainly

show that the more compressed parts of the pulse have a larger fluid
velocity u, are hotter, have a higher sound speed a(u), and move to the

right with a higher velocity than the less compressed regions. Thus the crest

of the pulse continuously gains on the pulse front and, as shown in Figure
55.1. the wave front progressively steepens.

A

t=2At

iI

t=At

i,

*
x

Fig. 55.1 Nonlinear steepening of a simple wave into a shock



230 FOUNDATIONS OF RADIATION HYDRODYNAMICS

According to (55.12) to (55.16), the wave crest eventually overtakes the
pulse front, and at later times the solution becomes multiple valued as

sketched in Figure 55.1 for t= 3 At. This result is unphysical and indicates
a break-down of the theory. In reality, the front steepens into a shock, in

which all variables change abruptly through a very thin layer, within which,

owing to steep gradients, viscosity and thermal conductivity come into play

to determine the detailed structure of the front. A continuation of the

construction illustrated in Figure 55.1 shows that, as time progresses, the
pulse becomes more and more triangular in shape and the velocity amp-
litude of the shock front decreases monotonically, implying that once a

shock forms the wave continuously dissipates energy and is damped. By a
similar construction, one can see that in a periodic acoustic wave the crests

overrun the troughs, and the wave changes shape from a sinusoid to a train
of shocks separated by the wavelength of the original wave. Such a shock
train is called a sawtooth waue or N waue. We discuss the propagation and

damping of pulses and sawtooth waves in an exponential atmosphere in

$58.

56. Steady Shocks

In laboratory experiments (e.g., flow in a nozzle), it is possible to achieve

steady flow, so that if shocks form they are fixed in space and have
upstream and downstream properties that are tilme independent. For such

steady shocks one can derive analytical expressions relating the values of
the physical variables on the upstream and downstream sides of the front.

More important, it is usually possible to consider propagating shocks as
instantaneous y steady because, as shown in $57, the shock thickness is

only of the order of a particle mean free path A, whereas the distance over
which the properties of the upstream material can change significantly is

some characteristic structural length in the fluid, say a scale height I-f.

Consequently, the ratio of the time required for material to cross the shock
front to the time needed for upstream conditions to change appreciably is
\ery small, roughly equal to the Knudsen number Kn = A/H, which is only
-10-6 in a stellar atmosphere, and even smaller deeper in a star. There-

fore, at any instant even a propagating shock is steady to a high degree of
approximation.

To simplify the analysis, we transform from the laboratory frame in
which the shock moves along the x axis with speed o, into a frame moving
with the shock front itself. “1’hLIs if the material into which the shock

propagates has a lab-frame speed u], and the material behind the shock has

a lab-frame speed ZJz, then in the shock’s frame the upstream material
enters the shock with speed

U,=v, —v, (56.1)

and the downstream material leaves the front with a speed

u~=v~—v,. (56.2)
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SHOCK

SHOCK

I

Fig. 56.1 Fluid velocities near shock, measured in lab frame (top), and shock’s
frame (bottom).

In the case illustrated in Figure 56.1, v, < @and VI= O, hence UI >0, as is

u“ .

THE CONSERVATION LAWS

In the frame of the shock the flow is steady, hence the equations of

continuity, momentum, and energy (again ignoring viscosity and conduc-
tion) reduce to

d(pu) = o

dx ‘
(56.3)

: (pu’i-p] =0, (56.4)

and

: [p??/(h+~u’)] = o, (56.5)

which are conservation relations stating that the mass, momentum, and

energy fluxes per unit area are constant throughout the flow, and in
particular must be constant across the shock front. If we integrate (56.3) to

(56.5) across the shock thickness, say from –@ to +~~, and formally take
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the limit as 8-0 (because Kn <<1), we obtain

plu1=p2u*=rn, (56.6)

PIU; +PI =P2d+P2, (56.7)
and

h,+~u:=hz+;u~; (56.8)

here all upstream variables have subscript “ 1” and all downstream l,ari -
ables have subscript “2”. The quantity m is the mass flux through the

shock. Note that these equations remain valid for curved shock fronts (e.g.,
in a spherical medi urn) because the thickness of the front is almost always

negligible compared to its radius of curvature.

GENERAL JUMP RELATIONS

The conservation relations can be manipulated into other useful forms. Let

V= I/p be the specific volume of the material (this notation is inconsistent
with that used in Chapter 1, but is adopted here to avoid confusion

between volume and velocity). Then UL= tiV, and U2= ltiV2, hence (56.7)
gives

p,–p, = rilz(v, – VJ, (56.9)

which shows that in a (p, V’) diagram the initial and final states of the

material are con netted by a straight line with slope – tiz (see Figure 56.2).

Alternatively, using u,/u2 = V’1/V2 in (56.7) to eliminate u, or U2we find

u; = V;(pz– f?l)/(vl– V2) (56.10)
and

u;= v;(p2–pl)/(v, –V2), (56.llj
hence

u~– L(;=(p2-p L)(v, +v2). (56.12)

Substituting (56.1 O) and (56.11) into (56.8) we obtain

h,–h, =~(V, + Vz)(p, –p,) (56.13)
or

ez–el =+(VI– V-J(p~+pJ, (56.14)

which are known as the Rankine-Hugoniot relations (R2), (H17).

Suppose we are given the upstream conditions PI, PI, and u], and that
the lmaterial obeys a caloric equation of state e(p, p) or h(p, P), which may

be cluite general, including, for example, excitation and ionization effects.
Then, in the (p, V) plane, either (56.13) or (56.14) defines a unique curve

P(V) = f(p,, V,, V), called the Hugoniot cur-ue, passing through (p,, V,) and
having the general shape sketched in Figure 56.2. Equation (56.9) com-
bined with either (56.1 3) or (56.14) determines pz and Vz, hence Uz; the
solution is shown graphically in Figure 56.2 as the intersection of the

Hugoniot curve with the straight Iine given by (56.9). In general one finds

that (pz, V2) differs substantially from (p,, V,), the discrepancy between the
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Fig. 56.2 Shock Hugoniot curve in (p, V) diagram.

two growing larger with increasing Mach number. We thus conclude that,
to the level of approximation at which we are now working, the equations

of hydrodynamics admit a discontinuous jump in the physical variables

across a shock; such jumps are called weak solutions of the fluid equations.
ln principle, (56.9) to (56.14) permit two types of solutions: (1) those in

which pz> p,, V’z< VI (or pz> pJ, and Uz< u,, or (2) those in which the

inequalities are all reversed. The former are compression shocks and the

latter are nwefaction discontinuities; we see below that while both sol utions

are permitted mathematically, only compression shocks can exist physi-
cally. Rarefactions, when they occur, are always continuous (C6, Chap. 3).

If we choose solutions with pz> p], then it follows from (56.13) and

(56.14) that h,> h, and e,> e,. Further, using the tact that (UI – u,) =

ti(V1 – VJ in (56.9), we find

U, ‘UZ=[(pZ–p I)(VI – VZ)]”2

where we chose the positive root on physical grounds.

(56.6) and (56.7), we can write

uj–u2=(pJp2uJ -(p, /p, u,);

these results will prove L~seful shortly.

(56.15)

Alternatively fro m

(56.16)
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JUMP RELATION5 FOR A PERFECT GAS

If we assume that the fluid is a perfect gas, we can derive a comprehensive

set of explicit formulae relating upstream and downstream variables. In this

case, (56 .8) becomes

()Y (–)-=&_~2, -Y p212a?_L2d;U:+ — —‘2u2— ~ul+— 2u2+— (56.17)
~–l p~ y–1 pz y–l– y–l’

where a, and az are the upstream and downstream sound speeds, respec-

tively. Likewise, (56. 13) becomes

Y(P2V2– PIV1) ‘XY-l)(V’1+ V’2)(P2- PI)> (56.18)

whence we obtain

~=(Y+uvl-(Y-uv2

PI (7+1) V2–(Y–l)V,

or

V2=(Y+1)P1+(Y– I)P2 p, U2

V1 (Y–1)PI+(V+1)P2 pz Ul”

(56.19)

(56.20)

From the perfect gas law we then have

T21T1= pzVJpl VI = a$la~. (56.21)

Using (56.20) in (56.10) and (56.11) we find

U;=+vl[(y –l)pl+(’y+l)pz] (56.22)

and

Z&=+ vl[(y + l)p, + (y – l)p2]2/[(7– l)P1 +(7+ 1)P21> (56.23)

and from (56.22) and }ti = uJV, we obtain

ti2=[(y -l)p, +(y+l)pJ/2v1. (56.24)

In one-dimensional steady flows, it is sometimes convenient to introduce

the critical velocity UCat which the flow speed equals the local sound speed.
Then, from (56.17),

()‘Y ()C=; u;+ J_. B= (Y+J) #
;?.4:+ —

y–l pz 2(7–1) c’
(56.25)

y–1 p~

hence

U,+(%) fi=(%):
(56.26)

and

+%):=(5)3 (56.27)
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whence

( )(27 p, _ p,
UJ— U2+ — —

–)=(5)(”2;::”’ “’28)y–l p,u, p~u~

In view of (56.16), (56.28) reduces to the Prandd relation

u,u~= u:. (56.29)

The relationship between upstream and downstream flow quantities can
be expressed concisely in terms of ~- Ap/pl = (p2– pl)/pl, the ~ra~tional

pressure jump across the shock. Thus from (56.20) we find the compression
ratio

P,/P, = v,/v2=[27+ (-y+ l)4]/[2y+(y -1)4], (56.30)

and from (56.21) we have

T’JT, = (~ +#.)[2y +(y– 1)4]/[27 + (y + 1)#,]. (56.31)

Furthermore, from (56.22) we find

i’vf~-l=~(y+lj~/y (56.32)

and from (56.23)

M;–1 = –(y+l)#/2y(l +jli.), (56.33)

whence we see that because A 20, A4~ >1 while @s 1. That is, the
upstream ffow is always supersonic relative to a shock front, and the

downstream flow is always subsonic. Note tha[ if Ml = 1, then ~ = O and the

jump in all physical quantities vanishes, that is, there is no shock.

For very strong shocks # -+ ~, which implies that

P2/Pl + (Y+ I)/(Y– 1) (56.34)
and

M;+ (y – 1)/27, (56.35)

while A4? - (y+ l) fi/2y + ~ and TJ”r~ + (y – I)#/(y+ 1) -+ ~. Hence for

a monatomic gas, y = ~, the 1imiting compression ratio in an extremely

strong shock is (pJpJ,,,ax = 4, and the Iilmiting value of the downstream—
Mach

For

and

number is (A42)Tmi,,= 1/w~.

weak shocks (i.e., ~<<l), we have

(P2/PJ– 1 = 4/7> (56.36)

(7-JTI)- 1 =(y - l)fi/~, (56.37)

M?– 1=~(y + 1)#./y, (56.38)

A4; -1 =–+(y+l)#/y. (56.39)

Equations (56.36) and (56.37) are merely linear expansions of the poly-

tropic relations between p, p, and T, and show that to first order in # weak
shocks are essentially adiabatic [but see (56.51) and (56.56)].
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Upstream and downstream flow properties can also be related in terms

of the upstream Mach number Ml. Th LISfrom (56.32) we find

P,/P, = [2wT-(y – I)]/(y+ 1), (56.40)

hence from (56.20)

P2/Pl= (Y+l)M?/[(y –l)A4?+2]= ul/u*> (56.41)

and from (56.21)

T,/T1 = [2@f- (y – I)][(y – l)M; + 2]/(7 + 1)2M’;. (56.42)

Then using (56.41) and (56.42) in f@= (uJa2)2 = M~(JAJUJ2(aJCL2)2 we
find

M;= [(y – l) A’ff+2]/[27M; – (y– l)]. (56.43)

For strong shocks Ml -+ co and we obtain the same limiting values for p2/pl
and M2 stated above, while p2/pl - 2yM~/(y + 1) - ~ and TJT1 ~
2’y(y – I) M;/(y+ 1)2 + ~.

For weak shocks with M?= 1 +WL, m<< 1, we find

(P2/PIl -1 = Z’vd(y + 1) (56.44)

(PJPJ)- I = 2m/(Y + 1) (56.45)

(T,/TJ -1 = 2(y – ~)m/(y+ 1) (56.46)
and

M~=l–m. (56.47)

THE ENTROPY JUMP

In the (p, ~ diagram, the adiabats form a one-parameter family of curves

P = P(v, s) where the specific entropy s is fixed along each curve. In
contrast, the H ugon iot curves form a two-parameter family, with the curve
passing through (p,, V,) having the form p(V, pl, VJ. In general, the

Hugoniot through (p,, V,) is not identical with the adiabat through

(p,, V,)—a fact demonstrated below for weak shocks in general materials,
and for shocks of arbitrary strengths in a perfect gas. Thus in general

Hugoniots cross adiabats, which implies that the entropy of the material
changes as it passes through a shock; therefore the entropy experiences a

discrete jump across the front by an amount cfeterm ined by the shock

strength.
According to the second law of thermodynamics, the entropy of a

substance cannot be decreased by internal processes alone (cf. $3); thus the

downstream specific entropy in a shock must equal or exceed its upstream
val LK5, S2zs, . This entropy increase, predicted by the mass, momentum,
and energy conservation relations alone, implies an irreversible dissipation

of energy, even for an ideal fluid, entirely independently’ of the existence of
a dissipation mechanism, which at first sight seems paradoxical. l-his

apparent paradox is easily resolved by studying shock structure for a real
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gas ($57). We then find that a shock is not a mathematical discontinuity y,

but is actually a thin transition layer, a few particle mean free paths k
thick, where dissipative mechanisms (which generate entropy) are strongly

operati\le in response to steep gradients. The ideal fluid is merely a
degenerate case obtained when we suppress the internal transport proper-

ties of a fluid, which is equivalent to letting A + O, which in turn implies

that the transition layer collapses to a discontinuity. We get the same total
entropy jump for given upstream conditions in both cases because the

entropy, like any other thermodynamic variable, can be regarded as a
function of any two other variables, say (p, V). As we have seen, the

downstream values of these variables are uniquely fixed by the hyd-
rodynamical equations alone, regardless of the detailed physical properties

of the fluid.
Consider first a weak shock, and examine the implications of (56.13).

Take h = h(p, s) and expand in powers of Ap = pz–pl and As =Sz–sl.
Anticipating the result that As is 0(AP3), we retain only first-order terms
in As and terms up to third order in Ap, obtaining

hz– hl = (dh/ds)P As +(dh/ttp), Ap +;(d2h/dp2j, Ap2+i(d3h/dp3), AP3.
(56.48)

From (2.33) we have (2h/ds)13= T and (dh/dp), = I/p = V, hence

h,– h,= T1 As + V, Lp +~(dV/~p), Ap’+&(d2V/dp2), ~p3. (56.49)

Similarly, take V = V(p, s); inasmuch as (Vl + V2) in (56.13) is already

multiplied by Ap we can expand V to only second order in Ap, and omit
the term in As, obtaining

V,= V,+ (d V/t@), Ap +~(d2V/dp’), Ap2. (56.50)

Substituting (56.49) and (56.50) into (56.13) we find

S’–,s, =+(d~v/dp2). (p2– p1)3/T,. (56.51)

From (56.51) we see that As is nonzero (unless Ap = O), and the

requirement that As> O fixes the sign of Ap once the sign of (d2V/dp2), is
known. For “normal” substances both experiment and theory show that
(d2V/dp2), >0, that is, adiabats are concave upward in the (p, V) diagram;

for example it follo\vs from (4.16) that for a perfect gas (22V/d P2),, =
(y+ I) V/y’p’. Thus for normal substances we conclude that Ap >0 across

a shock front, as asserted earlier. Given that Ap >0, (56.9) implies A V< O
(Ap>O), (56.12) implies Au<O, (56.13) implies Ah>O, and (56.14) im-
plies Ae>O.

For a weak shock, (56.9) yields

r+L=[-(clp/dv)& ]J’2, (56,52)

and to the same order, (56.10) and (56.11 ) yield

u,=u~ ==I’i’Lv= [(ap/ap). ]’” = a. (56.53)
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F& 56.3 Shock transition connecting two adiabats in (p, V) diagranl

These results can be refined by reference to Figure 56.3. There we see that

because the initial and final states are joined by the chord All whose slope
is –tiz [cf. (56.9)], we must have tit2>[-(dp/?V), ]l. Therefore at point A

u; = V;li’lz > —v~[(dp/dv), ]l = [(dp/13p)J1= a;, (56.54)

that is, u,> a,. By a similar analysis at point B we find U2< a2. These
general results are consistent with (56.38), (56.39), and (56.47), which,

however, apply only for a perfect gas. Indeed it can be shown that all of the

inequalities stated above are true for shocks of arbitrary strength provided

only that (d2V/dp2), > O; see (L2, 384).
For the special case of a perfect gas, we can write explicit formu Iae for

As in shocks of arbitrary strength. Thus from (4.10) we have

AS = c. in (pzpY/pl P2J]

{ [

2y+(y–1)4
=CV hl(J+#)+yln

2y+(y+l)4 11

{[
2A4–(y–1)

= Cu 111 1[
+Y,n (7–~)M;+2

y+l 11(~+l)M; (56.55j
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From (56.55) it is straightforward to show that As is a monotone increasing
function of # and of Ml, and furthermore that for #<C 1 and ~<< 1

As = (y– l)cU#3/1.2y2 = 27(7 – l)cUmq/3(y + 1)2=-0; (56.56)

thus As is, in fact, always greater than or equal to zero. Equation (56.56)

is, of course, consistent with (56.51) and (56.44).

STABJLJTY

We have seen that the requirement that entropy not decrease across shock

fronts implies that Ap >0, hence that rarefaction discontinuities do not

exist. There are additional reasons why rarefaction discontinuities cannot
exist. If such a discontinuity did exist, it would have UI < al and Uz > az,

and would therefore propagate subsonically through the undisturbed

medium. But then any small disturbance, which would travel as an acoustic
wave at the speed of sound, produced in the flow at the jump could outrun

the discontinuity. Therefore the rarefaction region behind the discontinuity
would tend to spread into the gas in front of the discontinuity faster than

the discontinuity itself cou]d propagate, and in doing so would erode away

any initial jump in material properties. That is, a rarefaction discontinuity
is immediate] y smoothed into a continuous transition. Furthermore, be-

cause a raref action discontinuity y would move supersonica]l y with respect to

downstream material, it could not be influenced by any process or change
in conditions occurring behind the jump. That is, no feedback on the wave

is possible, and in that sense the wave is uncontrolled. Both of these

properties ilmply that rarefaction discontinuities are mechanically unstable,
and disintegrate immediately.

