
5
Waves, Shocks, and Winds

Having derived the equations of fluid dynamics, we are now in a position to
analyze some flows of interest. We shall confine attention to only a few

illustrative examples of astrophysical importance. We consider first the

propagation of small-amplitude disturbances in both homogeneous and

stratified media, that is, acoustic waves and acoustic-gravity waves such as
are observed in the solar atmosphere. Here it is adequate to use linearized

equations of hydrodynamics. We then consider the nonlinear equations in
the context of the generation, structure, propagation, and dissipation of

shocks, which are important in a wide variety of astrophysical problems.
Finally, we examine a nonlinear, radial, steady-flow problem that provides

a first rough approximation to the physics of stellar winds, which are

responsible for stellar mass-loss via supersonic flow into interstellar space.

5.1 Acoustic Waves

Acoustic waves are small-amp] itude disturbances that propagate in a

compressible mediunl through the interplay between fluid inertia and the
restoring force of pressure. In order to isolate distinctly the characteristic

properties of pure acoustic waves we assume that the medium is

homogeneous, isotropic, and of infinite extent, and that no externally

imposed forces act.

48. The Wave Equation

Take the ambient medium to be a perfect gas at rest with constant density

PO and pressure PO. Impose a small disturbance that perturbs these quan-
tities locally to p = po+pl and p = PO+ PI, where lp,/pOl<<1 and lp,/pO]<<1.

The fluid acquires a small fluctuating velocity v~ such that Ivl I/a<<1, where

a is the speed of sound (see below). Velocity gradients are assumed to be
so small that viscous effects are negligible, and the time scale for conduc-
tive heat transport is assumed to be so large compared to a characteristic
fluctuation time that energy exchange by conduction can be ignored. In the

absence of these dissipative processes, the wave-induced changes in gas

properties are adiabatic, and because the undisturbed medium is

homogeneous, the resulting flow is isentropic.
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LINEARIZED FLL-TD EQUATIONS

Because all the perturbations p ~, p,, and v, are small, we can linearize the
fluid equations, discarding all terms of second or higher order in these

quantities. The equation of continuity (1 9.4) then becomes

(dp,/M)+p, v “v, =0 (4s.1)

and Euler’s equation (23.6) becomes

p@’l/&)+vpL=o. (48.2)

We can dispense with the energy equation because the disturbance is

adiabatic, which implies variations in material properties can be related

through derivatives taken at constant entropy. In particular,

P[ = (~P/m)sPl - (48.3)

Taking the curl of (48.2) we find

F)(V xv,)/dt = o, (48.4)

hence the vorticity co of the disturbed fluid remains constant in time. As

the undisturbed fluid was initially at rest it follows that co= O at all times,

and the disturbance is a potential flow with

V[=v($l> (48.5)

where ~, is the velocity potential.

IH15 WAVE EQUA-l-rON

Taking (d/dt) of (48.1 j and subtracting the divergence of (48.2) we find

(13’pJr3t2)-v2p, = o, (48.6)

which, by virtue of (48.3), implies that

(d2pl/dt2) – a’ V*P, = O (48.7)

and
(d2pl/N2)– a’ V2p, = O, (48.8)

where

a’= (dp/dp),. (48.9)

Furthermore, using (48.5) and (48.9) in (48.2) we frnd

Po[d(vd ,)/dt]+ a’ VP, = v’[pO(d&/dt) + Clzp ,] = O, (48.10)

which implies

Po(d41/dt) + a2p, = c (48.11)

where C is a constant over all space. But both @ ~ and PI vanish in the
undisturbed fluid (i.e., at infinite distance from the wave), hence we can set
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C= O. In addition, (48.5) and (48.1) imply

(dp,/al) + p. V’+, = o. (48.12)

Combining (48. 11) and (48. 12) we obtain

(d’~,/dt’) – a’ v’+, = o. (48.13)

Equations (48.7), (48.8), and (48. 13) are al I wave equations, and show
that acoustic disturbances propagate as waves.

SOLUTION OF THE \VAVE EQUATION

Consider the special case in which all perturbations are functions of one
coordinate on] y (z). The wave equation then reduces to

(#d), /dC’)– a’(d’(j Jazz) = o (48.14)

which has the general sol ution

d, =f,(z –at)+f’(z +Ut), (48.15)

where f, and ~z are arbitrary functions of their arguments. This solution

shows that an initial disturbance f, (t = O) = ~lO(z) propagates with unaltered

shape along the positive z axis, while an initial disturbance ,f2(t = O) = f20(z)
propagates along the negative. z axis, both with speed a. Thus (48.15)
represents a superposition of two traveling plane waves, and a as defined by
(48,9) is the adiabatic speed of sound. Moreover the only nonzero compo-

nent of the wave velocity VI = V~l lies along the propagation axis, hence

acoustic waves are longitudinal waves.

More generally, in Cartesian coordinates (48.13] admits solutions of the
form

Ol=fl(x ”n–at)+f,(x”n+ at), (48.16)

which are plane waves traveling with speed a along &n, the unit vector

defining the direction of wave propagation. As implied by (48.16), the

propagation of acoustic waves is isotropic because the ambient medium is

homogeneous and isotropic. From (48. 16] one finds

V, = (~fl/dC)n+ (df2/M)n, (48.17)

where ~ and q denote the arguments x “n Tat; again, the waves are
longitudinal, with nonzero velocity components only along n.

For plane waves the perturbation amplitudes p,, PI, and v, can all be
related simply. Thus choosing @l= f(z – at) we have VI = (&$l/~z) = f‘,

while (48.1 1) implies that p, = –(pO/a2)(d~l/dt) = (pO/a)f’. Therefore

pl=(vl/a)m, (48.1 8)

hence from (48.3) and (48.9)

PI =a’p~=apovl. (48. 19)
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Furthermore, using the germ-al thermodynamic relation

map)., = @’L/PCL,, (48.20)

which follows from (2.27) and (5.7), we have

T,lrro= ((3/pocp)pl =(@/cp)o,. (48.21)

Here /3 is the coefficient of thermal expansion as defined by (2.14).
Equations (48. 18) to (48.21) show that in acoustic waves p 1, p,, T,, and v,

are all in phase.

‘l_HE SPEED OF SOUND

Let us now derive explicit formulae for the speed of sound. For an
adiabatic perfect gas, p = pO(p/po)Vwhere Y is constant, hence

a 2 = ypO/p. = yRT, (48.22)

which shows that the speed of sound in a perfect gas is a function of the

temperature only. To account for ionization effects, we merely replace y
with r, = (~ In p/dIn p), as given by (1 4.29), obtaining

a2=TLp0/p0. (48.23)

For a perfect gm, (48.19) and (48.21) reduce to

PIIPO=YPIIPO=VIIU (48.24a)

and

T,/To=(y-l)l), /u. (48.24b)

To account for ionization eflects we replace y in (48.24a) with rl and
(y – 1) in (48.24b) with 1’3 – 1 = (d In ~/d in p), as given by (14.30).

Equation (48.23) yields the correct sound speed only for a nortrelativistic

fluid; hence it fails at very high temperatures, in degenerate material, or if

the fluid comprises both matter and radiation, and the latter contributes
significantly to the pressure and energy density of the composite fluid. TO

obtain a relativistically correct expression for the sound speed we 1inearize
the relativistic dynamical equations (42.3) and (42.4), obtaining

(d2,/d2)+(2+p)ov “v, =0 (48.25)

and

(2+ p),@v,/dt) + c’ Vp, = o (48.26)

where 2 E pooc 2 = pO(c2+e) is the total energy density of the fluid (including
rest energy). Combining (48 .25) and (48.26) we obtain

(d22,/dt2)– c’ ‘v’p, = o, (48.27)

which implies that an acoustic wave propagates with a speed

a = c[(dp/%)$]”2 = c[(dp/@o), (dpo/d2), ] “2. (48.28)
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But

(d2/dPo)s = (2/Po) + po(ddih),, (48.29)

and Tds = O = de —(p/p~) dpo implies that

(W@O), = P/P& (48.30)

whence

(a2/@.), = (2 + p)/po. (48.31)

Therefore (48.28) becomes

~=c[rjp/(2+p)]”2. (48.32)

See also (L7), (T4), and (W2).
For a nonrelativistic gas, 2 ~ pocz >>p, and (48.32) gives a(N,R.) =

(1-, p/p) ‘i’, in agreement with (48.23). For an extremely relativistic gas we
recall fronl $43 that 2 e pOe = 3p [cf. (43.53)] and that r, -~, hence

(48.32) gives CL(E.R.) = c/J3. As we will see in $69, this result also holds

for a gas composed of pure thermal radiation.

49. Propagation of Acoustic Waces

MONOCHROMATIC PLANE WAVES

Let us now consider the propagation of a monochromatic wave (ie., a wave
having a sinusoidal time variation at a definite frequency o). This special

case is important because an arbitrary wave packet can be synthesized from

a 1inear combination of monochromatic waves (Fourier components) whose
relative amplitudes and phases are determined by a Fourier analysis of the

packet.
Thus consider a wave of the form

p,=~exp [i(~t-k” x)], (49.1)

P,=R exp[i(~t–k “x)]> (49.2)

T, =@ exp [i(cot –k ox)], (49.3)

and

4,=0 exp [i(wt –k. x)], (49.4)

where P, R, @, and CD are complex constants that are interrelated by

(48. 18) to (48.24). The use of complex quantities is convenient mathemati-

cally because it facilitates computation of the relative phases of different
variables, but for the purposes of physical interpretation we use the real

parts of (49.1) to (49.4).
According to (49.1) to (49.4), at a given instant the wave comprises a

regular (sinusoidal) spatial sequence of compressions and rarefactions
coupled to a sinusoidal velocity field. Likewise, at a given spatial point the
fluid density, pressure, and temperature fluctuate si nusoidally in time
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around their equilibrium values, and the fluid particles oscillate sinusoidally

around their equilibrium positions.

In (49.1) to (49.4) k is the wave vector or propagation vector, which
determines the direction n of wave propagation via

k== kn. (49.5)

The wavenumber k is related to the wavelength A of the wave by

k = 27r/A. (49.6]

Substituting into (48.7), (48.8), and (48.1.3) we find that (49.1) to (49.4) are
valid solutions of the wave equation provided that

C02= a2k2. (49.7)

From (49.7) it follows that the planes of constant phase perpendicular to n
propagate along n with speed a; thus for pure acoustic waves the phase
speed Vp equals the speed of sound. Simple geometric considerations show

that two planes of constant phase separated by one wavelength A along n
are separated by a distance

A/ni = 2m/kni= 2rr/ki (49.8]

along the ith coordinate axis. Because the constant-phase surfaces succeed

one another in a period

one sees from (49.8) and (49.9) that the phase trace speed along the ith axis

is

(voi = co/ki= a/ni. (49.10)

Notice that the trace speed is infinite in the planes perpendicular to n,
which is expected because these are planes of constant phase, hence a local

change in phase at any point in a plane must “propagate” instantaneously

over the entire plane (i.e., over the entire wave front). Tnfinite phase or
trace speeds are not in violation of relativistic causality because they
represent only the behavior of a mathematical “marker”, not a physically

significant cluantity like momentum or energy.
Equations (49.5) and (49.7) show that pure acoustic waves propagate

isotropically with a unique speed a, and have a simple proportionality

between wavenumber and frequency. In $$52–54 we will see that the

behavior of acoustic-gravity waves in a stratified medium is markedly
different.

MONOCHROMA7-lC SPHERICAIL WAVES

ThLis far we have discussed only plane waves, but from symmetry consider-
ations one expects that an isotropic medium will also support one-
dimensiona] spherical waves emanating from a point source. Thus



WAVES, SHOCKS, AND WINDS 175

specialize (48.8) to

(2)-%x’2a=”- (49.1.1)

The substitution pl = f/r reduces (49.11) to (d2~/dt2)– a2(d2f/dr2),which
leads to a general solution of the form

pl=h”l(r -at)/rl+112(r +at)/r] (49.12)

where fl and fz are arbitrary functions. The two terms in (49.12) represent

spherical disturbances diverging from, and converging on, the origin. The
wave amplitude falls off as r–’, hence the wave intensity (proportional to
the square of the amplitude) varies as r–z.

Specializing now to monochromatic waves we choose a solution of the
form

~1 = pei((.r–kr)
jr, (49.13)

which satisfies (49. 11) only if o = ak. The thermodynamic relations (48.3)

and (48. 19) are independent of geometry, and show that in a spherical
acoustic wave both p, and TI are proportional to, and in phase with, p,.

From (48.1 1) we obtain

4%= (uPo@)Pl, (49. 14)

which shows that @l leads p, in phase by 90°. Calculating v, from (48.5) we

have

VI = [k –(i/r)](pl/pow)t. (49.15)

As r ~ ~, (49. 15) reduces to (48.19), as it should because a wave is locally
planar when its radius of curvature approaches infinity. Efowever, near the

origin VI lags PI by 90°, and grows in amplitude as r–2.

GROUP \JELOCITY

To determine the speed of energy propagation in waves we study the

behavior of wave packets. A packet is a localized disturbance that can be

described mathematically as a superposition of a large (perhaps infinite)
number of Fourier cornpo nents that interfere in such a way as to produce a
finite wave amplitude only in a strongly localized region in space and time.

Intuitively one expects that such a localized disturbance must result from a
concentration of wave energy, and that the motion of the packet tracks the
flow of wave energy in the medium.

Consider a packet composed of plane waves exp [i (cot –k. x)] whose
wave vectors k lie in the volume k.+ Ak of k space; we assume that all
~,aves having their wave vectors within this volume have unit amplitude,

and that all others have zero amplitude. We further assume that ~ is a
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general function of (kX, <, k=). The amplitude of the wave packet is then

A(X,t)=~~;d~~~; d~~;dkZe,x.,,=l-.xx-,Y-zz-,

(49.16)

For a small enough VOIume Ak, we can use the linear expansion

u(k) = ~(kJ + (&JWX)O ak. + (doJdl@O 8\ +(tkddkz)o 8kz,
(49.1.7)

whence

A (x, t)= ei(’’’ko-x)-x)[’: d(tk)~’k” d(8~)J-:: d(8kz)
–Ak z

xev[{[(~):-x]~~+[(;):-y]~k+[(:):-z]~kz}]
~ 8ei(00,-ko.x, sin {[(dw/dk.)ot – X] AkX}

(&JdkX)Ot– X
(49.18)

~ sin {[(&o/dkY)ot– y] AL}

(d@/d<)ot – y

Xsin {[(&o/dkz)Ot– z] AkZ}

(dddkz)ot – Z

Equation (49. 18) shows that the packet is an amplitude-modulated plane
wave. The maximum of each of the factors (sin <)/~ is attained as ~ ~ O,

hence the packet has maxim urn amplitude at

X = (dti/dkX)Ot,

y = (&o/dkY)Ot,
and

Z = (&o/dkz)Ot.

Thus the wave packet has a group veloci~ (or packet velocity)

Vg =Vkw

where

V,= (d/d~)i+ (d/d\)j+ (d/dkz)k.

These results hold for an arbitrary dependence of o on k.

(49.1 9a)

(49.19b)

(49.19C)

(49.20)

(49.21)

In the particular case of a packet of pure acoustic waves, for which
~ = ak, one readily finds

Vg= a[(kX/k)o~+ (kY/k)Oj+(kz/k)Ok]= ano. (49.22)
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Thus, for pure acoustic waves, the group velocity equals the phase velocity,
and an acoustic wave packet propagates with the speed of sound along nO

(or kO); as wc will see in $53, the behavior of gravity-modified acoustic
waves in a stratified medium is lmore complicated (and interesting).

S0. Wave Energy and Momentum

We obtained the mechanical energy equation for a fluid by taking the dot

product of the flow velocity with the momentum equation (cf. $$24 and
27). Similarly we can derive a mechanical energy equation for an acoustic
wave by taking the dot product of the velocity fluctuation VI with the

linearized momentum equation (48.2), obtaining

Povl “ (~1/a~) = G(w?).c = –V1 “ VP1> (50.1)

which states that the rate of change of the kinetic energy density in the

wavk equafs the rate of work done on the fluid by the wave-induced

pressure gradient. Notice that all quantities in (50.1) are second order.
In place of the gas energy equation, we have the adiabatic relation

(48.3), which can be combjned with the continuity equation (48.1), to give

(m/a2&K@l/d~) = (Mlazm)., =–PI V - V1. (50.2)

In order to interpret (50.2) physical Iy, consider the energy density 2 = pe of

the disturbed fluid. lf we take e = e (p, s), then beCauSe the wave is

adiabatic

w = eopo+ [d(pe)/tbl,pl T4[d2(pe)/E@21,p?. (50.3)

But from (3.1 2), (de/dp)s = p/p2, hence [d(pe)/dp], = h. Therefore

[d2(pe)/dp21, = (dlddp~, = (WdP)S(dP/dP)S = a2/p, (50.4)

where we used (2.33) to obtain (dh/dp),. Thus

pe = poeo+ hop, +~(a2p~/po) = poeo t hop, +~(p~/a2pO). (50.5)

The first term on the right-hand side of (50.5) is the energy density of the

unperturbed fluid and is unrelated to the presence of the wave. The second
term averages to zero over a s efficiently 1arge volume because the total

mass of the fluid cannot be changed by a wave, hence f p, dV= (0. (likew-
ise, this lerm averap,es I o zero over time for harmonic disturbances. ) Hence.

the third term represents the nonvanishing net change in the fluid’s internal
energy density resulting from the presence of a wave; this energy (a

second-order quantity) is called the contpressional energy of the wave. Thus

(50.2) is analogous to the first law of thermodynamics, stating that the rate
of change of the compressional energy stored in the wave equals thenega~jveof the l-ate of work done bythewave’s pressure perturbation on

the wave-induced expansion and compression of the fluid.
Taking the su~mof (50.1) and (50.2) we obtain a wave energy equation in
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conservation form, namely

(d&w/at)= -v “ +W

where the wave energy density is

Ew=~ 2Pod+M/~2Po)

and the wave energy jlux is

@w= P,v,-

Tbe momentum density in the perturbed fluid

(50.6)

(50.7)

(50.8)

is p = pv = pOvl + p.~vl.
Using the fact that VI= V-o,, one sees from equation (A2.64) that

Po
J ~

V, dV= po ~ln dS. (50.9)
v s

The latter integral is identically zero if S lies in the unperturbed fluid

where +, = O, so in a sufficiently large volume the net wave momentum
density is

h = PLVI = pIV1/U2 =&/a2. (50.10)

The above form ulae simplify for plane waves. Thus from (48.19) we find

&w= pov: (50.11)
and

0. = apov?n = u&Wn. (50.12)

The instantaneous values of SW and ~W are of little interest; rather we
usually wish to know the time averages (SW) and (@W). In particular, for

monochromatic c waves, we calculate averages over a cycle (one wave

period). When complex representations like (49. 1) to (49.4) are used it is
important to remember that in computing, say, (plvl) we must take the
time average of the real parts of p, and V1. This is most easily done by
noting that for any time-harmonic complex quantities a = aoei<”’ = a~ + iar
and ~ = ~oei(<”(L’ti)= BR + i(3Jwe have the general identities

+(@*@ +cfp”)=ao~o Cos lj (50.:13)

and

{aRpR) = clopo{cos (Cot)Cos (Cot+ qb))=+aop-o Cos Lo
(50.14)

= aOflO(sin (cot)sin (d+ (j))= (al~l).

Hence for monochromatic plane waves we have the useful result

(aRpR)=;(a”/3 +c@*). (50.15)

From (50.15) we see that for a monochromatic wave the average kinetic
and potential energy densities each equal

~
2pO{v;R} = ~pOVI VT = $PoV L“v:, (50.16)
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hence the average wave energy density is

(&,,) =jpc,v, “v;, (50.17)

and the average wave energy flux is

(@ W)=(pl L7vlR)=~(plv? 4-p~vl). (50.18)

For a wave packet whose velocity amplitude can be represented by a

sum over monochromatic components, that is,

V(t) = ~ Vie’@’, (50.19)

one easily sees that the only terms surviving in a time average yield

{V;)=+(V “v”)=~~vi “v;. (50.20)

Hence the average energy density in the wave equals the sum of the

average energy densities in the monochromatic components. Likewise

(Ow) = z {@.,)- (50.21)

51. Darnping of Acoustic Waves by Conduction llnd Viscosiv

Thus far we have ignored viscosity and thermal conduction and have

supposed that acoustic waves propagate adiabatically. We now inquire
what happens to a wave when these dissipative processes are operative. We

assume the fluid is a perfect gas, and consider the propagation of a plane
wave along the x axis.