In contrast, in a compression shock the entropy increases. The front

outruns acoustic waves that might tend to smear it out, and the upstream

material remains “unaware” of the shock until it slams into it; hence the

shock can propagate as a sharp discontinuity. Furthermore, the shock
propagates subsonically with respect to downstream material, hence the

materiaJ behind the front can influence the front’s behavior; if the down-
stream gas is strongly compressed and heated, it tends to strengthen the

shock; if the downstream material cools rapidly (e. g., by radiation losses)
the driving force behind the shock front weakens and eventually the shock

dissipates. Thus compression shocks not on] y satisfy entropy constraints

but are, in addition, mechanically stable. Further discussion of these issues
can be found in (C6, Chap. 3), (L2, $84), and (Zl, $1.1 7).

RELATJV [STIC SHOCKS

We can obtain jump conditions across a shock in a relativistic flow by
expressing the continuity equation (39.9) and the dynamical equations
(42.2) to (42.6) in the frame in which the shock is stationary, and then

subjecting them to the same analysis as led to (56.6) to (56.8). Thus writing
iV for the number of particles per unit proper volume, and U. = -y% for the
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x component of the four-velocity of the material relative to the front,
particle conservation implies continuity of the particle flux:

N[UX, =N, UX,=j. (56.57)

Similarly, energy and momentum conservation imply continuity of the
energy flLIx

[(2+ ,U)UOUX17= [(2+- P) U.UXI. (56.58a)
or

(2+ P),YI u, = G +P)2Y2U2> (56.58b)

and of the momentum flLtx

(2 +p), u2, +p, c2=(2 +p)2u;2+p2c’. (56.59)

Here .2= pO(c2+ e) = NrrtO(c2+ e) is the total proper energy density of the

fluid.

Rewrite (56.57) as

u., =jtil (56.60a)
and

U.z = jti2, (56.60b)

where ~= ~/N is the volume per particle. Then (56.59) becomes

p2– PL = /2(z, +1 –22+2)IC2, (56.61)

while (56.58) reduces to

y,z’%L=y2A2. (56.62)
Here

1 = rnO(c2+ e) + (p/IV) (56.63)

is the total enthalpy per particle. In the nonrelativistic limit, (56.61)

reduces to (56.9). Multiplying (56.61) by (~1 ~[ + ~2~z) and using (56.60)

we find

(4,ux,/c12–(i2ux2/c)2 = (p, – P,)(f?, t’, +Z2172). (56.64)

Then adding the square of (56.62) we obtain, finally,

z;–@=(xlvl +z2ti2)(p2– p,), (56.65)

which reduces to (56.13) in the nonrelativistic limit. Equations (56.61) and

(56.65), first derived by Taub (Tl), are the relativistic generalizations of
the llankine-Hugoniot jump relations.

It is possible to obtain relativistic generalizations for essentially all of the
results derived above for nonrelativistic shocks. Thus one can show (T2)
that the generalization of (56.51) for the entropy jmmp across a weak shock
is

S2– .s~= +[a*(zv)/dp2], (p2– p1)3/4T, (56.66)

which, as long as [d2(Zti)/dp2], >0, implies that P2 > pb AZ> AI, ~2> ~1,

.—.
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P,<$’,, Ux,<u x,> UX1/al >1, UX./az< ~ in a shock in which entropy
increases. By straightforward manipulation of (56.58) and (56.59), one can
also show that

& = (P2– PI) G%+ p,) ‘/2
[ (22- 2,)(2, L p,) 1 (56.67)

c
and

&= (P2- PI)(:I +P2) 1’2
[ 1(22–2,)(22+p,) ‘

(56.68)
c

where UX is the ordinary velocity (ie., the three-velocity) of the material

relative to the shock. In the nonrelativistic limit, 2 ~ pcz >>p, and (56.67)

and (56.68) reduce to (56.1 O) and (56.11). In the extreme relativistic limit,

p ~ $, hence

:+[3::::;2)1”2
and

(56.69)

(56.70)

For weak shocks, 2Z= 21 and UXI= UX2= c]d; for strong shocks ,22>>2, and

% ~~ c while UX2 -+ c/ti. Using the relativistic law for the addition of
velocities, that is,

Au= (Uxl – UxZ)/[] – (u,,742/c2)1> (56.71)

(which follows frolm boosting the four-velocity of a particle moving with

velocity UX~ in a frame S into a frame S’ moving with velocity UXZrelative
to S), we find that the relative velocity of the gas on the two sides of the

shock is

Au_ (P2– P,)(:2–&) 1’2—
-[c 1(;l+ pJ(&+ p,) ‘

(56.72)

In the nonrelativistic limit, (56.72) reduces to (56.15).

More complete discussions of relativistic shocks are given in (12), (L7),

(L8), (M2), (T2), and (T4).

57. Shock Structure

Let LM now investigate how dissipative processes—viscosity and thermal

conduction-determine the structure and thickness of shock fronts. We
expect these processes to play a key role within the front because gradients
are very steep there (indeed, infinitely steep according to the idealized
analysis of $56).

The conservation relations for the steady flow in the shock’s fralme now

.——
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are [cf. (26.2) and (27.34)]

(m = p~u~= ril, (57.1)

pu2+p–p’(du/dx) =plu?+pl, (57.2)
and

pU(h +@2)- K’u(du/dx) –K(dT/dx) = plUl(hl+&l~), (57.3)

and the entropy-generation equation (27. 1.7) in the shock’s frame is

(57.4)

Here K’ =~p + ~ denotes the effective one-dimensional viscosity.

Equations (57. 1) to (57.4) apply at all points in the flow and determine

the physical properties (p, p, u, etc.) as functions of x across the shock

front. The constants on the right-hand sides of (57.2) and (57.3) are
evafuated in the upstream flow far from the shock, where (du/dx) =
(dT/dx) = O. If we evaluate the left-hand sides of (57.2) and (57.3) in the

downstream flow far from the shock where (du/dx) and (dT/dx) again
vanish, we recover the ideal-fluid jump relations (56.7) and (56.8).

VISCOUS SHOCKS

Consider first a hypothetical fluid having a finite viscosity but zero thermal
conductivity. In order to simplify the discussion we assume that w‘ is

constant and that the fluid is a perfect gas. We can then rewrite (57.2) and

(57.3) as

p+tiu-~’(du/dx) =pl+tiul (57.5)

and

U{~?i’tU + [yp/(y – l)]}– p’u(du/dx) = ti{~ld~+ [ypl/(y – ~)pl]}.
(57.6)

Multiplying (57 .5) by yu/(y – 1) and subtracting (57.6) we obtain

– vu(du/dx) = a~(u – Ul)+ u~[yu –;(Y – l)uj]–~(y+ 1) U1U2, (57.7)

where v = p’/p is the effective kinematic viscosity. Let w = UI – u; then

(57.7) can be rewritten

v(dw/dx) = W[u~– a:–~(y+ l) UlW]/(Ul– W). (57.8)

The velocity drop w varies from w = O far upstream to

w mu = u~– U*= 2(U; – cJ)/(Y + 1)% (57.9)

far downstream; the second equality in (57.9) follows from the Prandtl
relation (56.29).

From (57.8) and (57.9), one finds that (dw/dx) 20, with (dw/dx) = O at
w =() and w = Wn,=; therefore w(x) is monotone increasing and u(x) is
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Fig. 57.1 Velocity and density variation in a viscous shock.

monotone decreasing. Furthermore, w has an inflection point because

v(d2w/dx2) = u~[u~– a~–(y+ l)w(ul–*w)]/(ul– W)2, (57.10)

which shows that (d2w/dx2)>0 at w = O, (d2w/dx2) <O at w = w~=, and

(d2w/dx2) = O at w = u, – m. Thus u(x) varies as sketched in Figure

57. la. From continuity it follows that p(x) is monotone increasing, as

sketched in Figure 57.lb.
Using (57.8) in (57.5) we find

(57.11)p = Pl+Pl$da?+ +( ’rl)%wl/(ul -w)>

which shows that p(x) is monotone increasing, like the sketch in Figure

57.lb. Combining (57.1) and (57.11) we find

T/Tl = (p/pl)(~l/~) = 1 +(Y– l)(W/UI)+;y(Y– l)(w/a,)2, (57.~z)

which shows that T(x) increases monotonically, like the sketch in Figure
57.lb.

As an estimate of the shock width 6 we take

8 = [w/(dw/dx)]O, (57.13)
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where XO is the point at which w=~wnlaX. Substituting from (57.9) into
(57.8) one finds

(dw/dx)o = $(u: – a~)2/V(yL4i + a?), (57.14)

whence

8 = 2v(yu~+ a~)/[(y + l)u,(u~– a~)]. (57.15)

From mean free path arguments we know that v = K1/p{- a,A Thus in the

weak-shock limit, where UI= a, we find, using (56.38),

~= 2: = 4Y”-($)(;)a~(lv’ f-1) (y+l)u[#
(57.16)

Thus the shock thickness is of the order of a particle mean free path

divided by the fractional pressure jump.

For a strong shock (Ml >>1), (57.15) yields

8- [27/(7+ l)](A/M,), (57.17)

which formally predicts that 3 becomes much smaller than A when Ml >>1.
This result is incompatible with a fluid description, and comes from taking

u— a, L If instead we assume that the viscous dissipation occurs mainly in
the hot material at the back edge of the transition zone and take v - iiA

= a2A - Ml al A, then ~ – CA where C is a number of order unity; hence 8
remains of the order of A.

For a purely viscous shock

puT(ds/dx) = rnT(ds/dx) = ~’(du/dx)2; (57.18)

hence s increases monotonically through the shock like the sketch in

Figure 57.lb. We can use (57.18) to estimate the entropy jump across the

shock by replacing derivatives with finite differences, writing

rnT1(As/Ax) = ~’(U2– U1)2/AXz. (57.19)

Using (56.16) to write ALL= Ap/rn = Ap/pa for a weak shock, and adopting

Ax= 8 as given by (57.16), we find that (57.19) gives the same result as

(56.56) to within a numerical factor of order unity.

The analysis presented above shows the fundamental role played by
viscosity in determining shock structure: it leads to an irreversible conver-

sion of kinetic energy of the inflowing material into heat. Put differently, it
transforms ordered flow motion of the particles in the gas into random
motions via the mechanism of dissipation of particle momentum.

COhrDLCTIXG SHOCKS

Now consider a fluid with zero viscosity (K’= 0), but finite thermal conduc-

tivity. These assumptions are of more than hypothetical interest because, as
we mentioned in $51, they are realistic for a radiating gas in which

radiative energy transport can strongly influence shock structure even when
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viscous and ther]mal-conduct ion effects are negligible (cf. $104). As we will

see, the structure of an inviscicl conducting shock can be qualitatively
different from that of a pure viscous shock.

When ,LL’= O, the momentum and energy conservation relations are

p+ ftiu=pl+tiu L (57.20]
and

U{+?ilu+ [yp/(y – l)]}+ q = ti{;u; + [yp L/(y – 1)pl]}, (57.21)

where q = —K(dT/dx). The entropy-generation equation reduces to

(ds/dx) = (K/tiT](d2T/dx2), (57.22)

where K has been assumed to be constant,

Rewrite (57.20) as

p=p, +?tiu, (l-~) (57.23)

where w is the volunte ratio

~ ‘v/v] ‘p L/p= LdL’t,. (57.24)

Clearly the pressure is a monotone increasing function through the shock
front, rising to pz when q equals

qz = vJv, = [(Y – l) A4; +21/(7 + l)A’C, (57.25)

as given by (56.41). Using the perfect gas law we then find

T/Tl ‘~[yM~(fl –q)+l] (57.26)

\vhich shows that T(q) is a quadratic function of -q, as sketched in Figure
57.2. T(q) reaches its maximum value at

q,,,= = (yM~+ ~)/2yM~. (57.27)

Note in passing that as Ml -+ ~, ~,.,X- $. Finally, from (57.21) and

(57.23) to (57.25), we obtain

(57.28)q =–ri’u.l:(y+l)(l –q)(q –qJ/2(Y- 1),

which shows that q sO for q2sqs 1. More precisely, q = O at q = 1 and at

q = q2, and q reaches an absolute minimum at the midpoint of the
compression, that is, at

qo=+(l+~2). (57.29)

Consider first a weak shock for which q2 > q,,,=, for example, the
transition to point A sketched in Figure 57.2, From (57.26) we see that in
this case T(x) increases monotonically from T1 to Tz, which ilmpl ies
(dT/dx) 20, which is consistent with the conclusion that qs O. Fm_ther-
more, the fact that q achieves a minimum at -q = TO implies that (dq/dx)O=
–K(d2T/dx2)0 = O; therefore T(x) has an inflection point at To and varies
as sketched in Figure 57.3a. These conclusions fUrthCr imply that the
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Fig. 57.3 Temperature and entropy variation as a function of spatial position in a
weak conducting shock.
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Fig. 57.4 Shock transition and initial, final, and maximum entropy adiabats in
(p, V) diagram for a conducting shock.

entropy must achieve a local maximum at q = To because (d2T/dx2) = O

implies (ds/dx) = O; thus s(x) varies as sketched in Figure 57 .3b.
We can calculate the maximum entropy increase in the shock as follows.

According to (57.23), in the (p, V) plane the gas follows the straight line
AB shown in Figure 57.4, and the material reaches its maximum entropy

where this line is just tangent to an isentrope, say at s = SO. For a weak

shock the equation for the straight line is

~_p, =(P2-PJ(v- v,)= dp
(v,- v,) () ()

~ (v-v,)+: # (V*- V,)(V- v,)>
s, s,

(57.30)

where we have ignored a term in (dp/ds)v because (s2 —s1) is third order in

Ap or A V. Similarly, the equation for the isentrope s = SO is

() ():; (v-v,)+; ~p–pi= —
(),

(v- v,)’+ : ~ (s, -s,), (57.31)
., s,

where again we neglect third-order terms.
To enforce tangency of the two curves, we demand that [(dP/~V)li.e]o =

[(dP/EJWiw.,,lo at the point where (ds/dV) = O (hence s is a maximum),
whence we find that V.= $(VL + V2), in agreement with (57.29). Then,
demanding (pfin.)o = (pis..t. o,) we equate the right-hand sides of (57.30) and
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(57.31) e\aluated at V= V,, obtaining

so – s , = #(d2p/d v2)./(tip/&)v]1 ( V.L– V2)2. (57.32)

From (4. 16) and (5.15) we find that for a perfect gas (t)2p/tJV2),=
Y(Y + l)p/V’ and (dp/ds)V = p/c., and from (56.36) we have AV/V=
–Ap/yp, hence

SO– SI =+y(y + l)cV(AV/V)2 =~[(y + 1)/y] cO#2. (57.33)

Thus the maximum entropy change within the shock front is second order in
Ap or A V, whereas the total entropy change across the front is only third

order.
To estimate the thickness of a conducting shock, we calculate the total

entropy jump from (57 .22), obtaining

J
(ti/K) & = “ ~’(d2T/dx2) dX =

J“
[T-’(dT/dx)]2 dx, (57.34)

—cc —.-

where we integrated by parts and noted that (dT/dx) = O at x = Am. The

integral is approximately equal to (q/K-T)~8, where q is the heat flux and 8

is the shock thickness. Evaluating q. from (57.28) and (57.29), using the

scaling rule K– aApcv, and using (56.56) for As, we find

8 -g[(’y - 1)/(7+ l)lwfi), (57.35)

which agrees with (57. 15) for a weak viscous shock to within a numericaf

factor of order unity.
We have thus shown that for shocks below a certain critical strength [i.e.,

for which the downstream volume ratio q2 is greater than q~= defined by
(57.27)] in an inviscid, conducting fluid all physical properties vary continu-

ously through the shock front over a distance of the order of a few particle
mean free paths. The shock structure is qualitatively similar to that of a
viscous shock, with the velocity decreasing monotonically, while p, p, and T

rise monotonically; it differs only in that the entropy passes through a local

maximum instead of increasing monotonically.
The situation for strong shocks in an inviscid, conducting fluid is quite

different; here, as Rayleigh (R3) first noted, only the temperature varies
continuously, while the other variables experience a discontinuous julmp
within the shock front [see also (B2)]. Thus suppose the material is

compressed to some r12< q.,=, for example, to point C in Figure 57.2; this

case arises naturally because, as noted above, as Ml ~ ~, T.,= - ~ while

nz~ (y– 1)/(7+ 1) s+. Equation (57.28) shows that q = –K(dT/dx) sO for

~Z = ~ =1, regardless of whether ~Z is less than ~~.. or not. We therefore must
guarantee that

(dT/dx) = (dT/dq)(dq/dx) a O (57.36)

throughout the shock front. Now (dq/dx) is always s (), hence only those
portions of the curve T(q) for which (dT/dv)s O are physically accessible.
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Hence asthematerial is compressed from T-1=1 to-q =qc, itis not possible
for the temperature to rise to T~,X and then track down the descending

branch to T = Tc. The only way the material can actually make the
transition to point C is for the temperature to rise continuously from TI to
TH= Tc at q = TB > qn,ax, and then remain constant while the relative

volume collapses discontinuously from q~ to qc, giving rise to a density
jump like that sketched in Figure 57.5. Because this density discontinuity

(which accounts for most of the total density junlp across the shock) occurs
at a single temperature, this type of so[ution is called an isothermal shock.

Thus in an inviscid, conducting fluid, al I shocks above some critical

strength will be isothermal. Combining (57.27) with (56.41) we see that the
critical Mach number at which qz equals q.,U is

which, from (56.40),

and, from (57.27),

(A&it = (37 - 1.)/7(3 – Y), (57.37)

implies that

(PJPJcrit= (7+ 1)/(3 -’Y), (57.38)

(q2)c,il = (’Y + 1)/(3’Y -1, (57.39)
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For a rnonatomic gas with ~ = ~ shocks become isothermal for Ml ~ (~)1/2=

1.18, or p2/pl 22, or q2 s:. Conditions for an isothermal shock are met
even more easily in polyatomic or ionizing gases, or when radiation is

present, for then -y<$.
The notion of an isothermal shock is an idealization because in reality

the strong density (hence velocity) jump within the front implies that
viscous effects must inevitably come into operation and smooth the discon-

tinuity. When both viscosity and conduction act (as they must in any real

gas), viscosity converts flow momentum into heat, which is transported by

conduction in such a way as to produce a locaf entropy maximum. All

properties vary continuously through the front, though the density and
pressure may rise rapid] y in a limited region where the temperature
changes less swiftly (B2). Nevertheless, the analysis presented above is
instructive because it shows that we can guarantee a continuous solution

for arbitrarily strong shocks only through the dissipative effects of viscosity,

a point of considerable significance for numerical calculations (cf. $59).

THE RELAXATION LAYER

We have thus far assumed that the gas remains instantaneously in local

thermodynamic equilibrium as it flows through a narrow transition zone,

the dissipation zone, at the shock front, having a thickness 8 of only a few
particle mean free paths. In reality, the material may not be able to remain

in equilibrium because the characteristic flow time tr - A/u~ through the
front may be much shorter than the time required for some thermodynami-

cally important process (e.g., ionization of the material) to occur. Thus

while some degrees of freedom may equilibrate within the dissipation layer

(always true for the translational degrees of freedom of each particle

species), others may be far from equilibrium when the material emerges
from that layer.