The linearized continuity equation (48. 1) is unaffected by viscosity or

conductivity, while the linearized momentum equation (26 .2) is

Po(Wat) = –(@, /dx) + v’(d2zh/dx2) (51.1)

and the linearized energy equation (27. 11) is

&ide,/dt) = –PO(d%/dx) + ~(d2T1/dx2). (51.2)

Here w’= ~LL+ C is the effective one-dimensional viscosity. Notice that no
viscous term appears in (51.2) because the dissipation function K’(dv, /tlx)2

is a second-order quantity.

For a perfect gas p = pRT = (y – l)pe, hence

‘r, = [PI – (pO/pO)P,l/l@O (51.3)

and

e~ = [PI –(po/po)Pll/(Y– l)Po. (51.4)

Using (51.3) and (51 .4) and eliminating (tlv ,/dx) via (48.1), we can rewrite
(51 .2) as

;(P1–a*P1)=Yxg(P1–a’Pi)> (51.5)
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where x is the thermal di~sivity [cf. (28.3)]

x= Kipoc,, = (Y – l) K/yRpo. (51.6)

Now take a plane-wave solution

p,= P exp [i(cot – kx)] (51.7)

p, = R exp [i(d – kx)] (51.8)
and

o,= @ exp [i(tit – kx)], (51.9)

where VI = (d@l/dx). Substituting (51.7) to (51.9) in (48.1), (51.1), and

(51.5) we find

iwR–pOk2@=0, (51.10)

–ikP+(pokti – i~’k3)@ = O, (51.11)

and

(i~ +yxk2)P–a2(i~ +xk’)R = O. (51.12)

We obtain a nontrivial solution of (51.10) to (51.12) only if the determin-

ant of the coefficients vanishes. Enforcing this condition, we obtain the

dispersion relation

~z=azkz

[

1 – i(xk2/co) + i~’k’w

1~ – i(yxk2/w) p.
(51.13)

Notice that when x = W’= O we recover our previous result ~2 = a2k2.
Suppose first that both W’ and y are very small. Then set k = k. + 8k =

(co/a)+ 8k, expand to first order in small quantities, and solve for 8k to

obtain

8k = –(iti2/2a’pO)[~ ’+(y– I)pox]. (51.14)

The sol ution for, say, p, is then of the form

p, = pei(.,, –knx’l –x/f.e (51.15)

where L - —i/8k, and similarly for p], T,, @l, and VJ.
Equation (51.15) shows that the wave still propagates with the sound

speed a, but its amplitude steadily diminishes with a characteristic decay-
Iength L. Thus small amounts of viscosity and conductivity damp acoustic

waves by an irreversible conversion of wave energy into entropy. Recalling

from $29 that (~/p) - y - cA, where A is a particle mean free path, we see

that (L/A) - (A/A), hence the decay length is of the order of (A/A)
wavelengths. The assumptions under which we solved (51.13) imply

(A/A) >>1, hence the decay is slow. Equation (51.14) shows that high-
frcquency waves are more heavily damped than low-frequency waves,
which is not surprising because for a given amplitude they will have steeper

gradients of velocity and temperature over smaller physical distances (a
wavelength).
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In reality the physics of the problem is more complicated, and more
interesting, than indicated above. To simplify the analysis suppose the gas

has zero viscosity but a finite thel-mal conductivity. (Recalling from $$29

and 33 that in a real gas K ~ w this assumption may, at first sight, seem
hypothetical. But as we will see in $101 it is actual Iy realistic for a radiating

gas where radiation provides an efficient energy transport mechanism while

viscosity and thermal conduction-by particles—are both negligible). The

dispersion relation then becomes

k4–[(Y~2/U2)– i(ti/x)]k’– i(~3/a2X) = O, (51.16)

which yields immediately

“2=($-;)* [Y-;-2i(:~;)@31”2 “117)

In general, one must calculate k(~) from (51.17) numerically. But we

can obtain analytical expressions in two limiting regimes. First, suppose

that the dimensionless ratio &= (~X/CL2)<<1 because o and/or x is very

small; from the scaling relation x - aA one recognizes that in this regime
h/A~~ 1. Expanding (51.17) to second order in e we have

2k2=(@/X)(~E –i)+ (ioJ/x)[l+z(y-2)e –2(Y– 1)s2]. (51.18)

Taking the positive root we have

k:. =(@da)2[l – i(y – l)(@a2)] (51.19)

whence we obtain

k, =+[(cIJcL) – i(y – l)(X02/2a3)]. (51.20)

This root corresponds to the same mode obtained in (51.14), that is, a

slowly damped acoustic wave propagating with the adiabatic sound speed.
Taking the negative root in (51 .1.8) and retaining only leading terms we

find

k?=–iwjx (51.21)

whence we obtain

k2 ==*(@/2x) ’’2(l–i). (51.22)

This root corresponds to a new mode, a propagating thermal wave [cf.
(L2, $77) and $$101 and 103]. This particular mode propagates very

S1OW1y, with phase speed v. = (2=)1’2 a <<a; because the real and imaginary

parts of k are of the same magnitude, the wave is very heavily damped,
decaying away in a few wavelengths. Moreover A211~ = kO/k,~ = (2.s) ‘J’<<
1, hence the physical distance over which this mode can propagate is less
than a wavelength of an undamped acoustic wave of the same frequency.

Suppose now that the dimensionless ratio E‘ = (a2/coX) <<1 because o
and/or x is very large; estimating x as before we see that in this regime
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A/A <<1. We now expand (51.17) as

Taking the positive root we have

k?. ==(co2/a~)[l – i(y – ~)(E’/y2)], (51.24)

whence

kq =+[(da-r) – i(-y – l)(a~/2yX)]. (51.25)

Here a-,- is the isothermal sound speed

a;= (dp/i3p)-r= p/p = a2/-y. (51.26)

This root again corresponds to a damped acoustic wave, but with the

qualitatively important difference that now the wave propagates at consfant
temperature because wave-induced temperature fluctuations are efficient y

100

I
I

I I
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<

~a
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I I 1 I 1 1 1 I I I I
-3 –2 –1 o I 23

log (jyw/oZ)

Fig. 51.1 Damping length and phase velocity of damped acoustic mode.
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eradicated by the high thermal conductivity and/or steep temperature

gradients. Isothermal acoustic waves propagate a factor of Y-”2 more

slowly than adiabatic acoustic waves; the decay length is now independent

of frequency and is proportional to the thermal conductivity. Because

{k3Jk3R \<<1 the wave survives over many wavelengths before it decays.
This is not to say that it is slowly damped, however, because by scaling
arguments one finds that L = A, hence the wave decays significantly over a

particle mean free path !

Taking the negative root in (51..23) we have

k?=–imjyx, (51..27)

whence we obtain

k4=+(oJ2yx) ‘“(l – i). (51.28)

This root corresponds to another thermal wave, which is heavily damped in
the sense that it decays away over a few wavelengths. However the phase

0.25 I I I I I I I I I I I

5 0.20 –
J

0.15 I I 1 [ I 1 I I I I I

100 & I I 1 I I I 1 I 1 I 1 A
-4

-3 –2 –1 o I 2 3

IOg (X(AJAY2)

Fig. 51.2 Damping length and phase velocity of thermal mode.
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speed of this lmode is very large, V. = (2yxc0)”2 = (2y/&’) 1‘2 a >>a, as is its

wavelength compared to that of an undamped acoustic wave of the same

frequency: AJAO = (27/.5’)1 “z>>1. Hence this mode propagates rapidly over
a physical distance of the order of (aL/w)”2 before it is damped.

Plots of vD/aand L/A obtained from a numerical solution of (51.17) for
y = ~ are shown in Figures 51.1 and 51.2. Here one sees that the acoustic

mode is most heavily damped when (xoJa2) — 1, which is also where VP
drops from a to a-r for that mode. In contrast, the thermal wave mode is
least damped when (xoJa2) -1.

The damping of acoustic wales in relativistic fluids is discussed by

Weinberg (W2), who gives an expression for NC [cf. his equations (2.55) to
(2.57)] which reduces to (51.14) in the nonrelativistic limit.

5.2 Acoustic-Gravity Waves

Let us now consider wave propagation in a compressible medium stably

stratified in a gravitational field, such as the atmosphere of the Earth, the
Sun, or a star. In such a medium, waves can be driven by both compres-

sional and buoyancy restoring forces, each of which can induce harmonic

oscillations of a fluid element S1ightly displaced from its equilibrium

position. As a result the behavior of waves is more complicated than in a
homogeneous medium: (1) Their propagation characteristics are cuzkotropic

because the force of gravity imposes a preferred direction in the fluid. (2)
They are dispersive (i.e., the propagation speed varies as k and/or OJ are

varied). (3] Stratification of the atmosphere imposes a cutofl frequency
below which gravity - rnodifted acoustic waves cannot propagate, and thus

restricts the region of (kx – a) space in which such waves can exist. (4)

Buoyancy forces give rise to a new class of propagating waves: the
low-frequency pressure-modified internal gravity waves, which are inher-

entl y rwo-dbnensional. (The adjective “internal” is used to discriminate

these waves from surface gravity waves found at ffuid interfaces, for
example, the surface of the ocean; for brevity we refer to these two

different wave modes simply as “acoustic waves” and “~avity waves”.)

Acoustic-gravity waves are of interest because they are ubiquitous in the
terrestrial and solar atmospheres, and certainly must exist in stellar at-

mospheres as well. In $S52 to 54 we consider adiabatic fluctuations

because the effects of viscosity and thermal conduction on acoustic-gravity
waves are negligible in astrophysical media. The effects of radiative damp-

ing, which can be major, are discussed in $102.

52. The Wave Equation and Wave Energy

BUO’Y’AKCVOSCILLATIONS

We can obtain insight into buoyancy effects by considering the motion of a
small fluid parcel rising and falling adiabatically in a stratified medium. We
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assume strictly vertical motion and write the vertical displacement as ~l.

When the parcel is displaced from its equilibrium position it experiences a
net force —g(p —pO) where p is the density inside the parcel and pO is the

density in the ambient atmosphere; hence its motion is governed by

Pl(~2tl/a~2) = –g(p– p“). (52.1)

For small displacements

PO(C,) = Po(o) + (dddz).,<1 (52.2a)
and

(J(<]) = PO(O)+ (dp/dz).&l, (52.2b)

where the subscripts denote “atmosphere” and “adiabatic”. ~us

(a’<, /at’) = –CL):vlg, (52.3)

where

OJ:V = (dp)[(dddz)ui – (LWdz)a,] (52.4)

is known as the Bunt- VaisUlii frequency.
Equation (52.3) admits two distinct classes of solutions:

<l(t) =4, (0) exp (*i lCI& t) (52.5a)

for w&v<O.