In this event, the dissipation zone is followed downstream by a relaxation
layer within which internal relaxation processes operate to bring the

material to its fired equilibrium state. If the characteristic relaxation time

for some process is t,,l,x, the thickness of the relaxation layer associated
with that process is A - uzt,el=. Clearly A >>~ whenever t,el= >>$. Several

relaxation processes may occur simultaneously (or even sequentially), and
the full thickness of the layer (ie., the distance required to reach the point

where the downstream conditions predicted by the Rankine-Hugoniot

relations are achieved) is determined by the slowest process.
Relaxation processes can sometimes be described by phenomenological

equations of the form

(dn/dt) = (neq.,,,- ~)/t,,,W, (57.40)

where n represents the number of particles in the desired state (e.g.,

ionized as a result of passing through the shock) and neqUi~is the number
that would be in that state if the material were in equilibrium at the
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downstream values of the material properties (i.e., P2, pz, T2, etc.).
Equation (57.40) implies an exponential relaxation of the form

n = nO exp (—t/trelW) + ~e~~lib[1 - exp (-t/t,e,,X)] (57.41)

where t —X/M2,x being the distance downstream from the shock front and

L(2 the downstream flow velocity. To obtain a more accurate picture we

must specify the rates of the relevant relaxation processes, write kinetic

equations that describe how these processes determine the distribution of
particles over various states, and solve these equations (usually numeri-

cally) simultaneously with the equations of hydrodynamics.
In general, the problem can be quite complicated because on the one

hand the relaxation rates depend on the thermodynamic state of the

material, hence the dynamics of the flow, but on the other hand the
relaxation processes determine the thermodynamic state of the material
(hence the flow dynamics), for example by setting the rate of thermal

energy loss into ionization (or the rate of energy gain by recombination).
We will discuss rate coefficients and kinetic equations in $85, and give

examples of solutions of the set of coupled equations in $105. For the

present, it suffices merely to describe qualitatively some of the basic

processes that occur in the absence of radiation in order to get a physical

feeling for their relative importance in diflerent regimes.

(a) Molecular Gas The extent to which any particular process plays a

significant role in determining the structure of the relaxation layer depends
strongly on the degree of ionization of the gas. Consider first a neutral gas

composed of atoms and diatomic molecules. The most rapid of all relaxa-
tion processes is the establishment of equilibrium among the translational

degrees of freedom (ie., of a Maxwellian velocity distribution). Typically

only a few collisions are required to effect a complete randomization of
particle motions and kinetic energy, hence a Maxwellian is usually estab-

lished within a few mean free paths. Indeed, to a good approximation, the
translational relaxation layer is coincident with the dissipation layer, and
we can assign a unique kinetic temperature to each particle species at every

point in the flow. Similarly, molecular rotation is typically quite easily

excited in only a few collisions, and this degree of freedom usually remains
in equilibrium with translational motions.

In contrast, molecular vibrational modes, which first become excited at

temperatures of the order of 10s K, may require hundreds to thousands of

collisions to come into equilibrium, and the vibrational relaxation layer in
cool material and/or weak shocks may be much thicker than the dissipation
layer. However, as temperatures rise to a few thousand kelvins, either
because the upstream material is hot or because the shock is strong,
vibrational relaxation proceeds much more rapidly, and is displaced from

its role as the slowest process by molecular dissociation. When tempera-
tures reach about 104 K in the downstream material, molecular dissociation
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proceeds very rapidly and the limiting process becomes ionization, which
we discuss further below.

To gain insight into the effects of relaxation processes on shock structure
in a neutral gas we make the idealization that the shock is composed of two

distinct regions: (1) a very thin dissipation zone (also called the external
relaxation zone) in which viscosity and conduction effects are large, and

within which equilibrium of the translational (and perhaps other) degrees

of freedom is achieved, followed by (2) a relaxation zone (also called the
internal relaxation zone) in which viscosity and conduction are unimpor-

tant, but some hitherto incompletely excited degree of freedom comes into

equilibrium. These zones are assumed to be separated by a definite
interface. As before upstream and downstream quantities are denoted by

subscripts “1” and “2” respect i\lely; properties at the interface are denoted

by a subscript “i”. Then the conservation relations are

pU=pLU7 ‘piUi ‘pzU~=ti> (57.42)

p+pU2=pi +p~U~=pi+piu~ ‘p2+p2ul, (57.43)

and

h+&2=hl +$,tf=hi+&t~=h2+&~. (57.44)

where unsubscripted variables denote quantities measured downstream
from the interface. The enthalpy hi includes only contributions from the

translational and other rapidly excited degrees of freedom, other degrees

of freedom still being frozen at their upstream values.

In this idealized description the material undergoes the transition

sketched in Figure 57.6. Joining the initial state A to the final state C is
the straight line (56.9). If all degrees of freedom were excited as rapidly as

translational motions, in the ciissipation zone the material would jump
essentially discontinuously from A to C as defined by the intersection of

the equilibrium Hugoniot with the straight line. But if some degrees of

freedom are frozen during passage through the dissipation zone, the
material has, in effect, a larger -y than it would in equilibrium [recall from

kinetic theory that -y = (n + 2)/n where n = number of available degrees of

freedom]. Therefore in the dissipation zone the material jumps essentially
discontinuously from A only to point B, defined by the intersection of the

straight line with a nonequi]ibrium Hugoniot which has a steeper slope
than the equilibrium curve. Point B corresponds to (pi, Vi) at the interface.
The material then slowly relaxes along the straight line to its downstream

equilibriuln state C.

From (57.43) one has

(P. - Pi)/(P,– P,)= (w - %)/(1 - T2). (57.45)

In a strong shock q, =+ even if only translational motions are excited, and
given that ~z z O, we see that the fractional pressure rke in the relaxation

zone is always small, less than 25 percent of the totaf pressure jump in the



WAVES, SHOCKS. AXD WINDS 253

\c

k
\‘“.,
\ ““.B

$’\ ““”...
Nonequilibrium

+ Q/$&\\ “’”..., Hugoniot
’90

0 %.. \:’ .........
‘o,

\ . ...-._. A

I I I *
V’2 Vi v, v

Fig. 57.6 Shock transition in material with a nonequiJibriurn relaxation layer.

shock. The pressure variation in the relaxation zone is sketched qualita-
tively in Figure 57.7a. The enthalpy increase behind the intcrface is even

smaller. From (57.44) \ve ha\Te

(h,- !ai)/(h2- h,)= (?-f– Tf;)/(1– q;) (57.46)

and by the same reasoning we see that the fractional enthalpy increase in
the relaxation zone is less than 6 per cent of the total.

Exploiting the result that h is nearly constant in the relaxation zone we

can write
Ti/T, =y2(y, –l)/yt(y,– 1), (57.47)

where y, and -yZ are, respectively, the effective adiabatic exponents at the

interface and far downstream. Because yi a yz, (57.47) implies that the

shock has a significant temperature overshoot immediately behind the

dissipation zone, as sketched in Figure 57 .7b, followed by a long, irwiscid,
nonconducting tail in which the temperature decreases to its equilibrium
value. Such shocks are called partly dispersed, with part of the total shock

dissipation occurring in classical dissipation mechanisms (viscosity, conduc-
tivity) and part in a lagging relaxation process. If the shock is sufficiently
weak it can become fully dispersed by relaxation processes alone, and the

sol ution is cent inuous even in the absence of viscosity and thermal conduc-
tivity.
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Fig. 57.7 Pressure, temperature, density, and velocity variation as a function of
spatial position in a shock with a nonequilibrium relaxation zone.

The postshock temperature overshoot can be quite substantial. For
example, if yi = ~ (only translational motions) and -yZ= ~ (translation plus

molecular rotation), Ti/T2 = 1.4; if -yZ= ~ (translation, rotation, and vibra-

tion), T~/Tz = 1.8. Furthermore, noting that p - p/T, we see that the modest
rise in p coupled with a significant drop in T leads to a fairly large rise in p

in the relaxation zone, as sketched in Figure 57.7c. By continuity, u varies
inversely as p, as sketched in Figure 57.7d.

(b) Fully Ionized Plasma Suppose now that the gas is sufficiently hot that

all molecules have been dissociated, and it is composed of atoms, ions, and
electrons. Indeed, consider first the extreme case of a completely ionized
hydrogen plasma containing only electrons and protons (11), (S10). As a
first step in describing the shock structure we suppose that thermal
conduction in the plasma can be neglected. Then the only relaxation
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phenomenon that occurs is the equilibration of the postshock kinetic

temperatures of the two species of particles.
Initially, in the upstream material, T. = TP= T1. As the material passes

through the shock front, Coulomb interactions among the protons produce
viscous forces that dissipate a large fraction of the protons’ directed kinetic

energy into thermal motions, producing a large proton temperature rise
A To - m~u~/ k - (mPa~/k)M~ within a layer of thickness 8- u2tPp,where ~p

is the proton self-collision time [cf. (10.26)]. Because the electron self-

collision time t.. = (m,/rnP)l’ztPP ‘ALP, the electrons also have adequate
time to convert their own directed motions into thermal energy within the

dissipation zone. However, this mechanism leads to an electron tempera-
ture increase of only AT. - m.u~/k = (m,/mp)ATU - ~ ATP, which is

clearly negligible. Furthermore, the electron -proton energy-exchange time

is much too long [tep= (~/m. )1’2tPP= (rnP/m.)t..] to permit significant

energy transfer from the protons to the electrons within the dissipation

zone, hence an opportunity for a large discrepancy between T. and Tn

arises.
The strong Coulomb forces coupling the electrons and protons assure

that there can be no charge separation over distances much larger than a

Debye length. Therefore, as the protons are compressed in the shock, the
electrons are also compressed by the same amount, and because the

electrons cannot exchange energy with the protons in the time available
(and, for the present, we are ignoring thermal conduction), this compres-

sion occurs essentially adiabatically. Hence the electron temperature just
downstream from the front is T.,i = (p2/pi)”-’Tl, or, for a strong shock

(p~/pl = 4) in a monatomic gas, T.,, = 2.5TI. This is a large rise, but still

much smaller than that experienced by the protons for large Mach num-

bers.
Within the framework of assumptions made above, we can derive a

simple quantitative relation between T, and Tp in the downstream flow.

Behind the dissipation zone the pressure is nearly constant, hence

(57.48)p = n=kT. + nPkTD=p2 = 2n.2kTz,

which, because the plasma is fully ionized (n, = ~) and the postshock

density is nearly constant (n== neJ, implies that

T,+ TP =2 T2=~M;T1. (57.49)

For a completely ionized plasma of electrons and ions of charge Z, (57.49)
generalizes to

ZT. + Tie. = (z+ l) Tio.,2 = +(Z+ 1.)M? T,. (57.50)

For example, if Ml= 4 in hydrogen, Tz = 5 Tl, and given that T.,, = 2.5TL
(adiabatic compression of the electrons), (57.49) shows that TP,i= 7.5 T].
As the plasma flows downstream, energy exchange between the electrons

and protons finally occurs, producing a large temperature-relaxation layer
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in which TP decreases, and T. increases, towards T2, in accordance with

(57.49). The resulting temperature profile is sketched in Figure 57.8a.
The picture described above is seriously inadequate, however, because

we have ignored conduction effects. This omission is appropriate for

protons because the characteristic length scale of the temperature gradient
in the relaxation zone greatly exceeds AP,.O,O,,,the length scale o\~er which

viscous and/or conduction effects by protons are important. However the

situation is quite different for electrons. From (10.23) or (1 0.26] we see
that the mean free path of particles in a plasma is independent of a
particle’s mass, hence in ionized hydrogen (Z= 1), A. = AP,.O,O,,, which

implies that the thermal diffusivity for electrons x. cx ficA. is X. =
(rnp/nI.)1’2XU (as noted also in $33). Thus the characteristic length scale
over which electron conduction is important is

1. – (xe/u2) - (mD/rrLe)’’2(x./ u2) - (?Jt./J’?’Le)’2A.,.,.., (57.52)

that is, 1. is of the same order of thickness as the relaxation zone.
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Therefore, thermal conduction by electrons transports energy very effi-

ciently throughout the entire relaxation zone, and thus strongly heats the

electrons immediately behind the dissipation zone, while simultaneously
promoting a more rapid equilibration of Tz with T, because heat is

transferred to the postshock electrons by heat conduction at about the

same rate as energy is transferred from the protons. Much more important,
because the electron velocities behind the shock are roughly a factor of

(~o/~.j”2 larger than the downstream flow speed, the electrons can

overtake the shock front and conduct heat into the upstream material

before the shock front arrives. This conduction precursor efficiently pre-
heats the upstream electrons, which then transfer some of their excess

energy to the upstream ions. The result is a temperature structure like that

sketched in Figure 57.8b. (We will find a similar phenomenon, the radia-
tion precursor, for shocks in radiating fluids, see $$104 and 105).

Shaf ranov (S10) made cietai led numerical calculations of shock structure
in ionized hydrogen, including the effects of electron thermal conduction,

for a wide range of upstream Mach numbers. In the limit of very strong

shocks, Ml J>1, he obtains the results listed in Table 57.1, which apply

immediately in front of and immediately behind the viscous dissipation
zone. Note that the electron temperature is now continuous across the

dissipation zone (for which reason such shocks are sometimes called

electrort-isotherrnal shocks), and has almost achieved its final downstream
value already at the shock front. Similarly the protons are preheated to

about 15 percent of the downstream temperature, and the postshock
proton temperature overshoot is now only about 25 percent of the down-

stream temperature, the rest of the excess proton energy predicted by

(57.49) having been consumed in heating the electrons.
In his numerical work Shafranov found that below a certain critical Mach

number electron conduction is sufficient to produce fully dispersed shocks
(i.e., all variables continuous across the front). For a plasma of electrons

and positive ions of charge ~, Jmshennik (11) derived analytical formulae
for the critical Mach number

(M;).,,, = [y24(3zi- l)y-zl/Y[(3z+ ~) - Y(Z - 1)1> (57.53)

Table 57.1. Physical Properties at Shock Fron I
in a Hydrogec Plasma for M, >>1

Quanlity Prtshock Postshock

010, 1.131 3.526

TJT, 0.29M; 0.29M;
TJT2 0.92S 0.92S
‘r,,/-r, 1.2Y0.05M; 0.387M;
‘rl,irz 0.16+(3,84/M;] 1.238
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the criticaf pressure jump

(pJpL)c.it= (z+ I)(’y+ I)/[(z+ 1)(Y+ 1)-2z(y - l)], (57.54)

and the critical volume ratio

(~’?-)crit= [(z+ 1)7(% + 1)- Z(Y2- ~)l’[(z+ 1) ’Y(’Y+ l)-Z(Y - 1)212
(57.55)

separating full y dispersed and discontinuous shocks. As Z -+ ~, (57. 53) to
(57.55) reduce to the single-fluid Rayleigh formulae (57.37) to (57.39). For

Z = 1 shocks are fully dispersed when M? <~== 1.125, pJpl <$ and
q22+$ = 0.842. For any y >1 the critical Mach number, or pressure jump,
above which we get discontinuous electron-isothermal shocks is a
monotone increasing function of Z.

(c) Weakly Ionized Monatomic Gas If instead of a fully ionized plasma
we start with a weakly ionized monatomic gas and generate downstream

temperatures of about 104 K to 2 x 104 K in the shock, the slowest post-

shock relaxation process is ionization of the gas. If the material is originally

completely neutral, the first few ion izations behind the shock are produced

by atom-atom collisons; this mechanism is slow, and if it were the only
ionization mechanism the material would remain neutral for very large

distances downstream. However, once a few seed electrons have been

produced, subsequent ionizations occur efficiently via electron-atom colli-

sions, which are far more effective than atom-atom collisions because the
electrons: (1) move much faster than the atoms, hence collide with many

more particles per unit time and (2) are charged, hence interact strongly
with atoms via the long-range Coulomb potential. (In a multi component

gas, e.g., a stellar atmosphere, the seed electrons may come from trace

elements such as Na, Mg, Al, K, and Ca, which have low ionization

potentials and are thus easily ionized while the dominant constituents H
and He, which have much higher ion ization potentials, remain completely

neutral.) Thus the seed electrons rapidly produce yet more electrons and
generate an electron avalanche, which runs away exponentially until ulti-

mately quenched when the ion density becomes large enough that recombi-
nation can equilibrate against the rate of ionization.

Because the amount of energy required to ionize each atom is typically

much larger than the average thermal energy of an electron, only the

electrons far out on the Maxwellian tail are effective. After they collision-
ally ionize an atom these electrons end up with much lower velocities,

hence the electron gas is cooled. The tail of the distribution can be
replenished in a few electron self-collision times, but the factor 1imiting the
replenishment (hence the growth rate of the electron avalanche) is the rate

of energy transfer from the shock-heated atoms to the electrons. Initially
this energy exchange is very slow because electron-atom collisions transfer
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Fig. 57.9 Temperature and ionization-fraction variation as a function of spatial

position in a shock in ionizing material.

energy inefficiently. But as the plasma becomes ionized, energy is transfer-

red more rapidly in a two-step process: (1) atoms transfer energy to ions
efficiently (because they have equal masses) and (2) the ions transfer
energy to the electrons via Coulomb collisions (which are effective because

of the. long-range potential). Eventually the drain of energy to the electrons

cools the atoms and ions, and the temperatures of all three particle species
equalize at T2, as sketched in Figure 57.9. Similarly, the ionization fraction

saturates to its equilibrium value.
In most situations of astrophysical interest, radiation plays a more

dominant role in determining excitation and ionization within the shock
front and relaxation zone than the mechanisms just described. The radiat-

ing shock problem is more complex because photon mean free paths
usually greatly exceed particle mean free paths. Hence radiation can force

a nonlocal coupling of conditions at one point to those at widely separated

points and can drive substantial departures from local thermodynamic
equilibrium. Examples of such phenomena are described in (Kl) and (K2);
we discuss radiating shocks in Chapter 8.

58. Propagation of Weak Shocks

Having considered steady shocks in some detail we turn to the propagation
and dissipation of shocks (both single pulses and trains of shocks) in a

stratified medium such as a stellar atmosphere. For the present we confine
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attention to weak shocks (-ms 1 or #s 1), which can be treated analyti-
cally, returning to strong-shock propagation in $60.

A major goal of weak-shock theory is to account for shock-wave

dissipation. Dissipation is important because it bleeds energy from shocks

and ultimately quenches them. Indeed, from the outset dissipation retards

the growth of acoustic disturbances into the nonlinear regime and thus
raises the height of shock formation in the atmosphere. Furthermore, once

a shock forms, dissipation reduces (or at least retards the growth of) the

shock’s amplitude, hence extends the range of validity of weak-shock

theory. Finally, dissipation provides a basic mechanism for nonradiative
heat input into the atmosphere, a matter of great interest in astrophysical

calculations.