When w~v >0 the atmosphere is stably stratified and fluid parcels
undergo harmonic oscillations of bounded amplitude. But when OJ:v <0, a

displaced fluid parcel experiences further force in the direction of its
displacement, and the perturbation grows exponentially. In the latter case

the atmosphere is correctively unstable; indeed the inequality (dp/dz)~~ <
(dp/dz)., is just the standard Schwarzschiki criterion for instability against

convection (C9, 264). When co~v = O the atmosphere is in adiabatic equi]ib-

riulm, and is neutrally stable; neither buoyancy oscillations nor convection

can then occur.
In a simple buoyancy oscillation the displaced fluid expands and cools

adiabatically as it rises, and slows in response to gravitational braking as
the density in the parcel exceeds that in the surrounding medium. At the

top of the cycle Tl <0, PL>0, and u, = O. The denser fluid element is then
accelerated downward, and passes through its equilibrium position, where
pJ = T, = O, with maximum downward velocity. Thus p ~, T~, and U1 are out

of phase, T{ leading VI by 90° and p, lagging v, by 90’, in strong contrast
with a pure acoustic wave where p,, T,, and v, are all exactly in phase (cf.
$48).

Because buoyancy oscillations are slow (see $$53 and 54), sound waves
have time to run back and forth within a displaced fluid parcel and to
establish pressure equilibri urn between it and the surrounding atmosphere.
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We can therefore take the pressure gradient in the parcel to be the same as
in the unperturbed atmosphere, and using the relation 8p = (dp/dp),,~ ~p =

8p/a2 inside the parcel we can rewrite (52.4) in the useful form

O;v = (g/a2pj[(dp/dz)a, – CL2(dp/dZ)a,]. (52.6)

FLUID EQUATIONS

The dynamical behavior of acoustic-gravity waves is determined by the
equation of continuity (19.4), Euler’s equation (23.6) with f= pg, and the

gas energy equation

p{(De/Dt) + PID(l/p)/Dt} = (Dq/Dt), (52.7)

where @q/Dt) is the net rate of energy input, per unit volume, to the gas

from external sources. For adiabatic fluctuations (Dq/Dt) = O.

Before writing linearized fluid equations, it is convenient to derive some

alternative forms of (52.7), which will prove useful later. We first develop

some necessary thermodynamic relations. Thus expanding dp as a function
of (p, T) we have the general expression

(d In p/d In p) = (din p/tlln T)P(d in T/d in p)+(d in p/d in P)T
(52.8)

Using the cyclic relation (2.7) one finds (dp/dT)(, = ~/KT where ~ and K-r
are defined by (2.14) and (2.15). We can thus rewrite (52.8) as

(din p/d In p) = (“f_~/pw,-)(d In T/d in p) +(~/pK.[). (52.9)

This relation is general, hence holds for adiabatic changes in particular.
Thus using (14. 19) and (14.21) we obtain the important identity

r,= (T~/pK.r)(r3– 1.)+ (l/pKT). (52.10)

Next, we obtain a general expression for the ratio c.)% by applying (5.37)

to an adiabatic process, which yields

CP/% = f3KT(dp/dLJ),= pKTrl. (52.11)

Substituting (52.10) and (52.11) into (5.7) we then find

C. = ~/K-@(r~ – 1) (52.12)

whence, using (14.22) and (52. 11) we obtain

Co= 03p/px2n2 – o. (52.1.3)

Suppose now we choose T and p as fundamental variables in (52.7). Then
using (2.15), (2.22), and (5.1 1) in the expansion

‘[(%)p-3(%)J’~+”[(:)-r-:(:)J‘P=dq‘5214)
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we have

cOpdT–~Tdp = dq (52.15)

which, with the aid of (52.13), can be rewritten as

(52.16)

Alternatively, suppose we choose p and p as fundamental variables. Then
using (2.28), (2.29), and (52. 11) in the expansion

P(:)pdp+p[(:),-;ldp=dq (52.17)

we get

(KTCuP/8) dP ‘(%/@) dP = (ww@)[dP -(r,P/p) dp] = dq. (52.18)

Then using (52. 12) and (48.23) we find

(r. – l)-’(dp – a’ dp) = dq. (52.19)

Finally, suppose we choose p and T as fundamental variables. Then using
(2.11), (2.17), and (5.7) in the expansion

p(%),,dT+p[(:)r-;ldp=dq
(52.20)

we find

pc. dT – (13T/K-rp)dp = dq. (52.21)

Hence from (52. 12)

pcUT[(dT/T) – (r3 – l)(dp/p)] = dq. (52.22)

LINEARIZED FLUID EQUATIONS

Assume that the ambient atmosphere is static and in hydrostatic equilib-

rium so that

vp~ = p~g, (52.23)

where g = —gk isconstant.Then for small-amplitude adiabatic disturbances

the linearized fluid equations are

(ElpL/dt) +V “(p.X’,) = o, (52.24)

pO(~l/~t) = (%g–vpl, (52.25)

and, from (52.19),

(~J~) – CZ2(DPJDt) = o> (52.26)

which can be rewritten as

(pl–a’pl),r+vl” NPo–a2VPo) =0 (52.27)
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or

(13pJdt) = –v, “Vpo– (1’p~v . v,
.––v, “vp[, –”r,p~v. vl. (52.28)

\VAVE EQUATION

To derive a wave equation we first differentiate (52.25) with respect to

time, obtaining

Po(~2vl /atzl = (dp Jat)g – v(dpl/13t). (52.29)

We then eliminate (dpl/dt) and (alp, /dtj via (52.24) and (52.28); after some

simple reductions one finds

(d2V1/dt2) = a2 V(V. v,)+(az V. v,)Vln rl+(rl – 1)(V” v,)g ~5230)

+ p; ‘W(V, “Vpo) – g(v, “VPO)I.

In the ambient atmosphere there is a unique relation between PO and PO,

that is, we can write PO= f(po). Hence Vpo = (df/dpo)Vpo = (df/dpo)pog;
therefore (52.30) reduces to

(d2v,/dt2)= a2V@” v,)+ (a2V” V1)V]II r, +(r, -1.j(v” vl)g+V(g “VI),

(5’2.31)

which is the fundamental equation governing the propagation of acoustic-

gravity waves. For a gas with constant ratio of specific heats, r,= y, and

(52.31) simplifies to

(#vJat*)= (Z2V(V “ Vl)+(y-l)(v “ V,)g+v “ (g “ v,), (52.32)

an expression first derived by Lamb (Ll, 555).
In some applications it is more convenient to work with x,, the displace-

ment of a fluid element from its equilibrium position, instead of its velocity

v,. To first order in s]mall quantities

v ~= (dxJdt) (52.33)

hence

J

r
Xl(xo, t] == V,(xo, t’)d’. (52.34)

o

Thus integrating (52.31) with respect to time we find

(d2xT/dt') =a2V(V" x1)+ (a2V"x1)V lnrl+(rL- l)(Vox,)g+V. (g-xl).
(52.35)

The same approach lmay be used to rewrite (52.24), (52.25), (52.28), a[ld
(52.32) in terms of xl.

WAVE ENERGY DENSITY AND FLUX

To obtain a wave energy equation we multiply (52.54) by pJpo, take the

dot product of (52.25) with v,, multiply (52.27) by pl/u2p0, and add,
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obtaining

189

(al 1 p:

) ()
P1–pov;+-~ =–v . (plvJ+plg.vl-

G2 2apQ
— v, “Vpo
azpo

= –V . (plv J+(w, g/a2)(p1- a’pl). (52.36)

In (52.36), WI denotes the vertical component of VI.
Now from (52.6) and (52.27) we have

(P, –azpl)., = –wl[(dPo/dz)- a2(dpJdz)] = –a2pO@2vw,/g, (52.37)

which, when integrated with respect to time, yields

pL– azpl = ‘U2p~m&<l/g, (52.38)

where ~1 is the vertical component of the displacement x ~. Hence the last
term in (52.36) equals –poco~v<l (d<l/dt), whence we see that (52.36) can

be rewritten as a conservation law

(a&,”/at)+V o@,,, = o, (52.39)

where the wave energy density is

sw=~ 2 ‘ 22POVI+&/~2Po) +hh~?id, (52.40)

and the wave energy flux is

+W=plvl. (52.41)

We thus obtain the same expression for @W in an acoustic-gravity wave as

in a pure acoustic wave [cf. (50.8)]. In contrast, .sW fol- acoustic-gravity

waves contains a buoyancy energy density (or gravitational energy density)
~
2POUkM in addition to the kinetic energy and compressional energy
densities found previously for pure acoustic waves. The compressional and

buoyancy terms both are potential energies for the oscillating fluid parcel.

Generalizations of these results to include the effects of magnetic fields for

magnetoacoustic-grav ity waves are given in (A2, 458) and (B1O, 252).
Although (52.39) is a genuine conservation relation connecting SW and

@w, it is not a complete energy equation because a consistent second-order
expansion of the nonlinear energy equation contains, in general, nonzero

contributions from other second-order quantities such as pz, pz, etc. For

this reason Eckart (El, 53) called SW the external energy density of the
wave, remarking that it “has little relation to e, the ‘internal’ energy of

thermodynamics”. While this terminology is often adopted in the litera-
ture, we will not use it because the compressional energy term in EWdoes,
in fact, originate from the internal energy of the gas [cf. (50.3) to (50.5)].
We merely caution the reader to remember that EW and +,. do not
represent the total second-order energy density and flLIX associated with a
wave.
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53. Propagation of Acoustic-Gravity Waves in an Isothermal Medium

For the special case of a static isothermal atmosphere it is possible to

describe the properties of acoustic-gravity waves analytically in some
detail. While this model of the atmosphere is restrictive, it yields considera-

ble physical insight; moreover it is actually not a bad approximation to the
temperature-minimum region joining the upper photosphere and the lower

chromospherc in the solar atmosphere (see $54).
For simplicity, assume that- the material is a perfect gas with constant

specific heats. 1n the ambient atmosphere we then have

PO(Z)= pO(())e-z’H (53.la)
and

PO(Z) = pO(())e-z’~ (53.lb)

where the scale height is

H= RT/g = a’1-yg. (53.2)

For the specizd case we are considering, the pressure and density scale

heights are equal, which is not true in general (cf. $54).