In constructing the theory we must make several simplifying assump-

tions. (1) The material is a perfect gas with constant ratio of specific heats
y. We thus neglect ionization effects, which can be an important sink of

thermal energy in shock-heated gas. (2) The shocks propagate strictly

vertically in an isothermal atmosphere in hydrostatic equilibrium. (This

model provides a rough caricature of the temperature-minimum region of

the solar atmosphere.) We thus suppress refraction and reflection effects.
(3) We ignore the back reaction of the shocks on the ambient medium. This
is an important omission because shock heating may significantly alter the

thermodynamic state of the atmosphere, and deposition of shock momen-

tum may extend the atmosphere (ie., increase its scale height). (4) We
ign-ore the gravitational potential energy (buoyancy energy) in, and trans-

ported by, the wave. Therefore the theory can be accurate only for waves
with frequencies much higher than the acoustic cutoff frequency. (5)

Finally, we ignore radiative energy exchange, which is important in as-

trophysical applications; we return to this aspect of the problem in Chapter

8.
Despite its obvious limitations, weak-shock theory provides useful in-

sight into the physics of shock propagation and has been popular in a wide
variety of applications. The theory developed here follows the approach in

(S13), to which the reader is referred for further details; see also (B1O,
Chaps. 6 and 7), (B5), and (B6).

PROI’AGATION OF N WAVES

Consider the propagation of a small-amplitude, periodic acoustic wave.
Because the phase velocity

VP(u) =ao++(-y+l)u (58.1)

is largest at wave crests and smallest in the troughs, the wave steepens, the

crests eventually overtake the troughs, shock, and produce a propagating N
wave.

If the velocity profile is initially sinusoidal, u = ~uO sin (2mz/A), then the

crest of the wrave overtakes the wave front with a speed ;(-Y + 1) MO,which is
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also the speed with which the wave front overtakes the preceding trough.

Therefore the peak and trough coalesce into a vertical front when

J
z

+(7+1) Luo(t’)d’ = +(-y+ l)a~’
J

UO(Z) dz = ~A. (58.2)
0 0

For a uniform medium Uo(z) = Uo, hence shocks form after the wave
propagates a distance

Z=aoA/(-y+l)uo. (58.3)

In an isothermal atmosphere the velocity amplitude of an acoustic wave

scales as Uo(z) ~ p~”z a exp (z/2FI) where H is the scale height. In this

case, (58.2) yields a shock-formation distance

Z=2Hln
[

UOA

1+1
2(7 + l)UOH

(58.4)

Notice that in both cases the distance for shock formation increases with

increasing A, hence short-period waves steepen into shocks sooner than
long-period waves (see Figure 58.1).

After the wave travels a distance Z it has become an N wave with
velocity profile

U(Z) = ;Uo[l – (2z/A)], (OSZSA), (58.5)

which implies that at a fixed position in the medium the velocity varies as

u(t) = +Uo[l – (2t/7)], (osts T). (58.6)

The shock travels with the velocity of the wave crest, namely

V,hock = ao+i(y + I)uo (58.7)

hence

~=M2—1 =*(Y + l)uo/ao. (58.8)

The energy transported by the wave in one period is

JI% ‘@~= ‘ (P– Po)~dt (ergs cnl-’)
o

(58.9)

But for a weak shock p – PO= ypou/ao [cf. (48.24a) or (56.44)], hence

J
.

EW= (ypo/ao) Uz dt. (58.10)
o

In particular, for an N wave

Ew = &YpoU3T/CLo = Apou~A = -ypo~2A/3(7 + 1)2. (58.11)

Taking the logarithmic derivative of (58.11) and rearranging, we find an
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Fig. 58.1 Development of monochromatic acoustic waves into shocks in a model
solar atmosphere. From (U3), by permission.

equation for the variation of the Mach number with height:

ldmlllldEWldA

( )rndz=~H ~dz Adz’
(58.12)

where H is the pressure scale height of the ambient atmosphere.

We can evaluate (dEW/dz) by noting, from (56.56), that the amount of

energy dissipated, per gram, by the shock is

Aq = T As = 2ypOwz3/3(y + I)zpO (ergs g-’) (58.13)

while the mass flux into the shock front is pOv~~Oc~(g cm ‘2 s– ‘), hence the
average rate of energy loss by the shock is (@Jolt) = ‘Po%o@q

(ergs cm-’ “s ). Dividing by the shock velocity we obtain

(dE,v/dz) = –2ypon3/3(y + 1)2. (58.14)
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Combining (58. 11) and (58. 14) we see that for an N wave

(dEW/dz) = –2rnEWjA. (58.15)

In a weak N wave, each pulse peak moves as fast as the one that
precedes it, hence the spacing between pulses remains constant, A = AO.

Using this result and (58. 15) in (58.12) we obtain the propagation equation

d:+l. l-()–dz rn 2Hrn=~’

which has the solution

(58.16)

where mO measures the Mach number at a

z = 0. From (58.17) we see that for z >>H

m + AO/2H,

7/2H
> (58.17)

convenient reference height

(58.18)

which leads to the remarkable conclusion that in an isothermal atmosphere

an N wave propagates asymptotically with constant shape (i.e., constant
wavelength AO and amplitude m). The tendency for the wave amplitude to

grow exponentially as the density decreases is exactly balanced by the

increased rate of dissipation, hence damping, resulting from a larger
amplitude. This result is fortuitous; we will now show that a single pulse

behaves quite differently.

PROPAGATION OF A PULSE

Let us now consider the propagation of a single pulse of total width A.

Suppose the initial velocity profile is the sinusoid u = UOsin (mz/A). A
shock forms when some part of the profile becomes vertical. One can easily

show that this condition is first met right at the front of the wave, in a time

T given, for a uniform medium, by

(58.19)x = +(Y + 1) UOsin (mx/A) T.

For xc< A, (58.19) implies that the shock forms in a distance

Z = aOT= 2aOA/w(y+ l)uO, (58.20)

which is a factor of (2/7r) smaller than for an N wave. We can apply the

same factor to (58.4) to estimate the distance for shock formation in a

stratified atmosphere.

Once the pulse has steepened into a shock the velocity profile becomes

u(z) = UOII – (z/A)], (O= Z= A), (58.21)

so that at a fixed location the velocity varies in time as

u(t) = u~[l – (t/T)], (osts T). (58.22)

—.
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Using (58.22) in (58.10) we find that the energy transported by a pulse is

13W= ~pOu~A = 4ypOm2A/3(y + 1)2, (58.23)

that is, exactly four times the energy in a single period of an N wave of the

same wavelength and total velocity jump at the front. The N wave
transports less energy because the downward motion in the tail of the wave

partial Iy cancels the effect of the upward motion at the head of the wave.
Unlike an N wave, a pulse changes shape as it propagates because the

head of the pulse, traveling with speed MaO, always outruns the tail of the

pulse, traveling with speed a.o. Thus

(dA/dt) = (M- l) CLO=+WZaO, (58.24)
or

(d.A/dz) =&. (58.25)

Using (58.23) in (58.14) we have

(dE,Jdz) = -rnEW/2A, (58.26)

and using (58.26) and (58.25) in (58.12) we have

nz-’(dm/dz) = (1./2H) - (m/2A). (58.27)

Equations (58.26) and (58.27) completely describe the propagation of the

pulse.

Using (58.25) to eliminate z from (58.27) and solving we find

m = (A)2H) – (K/A), (58.28)

where K is a constant. Substituting (58.28) into (58.25) we then have

(dA/dz) = (A/4H) - (K/2A) (58.29)

which has the solution

A’= K’ez~2H + 2HK (58.30)

Evaluating the constants so that A = AO and m = m. at z = O, we find

A = AJ(2HmJAJ(ez’2F’ – 1) + 1]”2 (58.31)

and

m = mOe “2H[(2Hm0/A~(ez’2H – 1) + 1]-”2. (58.32)

From (58.32) we see that for (z/H) j> 1.,

z14H –1/4m~e
‘P(J 7 (58.33)

in contrast to small-amplitude waves, for which the velocity amplitude

increases as p~’i2; this slower growth is attributable to a loss of wave

energy via dissipation as the wave propagates.

AppliCatiOnS TO ‘ru E 50LAR CUROMOSpHERE

Following the early work of Schatzman (S3), various forms of weak shock
theory have been applied to the propagation and dissipation of shocks in
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the solar chromosphere by several authors [see e.g., (01), (31), (Ul), (U2),

(U3), and the summary in (B1O, Chaps. 6 and 7)]. Most of this work makes

allowance for radiative energy losses in addition to viscous dissipation.

Some typical results showing the steepening of monochromatic acoustic
waves are displayed in Figure 58.1. The waves are drawn whenever the
wavefront reaches a multiple of 100 km. One sees clearly that short-period

waves steepen into shocks sooner than long-period waves, as predicted by

(58.4). The waves are heavily damped by radiative losses at heights below

about 500 km, but develop into shocks quickly thereafter. The calculations

cited suggest that the observed radiative energy loss by the chromosphere
can be sustained by the dissipation of weak, short-period shocks with
~< 0.4 to 0.5, for which weak-shock theory should be valid.

A critical assessment of the accuracy of weak-shock theory can be made

by comparing its predictions with the results of full nonlinear calculations,
as was done by Stein and Schwartz (S13), (S14). They find that the theory
gives reasonable results so long as the wave period T is much shorter than

the acoustic cutoff period Ta =200s; as ~ -+ ~a the contribution of gravita-

tional terms omitted from the theory described above become increasingly

important, and the quality of the results deteriorates rapidly.

Stein and Schwartz also found that weak-shock theory always tends to

overestimate the rate of growth of m with height; the effect is small for
~ <25 S, but is major for 7> sO S. A consequence of this too-rapid growth

of m is that the dissipation rate predicted by weak-shock theory is too
large; for ~ -100 s it is in error by almost a factor of 10 (S14), and for

~ - 400s the error is se\eral orders of magnitude. Indeed, even for the

same Mach number, weak-shock theory predicts a larger dissipation rate
than the nonlinear theory, by about 10 percent for ~ = 0.28 and about 50
percent for m = 3 (M= 2]; the latter value should not be surprising,
however, because weak-shock theory explicitly assumes that m<< 1. The

calculations show that almost 90 percent of the shock energy is deposited

of heights less than 2000 km, and the damping length for short-period
waves is only 500 km. Furthermore, it is found that it is essential to

account for ionization effects and radiative losses in calculating the shock-
induced temperature rise of the material. The temperature increase calcu-

lated by assuming that the gas is adiabatic is a factor of three too large.

CRITIQUE

Despite its frequent application in astrophysics, it is clear that weak-shock

theory has only limited validity; an interesting critique of this approach is
given in (C1O). Besides being only linear, the theory contains numerous

other approximations, which must be invoked in order to obtain analytical
results. Ultimately it is based on Brinkley -Kirkwood theory (Bll), which
makes very simplified assumptions about the thermodynamic path followed
by the materla] through and behind the shock, rind further assumes that the

postshock flow can be described by a similarity sollltion (cf. S60).
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Most astrophysical calculations using weak-shock theory have been
made for one-dimensional, infinite, monochromatic wave trains. This pic-

ture is a gross oversimplification for flows (e.g., in the solar chromosphere)

containing a field of large-amplitude waves having different periods and
directions of propagation, and neglects completely the possibility of wave-
wave interact ions (e. g., when a shock overruns another shock or a raref ac-

tion). Moreover the theory formulated above omits gravitational energy

terms, which are very important for waves with ~ = 7aC; allowance for such
terms has been made in a theory developed by Saito (S1), which is

discussed briefly in (B1O, p. 296 and p. 343). The most serious flaw in the
theory discussed thus far is the omission of radiation losses; some 60 to 80

percent of the energy in short-period waves is lost to radiative damping.
We remedy this defect in Chapter 8.

The difficulties described above demonstrate the need for a more power-
ful method. We therefore turn to numerical techniques, which not only can
handle the full nonlinear equations, but are also versatile and flexible

enough to (1) permit a detailed description of the microphysics of the gas,

(2) allow for structural complexities in the ambient medium (e.g., tempera-

ture and ionization gradients), (3) allow for wave-wave interactions and the

back reaction of the waves on the background atmosphere, (4) be
generalized easily to include the transport of energy and momentum by
radiation, and (5) account for radiation-induced departures from local

thermodynamic equilibrium.

59. Numerical Methods

One of the most effective methods for solving the equations of hyd-
rodynamics is to replace the original differential equations by a set of finite

difference equations that determine the physical properties of the fluid on
discrete space and time meshes. Given suitable initial and boundary

conditions we follow the evolution of the fluid by solving this discrete

algebraic system at successive timesteps. Two problems to be faced are that
(1) we must assure that the finite difference equations are numerically

stable and (2) an efficient scheme must be found for handling shocks, which
can produce discontinuities in the solution at or between mesh points.

In this section we do not attempt to discuss state-of-the-art methods, but

confine our attention to one basic technique that has been successful in
man y applications; this example provides a good introduction to the vast
literature on the subject. A fundamental reference on the’ numericaf

solution of fluid-flow problems is the classic book by Richtmyer and
Morton (R4). More powerful modern techniques are discussed in (W7).

NUMER ICAL SIMULAI”IOINOF ACOUSTTC WAVES

To obtain insight we start with a simple physical problem: the propagation
of adiabatic acoustic waves in a perfect gas with no external forces. In
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planar geometry the Lagrangean dynamical equations are

(Du/Dt) = -(@/&n),

(Dx/Dt) = ?),

v= I/p= (dx/am),
and

(De/lX) = -p(13V/Dt).

The system is closed by adjoining an equation

P =P(P, e).

(59.1.)

(59.2)

(59.3)

(59.4)

of state of the form

We now discretize the system in both space (i.e., mass) and time. First
we divide the medium into a set of mass cells by choosing a set of values

{mi} giving the Lagrangean coordinate of cell surfaces, as sketched in

Figure 59. la. The cell surfaces are located at spatial positions {xi}, which

Vj-1 Vj Vj+l Vj+2

Pj-V. I-JPj+V2 Pj+3/2
● ● ● (a)

Pj-Y2,ej-1/2 Pj+Y2tej+!z Pj+72~ej+?2

I?lj-1 tllj ~1’llj+g fnj+l Illj+z

Xj-1 Xj Xj+l Xj+2

+n+l . m
? v T m

+n+Y.. Ab 4k

tn t A. h Ak II

+n-V2 A 4

A=v

■=x

●=plw

(b)

j-1 j-Y2 j j+V2 j+l

Fig. 59.1 (a) Centering of physical variables on Lagrangean mesh. (b) Spacetime
centering of physical variables on Lagrangean mesh.
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vary in time as the fluid moves; in contrast the Lagrangean coordinates

{mi} ~emain fixed in time. We assign all thermodynamic properties to cell
centers, and denote them by half-integer subscripts: Pi+(llz,, pj+[i/Z), ei+(Liz).

similarly, the (fixed) mass contained ]n a cell is Am i+(l,zl = rnj+l – mj. Jn

order to track the motion of the Lagrangean grid {mj} through physical
space (x j, ve]ocit ies are assigned to cell surfaces (e.g., v]].

Next we choose a discrete set of times {t”} at which the thermodynamic
properties of the fluid are to be determined. We label variables with

superscripts corresponding to their location in time [e.g., p~y(l ,2) for p at

the center of cell (j, j+- 1) at time t“]. Noting that we wish to know interface

positions at the same time levels as the thermodynamic variables (because
the density of a cell of fixed mass is determined by its VOIume), it is clear

that velocities should be time centered midway between these levels [ie.,
at tn--( l/2) _ 1

=~(zn + t“+’)]. The location of the variables in spacetime is
sketched in Figure 59. lb.

The differential equations (59. 1) to (59.4) are then replaced by

vP1i{/z) = l/P7i\[/z) = (XJT~I’– xjn-k])/Ami+[]/a, (59.7)

and

Here At Fl~(J/2J= ~r,+l _ ~lt, AtF1 ~~[Af-(1/2) +AfL+(J/2’)], and A,ni z

i[Af~,-(1/2j + A~i+~/2)]. Given {~i}n-(’’2), {xiY, {Pi+(u2)~, {Pi+( u2)}” and

{ej.,.(,,~~}”, either from initial conditions or from a preceding integration
step, we solve (59.5) to (59.8) in the order indicated to obtain {vi}”-’(’ ‘2),

{xi}’’+’, {Pi+(,{z)}”’+-’, {ei+[m)}’’+], and finally {Pa,+}’””’ = {P[V~~’W
e7J~;/2)1}.

As written, the system is explicitj that is, each variable is determined by
direct evaluation using information already available. But it should be

noted that the accuracy of (59.8) is impaired because p in (59.2) should

really be evaluated at the midpoint of the integration interval, say as

+[P;-..wz + P,v+ILxJ instead of at one end (t”). If this is done> then two
unknowns, p~.~ijzl and e~.~llzj, appear in (59.8), which must now be solved
simultaneously with The equation of state. In the special case of a perfect

gas with constant specific heats, we can use the relation p = (y – I)pe to

eliminate either p or e and thus recover an explicit equation for either

p~’$(\/z) or ep;~’,lz). But in general, when the physics of the gas is more
complicated (e. g., by ionization), some kind of iteration procedure must be
used to solve the coupled equations. As we will see below, in practice it is

almost always necessary to make this additional effort anyway to assure
numerical stability and energy conservation.
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THE PROBLEM OF NUMERICAL ST.4B 11-TTY

If one attempts to solve (59.5) to (59.8) numerically, starting from smooth

initial conditions, one finds that for sufficiently small timesteps At the
solution remains smooth, and provides a good approximation to the

analytical solution of (59.1) to (59.4). If, however, At is greater than some
critical value, then starting from the same initial data the numerical
solution quickly develops unphysical oscillations that rapidly grow and

eventually swamp the true solution. This behavior is the result of a
numerical instabili~ of the finite difference equations, which, under certain

circumstances, can aflow small errors (e. g., roundoff) in the calculation to
become progressive y amplified until they dominate the computation.

Experience has shown that in solving complex physical problems it is

essential to perform a stability analysis of the difference equations used to
model the system.

One of the basic tools of stability theory for initial-value problems is the
oorL Neumann local stability analysis, which exploits the fact that a differ-

ence equation

y:= L/(x,t, y), (59.9)

where L is a linear difference operator on a uniform spacetime mesh

(xi = j Ax, t“ = n At) can be solved exactly by a Fourier series of the general

form

(59.10)
k

In (59.10) the coefficients are determined by the imposed initial and

boundary conditions. Each harmonic grows or decays independently of the

others; .$~ is the amplification factor (or growth factor) for the kth Fourier
component over the time interval At. If the solution is to be stable, we must
guarantee that no harmonic can become unbounded. Thus a necessary
condition for stability is that the modulus I)$klls 1 for all k. If this condition

is met, no hamlonic will be amplified; if it is violated, some harmonic can
grow without limit and the solution becomes unstable.