‘I-HEIIISPERSION RELATION

Consider monochromatic plane waves of the general form

xL=Xexp [i(~t–k . x)]. (53.3)

We confine attention to steady-state oscillations and therefore take OJto be

real. Because the atmosphere is homogeneous in layers perpendicukU to
the direction of gravity, there is no preferred direction of propagation in

the (x, y) plane, hence it sufhces to consider propagation in the (x, z) plane

only. Thus we take xl = (&_l,O, <,) or X = (X, O, Z) where X and Z are
complex constants. Likewise we set k = (Kx, (1, K=). In general K= will be

complex because a wave can grow or decay in amplitude as h propagates
vertically in a stratified medium; in contrast, the horizontal homogeneity y of

the ambient atmosphere implies that waves should neither grow nor decay
horizontally, hence we can take K.= ~, a real number.

Substituting (53.3) into the wave equation (52.32), we obtain two
homogeneous equations for X and Z, which yield a nontrivial solution only

if the determinant of coefficients

a2k~—co2 a2kxKz – igkx
=0. (53.4)

a2kXKz –i(y–l)gk. a2@–igKz –wz

Evaluating (53.4) we obtain the dispersion relation

~4-[a2(k~+K~)– iygKz]co2+(y -l)g2k~=0. (53.5)

Demanding that the real and imaginary parts of (53.5) both be zero, we
find K, = k, + (i/2Hj (53.6)
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where k= is real. From (53.6) and (53.3) it follows that the amplitudes of xl

and VI both grow as ez’2H with increasing height in the atmosphere. Note in
passing that this result and (53.lb) imply that the kinetic energy density

bOV? in the wave is constant with height, a point to which we return later.
Using (53.6) we can rewrite (53.5) as

co”-[ti:+a’(k:+ k:)]co’+ti:a’k:=() (53.7)
where

w. = yg/2u = a/2H (53.8)
and

@g=(y–l) ’’2g/a= (y– J) ’’2yHyH. (53.9)

From (52.6) one sees that cog is just the Brunt-Vaisala frequency for an

isothermal medium, and is thus relevant to buoyancy oscillations and
gravity waves. We will see shortly that m,L k the minimum frequency for

acoustic-wave propagation. Note that

coJwg = -y/2(7 – 1)1’2, (53.10)

hence ma is always larger than cog for the physically relevant range
Is-y<;.

THE DTAC,N”OSTICDIAGRAM

We can determine a great deal about the behavior of acoustic-gravity
waves from an analysis of the dispersion relation. Solving (53.7) for k= we
find

k~=a–2(a2– co~)-(~2-co~)(k~/tiz). (53.11)

C)ne sees immediately that k;< O if Ogs ~s ma, hence no progressive
wave can exist in this frequency range, a result that contrasts strongly with

that for a homogeneous medium, where there k no restriction on the

frequency of propagating waves. Furthermore, we see that as o -+ ~,

kz= (k:+ k:) ~ w2/a2, as in (49.7) for pure acoustic waves; thus waves
with w > co. can be regarded as acoustic waves modified by gravity.

To clarify the picture further, it is helpful to study the domains of wave

propagation in the diagnostic diagram, a plot of co versus k.. We can

delineate three distinct domains in the (k., co) plane by finding the propag-
ation boundary curves along which k:= O; these separate regions of real

and imaginary vertical wavenumber. Thus setting k:= O in (53.11) we have

which has two branches, as shown in Figure 53.1 for y = 1.4. Along the

propagation boundary curves we also have

and

v~/a2=(02– w~)/(02–cO~), (53.14)

where VP is the phase speed of the wave.
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Fro]m the remark made above we know that acoustic waves lie in the
region above the upper branch of (53.12), and we expect the region below

the lower branch to contain gravity waves. Consider first the properties of
waves on the upper propagation boundary curve (w z Ua). AS k, -~,
~ s ~~, and VP~ a; thus in the high-frequency limit we recover essen-

tially pure acoustic waves, as one would expect because for wavelengths
small compared to a scale height the medium is essentially homogeneous

(unstratified) over a wavelength. As kx a O, u a o,,, and vu -~. The

significance of this result can be appreciated more fully by considering
verti call y propagating waves.

For vertically propagating waves (k. = O) we have from (53.11)

k:=(ti2-ti:)/u2 (53.’15)

and

@a2 = @z/(co Z-@:), (53.16)

which show that vertical propagation is possible only if 0> ~a; that is, only
acoustic waves can propagate vertically in a stratified medium. Further-
more, we see that as o -+ co<,there is an atmospheric resonance phenome-
non, first recognized by Lamb. Because of this resonance, an imposed
vertical disturbance at @ = w. can not propagate, but rather in effect lifts (or
drops) the whole atmosphere coherently (which implies that k= = O and also
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UP= CD).For vertically propagating acoustic waves, we find frolm, (53.15)

and (53.1 6), that

v~ = (doJdk) = kza2/w = a2JvP (53.17)
or

vov~ = a2. (53.18)

Notice that because V. ~ ~ as w ~ co., v~ -0, hence no energy is propa-
gated by an acoustic disturbance at the atmospheric resonance. Thus co. is

the acoustic cutofi frequency, below which acoustic waves cannot propagate
in a stratified atmosphere.

Now consider the lower propagation boundary curve (m= oJ~). From
(53.13) and (53.14) we see that as kx -0, ~ -+ (tiJ~a)a~ a O, and

) AS k + W, O.I+ O, and v, ~ O. Hence tig is a cutoffv,, + (wJw<, a.
frequency above which gravity waves cannot propagate.

An important property of gravity waves is that they propagate in only a
Iimited range of angles above and below the horizontal. Thus writing

~ = k cos a we can rearrange (53.7) as

ti2/a2k2= v~/a2= (ti2-co~ COS2a)/(OJ2-CO~). (53.19)

For an acoustic wave w > u,,, and (53.19) places no restriction on a. But for
a gravity wave, co< a+,, the phase velocity is real only if 0J2< co; COS2a, or

if

Ial<cos-’(@/@g). (53.20)

For a fixed kx, gravity waves can propagate within an ever-increasing range

of angles as o a O; but as aJ increases toward the lower propagation
boundary curve, k, -+ O hence only horizontal propagation is possible. We

can also rewrite (53.7) as

COS2Q = k~/k2= (OJ2/CO~)+[OJz(a~– co2)/~~a2k~], (53.21)

which shows that at fixed a the range of a within which gravity waves can

propagate opens from zero on the lower propagation boundary curve to
the limiting value =Ea,,,== COS–l(ti/~X) as L ~ ~.

The region between the two domains of propagation contains evanescent
waves. Here k= is imaginary, hence the wave amplittldes grOW or decay
exponentially with height. For these waves the pressure perturbation PI

and the vertical component of v ~ are 90° out of phase, hence they have
zero vertical energy flux (though they may transport energy horizontally).

Evanescent waves have infinite vertical phase velocity, and therefore

represent standing waves.
The domain into which a wave specified by a particular (k., o) falls

depends on y, g, and T for the atmosphere. For a given y and K, (53.8) and

(53.9) show that both co. and OJgvary as T- ‘“, hence both the acoustic-
wave and gravity-wave cutoffs decrease with increasing temperature. Prop-

agation boundary curves for y = ~, g = 3 x 104 (appropriate to the solar
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Fig. 53.2 Propagation boundary curves for acoustic-gravity waves in an isothermal
atmosphere for several temperatures; y =$, g = 3 x 10”.

atmosphere), and several values of T are shown in Figure 53.2. Notice that

a wave that can propagate at one temperature may be evanescent at
another temperature.

GROUP VELOCITV

Rearranging the dispersion relation as

(w’–co~)k~+~’k~ = co2(ti2-a~)/a2 (53.22)

we see that in wavenurnber space the contours of constant OJ are conic

sections, known as slowness sur-faces. For acoustic waves, 0>0., all of the
coefficients in (53.22) are positive, hence the contours are ellipses as shown
in Figure 53.3a; for gravity waves, 0< cog, the coefficients in (53.22)

alternate in sign, hence the contours are hyperbola, as shown in Figure

53.3b.
The curves shown in Figure 53.3 reveal a great deal about the propaga-

tion characteristics of acoustic-gravity waves. When w >>w., the constant-co

ellipses approach the unit circle; as w j m. they shrink to a point at the
origin. For all the ellipses a’(k~ + k~)/co2s 1, hence for acoustic waves the
phase speed always exceeds the sound speed. As u -+ ~, UP-+ a, and as
o ~ ~<,, Vp -+ m. when o<< ag the constant-m hyperbola collapse to the

asymptotes ak.Jw = ~JtiK. As w - ti~ from below, we must have kx >>1 to
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Fig. 53.3
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waves,

assure that k= remains real, hence the vertices of the hyperbola move
toward infinity, and the asymptotes collapse onto the ~ axes. It is evident
from Figure 53.3b that a2(k~ + k~)/co2>1 for all the hyperbola, hence for
gravity waves the phase speed is always less than the sound speed. Indeed,
as o a O, up -+ (~Jco.)a, and as @ ~ cog, VP-0. Physically the case @ = ~~
corresponds to the stationary buoyancy oscillation described in $52, which
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does not propagate, hence has up = O. All of these results for up also follow,
of course, from an analysis of (53.19).

As we saw in $49, the direction of phase propagation 1ies along the wave
vector k, and is thus characterized by the angfe a = Cos-’ (kX/k)=
tall–’ (kz/kx). llerefore for a wave with a specified (~, co), the direction of

phase propagation lies along the straight line connecting the origin in

Figure 53.3 to the curve for the given value of co at the appropriate value

of ~. On the other hand, the group velocity is given by v~ = Vko, hence it
is perpendicular to contours of constant co. Inspection of Figure 53.3

immediately shows that, for acoustic waves, VP and VK point almost in the
same direction, becoming coincident as 0- ~. In contrast, for gravity

waves v~ is Llsuafly nearly perpendicular to VP (becoming eXaCt]y perpen-
dicular in the limit w + 0); beCaLISe horizontal phase and energy propaga-

tion are in the same direction, this orthogonality implies that vertical phase
and energy propagation are oppositely directed. From Figure 53.3b one

sees that as ~ ~ O, phase propagation in a gravity wave is nearly vertical
while energy propagation is essentially horizontal; as w - oJ~,phase prop-

agation becomes more nearly horizontal and energy propagation essentially
~{ertical. Along the k= =() axis, corresponding to the lower propagation

boundary curve in Figure 53.1, both phase and energy propagation in a
gravity wave are horizontal.