As an example, consider the equation

(dp/dt) + I+,(dgdax) = o, (59.11)

which describes the advection of material by a constant velocity field; we

assume that DO> O. The general solution of (59.11) is p = f(x – vOt) where f
is an arbitrary function fixed by initial conditions; this solution is a

tra\eling wave in \vhich the original distribution of the material is displaced
to the right without an alteration in form. Suppose we represent (59.11) by
the difference equation

(p;-’ - p~)/At = -vO(pJj, -p;-,)/2 Ax, (59.12)

which is centered in space and explicit in time. Taking a trial SOIution of
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the form

~,!(~) = ,veiki Ax, (59.13)

we find that (59.12) implies that

& = I–is sin k~x, (59.14)

where a = VO At/Ax. The modulus of <k is thus

11.f~ll= (l+az sin2 kAx)”2= I. (59.15)

Hence the difference scheme is unconditionally unstable, that is, it is unstable
for any finite At, no matter how small!

Alternatively, suppose we represent (59.11) by

(P;+’ - P;-’ )/2 At= ‘%(P;+, – (+,)/2 Ax, (59.16)

which is centered in space and a leapfrog in time. Substituting (59.13) we
now find

(59.17)

where /3 = a sin kAx. Equation (59.17) has the solution

fk=–@*(l-~2)’/2. (59.18)

When ~2> 1, Ilfkll> 1; when /32s 1., llf~ll = 1. Thus (59.16) is conditionally
stable, that is, it is stable provided that l(vO At/Ax) sin kAx Is 1 for all k,
which implies that we must choose At such that

V. At/Ax s 1. (59.19)

Equation (59.19) is an example of the famous Courant condition (C7)
which, in physical terms, states that the timestep must be sufficiently small

that the wave cannot propagate over more than one spatial cell Ax in the

interval At. We will encounter the Courant condition again in many other

contexts.
Another stable difference-equation representation of (59.11) is obtained

by using upstream (or upwind) differencing, writing

(P:+’ - p,n)/Af = ‘VO(P:– p,n_l)/Ax, (59.20)

which is explicit. Physically, (59.20) recognizes that material flows into cell

j from cell j – 1. Substituting (59.13) and calculating the amplification
factor, we find

llf~ll= l+2cI(l-a)(cos kAx-1). (59.21)

For Os as 1, llf~ll reaches its maximum when cos kAx = 1, in which case

]I<kl[= 1, and the difference equation is stable. For a >1, llf~ll is rnaxirnizecl
when cos kAx = –1, in which case llf~ll = (2a – 1)2> 1. Hence (59.20) is
stable only if the Courant condition is satisfied. We thus see that a given
differential equation may have more than one stable difference-equation
representation, as well as unstable representations.



WAVES, SHOCKS, AND WINDS 271

The above analysis applies to a single difference equation. In practice,
we are more often interested in the stability of a system of M equations of

the form
Y“ = L(x, L Y), (59.22)

where L is a linear difference operator coupling Y“ and y“- [, and y“ (x)

denotes the numerical approximation, obtained from the difference eq ua-

tions, to the true solution y(x, nAt) = [y [(x, nAt), . . . . y~(x, nAt)] of the
differential equations. Representing the solution by a Fourier series with

amplitudes a~, one can show that (59.22) is equivalent to

a;= G(At, k)a:–l (59.23)

M/hel-eG(At, k) is the M x M arnphjication matrix for the kth harmonic.

The stability of the system of difference equations clearly depends on the
behavior of [G(At, k)]” for Os nA ts T, and intuitively it is obvious that we

can achieve stability only if there exists some number ~ such that for

(Os Ats T) and (Os nAts T) the matrices [G(At, k)]” are uniformly
bounded for all k, in the sense defined below.

We define the bound of a matrix F to be

ll~l=fi:~ IFvI = ~jfi (lFVt/h/); (59.24)

here \vl is the usual Euclidian norm of v, that is, Ivl = (v;+. ..+ ufi)”2. Thus

the bound of F is the maximum norm of the vectors resulting from the

operation of a transformation F on the h4-di mensional vector space

(v, w, etc.). If the eigenvalues of F are Al,. . . . AM, we define the
spectral radius R of F to be max Ikil, (i = 1, . . . . M). It is easy to see that
~lFll~ R because the maxinlum value of lfil/lvl cannot be less than the val~le

obtained \vhen v is the eigenvector corresponding to R, and may exceed
this value if we can choose v astutely (e.g., as a linear combination of
eigenvectors) such that Ivl becomes very small while IFvI remains of order
R.

The spectral radius of F“ is R n because the eigenvalues of F are
L;, . . . . Ah. Moreover

(59.25)

therefore R2s IIF211sIIF112,hence by induction R ns ]\Fnl\s IIFII”.In particu-
lar if R (At, k) is the spectral radius of G(At, k), itfollows from (59.25) that

[R(At, k)]” =ll[G(At, k)]nll=llG(At, k)ll”, (59.26)

hence a necessary condition for stability is that there exist numbers r and
CJ such that for (OS~=At), (OsnAt~ T),

[R(At, k)]”= C, (59.27)

for all k.
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Without loss of generality we can assume Cl ~ 1, hence R(At, k)s c~l”,

and in particular

R(At, k)< CfL’-’ (59.28)

because n < T/At. For 05 At < T, the exponential C~’lT can always be

bounded from above by an expression of the form (1+ C2At). Hence, we
find the von Neumann necessary condition for stability is that if k,, ~ . . . AM
are the eigenvalues of the amplification matrix G(A t, x), then

lAil~l+O(At) (59.29)

for all i=l, . . ..A4. for 0~At<7, and for all k.
Equation (59.29) merits two comments. (1) In our earlier analysis we

required that the modulus of the amplification factors llf~ll all be less than

unity. The present result is less restrictive, and allows for the possibility of

a legitimate exponential growth of the solution. (2) Although (59.29) is a

necessary condition for stability, it is not, in general, sufficient. .Further-
more, it is a purely local criterion and does not account for boundary

conditions. In practice (59.29) is sometimes found to be both necessary and
sufhcient, but in general the derivation of sufficient stability criteria for a
given system requires a much more extensive (and difficult) analysis; see

(R4).

To illustrate the von Neulmann analysis, consider the system (59.1) to

(59.4). In order to simplify the algebra, rewrite (59.1) as

(Djllt) = -(dp/dp), (dp/tJm) = (a2/V2)(dV/dm), (59.30)

where a is the adiabatic sound speed. Difference (59.30) as

up”)- 7);-(’”) = (At/Am) (a2/V2)~[V~.,.( 1/zj- V7-(11’)], (59.31)

and couple this equation to the tilme difference of (59.7), namely

‘;<im – V7+(I/2) = (At/A m)[+:f”2j – 0~-’-(1f2J], (59.32)

Now examine the growth of the kth Fourier component, taking trial

solutions
~R.-(J/2)(k) = (&)n+(1)2)eiki ‘“7

1 (59.33)
and

V~+(,,z)(k) = (BJne’’’ii+2)lA)~A’~. (59.34)

One finds that the amplification matrix is

1 i~2/a

)
G(At, k)= (;a , _p2 ~ (59.35)

where a = 2( At/Am) sin (~k Am) and @= (a/V)a. The eigenvalues Of G are

A=;{(2– f12)t[(2- ~2)2- 4]’”}. (59.36)

If /32=4, A lies on the unit circle; if /32>4, IIAII> 1. Thus t’orstability we must
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have –

that is,

~(PCLAt/Am) sin (~kAm)~ 1, which is guaranteed if

At <(Am/p)/a = Ax/a, (59.37)

if the Courant condition is satisfied. In practice we choose the

smallest value of At found from (59.37) for the entire mesh.

1MPLICATIONS OF SHOCK DEVELOPMENT

As we saw in $55, nonlinear effects in wave propagation inevitably lead to

shock formation. We further saw in $57 that the thickness of a shock is of
the order of a few particle mean free paths, and indeed that in an ideal
fluid the shock is a mathematical discontinuity. Once shocks form, the

differential equations governing the flow must be supplemented by jump

conditions, in effect internal boundary conditions within the flow, in order
to obtain a unique solution.

If we were to attempt to simulate a flow containing shocks using the

Lagrangean difference equations written above, we would immediately
encounter severe difficulties. First, these equations contain no dissipative

terms, and therefore cannot account for the entropy increase produced by

a shock; consequently they will not yield even approximately the right

answers behind a shock. Second, even if we were to include dissipative
terms using realist ic values of the molecular viscosity and thermaJ conduc-

tivity of the gas, the shock thickness would generally be several orders of

magnitude smaller than the spacing of grid points on which the difference
equations are solved. A brute-force attempt to reduce the grid size to a
mean free path is doomed from the outset because if we reduce Ax +
Ax/k, it follows from the Courant condition that we must also reduce the

timestep Af + At/k, hence the total computing effort needed to follow the

flow for a definite time rises as k2, which rapidly becomes prohibitive.

One option is to use the method of characteristics to follow discon-
tinuities, and then impose the Rankine-Hugoniot relations to do shock
fitting. Although this method has been highly developed [see e.g., (H16)], it
is relatively complex and cumbersome because generally the shock is not at

a gridpoint, and an iterative solution of a moderately complicated set of
nonlinear equations is requirecl to locate it before the jump conditions can

be applied [see (H16), (R4, 304–311)]. While shock fitting is relatively easy
to apply when shocks propagate into undisturbed fluid or at least occur

regularly in a train (U5], (U6), it becomes harder to use when, say, shocks

overrun one another, or one shock collides with another propagating in the
opposite direction. Moreover, because shocks can develop spontaneously

anywhere in a flow, one must also develop strategies for detecting when
shocks have formed.

To overcome these difficulties, von Neumann and Richtmyer (V4) de-

vised a scheme that handles shocks automatically, wherever and whenever

they arise. The essence of the method is to introduce into the difference
equations an artificial dissipative process that models the real dissipation
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mechanisms in a gas and that gives the correct entropy jump (hence the

correct physical properties in the postshock flow), but which smears the

shock over a few mesh points in the difference-equation grid, instead of
leaving it unresolved on a subgrid level. The shock discontinuity is thus

replaced by a transition layer within which the fluid properties vary rapidly

but not discontinuously, across which the basic conservation relations are

satisfied, and whose thickness can be adjusted to match the grid size, which
is chosen according to the physical requirements of the problem. The

difference equations then apply everywhere, and the computations proceed

completely automatically, without shock fitting.

THE VON NEUMANF-RICHTMYER ARTJFICIA L-VISCOSITV METHOD

We showed in $57 that both viscosity and thermal conduction produce
entropy in a shock. We found that viscosity yields a smooth variation of all

quantities in shocks of all strengths, whereas thermal conduction yields a

smooth transition only for shocks below a certain strength, while stronger
inviscid conducting shocks sustain discontinuities in density and pressure.

As smoothness of the numerical solution is of paramount importance, we

choose viscosity as our dissipation mechanism.

In $$26 and 27 we saw that the momentum and energy equations for

one-dimensional planar viscous flow can be written

p(Du/Dt)= f– [E(P+ Q)/az] (59.38)

and

(De/Dt) + (p + ~)[D(l/p)/13t] = q, (59.39)

where ~ is the energy input per unit mass from “external” sources (e.g.,

radiation or thermonuclear reactions), and Q is an equivalent viscous

pressure

Q = ‘:w’(dljdZ). (59.40)

Here K‘ = w + ~~ is the effective viscosity. To handle shocks in the differ-

ence equations we propose to use an artificial viscosity (or pseudoviscosity),

choosing a suitable form for 0. One option would be to use (59.40) with a
large constant value for w’, chosen such that the implied molecular mean

free path would be of the same order as the grid spacing Az. This approach
is not satisfactory, however, for as we saw in $57 the thickness of a shock,

for a given A, is inversely proportional to its strength, hence we would
obtain sharp strong shocks, but weak shocks would be spread over many

gndpoints. Moreover such a large viscosity would spuriously reduce the
Reynolds number of the flow in regions devoid of shocks, and would
therefore seriously degrade the accuracy of the overall solution.

Von Neumann and Richtmyer realized that these problems could be

overcome by using a nonlinear artificial viscosity that is large in shocks but
very small elsewhere. In particular, they suggested using a Q that is
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quadratic in the rate of shear, and adopted

{

:p12(W/dz)2 for
Q=

(av/dz) <o, (59.41a)

o for (13v/az)=o. (59.41b)

Recalling that K has dimensions (dyne s cm-z)= (g cm-3)(cm2 s-’) one sees
that 1 has the dimensions of length. Typically 1 is chosen to be some small

multiple of the grid spacing Az.
We can also view (59.41) as a viscous pressure that is linear in the rate of

shear

Q = ‘:wo(&J/dZ), (59.42)

with an artificial viscosity coefficient that is proportional to the rate of

compression of the fluid:

{

l’(Dp/Dt) for (Dp/Dt) >0, (59.43a)
~Q =

o for (Dp/Dt) so. (59.43b)

The relevance of this interpretation will emerge below.

The artificial viscosity given by (59.41) to (59.43): (1) comes into action

only when the gas is compressed (both a prerequisite and a characteristic
property of shock formation) and (2) is very small or zero in regions away

from shocks. Both of these properties are highly desirable.

From the analysis of S57 it follows that (59.38) to (59.40) will lead to the
Rankine-Hugoniot relations regardless of the precise analytical form of Q,

provided only that Q ~ O where velocity gradients vanish in the upstream
and downstream flow far from a shock front. As the von Neunlann-
Richtmyer pseudoviscosity manifestly meets this requirement, we are as-

sured that it will produce the correct jump in entropy (and all other
variables) across the shock, as well as the correct shock propagation speed.
[These attributes can also be verified by direct analysis (V4), (R4,314-

316).] A large body of computational work has demonstrated that the von

Neuman n-Richtmyer method gives good results as long as the resulting

shock thickness, typically 3 to 4 Az, is not too coarse to permit an accurate

representation of other physical processes of interest (e. g., radiation trans-

port).

THE IMPLICATIONS OF DIFFUSIVE ENERGY TRANSPORT

We have thus far assumed that the gas is essentially adiabatic and have

ignored energy transport by diflusion processes such as thermal conduction
(or radiation diffusion). However, we know that these processes do occur in

a real fluid, and we should inquire into their consequences for the numeri-
cal stability of finite-cliff erence representations of the energy equation.

To gain insight, consider a simple linear heat-conduction problem as

posed by the parabolic equation

(dT/r3t)= U(d2T/dX2) (59.44)

. ..
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along with suitable initial and boundary conditions. Suppose we represent

(59.44) by the explicit formula

Using (59. 13) as a trial solution for the kth Fourier component we find

f, ‘l+a(cos kAx–1) (59.46)

\vhere a = 20- At/Ax=. Clearly (~ is always <1. To bound ~~ away from – 1
we must have a <1 ; hence the stability criterion is

At= Ax2j2cr, (59.47)

which is quite restricti\Te because if we refine the spatial grid by a factor

I/k, we must decrease At by a factor 1/kz, so the computing effort to span

a given time interval increases as k3. The timestep set by (59.47) may be

much smaller than the natural hydrodynamic timestep, particularly in

regions of high conductivity and/or low-heat capacity (i.e., large cr). Thus
use of an explicit formula for diffusion processes ]may Sel”iously impair one’s

ability to follow a flow numerically. We must therefore find a more stable

difference scheme.

The difficult y just described is overcome by using an implicit difference
equation, that is, one that contains information about T “+’ in both the

time and space operators. In particular, consider formulae of the general

form

T;-”’ – T! =~a[o(($2T)~+1+ (1 – 0)(82 T)~], (59.48)

with 0<0<1. Here (82T)i denotes the centered second difference (Tir, –
2T, + Ti_l) at the time le\els indicated. The von Neumann local stability

analysis now leads to

6’, ‘[~–(l-@)~(l-COS kAx)]/[l+Oa(l-cos kAx)]. (59.49)

As before, f~ is always =1. Furthermore, t~ is a monotone decreasing
function of y = a(l – cos kAx), hence for a given a and 0, .$~ is minimized

when cos k Ax = – 1. To bound t~ away from – 1 we therefore demand that

–1 <[l –2(1 –o)a]/(1 +2a), (59.50)

which implies that

(1-26 )clsl. (59.51)

For Os Os ~, At is restricted by

At< Ax2/[20(l–2~)], (59.52)

which reduces to (59.47) when O = O. For ~< (3~1, (59.51) is satisfied for
all a; the difference equation (59.48) is then unconditionally stable, and

can be solved using arbitrarily large values of At, thus surmounting any
incornpatibility with the hydrodynamically y determined timestep. For 0 = ~
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we have the Crank-Nicholson scheme, which is time centered and has a
truncation error of O(At2). For 6 = 1 we have the backward Euler (or fully

implicit) scheme, which has a worse truncation error, ()(At), but is very

stable.
The advantages of an implicit scheme are manifest; but to enjoy them we

must pay a price. Unlike the explicit scheme, where T~+l is calculated

directly from preexisting information, in an implicit scheme, T:+’ is
coupled to T’L+’ at adjacent space points, hence we must solve a linear
system of the form

–aiT~l~ + biT~+-’– ciT~~~ = r;, (j=l ., ..., J). (59.53)

Boundary conditions guarantee that a, = c, = (). Equation (59.53) is solved

by Gaussian elimination; we first perform a forward elimination to com-
pute

dj = cj/(bi– aidi_ ,) (59.54)
and

e, ~ (r, + aiei_L)/(bj– Uidl–[) (59.55)

for j =1, . . . . J, and then calculate T~’+J by back substitution

T~+’ = diT~lll + ej (59.56]

for j = J, J – 1, ..., 1. The computational effort required to solve (59.53)

scales only linearly with the number of mesh points [as does an update of
T“+’ via the expiicit scheme (59.45)]. In any realistic problem, solving

either (59.45) or (59.53) is typically only a small fraction of the total effort
required to advance the dynamics a timestep, and the additional cost of

using an implicit system is usually greatly outweighed by the ability to take
large timesteps.

In this book we are not concerned with solving the heat-conduction
equation per se, but rather with solving the equations of h ydrodynarn ics

when the energy equation contains diffusive terms. The main lesson we
learn from the abo\e analysis is that even if we can use an explicit scheme

for the continuity and momentum equations, we must generally use an
implicit energy equation in order to avoid unacceptable timestep restric-

tions; therefore in what follows we will always write the energy equation in
implicit foml.

ILLLJ’STRATIVED lFFERENCEEOUArl ONS

Let us now examine some illustrative examples of difference equations for

solving one-dimensional Lagrangean flow problems in a gravitationally
stratified medium.

(a) Explicit Hydrodynamics; Planar Geometry Consider first explicit hyd-
rodynamics in planar geometry. Choose the independent variable to be the

column mass measured inward into the medi urn from an upper boundary
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(as would be appropriate for a stellar atmosphere viewed from the outside).

Then

r-

f?l(z) = I p(z’) dz’; (59.57)
JZ

note that now dm = —pdz, which is opposite to the sign convention used in

(59.1 ) to (59.8). The equations to be solved are

(Dv/Dt)= [EJ(p+ Q)/tlm] – g, (59.58)

(Dz/Dt) = U, (59.59)

V= I/p= –(~z/dm), (59.60)

and

(De/Dt) + (p + Q)[D(l/p)/Dt] = q. (59.61)

Choose a mass grid {m~}, d =1, . . . . D + 1 marking the surfaces of D
discrete slabs. At the upper boundary, ml will be nonzero if we assume

there is material lying above that surface. The momentum equation is
represented by the explicit formula

Here Am~, Amd+(,,2), Atn, and Atn+(l’2) are defined as in (59.5) to (59.8). In

general, the timesteps At “-(“2) and Atn+( “2) are unequal; to improve the
accuracy of (59.62) we can center the pressure gradient by defining

t “T* =~{[t” –+ At’’-zj]+[tn[tn +; Atm-’(1’2)]}= t“ +~[Atn+-(1’2)-Atm-(’’2)],

(59.63)

and using the approximate extrapolation

P2:?l/2) = P:-1-(1/2) +i[Atn+(l’2) - A@’’2)l[p:+(u2) - p:;ju2)llAf-(1’2).

(59.64)

The artificial viscosity is computed from a difference representation of

(59.41), that is,

Q:IIJEI = QAPnl/2) + P2+(l/2)l[vK!”2) – @“2)12 (59.65)

if p:.,(1~21> p:~/L,2), and Q’jJf~fi = O otherwise. Here ko = l/Az is a pure

number, typically 1.5 to 2. In astrophysical applications, where zone

thicknesses may range over several orders of magnitude in a single flow, it
is often more satisfactory to use a fixed length 1 in (59.41) than to choose a

constant kQ (W7). Notice that the pseudoviscous pressure is lagged at
t“-(]‘2)in (59.62). In general this lack of centering does not produce large
errors; it is possible to improve the centering, but the result is inconvenient
and may even be unstable (R4, 319).

To find v~+(”2) and v~~!~’2) we apply boundary conditions. At the lower
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boundary we assume that v is a known function of

?74-(1/2) = f[tn--(l/2)]v~+~

Typical choices are VD+l = O, or VD+I equals the

279

time:

(59.66)

velocity of a driving
“piston .“ At the upper boundary there are several commonly used choices.

For a free boundary (no net force across the first cell) we have

n+(l/2)~ ~;+(l/2)v~ (59.67)

For a transmitting boundary we demand

(dv/dt) = –a(W/dz) = ap(dv/~m), (59.68)

where a is the local sound speed, which implies that an incident wave is

propagated through the boundary without alteration [cf. (59. 1 l)]. In finite

form,

‘4(1’2 – ‘-(1’2) = Atna~,2p~,2[v~-( 1’2)– u~-(1’2)]/Am3,2.VT VI (59.69)

For zero surface pressure, that is (p+ Q) ~= O, we have

W+(1 /2)v, “-t~lz) = –g At”+ [(At’L/Aml)(pf~A+ QS,j(l’2))], (59.70)—VI

where

Aml=~Am312+ml (59.71)

includes any atmospheric mass (ml) assumed to lie above the first cell.

Having updated velocities we calculate

2:+1 = “,+(1/2)Atn T(l/2)z:+v~ (59.72)

and

V:~~l,2) = 1/p~:/l,z) = (z;+’ – z~Tl)/Am~+(l,Z), (59.73)

and can then calculate the artificial viscosity Q~+(112) at tn+(l’2).I*+(1/2)

Finally we solve the implicit energy equation

e~~~l,z) – e;.-(l/z) + {IIP;--ox + P~lil DJI+ QZ[~g]}[WLb – V:+(l)*)]

= At’’+(1~2)[(l– t))q~+.(l,z) + r9q;J~l,2)] = Atn+(1’2)(4~+.(l,zl)”+(l’2)

(59.74)

given constitutive equations e = e(p, T) and p = P(P, T) or e = e(P, P)

Notice that in (59.74) the pseudoviscous pressure is time centered so that
the correct total work is computed. In calcul sting (q) one would choose
0 = ~ for accuracy, and 0 = 1 to enhance stability or for quasistatic energy

transport (e.g., by radiation—see introduction to $6.5 and also !98).

To solve (59.74) we start from an estimate of T“-’-’, say T*, and then
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We likewise linearize the external source cj. If q depends only on local
values of (p, T) we can solve (59.74) poi ntwise, iterating to consistency

(i.e., ~T ~ 0). Jf G contains diffusive terms, the linearization process yields
a banded system like (59.53), which is solved by Gaussian elimination and
iterated to convergence.

A stability analysis of the fLIllsystem (59.62) plus (59.72) to (59.74) is

complicated, so we will only quote results (R4, 12.12), Outside a shock,
where the pseudo viscosity vanishes, the usual Courant condition must be

satisfied. In a very strong shock, the analysis implies that the timestep must

be restricted further by a factor f. = -y1‘2/2k~, which is about ~ in typical
problems. Trial calculations show that this theoretical restriction is too

strict, and that choosing f. =; is usually sufficient to assure stability. One
must also impose timestep Restrictions to assure accuracy of the solution as
well as stability; thus one may restrict the fractional change in any variable

to be less than some prechosen value, whose size is set from experience.
The efficacy of the artificial viscosity method is illustrated in Figure 59.2,

which shows two test calculations for a propagating shock with a pressure

ratio p2/pl = 5 in a gas with y = 2. The results in part (a) were obtained
using kQ = 2, and in part (b) using k. = O. Without pseudoviscosity, there

are large oscillations in the postshock fluid, and the shock speed is 10 per
cent too low. These oscillations do not grow in time, and are not numerical

inotabilities (At was chosen to be 0.22 times the Courant limit). They are

motions of the mass cells reminiscent of random motions of molecules in

the shock-heated gas; the effect of artificial viscosity is to damp these
motions and to convert their kinetic energy into internal energy of the gas.

The differential equations (59.58) to (59.61) can be combined into a

total energy equation

(59.77)

which has the integral

J J& (e+~ti2+gz) dm = Q dm+vD+.,(p +Q)D+l–ul(p+Q)l

(59.78)

Physically, (59.78) states that the change in the total (internal plus kinetic
plus potential) energy of the fluid over some time interval equals the

time-integrated energy input from external sources minus the work done
by the fluid against its boundaries. A discretized energy conservation
relation is obtained by replacing the integrals over mass and time by sums
over mass cells and timesteps, starting from some initial time t“ when the
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Fig. 59.2 Shock compLlted (a) with and (b) without artificial viscosity. From (R4)
by permission.

state of the flow is known. Thus at t “+’

8 ‘L”-’= Z{e:tj,,. Awi+,,,~+[g(zj+’- z8)+4(v2+J)21 Awi}
d
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In (59.79), Vn”-’ must be estimated by interpolation between Unr(l’z) and

u” ‘(3’2). For problems using the boundary conditions (p+ Q)l = (1 and
Vn+l -0 (hence ZD+I E constant), both boundary work terms W ‘+’ vanish
identically.

While ~ should, ideally, be constant, this property is not guaranteed
exactly by the explicit difference equations. Rather, ~ is calculated after

each integration step and is monitored as a check on the quality of the

solution, cf. (C8), (Fl). If satisfactory energy conservation is not obtained,
the timestep is decreased and the integration step is done over.

(b) Explicit Hydrodynamics; Spherical Geometry For one-dimensional
Lagrangean flow calculations in spherical geometry, the independent vari-

able is M,, the mass interior to radius r, increasing outward in the medium.

The choice of a pSeUdOViSCOSity in spherical flows requires some care; the

customary approach [see e.g., (C5), (C8), (Fl)] is to use a scalar

pseudoviscous pressure as in the planar case. The equations to be solved
are then

(Dv/Dt)= -( G&I,/r*)-4mr2[d(p + Q)/~M,], (59.82)

(Dr/Dt) = 0, (59.83)
and

V= I/p =$r(t3r3/dM,), (59.84)
with

Q =fp12(W/tlr)2 (59.85)

if (b/dr) <0, and Q = O otherwise. The energy equation is again (59.61).
These equations are discretized on a mass grid {A4i}, i =1, . . ,1+1,

defining the surfaces of 1 spherical shells; Mi is the mass interior to the ith

surface, and the mass of the ith shell is AMi+(1,2) = Mi+l – Mi. An explicit
difference representation of the momentum equation is

[~;+[’)z)- ~;-t’i2~]/Atn = _[GMi/(r:+-k)Z]

– 4~(r:+’)2[p?-Ltl,l – P;<;/2J + ~;<fi~) – Q2$#j)l/A~i,
(59.86)

where Ql~~# is obtained from a discretized version of (59.85), p“-’x is
defined by (59.64),

ri‘+L= r: +~[Atn-F(”2) – Atr’–(’’2)]v (](z JzJ

and
AM, = j[AMi_(l,21 + AMi+(1,2J.

At the inner boundary we impose (59.66). At the outer
impose (59.67) to (59.71), modified for spherical geometry.

After updating velocities we compute

r:+’ = r:+ v~+(”2) Atn+(””2)

and

(59.87)

(59.88)

boundary we

(59.89)

V~~~,2)= l/p~4~{,21 = $rr[(r~~P)3– (r:+’ )3]/AMi+.(1/21> (59.90)

and solve the same energy equation as in the planar case.
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Although (59.86) to (59.90) have been applied widely, using (59.85) for

the pseudoviscosity can cause serious numerical difficulties in certain

problems, for example, accretion flows in star formation (Al), (T5). In
particular, because radii converge as r a O, inflowing material (u< O) can
experience compression even when (do/dr) > O; this material should be

subject to a pseudoviscous pressure, yet (59.85) predicts Q = O in this case.

Furthermore, in some problems (59.85) produces a spurious diffusion of
radial momentum.

These difficulties are overcome by use of a tensor artificial viscosity (T5).
Writing T = – p I+ Q, we demand that Q have the same analytical form as

the molecular viscosity U, but permit a different viscosity coefficients. Thus
we write

Qtj = wo(~i;l + ~j;i –$~f~ ~ij) (59.91)

where, by analogy with the planar case, we set

p,. = –(3!2V:k = 12(DpiDt) (59.92)

for ck~ <O or (Dp/Dt) >0, and V. = O otherwise. Equations (59.91) and

(59.92) have the following desirable properties: (1) PO is positive for
compression and zero for expansion regardless of the direction of the flow.
(2) Trace Q= O, hence the pseudoviscosity is zero for homologous contrac-

tion (v= –kr), as is also true for molecular viscosity (the no-slip condition).

(3) They reduce to the previous formulae in the planar limit, while

discriminating correctly between the velocity divergence (scalar) and veloc-
ity gradient (tensor), which are fortuitously identical in one-dimensional
planar flows. In practice (59.91) and (59.92) give very satisfactory results.

For one-dimensional spherical flow (59.91) is

(
(tlv/dr) -~V . v O 0

Q=2LL~ o
)

(v/r)–~V “v O . (59.93)

o 0 (v/r)–*V . v

From (A3.91) and the fact that Q is traceless we find the radial component

of the pseudoviscous force to be

(V. Q), = r-3[d(r3Qr,)/~r] (59.94)

where

Q,, = 2PQ[(dv/dr) +$(D In p/Dt)] = –Q. (59.95)

The momentum equation is

(Dv/Dt) = -( GM,/r2) -4mr2(dp/dM,) - (4w/r)[d(r3Q)/dM,],
(59.96)

and the energy equation is

(De/Dt)+ p[D(l/p)/Dt] = tf +@, (59.97)
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where, from (27.31), the dissipation function is

@= 3pQ[(2v/dr) + 4(D in p/llt)]2.

“rhe momentum equation has the discrete representation

(59.98)

1, n+/2)
– IJ:-(”2) –GM, 4W

Atn (
——— (r(’+N)2[pVJ;12) – pK7$/2)1

= (r~”A)2- AM,
(59.99)

1
+ -j {[rP-l-II/2)13Q;I:i%3) – [r!–( 1/2)]3Q;;(;$)}

L )

where the cell-center radius ri+( ,,2) is chosen so as to contain half the

volume (or mass) of the shell (ri, ri+l),

r?.,.(1,21=~(r~ + r~+.l), (59.100)

and where rn+k and p“’-h are defined by (59.87) and (59.64). Equations
(59.89) and (59.90) remain unchanged, while the energy equation becomes

e 5X\j2)—e:+(112)+3M+[112)+ p~!~+,2)][VfJi,2)- v?--(j/2jl

= A~n[(di+(l/2)) .+(1/2 + q-LL(I#l. (59.101)

In (59.99) and (59.101)

(59.102)

and

(59.103)

where

(~Q):,:!;~:) = ~2[P:+(I/2) – P:-;: /2)1/Azn-(”2) (59.104)

if P~+(u2j> p~;~/ZJ, and is zero otherwise. In (59.104), either 1= kQ Ar
where k. is a number of order unity, or 1 is a prechosen, fixed length. The
radii r‘*(”2) in (59.102) and (59.103) must be estimated by interpolation in

time.
It follows frolm (27.4) [cf. also (27.33)] that for one-dimensional, spheri-

cally symmetric viscous flows we have a total energy equation of the form

~(e++v2)+* [4mr2v(p + Q)] =%+ q, (59.105)
r

where Q is a scalar pressure as in (59.85) or the radial component of a
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tensor as in ($9.95). Equation (59.105) yields a conservation relation like

(59.78). As was true in planar geometry, this conservation relation follows
from the differential equations governing the flow, but is not guaranteed by

the explicit difference equations written abo\e; rather, it is again monitored

as a check on the quality of the solution. However, we will see below that it
is possible to write a set of implicit difference equations that do yield an

exact total energy conservation relation provided that the pseudoviscosity

enters as a scalar pressure in both the energy and momentum equations.
This is not the case when one uses the tensor formulation described above.

A compromise is to use a pseucloviscosity that is mathematically equivalent
to a scalar, but which is tailored to mimic the basic physical properties of
the tensor pseudoviscosity. In particular, if we replace v/r in (59.93) by

(&)/dr)we obtain the isotropic tensor

Q= 2Wo[(dv/dr)–~V “v] I=–QI, (59.106)

where ~Q is given by (59.92). This choice, while heuristic, has the follow-
ing desirable properties. (1) Q is nonzero for compression and zero for
expansion; (2) Q is zero for homologous contraction; (3) Q is isotropic,

hence we may use Q as a scalar pressure. Note, however, that (59.106)
does not yield trace Q= O, as did (59.93).

(c) Implicit Hydrodynamics; Spherical Geometry The schemes described

above use explicit hydrodynamics. A rationale for that approach is that if
we model wave phenomena and/or shocks, the physical system changes

significantly in a flow time tf - l/a, which is generally of the same order as

the Courant time Ax/a. Because we want to follow these \ery changes
there is no reason to take longer timesteps. A counterexample to this

argument is provided by stellar evolution calculations, where we are
interested in changes on a nuclear burning-rather than hydrodynamic-

timescale, and we need to use very large timesteps to be able to follow the

evolution of a star through a long sequence of near-equilibrium states.

Furthermore, it is necessary to use an implicit scheme in order to avoid
unnecessarily restrictive timestep limitations from thin zones and/or re-
gions of high sound speed (e.g., in a stellar interior).

An implicit scheme (K4) suitable for calculations of both quasistatic
stellar evolution and hydrodynamic events such as nova explosions is

(r~+’ – r~)/Atn+[”2)= {v)r’”-(’’2), (59.107]

(v:+’ - ( yL+(l/2)~~)/Atn.l.(L/2j = at (59.108)

V;~(~,2) = l/p;.~~,2) = $r[(r?J~)3 – (rv+L)31/A~i.,.( 1/2), (59.109)

and

e?+>112)– ev+(l/2)+ ((P + Q)i+-w2J“+( ’’2)[WM2) – v:-(l /2)1

= (di+(l,2))n~’”2” Atn+(’’2). (59.110)



286 FOUNDATIONS OF RADIATION HYDRODYNAMICS

Here the time averages ( )“+(’12)are defined as

(x)”+ (’/’) =(o) x)+ox ”+”,’, (59.111)

and in (59.1 08) the acceleration is

CLT~ –GML/(r~)2– 47r(r~)2[(P + Q)7+(1/2)– (P + Q)2(~/2)llA~i.

(59.112)

For Q we use a discrete representation of the scalar pressure defined by

(59.106). Notice that there is no difficulty in time-centering variables in an
implicit scheme, and special interpolation or extrapolation procedures such

as are used in explicit schemes become unnecessary. In stellar evolution

calculations, the equations are often rewritten in terms of the logarithms of

physical variables, such as p and p, that run over several orders of

magnitude (K4).
The system written above is unconditionally stable for ~ <0<1.

Nevertheless, (59. 107) and (59. 108) may be unsatisfactory for collapse
problems on a Kelvin-Helmholtz timescale because a centered formula

(0= $) may lead to growing oscillations. Equation (59.107) should then be
made fully implicit (6 = 1). But then (59.108) with f3= 1 may artificially
damp real oscillations; in such cases special formulae (e.g., containing three

time levels) may be needed (B7).

Given constitutive relations for p and e, and a specification of q, (59.107)
to (59.112) are linearized around a trial solution at t“+’ and iterated to

consistency. The 1inearized system is typically block tridiagonal, and is

solved by Gaussian elimination (see $$83, 97, and 98).

As Fraley (F2) pointed out, the momentum equation can also be written

(u:’-’ -v:)/At’+(’”) = –GMi{l/r2)i

– 4~(r2)i[((p + Q)i+(l,z))n+(’”) – ((p + Q) L-(1,2))n+(’’2)]/AMi

(59.113)

where the angular brackets denote suitable time averages. In particular, if
we choose the special averages

(rz)i =~[(r~)z+ r~r~+’ + (r;+ ‘)2] (59.114)

and

(1/r2), = l/(r~r~7’), (59.115)

then on multiplying (59.113) through by v~+(l’z)=~(v~+v~+l) and using

the fact that r:+] – r? = v~+(’”) AP+(l’*) we obtain the exact conservation

relation

~ {[i(LIV+’)’ - (GM/rv+L)] AM, -((P + Q)i+(,,2))’’+(’’2) v~J},2) AMi.,(1,2)}
(59.116)

= ~ {[~(~~)’- (GM,/r~)] AM -((P + Q)i..(1121)’’+(”2’V~.1.(1/21AMi.~(112)}.