We can make the above geometric considerations more quantitative by

calculating (v~)~ = (dco/dki) directly from the dispersion relation. Writing

Vg = (u,, O, w,) we find

and

which imply a ratio of group speed to sound speed of

~_~[a4a2k2 +ti~(o& 2ti2)a2k~]”2
—

a CIJ4—w~a’k~

(53.23b)

(53.24)

For high-frequency acoustic waves with w >>w. and (04>>w~azk~ we find

u~ja = akx/w= cos a (53.25a)
and

WJ a = akJw =sin a (53.25bj

where we noted that for such waves ~ = ak. For low-frequency gravity
~,aves with u <<m~ and w4~~ ci~a’k~ we find

% = d k. (53.26a)
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and

Wg= —m3kzlw; k: = –sgn (kz)(d@(~/kJ = –sgn (k.)(d@W
(53.26b)

because for such waves Ik=I= k = (coJti)~. Here sgn (k=) denotes the
algebraic sign of k=. Note that for aI<<~~, Iw~I<<Iu~l.

Using the expression for k2 obtained from (53.19) to eliminate k and L
from (53.24), we can express v. in terms of co, o., CO.,and a, the angle of
phase propagation, as

g_ {(oJ*– @~(Co*- @: COS2a)[@4+C0;(Cll;- 2@*) COS2&]}”*—
a 04+ a#(@:–2a12) COS2a

(53.27)

Notice that u~= O for gravity waves propagating at the limiting angle
a max = cos–l(a@g).

Alternatively, if j3 is the angle between Vg and the horizontal, then
u~= v~ cos a and w. = u~sin a, hence from (53.23)

tan @ = [02/(02 – o:)] tan a. (53.28)

Using (53.28) in (53.27) one finds

which shows that energy propagation for gravity waves can occur only for
angles less than +&= = sin–l(~/wK) away from the horizontal.

POLARIZATION RELATIONS

To obtain a more complete description of an acoustic-gravity wave write
the fluctuations in (p, p, T) and vi= (ul, 0, WI) as

PI PI TI W WI & 61—= — =— =– =— =– =– = ez’2Hei(”’-kxx-k=z) (53.30)
pOR pOP TOCI U W X Z

where the amplitudes R, P, @, U, W, X, and Z are complex constants.
Substituting these representations into the linearized fluid equations
(52.24), (52.25), and (52.27) we obtain

itiR – ikxU–[(1/2H) +ikz]W= O, (53.31a)

–ikxP+ iatl = O, (53.31b)

gR –[(1/211)+ ikz]P+ tiW= O, (53.31C)
and

–ia2~R + icoP+[(y – l)a2/-yHl W= O. (53.31d)

For these equations to have a nontrivial solution, the determinant of the
coefficients must be zero; enforcing this requirement we recover the
dispersion relation (53.7).

The system (53.31) also yields polarization relations that specify the
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relative amplitudes and phases among the perturbed variables.

and

“’k’[kz+i(%)b‘=(oJ’-a’k:)

One finds

(53.32a)

(53.32b)

(53.32c)

furthermore, from the perfect gas law (TJTO) = (pl/pO) – (p JpO), hence

(53.32d)

Finally, by integrating with respect to time we find X= U/i~ and Z =
W/iw.

The

and

relative amplitudes of the wave perturbations are thus

(53.33a)

(53.33b)

(53.33C)

~ _ (-Y– l)aak,
TO - lco’-a’k~l [’+(zidk%m’’’l:l- ‘5333d)

In the high-frequency limit, w >>0., and for nearly vertical phase propag-
ation (so that co >>a~), (2kzEI-’ = oJco <<1, and the perturbation amp-
litudes limit to

bJI/~ol:lPJPol ‘ITJToI :l~Jal:lwJal
(53.34)

=sina:~sin a:(-y-l) sina :sinacosa:l.

Here sin a = kz/k. Notice that the relative amplitudes are the same as for a

pure acoustic wave, and do not depend on k or w. The angular factors

merely describe the orientation of k and have no further significance.
In the low-frequency limit, OJ<<~, and ~’<< a’k~, we have k== (tiJo) ~,

and the perturbation amplitudes limit to

IPJFIOI:lPI/1101:1’TJTol :lU,/al :lw/al (53.35)

=(7 – 1)”2(~./co): 7~./aL: (7 – 1)”2(@~): @CO: 1.
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Thus for low-frequency gravity waves 1P.,/pOl = IT,/ TOI, and we see that

IPJP.1, lT~/Td, and Iu,/al can become arbitrarily large relative to lw,/al as
~ - (); in contrast, the fractional pressure fluctuation can be either large or

small, depending on the relative size of a~ and ~~. Essentially the pressure
perturbation drives the horizontal flow and is large for gravity waves with

large horizontal wavelengths.
To determine relative phases of the perturbations, note that the phase

shift t3A~ between any two complex quantities A and B is given by

tan 8~~ = Im (A/B)/Re (A/f3). (53.36)

In using (53.36) one must be careful about quadrants. A positive (negative)

phase shift implies that A leads (lags) B in time by SAJ27r periods. From

(53.36) and (53.32) we find

tan ~Pw = (2kzFI-’[(-y –2)/7], (53.37a)

tan ti~w = (2kZ~-’{[2(y – l)a2k~/ywzl – 1}, (53.37b)
and

tan i5@w= (2kZFJ-’[l – (2a2k~/y~2)]. (53.37C)

Note that for an adiabatic wave 8PU = O, that is, the pressure and the
horizontal velocity fluctuations are always exactly in phase; therefore the

horizontal wave energy flux propagates in the same direction as the
horizontal phase velocity and is nonzero unless kx = O.

Now consider the high- and low-frequency 1imits of (53.37); for definite-

ness, assume upward propagating waves (k= > O). For high-frequency

acoustic waves in which @2>>azk~ we see from (53.32) that in general

–90”5L5RW =@, –9W=8NV =@, and @s 8@ws 90°. For waves with 0>>

w. and ah<< w, (2kzlY”x = COJOJ<<1, and all the phase shifts are small, of

order coJco. T, leads, and p ~and p, lag, WI slightly. The vertical energy flux
propagates in the same direction as the vertical phase velocity. For waves

near the propagation boundary curve, where k= ~ O, i5Pw-+ —90’, and

therefore the vertical energy flLIx vanishes.
For low-frequency gravity waves in which W2<<a2kZ and W2<<m: we see

from (53.32) that in general –180°s 8~ws –90°, 90° ~ i$~>w~ 180°, and

90 °s8@ws18V. When co<<w~ the w ‘2 terms in (53.37) dominate, and we

see that 8~w j –90° and 6ew + 90°, in agreement with physical descrip-

tions of buoyancy oscillations given at the beginning of this section.
Furthermore, for such waves 2kzH = oxoJti,alq, hence 8PW -180°, which
implies downward energy propagation when there is upward phase propag-

ation, and vice versa.

WAVE ENERGY DENSI’IY AND FLUX

Using (50.15) we find the time-averaged kinetic energy density in an
acoustic-gravity wave is

~pOez’’’(UU* + WYV*) = p(3(0)(04–co~a2 k~)WW*/4~2(ti2– a’k~),
(53.38)

.
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the time-averaged compressional energy density is

(pO/4az)ez’HPP* = pC)(0)(ti2- w:) WW/4(a2– a’k~), (53.39)

and the time-averaged buoyancy energy density is

hence the time-averaged wave energy density is

E. = po(0)(2c02–a~– a2k2) WW*/2(w2– a2k~). (53.41)

Note that the sum of the compressional and buoyancy energies exactly

equals the kinetic energy, as one would expect from the virial theorem.
The time-averaged energy flux is

(4.). =XPI~7+pTU1)= po(0)a2(@2–co~) LWW*/2ti(02-a2k~)
(53.42a)

and

(~~). ‘i(PIw; +PhvI) = po(0)a2ak.WW*/2(~ 2-a2k:).
(53.42b)

Comparing (53.41) and (53.23) with (53.42) we see that @W= SWV,, as
expected. Notice that all components of SW and @W are independent of z,

hence the wave energy density and flux of adiabatic waves are constant
with height in an isothermal atmosphere.

From (53.38) and (53.39) one sees that

(SW), = [~j(ti’– a2k~)/(~4–coja2 k?j](sW), (53.43a)

and

(eW)C= [w’(~z – co:)/(~4-co:a2k:)] (&,V), (53.43b)

where the subscripts denote “buoyancy”, “compressional”, and “kinetic”.

Thus for acoustic waves, 02>> co:,

(.%), - (c@@2)(sw)k (53.44a)
and

(Sw)c - [l–(@:/@’)](&w)k (53.44b)

for small ~, where w’>> a’k~; whereas for large kx, where a2k~= ~’–~~,

(Ew), + ((I);@;/G)”)(&w]k (53.45a)

and

(Ew)c + [1 – (@&);/cL)’)](&w)k. (53.45b)

For gravity waves, m’<< w;, we find

(Ew)b + [(u’k~– u2)/a2k~](&,.), (53.46a)

and
(SW). - (cd2/a2k~)(s,.).. (53.46b)
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Thus for acoustic waves nearly all the potential energy is cornpressional,

whereas for gravity waves it is nearly all gravitational.

54. Propagation of Acoustic-Gravity Waves in a Stellar Atmosphere

We now consider the propagation of acoustic-gravity waves in a stratified

medium in which the temperature and ionization state of the medium vary

with height, for example, the atmospheres of the Sun and other stars.

Strong impetus to the development of acoustic-gravity wave theory in
astrophysics was given by the discovery of prominent oscillatory motions in

the sol ar atmosphere (L6], (Nl). Later research has shown that the
observed motions are the evanescent tails of standing, gravity modified,

acoustic eigenmodes, trapped in a subphotospheric resonant cavity. Strictly

speaking the theory developed here is not applicable to these trapped
modes because we omit discussion of the effects of boundary conditions;
e~,en so, it is often instructive to consider them simply as evanescent

acoustic-gravity waves that happen to exist for a discrete set of (OJ,kx)

combinations. Further motivation for studying acoustic-gravity waves is
provided by observations of both propagating and trapped acoustic waves

in the solar atmosphere, and by the existence of a substantial nonthermal

broadening of solar spectrum lines, much of which is thought to be caused

by unresolved, small-amplitude wave motions.
To study acoustic-gravity wave propagation in realistic models of stellar

atmospheres we must understand the phenomena of wave refraction and
reflection and their implications for wave tunneling and trapping. Further-

more, we must account for ionization effects and temperature gradients in

(1) calculation of the sound speed, scale height, and Brunt-Valsala fre-
,.

q uency; (2) form U1at ion of the wave equation; and (3) the expression

relating the temperature perturbation to the vertical velocity.