.
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Here we assumed, for simplicity, zero contribution from the work terms at
the boundary surfaces. Provided that we use precisely the same average for
(p+ Q) in both (59.1 13) and (59.1.1.0) we then obtain an exact total energy

conservation relation

= constant.

—
t Atk-’(”z’~ Oii--om)k+’ A~i+(va

k=O

(59.117)

Fraley’s form of the moment urn equation with 0 = ~ in (p+ Q) is often used
in stellar pulsation calculations (Cl), (W9] where it is important to obtain

precise total energy conservation in order to avoid artificial damping of

self-excited oscillations.

CRITIQUE

In numerical simulations of fluid flow, the choice of the best computational

method requires good judgment because one’s desire for accuracy and

stability must be balanced against limitations in computer speed and
capacity. In addition, one must sometimes face (perhaps unresolved)

questions about the ability of the equations used to model faithfully the

real physics of the flow. A short but illuminating discussion of these points
is given in (HI, 86–90).

The worst problem inherent in one-dimensional Lagrangean schemes is

their limited ability to resolve features with very steep gradients of material

properties as they move through the fluid. Important examples are p~op-
agating shocks, and the cyclic motion of the hydrogen ionization zone in

pulsating stars. In the case of shocks, artificial viscosity smears the front
o\,er a few Zones, ~though the Rankine-Hugoniot relations are still

satisfied in the upstream and downstream flows, and the effect of the shock

on the large-scale structure of the ambient medium is given correctly, each
zone contains much more mass, and therefore is much more opaque, than
the actual shock front itself; hence a calculation of radiative transport

through the shock can be falsified badly. One approach to overcoming this

difficulty is to use upstream and downstream conditions determined from
coarse-zone calculations to do after-the-fact shock fitting with an extremely

fine-zone model that resolves the shock structure and permits an accurate

transfer calculation (H7).
The hydrogen-helium ionization zone in pulsating stars is even more

troublesome because it contains the thermodynamic “engine” that drives
the pulsation, and accurate model ing of its structure is therefore essential.
As the star pulsates, a steep temperature and ionization front having a

characteristic thickness of about a thousandth of a scale height sweeps back
and forth over several pressure scale heights, hence through several
Lagrangean mass zones. To avoid Prohibitively small tirnesteps, relatively



288 FOUNDAHONS OF RADIATION HYDRODYNAMICS

coarse zones are used; but coarse zoning produces unphysical bumps in the
1umi nosity light curve and in the surface velocity. The only satisfactory

solution is to use rezoning or adaptive-mesh schemes, in which the
computational mesh is neither fixed in space (Eulerian), nor attached to
definite material elements (Lagrangean). Instead, the mesh moves both in

space and through the fluid in such a way as to track physically significant
phenomena, such as shocks and ionization fronts, in the flow. Adaptive-

mesh algorithms are discussed in (Cl), (T5), and (W7).

60. Propagating Strong Shocks

LARG E-A MPLrTUDE WA\&S IN THE SOLAR CHROMOSPHEt2E

The propagation of strong shocks through a stratified atmosphere can be

modeled using the methods discussed in $59. Instructive examples are
provided by the work of Stein and Schwartz (S13), (S14), who solved (59.58)

to (59.61) for periodic strong shocks in an isothermal atmosphere (y= 1).
They chose T = 5700 K and g = 3 X 104 cm S-2 (appropriate for the Sun),
which imply a sound speed a = 7 km s-’ and an acoustic-cutoff period
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Fig. 60.1 Periodic wave trains in an isothermal stratified atmosphere. (a) Shock
train gene]-ated by disturbance with period of 100s. (b) Oscillation generated by
disturbance with period of 400s. From (S14) by permission.
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.C= 200s. The waves were excited by imposing a periodic velocity o =T

0.32 sin (t/~] km s-’ at the lower boundary.
Their results reveal an important qualitative difference between waves

with r < roC and those with T > Tat. The short-period waves steepen into

shocks and form N waves, as expected from the discussion in $$58 and 59.
The steady-state velocity variation of a mass element whose initial height

in the atmosphere was 1000 km is shown in Figure 60.la for a wave with

period T = 100s.
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In contrast, waves with ~ > -raCtend to lift the medium quasi-rigidly. The

velocity variation of a mass element whose initiaf height was 1000 km is

shown in Figure 60. lb for a wave with period 7 = 400s. Note that the
velocity varies nearly sinusoidally, shows no indication of shocks, and has

only about one-third the amplitude of the short-period wave even though

both are excited with the same driving term. The 400s oscillation also
shows beats with the 200 s natural period of the atmosphere, which

indicates that a steady state has not yet been achieved in the calculation
even after 19 full wave periods.

As shown in Figure 60.2, the velocity and pressure perturbations are
nearly in phase for the 100 s wave, and approximately 90° out of phase for

the 400 s wave. The 100 s wave transports a large energy flux, whereas the
400 s wave is almost a standing wave with the velocity nearly in phase at

all heights, and transports very little energy. Even though the amplitude of

the 400 s wave increases substantially with height, its small energy trans-

port retards shock formation and inhibits wave-energy dissipation.
The dissipation per period in the 100 s wave as a function of height is

shown in Figure 60.3a. Above 1000 km the dissipation rate is nearly
constant, and the estimate given by weak shock theory is almost a factor of

10 too low, which is not surprising because the shock is no longer weak
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Fig. 60.3 Dissipation per period as a function of height fo~ the waves shown in
Figure 60.1. From (S14) by permission.
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(M= 2) at these heights. Below 500 km, weak shock theory predicts too

large a dissipation rate because it assumes the existence of a shock before

one has actually developed. As shown in Figure 60.3b the failure of weak

shock theory for the 400-s wave is much more dramatic. The actual
dissipation in this (nearly) standing wave is about 104 times smaller than

predicted by weak shock theory. These results clearly show that weak

shock theory must be used with great caution, and that the full nonlinear
equations must be solved before meaningful estimates of chromospheric
heating by shock dissipation can be made.

The results discussed above are only illustrative because radiative losses

are omitted; more realistic calculations are discussed in $105.

SIMILAR[TYSOLLJTIONS

An alternative to numerical modeling of shocks is to develop analytical

sol utions for idealized problems that are reasonable representations of
situations of interest; this approach offers physical insight and provides

benchmarks against which numerical calculations can be compared. An
effective method of constructing such solutions is to carry out similarity (or

dimensional) analyses of self-similar flows. In these flows the spatial
profiles (i.e., distributions) of the physical variables are time-independent

functions of an appropriate similarity variable; the time evolution of the
flow is described fully by the time variations of the scaling of these profiles

and of the similarity variable. Similarity methods have been highly de-
veloped by Sedov and his co-workers, and have been applied to a wide
variety of problems (S9); here we consider only two examples of astrophys-

ical interest.

Consider first the blast wave driven by a point explosion. Here we
imagine the essentially instantaneous release of a large amount of energy %

into a very small volume, which drives a spherical shock into a homogene-

ous medium of density P1. We assume that the material is a perfect gas
with a constant ratio of specific heats y. We seek to describe the motion of

the shock at a time when the mass of the material set in motion by the blast
is large compared to that in which the initial energy release occurred, but

when the shock strength is still so large that we can neglect the exterior gas
pressure (backpressure) relative to the postshock pressure. We thus neglect

the internal energy of the ambient gas compared to the explosion energy.

From the conservation laws (56.6) and (56.7) we have

Plus = P2(7A – 7J2) (60.1.]

and

plv: = pz(v, – V2)2+ pz, (60.2)

where o, is the lab-frame shock velocity, and subscripts 1 and 2 denote
pre- and post-shock quantities, respectively. Neglecting p, is equivalent to

assuming an infinite shock strength, hence

P2/Pl=(Y+l)/(Y– 1). (60.3)
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From (60. 1) and (60.2) we obtain

P2 = Pl~su2> (60.4)

and from (60.1) and (60.3) we obtain

v~= 2vJ(y + :1.), (60.5)

whence we find

p2 = blv:/(’Y + 1). (60.6)

For a self-similar expansion of the shock front, the pressure, density, and
velocity distribution in the flow can be written

p(r, t)= pz(t)p($), (60.7a)

p(r, t)= p2(t)~(&), (60.7b)
and

v(r, t)= vz(t)ti(~). (60.7c)

The profiles ~, ~, and t depend on the dimensionless variable $, which is

related to physical distance by a transformation of the form

&= r/R(t). (60.8]

We can determine R(t) from dimensional arguments. The nature of the
flow depends only on the two quantities ~ and p,, having dimensions

[~] = ergs= g cm2 s-’ and [pl] = g cm–3. The only combination of 8’ and pl

that contains only length and time is the ratio ~/pl, which has dimensions
cms S–2. Hence self-similar motion of the flow can depend on length and

time only through the dimensionless combination 8t2/plr5, which implies
that

~ = (pl/@’/5(r/t2’5) (60.9)

is an appropriate similarity variable.

For a given value of y the shock front is characterized by a fixed value of

f, say ~,; hence the position of the shock at time t is given by

r, = &(@pl)’’5t2’5, (60.10)

and the shock speed is

V, = (dr,/dt) = ~&(~/p,) “5t-3’5 = ~&~’2(%/Pl)’’2r~3’2. (60.11)

The speed of the gas behind the front, V2, then follows from (60.5). One

can understand the scaling in (60.11) intuitively by noting that the kinetic

energy per unit VOIume in the blast wave as measured by either P2V~ or
p2v~ must scale as ~/r~.

According to (60.6) and (60.11) the pressure behind the shock is

PZ=K&t(p?82/t61’15 = K[~%7r~, (60.12)

where K = 8/25(y + 1). Thus (for a given y and pl) the postshock pressure in

..—.
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explosions of different strengths reaches the same value at times and

distances that are proportional to %‘ ‘3. We can understand this scaling
intuitive] y by recalling that the pressure in a gas is proportional to the

a\erage energy per unit volulne, hence to ~/r$.
The density behind the shock remains fixed at its limiting value (60.3) as

long as the postshock pressure pz is much greater than the back pressure

pl.
To complete the solution, one must determine the dimensionless shock-

position parameter <, and the profile functions fi, ~, and i. The latter follow
from solving three first-order ordinary differential equations obtained by

transforming the equations of gasdynamics into dimensionless variables
and converting derivati\~es with respect to r and t into derivatives with

respect to ~. The solution must satisfy the constraints ~ = @= O = 1 at f = <,.
The value of ~, is obtained by demanding total energy conservation, which

implies

J

r.
(e +~u2)4mr2 dr = 8, (60.13)

o

where e is the internal energy of the gas.

An exact solution of the point-explosion problem was obtained by Sedov

(S9). It shows that the density drops very rapidly behind the shock front. In
fact, nearly all the gas contained within r. is concentrated into a very thin
shell (Ar/r, = 0.08) near the front because the shock slows as it sweeps LIp

more and more material. Therefore, gas closer to the origin has a higher

expansion speed than gas farther out in the flow, and tends to overrun the
front. The pressure drops by a factor of 2 to 3 a short distance behind the

shock and then remains roughly constant everywhere inside.
A rigorous derivation of the solution is Immoderately complicated. But by

making the simplifying assumption that all the mass inside the blast wave is
concentrated into the thin shell behind the shock, one can derive (C4),

(Zl, 97-99) the approximate formula

&S=[75(Y -~)(Y+~)2/~.6~( 3Y-1)1”5> (60.1 4)

which is found to be in good agreement with the exact results.

Another astrophysically interesting problem that can be treated by

similarity methods is the propagation of a strong shock in an exponentially

stratified medium. Examples are a global shock resulting from a stel Iar
pulsation or supernova explosion passing outward through a stel Iar en-

velope, or perhaps a shock emanating from a point source such as a

man-made explosion in the Earth’s atmosphere or an impulsive flare in the

Sun’s atmosphere. A shock from a point explosion may initially weaken as
it sweeps up material (cf. discussion above), but eventually density-gradient

effects dominate and the upward-propagating part of the shock strengthens
monotonically as it passes outward into regions of ever-decreasing density.
A global shock, of course, responds only to the density drop and
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strengthens continuously. Ultimately the shock’s speed becomes so large
that it escapes to infinity in a finite time; a blast wave can thus break out

(or vent) from an atmosphere, perhaps even transporting material from the
heart of the explosion into space if the explosion is sufficiently strong and

occurs at a sufhciently high altitude.
Self-similar upward-propagating shocks are discussed in (Gl), (H5),

(Hti), and (Rl) [see also (Zl, Chap. 12)]. Consider a planar atmosphere of
an ideal gas with constant y, having a density stratification p(z) = pOe–z,

where z is the distance above some convenient reference level, in units of

the scale height H. Then similarity analysis shows (Gl) that the density,
shock speed, postshock material speed, and pressure have the forms

p = A@(~)e-z, (60.15a)

0, = v,,Oez, (60.15b)

v~ = ?@(<)> (60.15c)
and

p = Av~Oc$(oe-Bz, (60.15d)

where ~ = z – Z is the distance behind the shock (in scale heights). Note

that ~s O, and that velocities are measured in (scale heights s-l). The

parameters a and ~ depend only on the ratio of specific heats -y, and are

tabulated in (Gl) for a wide range of y; for example, (a, 13)=

(0.176, 0.646) for y =$ and (0.204, 0.591) for -y =:. Near the shock front
(~= O) one has

P(O = Ao)e-<j (60.16a)

p(O=NM@L, (60.16b)

v(() = v,emt, (60.16C)
and

~(~) ~ e(l-B)L (60.16d)

where ~ = yp/PV~ = a2/v$ = l/M2. Equations (60.15) and (60.1.6) are found

to be in excellent agreement with numerical computations.
By integrating (60.15 b), we find that the shock position as a function of

time is

(60.17)

which shows that the shock approaches infinity in the finite time

tm= l/MJ.@ (60.18)

Because the shock accelerates rapidly, it can outrun even large perturba-
tions in the flow if they are located beyond some (small) critical distance

behind the front; such shocks are sometimes called self-propagating. As a
result, the asymptotic behavior of the shock is very insensitive to details of
the original explosion; in particular it is essentially identical for any

.
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energy-deposition time At on the range 0< Ats tm,and is modified signifi-

cantly only if the deposition rate is strongly singular near t= tm.

Moreover, for t> tm the fluid variables at points near the origin are
independent of the shock position. Thus the ratios pm/p J and v@/vl are the

same for all fluid elements in the flow, where VI and p, are an element’s
initial speed and pressure, and v- and pm are its speed and pressure for
t z tm.Similarly, the distance 1~ through which a fluid element moves

between the time the shock passes over it and to is the same for all
elements. Numerical calculations (Gl) yield (l-, U-JV ~, p_/p.l) = (4.60, 1.72,

0.099) for y=; and (6.23, 1.75, 0.075) for ~ =:.

5.4 Thermally Driven Whds

The Sun is surrounded by a tenuous, extremely hot envelope (n. – 4 x

10s cnl-3, T- 1.5x 106 K) called the corona; other late-type stars have

similar structures. As first recognized by Chapman (C3), at such high

temperatures thermal conduction by electrons becomes an efficient energy
transport mechanism, and an unavoidable consequence of this fact is that

the corona must extend far out into inte~lanetary space, even enveloping

the Earth in a low-density, high-temperature plasma. Subsequently, Parker

showed (Pi) that if the corona were hydrostatic, the gas pressure at infinite
distance from the Sun would exceed the total pressure in the surrounding
interstellar medium by orders of magnitude; therefore a static corona is

actually impossible. Instead, the corona undergoes a continuous dynamical
expansion and produces a transsonic flow known as the solar wind. The
solar wind is driven, ultimately, by conversion of the high specific enthalpy
of coronal gas into kinetic energy of fluid motion; such winds are known as
thermal winds to distinguish them from winds accelerated by direct

momentum input to the fluid by intense radiation fields (cf. $107).

Several excellent reviews of thermal winds are available [e.g., (B9),
(H13), (H14), (H15), (H18), and (P2)]. We discuss here only the most
elementary aspects of the theory.

61. Basic Model

To obtain insight into the dynamics of thermal winds we consider the
highly idealized problem of a steady, spherical] y symmetric flow of a fully

ionized pure hydrogen plasma in a gravitational field. We first briefly

recapitulate Chapman’s and Parker’s arguments about the inevitability of

coronal expansion.

CORONAL EXPANS1ON

In a fully ionized hydrogen plasma, the electron heat flux is q= –K VT,

where the thermal conductivity K = KOT5’2 with KO= 8 x 10-7 ergs

cm “ s-’ K-7/2 (cf. $33). At coronal temperatures the conductivity of the
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energy-deposition time At on the range 0< Ats tm,and is modified signifi-

cantly only if the deposition rate is strongly singular near t= tm.

Moreover, for t> tm the fluid variables at points near the origin are
independent of the shock position. Thus the ratios pm/p J and v@/vl are the

same for all fluid elements in the flow, where VI and p, are an element’s
initial speed and pressure, and v- and pm are its speed and pressure for
t z tm.Similarly, the distance 1~ through which a fluid element moves

between the time the shock passes over it and to is the same for all
elements. Numerical calculations (Gl) yield (l-, U-JV ~, p_/p.l) = (4.60, 1.72,

0.099) for y=; and (6.23, 1.75, 0.075) for ~ =:.
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10s cnl-3, T- 1.5x 106 K) called the corona; other late-type stars have

similar structures. As first recognized by Chapman (C3), at such high

temperatures thermal conduction by electrons becomes an efficient energy
transport mechanism, and an unavoidable consequence of this fact is that

the corona must extend far out into inte~lanetary space, even enveloping

the Earth in a low-density, high-temperature plasma. Subsequently, Parker

showed (Pi) that if the corona were hydrostatic, the gas pressure at infinite
distance from the Sun would exceed the total pressure in the surrounding
interstellar medium by orders of magnitude; therefore a static corona is

actually impossible. Instead, the corona undergoes a continuous dynamical
expansion and produces a transsonic flow known as the solar wind. The
solar wind is driven, ultimately, by conversion of the high specific enthalpy
of coronal gas into kinetic energy of fluid motion; such winds are known as
thermal winds to distinguish them from winds accelerated by direct

momentum input to the fluid by intense radiation fields (cf. $107).

Several excellent reviews of thermal winds are available [e.g., (B9),
(H13), (H14), (H15), (H18), and (P2)]. We discuss here only the most
elementary aspects of the theory.

61. Basic Model

To obtain insight into the dynamics of thermal winds we consider the
highly idealized problem of a steady, spherical] y symmetric flow of a fully

ionized pure hydrogen plasma in a gravitational field. We first briefly

recapitulate Chapman’s and Parker’s arguments about the inevitability of

coronal expansion.