REFLECTION,REFRACTION>TUNNELING, AND TRAP~mCr

In a nonisothermal atmosphere, propagating waves experience refraction
and partial reflection. lf they encounter a semi-infinite region in which they

are evanescent, they can be totally reflected with no transmission of energy
beyond the point of reflection. If, however, the evanescent layer is finite,

some fraction of the incident wave energy may leak through the region by

tunneling, and the wave continues to propagate, with reduced anlplitude)

on the other side of the barrier. We discuss these phenomena first for
discontinuous changes in atmospheric properties at definite boundaries,
and then for a slowly varying atmosphere, where we can apply the WKB

approximation.

(a) Reflection and Refraction at an Interface When a wave encounters a
discontinuity in material properties, (1) the propagation vector k changes in

both direction and magnitude; (2) the absolute and relative amplitudes of
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the wave perturbations change; and (3) phase cliff erences between pertur-

bations may change.
To ill ustratc the basic properties of refraction and partial reflection we

consider a plane, monochromatic, acoustic wave propagating from one
homogeneous medium, A, with sound speed aA, into a second homogene-

ous medium, B, with sound speed a~. The interface between the two media
is the plane z =Zl; A is the region z <z~ and B is z > Z1. Choose the x

axis such that k = (kx, O, k=). Continuity at the interface requires that ~
and w be the same in both media, whereas k=, given by the dispersion

relation k%= aztiz – k:, changes. Therefore the angle of propagation 6 =

tan-’ (k/k,) between k and the z axis changes. We readily find that

sin (3A/sin t)~ = (kJkA)/(kJk~) = a*/a& (54.1)

Thus if a~ > aA (i.e., TB > TA) the wave refracts away from the vertical,

and refracts towards it if a~ < aA.
The behavior of a wave incident on a discontinuity follows from con-

tinuit y conditions at the interface. First, pressure equilibrium dictates that

pOA(zl) = PoB(-ZI) and PIA(zl) = Pm (zl). The former condition implies a
density discontinuity given by (poA/pO~ ) = (TO~~,,JTOAV~) where ~ is the

mean molecular weight. Second, w, must be continuous to avoid a vacuum

or interpenetration of material elements. Third, the energy flux must be
continuous because there can be no sources or sinks in an interface of zero

thickness. Continuity of pl, w,, and @,v provide three independent equa-
tions that determine the amplitudes of the reflected and refracted waves,

and the phase shift of the reflected wave, in terms of the amplitude of the
incident wave.

Following (53.30) we write WI in medium A as

+ i(~t–kxx)e–ikz,( z-zc) + wzei(co–kXx)eik=A(z –zcJWIA = WAe > (54.2)

where WA and W; are complex amplitude functions for the incident and

reflected waves, respectively. We set exp (z/2Ef) = 1 because H is infinite
(each medium is homogeneous). Similarly

wl~ = W~ei(<Ut–k~x)e–Lk~~(z–z). (54.3)

The pressure perturbation follows from (53.30) and (53.31 c) with g = O and
H = m, namely p~ = [pOco/(+kz)]W+. Hence

P,A = (pOAd kzA )(WL – W/J (54.4a)

and

~113= (l%dk,~) W;. (54.4b)

To simplify the notation, write the amplitude functions W* in terms of
real (positive) amplitudes and real phases: W~ = AleLa~, W~ = AzeLa~, and
W;= BeiS~. Then factoring W; out of both WIA and wl~, and defining
A =AJAI, B= B[/A1, 8A =8~+2kz~(zl–zO), and 6B =8~–8; we can
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write

In terms of the amplitudes and phases just defined and the parameter

r= PoBkzA/PoAkzB (54.6)

the three continuity conditions

‘1A (ZI) = l% B(ZI)> (54.7a)

PJA(ZL)=PLB(Zl), (54.7b)
and

1( *
4 PJAWIA +PIAW~A)=~(Py BWIB +pLBW~B) (54.7C)

can be written

e –ikA(Z,–Zo)(l +Aei~A) = &L8s,
(54.8a)

e –;~,~(Z ,–z~(l _Aei~A) = ‘Be is.

, (54.8b)

and
1 –A’= rB2. (54.8c)

Multiplying (54.8a) and (54.8b) by their complex conjugates we have

1+ A2+2A COS8A =B2, (54.9a)

1+ A2–2A cos 8* =r2B2, (54.9b)
and

1 –A2= ‘B2, (54.9C)

Solving (54. 14) we find that the square of the ratio of the reflected wave

amplitude to the incident wave amplitude is

A2 = IW~12/1 W~12 = (1– r)2/(1+ r)2< 1, (54.10)

which is sometimes called the reflectance (L2). When r<<1 or r>>1, A2 = 1

and the wave is almost totally reflected; as the discontinuity becomes small,
r + 1, A 2 a (), and the wave is almost totally transmitted. Using (54.1) and

(54.6) we can write the reflectance in terms of materiaf properties and the
angle of incidence as

[
A2= POJ3aA Cos 6A ‘pOA(ai–a?i sinz dA)’\2 2

1 (54.11)
POBUBCos ‘A – ~OA(ai– ai sin2 ~A)l’2 “

From (54.9), the ratio of the amplitude of the refracted (transmitted)
wave to the amplitude of the incident wave is

B = IW~)/1 W~l =2/(1+ r), (54.12)

which is greater than or less than unity depending on whether r is less than
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or greater than unity. This result is not, as it might seem, paradoxical;
when the amplitude of WI in the transmitted wave exceeds that in the

incident wave (r< 1, B > 1), there is a compensating decrease in the

amplitude of p ~ such that the wave energy fluxes in A and B are exactly

equal. in fact, (54.1 1) and (54.12] imply

&vA ‘;(WoA/h)Ay(l –A’) = (@PoA/~,A)&[2d(~ + r)’] (54.13)

and

Am= ~(~pwJk,~)A?B’ = (wpuJkz~)A?[2/(1 + r)’], (54.~.4)

which are seen to be equal by recalling the definition of r. Note that the

flLIx is very small whenever the discontinuity is large: when r>>1,
2r/(1+ r)z-+ 2/r<<1, and when r<<1, 2r/(l+r)2-+ 2r<< 1. Thus little energy
is transmitted across the boundary when a~ >>a~ or a~ >>a~.

(b) An Interface Between Evanescent and Propagation Regions The

foregoing analysis assumes that the wave is propagating (k%> O) in both
regions. Consider now the case where the wave is evanescent either in A
(k~~ < O) or in B (k~~ < O); the case of evanescence in both is uninteresting.

In an evanescent wave, the energy density decreases exponentially with

distance into the region of evanescence. The wavenumber kZ is a pure
imaginary, hence ikz is real, and the z-momentum equation shows that
pl is 90° out of phase with WI; therefore the wave carries no energy flux

Suppose first that k~~<0, and write KB= ikz~. Assume that medium B is
semi-infinite so that wc have an upward-decaying solution w ~~ =
W~ exp [i(~t – Lx)] exp [–KB(Z – z,)]. The equations corresponding to

(54.9) then become

1+ A2+2ACOS8A=B2, (54.15a)

I+ A2–2A cos8~ =r2B2, (54.15b)

and

(~pOJkZA)A:(l –A’) = O, (54.15C)

where now

I’= (Io6k,dPoAKf+ (54.16)

These yield

A=l, (54.17a)

B2 = 4/(1+ r’), (54.17b)

cos 8A =(1 – r2)/(1+ r2), (54.17C)

and @.,A = @w~ = O. We thus have total reflection in medium A, and excite
an evanescent disturbance in medium B.

Suppose now that the wave is evanescent in a finite region A (k~A < O),
but can propagate in medium B, which is semi-infinite. In medium A we
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can now admit both exponentially decaying and growing solutions. Defin-

ing KA= ikzA we can write WI* with respect to some reference level ZOas

–K,\(Z–Z,)+A, eKA(Z–ZO)~i8A]WLA =A~eiS[e (54.18)

or
WIA(Z1) = A~eia(e–4+ A’eAei6A) (54.19)

where A = ~~ (z, – ZO). To write the continuity conditions at z, we define

A~=A~e-A, A =A’e2A, and B =B1/Al =BJ(Aje-A). Then at z,,

wl~(z[) =A~era(l+Ae’8”) and wl~(zl) =AIBe L8B,and continuity of WI, pl,
and +,, imply

I+ A2+2ACOS8A=B2, (54.20a)

I+ A2–2A cos 6A = r2B2, (54.201J)
and

2A sin 8A = rB2 (54.20c)

where now

k‘=p013KA/pOA zB. (54.21)

Solving these equations we again find

A=l (54.22a)
and

132 =4/(1+ r2). (54.22b)

The phase shifts are now

tan 8A =2r/(1 – r2) (54.23a)

and

tan 8~ = r. (54.23b)

Interference between the growing and decaying evanescent waves in

medium A produces a phase lag between WIA and p 1,4 that is not exact3y

90°. One finds that the energy flux in region A is

hvA = (z@PoEJ&3)A {e-A/(l+ r2), (54.24)

which decreases exponentially with increasing A.

(c) Tunneling Wave tunneling, which is related to the second case just

described, occurs when a wave that is propagating in medium A encoun-

ters a finite layer B in which it is evanescent (with growing and decaying
solutions), and then emerges into a layer C (perhaps semi-infinite) in which
it can again th-eely propagate (k~C> O). In layer A we have both an incident
and reflected wave; in layer C we have only an outward-propagating
transmitted wave.

If the interface between A and B is at z ~, and that between B and C is

at 22, the thickness of layer B is 22 – z ~. The vertical velocities in the three
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regions are

W,A =Ale e ZA(Z–ZO)(l+ &isA)i(ur—k+) ik
(54.25a)

wl~ =Ale ‘(@L-~Yx)[B,e-<?(z-z)e’s~+B- eKJj(z-z)e’s~], (54.25b)

and . .
W,c =A~ei(’’’-k~x)Ce ik=CzZ)eZs~’s~.