CORONAL EXPANS1ON

In a fully ionized hydrogen plasma, the electron heat flux is q= –K VT,

where the thermal conductivity K = KOT5’2 with KO= 8 x 10-7 ergs

cm “ s-’ K-7/2 (cf. $33). At coronal temperatures the conductivity of the
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plasma exceeds that of ordinary metallic laboratory conductors. Following

Chapman, suppose that thermal conduction is the only energy trans-
port mechanism operative; then V . q = O, which implies that

Id

--(

d

7
r2Ko T5’2 — = o.

r2 dr dr
(61.1)

Integrating (61 .1) and demanding that T +() as r + m we find

‘f(r) = TO(rO/r)217, (61.2)

where. rOis a suitable reference level (say r. = R@= 7 x 10’0 cm). The fallofi
predicted by (61.2) is very slow; for TO- 1.5x 106 K, T-3 x 105 K at the

Earth’s orbit (r@= 1.5 x 10’3 cm).

Suppose further that the corona is in hydrostatic equilibrium so that

(dp/dr) = –GJ4@p/r2. (61.3)

For fully ionized hydrogen, ne = no = n, p = 2nkT, and p = nm~. If we
assume that T(r) is given by (61 .2), then (61.3) becomes

(); (nX-’/T) = – .!! 2
El X2”

(61.4)

Here x = r/ro,and

is a scale height; for the solar corona Ef- 105 km. Integrating (61.4) we
find

n(r) = nox2’7 exp [–~(rO/lY)(l – X-5’7)], (61.6)

which implies that n – 105 near the Earth>s orbit if no – 4 x 108 in the
corona. We thus arrive at Chapman’s conclusion that the Earth must be
enveloped in hot, dense (compared to the interstellar medium) plasma

extending from the solar corona.

Combining (61 .2) and (61.6) we see that the pressure distribution in a
static corona,

p(r) = p. exp [–~(ro/H)(l – x-’)’)], (61 .7)

implies that the coronal pressure does not vanish as x --+~, but instead

approaches a finite value. For pO-0.2 dynes cm–z we find that pm- 10–5

dynes cm-z, which is six to seven orders of magnitude larger than the total
pressure in the interstellar medium. We thus arrive at Parker’s conclusion
that the corona must expand.

sl-EADY ONE-DIMENSIONAL FLOW

Consider now a steady, one-dimensional wind flow in spherical geometry.
We must solve the continuity equation

r-2[d(r’pv)/dr] = O, (61 .8)
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the momentum equation

pv (dvldr) = –(dp/dr) – GA~p/rz, (61.9)

and the energy equation

*: [r’pv(+v’+ h)] = –pv (%)++:(r’K%)‘611”)
where h = e + (p/p) = 5 kT/m~ is the specific enthalpy of the plasma.

The continuity equation has the integral

where % is the particle flux. The energy equation has the integral

&[~v2 + h – (G.&/r)] – 4wr2K(dT/dr) = % (61.12)

where ~ is the total energy flux. The two first-order differential equations

(61.9) and (61.12) determine the structure of a thermal wind. When this

system is integrated, two more integration constants appear; hence a total
of four conditions (boundary conditions, specifications of the behavior of

the solution, or choices of free parameters) must be imposed in order to
determine a unique solution.

[SOTHERNLA.[. WINDS

Before discussing the general problem posed above, it is instructive to

considel- the case of an isothermal wind. In physical terms we, in effect,

invoke some hypothetical heating mechanism to maintain a constant tem-
perature in the face of the tendency of the gas to cool adiabatically as it
expands. In practical terms we can then dispense with (61.12) and solve

only (61 .9) subject to (61.11).

Setting T= TO, and using (61 .11) to eliminate n we can rewrite (61 .9) as

~[1 - (2kT0/mE1u2)](dv2/dr) = -( GMo/r2)[l - (4kTOr/G&m~)].
(61.13)

Equation (61. 13) admits several types of solution. Notice first that in the

solar corona (4kTOr0/G.4&rt~) -0.3, hence the right-hand side of (61.13)
passes from negative to positive as r increases from rOto ~, and vanishes at
the critical radius

rC= G.llnm ~L/4kT0. (61.14)

At r = rCthe left-hand side of (61.13) must therefore vanish. “rhere are two

options: either

(dv/dr),c = O, (61.15)

or (dv/dr) is nonzero but v equals the critical velocity

VC= (2kT0/mEJ)”2, (61.16)

which is also the isothermal sound speed at r = ro.
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I ? 2

(r/rc)

Fig. 61.1 Topology of thermal wind solutions.

If we demand that both v and (dv/dr) be single valued and continuous,
we find four types of solutions as sketched in Figure 61.1. First, if we

suppose (du/dr),c= O we can construct solutions in which [1 – (2kT0/mEJU2)]
has the same sign for all r. If we choose v (rC)< VC,then v(r) has an absolute

maximum at r=, and v is everywhere subsonic (type 1). If v (rC)> UC,then

v(r) has an absolute minimum at rC,and v is everywhere supersonic (type
2). Afternatively, if we assume that v(rC) = VC, then we obtain two unique

critical solutions that pass through (rC,VC) with finite slope. Both solutions
are transonic, either with v increasing monotonically y from subsonic (u < VC)

for r < rC to supersonic for r > rC (type 3), or with v decreasing monotoni-

cally from supersonic to subsonic (type 4). If we drop the requirement that

v be single valued we find two additional families of solutions, types 5 and 6
in Figure 61. I ; their significance will emerge below.

To choose a model for the real solar wind, one appeals to observation.

It is known that flow velocities at the base of the corona are much smaller
than v== 170 km s-’, hence we can immediately exclude solutions of types
2 and 4. To choose between solutions of types 1 and 3 we integrate (61.13)

.,-
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to obtain

(v/oc)2–in (v/vC)z = 4[ln (r/rC)+(r/rC)]+C. (61.17)

For solutions of type 1, v < VC,and v decreases as r ~ ~; hence for r j> rC
the dominant term on the left-hand side is In (v/uc)* and on the right-hand
side it is 4 In (r/rC). Thus for type-j solutions v M r–z as r -+ ~, which

implies [cf. (61. 11)] that n, hence p, remains finite. In fact these solutions
yield values of pm that greatly exceed interstellar pressures, and can
therefore be rejected on the same grounds as the hydrostatic solution was.

In contrast, for the criticaf solution (type 3), v > VC and increases with
increasing r, hence u(r) - 2VC [ln (r/rC)]~’2fol large r, which implies that
n(r) w (l/r*v) ~ O as r -+ ~. ‘Tile critical solution can thus match a zero-

pressure boundary condition at infinity. This fact led Parker to conclude
(PI) that the solar wind is an accelerating transonic flow, a conclusion
verified by observations from space vehicles.

The unbounded velocity of the critical solution as r - ~ is unphysical. It
is an artifact of insisting the flow be isothermal, for, as noted earlier, this

assumption implies a continuous deposition of thermal energy into the gas,
leading to an infinite reservoir of energy which can accelerate the flow

without limit. Parker overcame this difficulty by demonstrating that one can

obtain satisfactory wind models, in which n -0 and u approaches a finite
value Umas r - ~, by assuming that the corona either (1) is isothermal for

R@s rs rx and then expands adiabatically (y = $) for r z r*, or (2) is

everywhere polytropic with ys ~. Although it is obviously highly oversimp-
lified, model (1) provides at least a plausible caricature of a thermal wind.

HEKr-CONDUCrINCr WINDS

While instructive, the isothermal winds just discussed are too idealized; to

model realistic thermal winds we must retain the energy equation (61.12)

in order to determine T (r] consistently with n(r) and v(r). For a systematic

survey of solutions, it is convenient to transform to dimensionless variables

(C2), writing

T= T/TO, (61.18a)

$=v2pm,./kT0, (61 .18b)

and

A = G.4@n~M/ kTOr, (61 .18c)

where K is the number of atomic mass units per particle (~ for ionized

hydrogen). In these variables the dynamical equations become

@’i2/A2 = (kTO/Pm~)3’23/(4 mG2.&) ~%, (61.19j

~[1 - (~/$) ](dO/dA) = 1- 2(dA) - (dddA)> (61.20)

and

.r&5’2(dr/d/k)= Em–&fi+ A ‘$7 (61 .21)
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where

E.= ~t9/kTO% (61.22)

is the residual energy, per particle, at infinity, in units of kTO, and

To integrate these equations we must specify E- and &, and impose the

requirements that ~ ~ () as A + O and that the solution pass through the

critical point if appropriate (see below).

The solutions of (61.19) to (61 .23) fall into two basic classes: (1)
transonic critical winds, resembling the isothermal solution of type 3 and

(2) subsonic breezes, similar to the isothermal solutions of type 1. The
winds all have % >0, whereas the breezes all have Z9= O. Breeze solutions

played an important role in the development of stellar wind theory (cZ),

(R7), but will not be discussed further here.
The wind solutions display three distinct asymptotic behaviors of T(r) as

r - m [(D1), (D2), (D3), (H18, 47), (P3), (R7), (W4)]. The behavior of any

particular solution is determined by the dominant heat-transport mechan-
ism as r -+ ~. Suppose first that the heat-conduction flux at infinity, ~C(~),

remains finite while the enthalpy flux goes to zero. Then [r2T5’2(dT/dr)]~ =
constant, which implies T(r) x r–2’7 asymptotically; this is the kind of
solution discussed by Chapman and by Parker (P3). Next suppose that both
the conduction and enthalpy fluxes go to zero in such a way that their ratio

(nvr25kT)/[r2&T’’2 (dT/dr)] remains finite as r ~ ~. This condition can be
achieved if T(r) Mr–2’5 asymptotically, the solution first discovered by
Whang and Chang (W4). Finally, suppose that the conduction flux vanishes
more rapidly than the enthalpy flux as r ~ ~; in this case there is no energy

exchange within the gas and it expands adiabatically. Thus as r ~ ~,
T ccp(~-il w r-zcv–’j (because p Mr-2); hence T(r) ~ r-4]3 for y = ~, the
solution first discovered by Durney (Dl).

In fact, a continuous sequence of solutions exhibiting these different
asymptotic behaviors can be obtained by fixing the coronal base tempera-

ture TO and choosing different values for the base density no. For small

values of nO, the critical solutions have large values of .(~)= ?5/.9, the
energy flLlx at infinity per particIe, and T(r) ~ r–2’7. As nO is increased, an

ever-larger fraction of eC(~), the conduction flux at infinity, is consumed in

driving a more and more massive flow. Eventually at some critical value of

%, say n%, ec(~)-+o, and T w r-2° f or this particular solution. If we
increase nO still further, ~C(~) remains zero and at large r the gas expands

adiabatically with T x r–4’3. As more and more material is added to the
flow, more and ]more thermal energy is consumed in the adiabatic expan-

sion, and e(~) decreases. Finally, for a sufficiently large rZO,e(~) vanishes,
and the solution abruptly changes h-em a transonic wind to a subsonic

breeze.
For wind sol utions (only) the further transformation Tx = r/e~, I/JxE ~/e~,
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and k * = A/z_ reduces the number of arbitrary constants to one; equation

(61 .20) has the same form in the new variables, while (61.21) becomes

(61.24)

where % = ei’2d. A large number of solutions for a wide range of .7{ are
given in (D2); each of these can be redimensionafized into an infinite

number of physical solutions for differing choices of, say, nO and TO. For a

typical solar wind model, one finds that near the Earth’s orbit the wind

speed is -300 km s-i and the particle density is -10 cn~-3. The rate of

mass loss in the wind is – 10-’4 M@/year, which is negligible compared to
the rate of mass loss via thermonuclear energy release.

TRANSITION TO THE INTERSTELLAR MEDILJM

The above discussion tacitly assumes that the flow expands into a vacuum.

In reality, the wind ultimately stagnates against the ambient interstellar

medium, forming a stationary shock across which the flow velocity drops

suddenly from highly supersonic to subsonic, while both the temperature
and density rise sharply. The wind solution thus jumps discontinuously

from the critical solution to one of the solutions of type 6 in Figure 61.1;
the correct subsonic solution is chosen by matching conditions in the

interstellar medium as r ~ ~.
By imposing the Ranki ne-Hugoniot relations across the jump, one can

determine the radius r, at which the shock front is located. To obtain a

rough estimate of r,, we can equate the impact pressure nrn~v~2 of the flow

to the interstellar gas pressure pi. Noting that r2n(r) = r~n (r@) because the
flow speed is already essentially VW at r = r@, we find

rJr@=(n@rrt,Iul/pi) ’”2. (61.25)

For typical values of u, pi, and n@ one obtains r, z 30r@.

Accretion flows, in which material falls in fro]m infinity onto a star, are
also possible (HIS); in this case the solution runs inward along the critical

solution of type 4 and jumps discontinuously to a solution of type 5

through an accretion shock near the surface of the star.

62. Physical Complications

While the model described in $61. gives basic insight into the nature of

thermal winds, it is a terribly oversimplified description of the real solar
wind. It is therefore worthwhile to mention some of the physical complica-
tions that occur in the real solar wind as an introduction to more sophisti-

cated treatments that include phenomena which change the picture substan-
tially, sometimes even qua]itativel y. Good general reviews are given in
(H13) and (H14).
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LZUID PROPERTIES

In $16 we assumed that a thermal wind can be considered to be a steady

flow of an equilibrium, inviscid (although heat-conducting) fluid. Each of
these assumptions requires scrutiny. Dimensional arguments (P2) show
that because the physicaf scale lengths in stellar winds are so large, the

Knudsen number is usually (but not always) small enough that the material

can be treated as a continuum rather than as individual particles. On the

other hand, interparticle collision frequencies are so low (because of low
densities) that collisional equilibrium between electrons and protons in the
plasma cannot be maintained (S15), (H2). Instead, we must use a two-fluid

model, allowing the electrons and protons to have different temperatures.

Indeed, space observations show that near r@, T. = 1.5x 105 K while
Tp = 4 X 104 K; the higher electron temperature is maintained by the larger

heat flux transported by the electrons. The analytical properties of two-
fluid polytropic flows me discussed in (s17) and a comprehensive review of

two-fluid, solar-wind models is given in (Hll). A problem with many

two-fluid models of the solar wind is that the computed difference between

T. and T. is much larger than is observed; a number of additional
“noncollisional” energy-exchange mechanisms, including a variety of

plasma instabilities, have been hypothesized to remedy this problem.
The inclusion of viscous terms has a large impact on the mathematical

structure of the stellar wind problem becaUSe they eliminate the singularity
at the critical point (W5), raise the order of the system of differential
equations, and admit a richer variety of boundary conditions. Early calcu-

lations including viscous terms [e.g., (S2]] predicted major changes in the
flow; these conclusions are now known to be incorrect because the integra-

tion scheme yielded spurious solutions of the Navier-Stokes equations

(S16). More recent calculations [e.g., (W8)] show that viscous terms have
relatively little effect on the dynamics of the flow but do contribute to
heating the proton component of the plasma.

Thermal conduction by electrons is a major energy-transport mechanism

in thermal winds. But the density in the flow is so low that the correctness
of the standard Spitzer-Harm conduction coefficient, valid in a collision-

dominated plasma, becomes questionable. In the outer parts of the flow

one finds that the ratio of the collisional mean free path A to the scale
length 1 of the temperature gradient exceeds unity. In this regime, the
thermal flux predicted by the standard formula q M–A VT may exceed the
physical upper bound set by assuming the entire electron thermal energy

~ia,kT is transported at the mean thermal speed v,,, of the electrons. We
must therefore impose flux limiting on the thermal conduction (a problem

discussed in the context of radiative energy diffusion at the end of $97). A
variety of schemes [e.g., (P4), (H1O), (W8)] that inhibit the heat flux when
k ~ 1 have been suggested, These modifications typically improve agree-

ment between theory and observation; nevertheless they are ad hoc, and

the difficult problem of calculating accurate transport coefficients in a
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collisionless plasma remains to be solved, although progress is being made

(s11).

MAGNETl C FIELDS

The assumption of spherically symmetric steady flow is also inadequate for

the real solar wind. It has been known for some time that the properties of
the solar wind measured near the Earth vary over a wide range on time

scales of hours to days. Prominent features include strong flare-induced
shocks, and high-speed plasma streams often observed to recur with a solar

rotation period. In the customary picture of the solar wind, these
phenomena were viewed as distinct events superposed on a “quiet solar

wind” presumably described by models like those discussed in $61. This

picture had to be abandoned in the face of X-ray observations, which show

the corona to be extremely inhomogeneous and highly structured by
magnetic fields (Z2). These structures strongly affect the character of the
wind emanating from any particular volume element. On one hand, little, if

any, wind originates from the hot, dense, magnetically confined coronal
loops; these structures are cooled mainly by thermal conduction downward

into the chromosphere and by radiative losses. On the other hand, high-

speed wind streams originate in the coronal holes, which are rarefied,
relative] y cool regions with rapid] y diverging magnetic fields that open into
interplanetary space; here the wind itself is an important cooling mechan-

ism. Thus the solar wind is not a smooth, steady flow perturbed by

occasional “atypicaJ” events. Instead, the observed strongly fluctuating,

complex flow is representative of the wind, indeed is the wind.
Magnetic fields may afso strongly affect energy and momentum input

into the wind. It is now believed that the dominant coronal heating

mechanism is direct dissipation of magnetic energy into the PIas ma (Vi),
(L4). The earlier concept of shock heating seems inconsistent with current

observations. Recent work has shown that the dissipation of Alfven waves

can deposit substantial energy and momentum in a wind flow; models

based on this mechanism seem to provide a satisfactory representation of
the winds observed in many late-type stars (H3), (Ml).

More realistic wind models attempt to allow for rapidly diverging flow
geometries and nonthermal momentum and energy sources. These

phenomena have dramatic effects on the flow. For example, the solutions

may exhibit multiple critical points. A sketch of possible topologies for

three-criticaf- point sol utions (H12) is shown in Figure 62.1; one sees that
the flow can become rather complicated. Momentum and energy inputs to

the flow can also strongly affect the mass flux and terminal flow speed of a
wind. Thus energy input to the supersonic part of the flow increases the
terminal flow speed but has no effect on the mass flux (as expected because
the mass flux is already fixed in the subsonic part of the flow because

information about changes in the supersonic part of the flow cannot
propagate upstream). Jn contrast, energy addition to the subsonic part of
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Fig. 62.1 Topology of thermal wind solutions with multiple critical points. FTom

(H12) by permission.

the flow increases the mass flux but has little effect on the terrni nal wi ncl

speed. Momentum input in the subsonic part of the flow may actually

reduce the teTminal wind speed (L3).
Magnetic fields can also induce an azimuthal component in the flow in a

stellar wind from a rotating star, thereby allo\\ing the wind to exert a

torque on the star and to act as a sink of stellal- angular momentum (WI),
(B9, $3.7). Whereas the rate of mass loss into the solar wind is negligible,

the rate of angulal--momentum loss is substantial and is responsible for the

Sun’s present low rotation rate.
Present research in this area attempts to address fully three-dimensional

magnetohydrodynamic flow from a structured corona, a topic that lies far

outside the scope of this book.
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