(54.25c)

The matching conditions at Z1 and z2 yield six equations in Al, B,, I& C,
8A, and 6B G8G–i3~. At ZI we have

1 +A2-}2A Cos 8A =B; +B:+2B1Z32 Cos 8B, (54.26a)

1 +A2–2A cos 8A = r~(B~+B~–BlB2 cos i3B), (54.26b)

and

1 –A2= 2rLJ31B2sin i5~. (54.26c)

At Zz, defining bl =Ble-A, b2=B2e~, and ~= KB(z2—z,) we have

b:+ b~+2b1b2 COS8E = C2, (54.27a)

b~+b~–2blb2cos i3~= r~C2, (54.27b)

and

2b1bz sin 6B = r2C2. (54.27c)

Here

rl = Pn#zA/PoAf% (54.28a)

and

r2= pOCK~/pOBkZc. (54.28b)

The solution at Z2 is b,= b2, C = 4bJ(l + r~], tan t3~ = 2r2/(1– r:), and

tan i5c = r2, which then gives at z,:

1+ A2+2A COS6A=b:Kl, (54.29a)

1 +A2–2A cos 8A = r~b~Kz, (54.29b)
and

1 –A2 =2b:K., (54.29c)
where

ICI = 2{cosh 2A + [(1 – r~)/(1 + r;)}, (54.30a)

K2= 2{cosh 2A –[(1 – r~)/(1+ r;)]}, (54.30b)
and

Kq = 2rJ(l + r%). (54.30C)

Solving (54.29) we find

b:= 4(KI + r~K2+4r, KJ’ (54.31)
and

A2 = (Kl + r~K2–4r1KJ

(Kl + r~K2+ 4rlKJ
(54.32)
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or

rz cosh 2A+(l —r~)(l —r~)—4r1r2~2=(l+rXl+ 2,
(1+ r~)(l+ r;) cosh 2A+(1 – r~)(l–r~)+4r1r2”

(54.33)

Note that when As O, so that the evanescent region vanishes, A2 =
(1– r,rJ2/(1.+ r, r2)2, which from the definitions of rl and r2 is (54.10) with

r= poCkz*/po*k,C. As A increases, cosh 2A increases exponentially and A’
rapidly approaches unity, that is, the total reflection limit.

The energy flux is given by

( J~ (1-A2)~W .$ ‘POA

(54.34)
copOAA~

[

4r, rz—
kzA (1+ r~)(l + r;) cosh 2A+ (1 – r~)(l – r;)+ 4r1r21

which diminishes rapidly with increasing A because of the factor cosh 2A in

the denominator. For fair] y small values of A = KB (Z2 – z ,), which occurs

when the wavelength of the disturbance is 1arge compared to the thickness

of the evanescent zone, a nonnegl igible fraction of the energy flux can leak
through layer B, appearing in C as a propagating wave. This process is

closely analogous to quantum mechanical tunneling, and is observed to

occur for various types of waves in both the Earth’s and the Sun’s
atmospheres.

The mathematical description of refraction and partial reflection of

acoustic-gravity waves incident on a discontinuity is considerably more

complicated, and will not be included here as it adds little physical insight.

(d) Trapping Another interesting effect of atmospheric structure is wave
trapping. Here one has a region in which waves can freely propagate,

bounded on both top and bottom by layers in which the waves are
nonpropagating. The waves are thus totally reflected at the boundaries of

the propagating layer, hence two waves with the same w and k. having

equal but opposite k=’s will interfere destructively unless their phases are

such that they form a standing wave.
Standing wave conditions are easiest to describe for waves confined in a

cavity between two rigid boundaries. Consider pure acoustic waves with
k’ = k:+ k:= @’/az, and let the distance between the boundaries of the

cavity be D = 22– z,. At z, and Z2 the vertical velocity must vanish, hence
we have

w, (zJ = A ~e’(’o’–k~’)+ A2eL(’’’-k\X)= O (54.35a)

and

wl(zJ=A1e i(m-kyx)e-ikz(z, -z )I T A2e i(,ol —k.x)eilcz(z,-z ,) = o

(54.35b)

The first condition gives AZ= –Al. Thus 1A, I= IA21 and the phase shift
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between w+ and w- is 180°. The second condition gives

e —ik=13 —e “ZD= –2i sin (kzD) = O, (54.36)

which ilmplies that k= = rim/D, (n = O, 1,2, . . .).
Because k= is fixed, once w and kX are chosen (for a given a), (54.36)

shows that standing waves exist only for certain combinations of kX and o+
namely

k:= (co/a)’– (nm/D)2. (54.37)

Equation (54.37) shows that n = O corresponds to a horizontally propagat-

ing wave. For n = 1, k= = rr/D and A, = 2D, hence there is half a
wavelength between z ~ and Zz. For n = 2 there is exactly one wavelength

between Z1 and Zz. In general A= = 2D/n or D = nAz/2, that is, the cavity is

span ned by an integral number of half wavelengths.
If we allow the upper boundary to be open, so that p, (z.J = O while the

lower boundary remains rigid, then WI (z,)= O again implies Al = –A2,
while at Z2

pl(zz) = –ikzA1e-ik.n+ ikzAzei~.o = O (54.38)

implies

e – 2 COS (kzD) =0.—ikzD+ eJc,D _
(54.39)

Therefore

kz=(n+~)m/D, (n=0,1,2,...), (54.40)

which implies

A= = 4D/(2n + 1) (54.41)

or

D = (2n + l) Az/4. (54.42)

That is, the cavity is spanned by an odd number of quarter wavelengths.

(e) Wave Refraction in a Continuously Varying Medium NOW consider

the propagation of an acoustic clistul-bance driven at frequency aJ through a

static medium in which the sound speed is a slowly varying function of
spatial position, but is constant in time. The frequency of the wave remains
unchanged as it propagates (because the oscillation is driven), but in

general its amplitude and its wave vector will vary with spatial position.

In the limit that the wavelength of the disturbance is much smaller than
the characteristic length over which the (medium varies, we can use the
language of geometrica~ acoustics (in analogy with geometrical optics) to

describe the disturbance as a wave packet moving along a ray. The ray is
the curve tangent to the propagation vector at each point in the medium,
and is thus generated by the differential equation

(dx/ds) =kjk =n, (54.43)



WAVES, SHOCKS> AND WINDS 209

starting from initial conditions k = k. and x = xc) at s = SO. We clearly get a

different ray, hence a different x(s) and k(s), for each choice of kO at a fixed
XO. Thus on a ray we m USI regard x and k as independent (canonical)
variables.

Adopting this formalism we write O.J= ~(x, k, t). But co is a constant of
motion along the ray; therefore

ti = (Dco/Dt),,,\,= (&o/dt)+x . VOJ +k . V~U = O, (54.44)

where V denotes the gradient with respect to spatial coordinates holding k

fixed, and V~ denotes the gradient with respect to wave-vector coordinates

holding x fixed. For a driven wave in a static mediulm (daJdt) = O. Further-

more, the velocity of the packet along the ray, x, is just the group velocity

ic=vg=vkm= cm. (54.45)

Here we noted that for an acoustic wave m = ak, and that a depends on x

but not k. From (54.45) and (54.44) we conclude that

k = –V(+ (54.46)

which for an acoustic wave yields

k = –kVa. (54.47)

Thus in a homogeneous medium k is constant along a ray, as expected.
Alternatively

k= D(kn)/Dt = kti+ kn = kn– k(ti/a)n (54.48)

because k = cola and w =0. But

a =(da/dt)+x . Va = an . Va (54.49)

hence
n = –VCL +(n s Va)n (54.50a)

or
(dn/ds) = [–Va + (n . Va)n]/a, (54.50b)

and

k =–kn -Vs. (54.51)

Equations (54.50) and (54.51) show that if n lies along Va the direction

of propagation n remains unchanged but the magnitude of k varies. On the

other hand, if n is perpendicular to Va, then k is constant but n rotates
away from the direction of Va. More generally, writing G = lVa I and G.

for the component of Va along n, we have

(Va] . dn = –(d,s/a)(G2– G?) <0. (54.52)

Equation (54:52) shows that the change in the direction of k is always
CLW(Z~ from Va; that is, rays always refract away from regions of higher

sound speed (i e., higher temperature) toward regions of lower sound speed
(i.e., lower temperature).
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The change in wave amplitude can be found from a WKB analysis. For

definiteness assume the properties of the medium to vary in z only, and
write WJ in terms of a constant amplitude and the phase functions O(X, t)

and +(z):

w, = &i+J(X.t)ehf J(Z) (54.53)

For steady-state wave motion in a static medium homogeneous in x,
@ = cot– kXx. Pure acoustic waves satisfy the differential equation
(d2wl/dz2) + k’(z)wl = O. Acoustic-gravity waves satisfy

(d’w/dZ’) + k’(z) w= o, (54.54)

where WJ = W exp (f dz/2EI). Using (54.53) in (54.54) we find

i$’’(Z) – [@ ’(Z)]z+ kz(z) = O, (54.55)

where primes denote differentiation with respect to z.

A first approximation invoking the assumption of slow variation is

obtained by setting to”= O, whence i/J(z) = *J k(z’) dz’. Using this value to

estilmate O“ in (54.55) we then have

and thus

[{)’(z)]’ = k’(z)& ik’(z)

J
$!/(2)=+ k(z’){1 + i[k’(z’)/k2(z’)]}”2 dZ’.

(54.56)

(54.57)

Because we assume S1Ow variations, lk’(z)/k2(z)l <<1, hence

[1+ i(k’/k2j]”2= 1 & i(k’/2k2), thus

~
+(z)= + k(z’) dz’+~i In k(z). (54.58)

Using (54.58) in (54.53) we find

A A[a(z)]”2i(ot —k,.~)e~ifk(z’)dz’ _

‘L(X’ “ ‘) = [k(z)]”* e 1/2 e’<be+i’k~z’)dz’
w

(54.59)

for acoustic waves, and

(1 )dz’ Aw~ = Wexp — = ef~Z’12H eicbe=ti~k(z’)dz’

2H [k(z)]”z
(54.60)

for acoustic-gravity waves.

(f) Wave Reelection in a Continuously Varying Medium We saw above
that a pure acoustic wave is totally reflected at a discontinuity if the sound
speed (i.e., temperature) in the second medium is high enough that

k~~ = (da)’ – k: ~ O. In a continuously varying medium, the ray path of a
pure acoustic wave propagating into regions of ever-increasing temperature
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continually bends away from the direction of VT until it turns around, that
is, until the wave reflects. For a one-dimensional temperature variation this

process is symmetric about VT (assumed to lie along the z axis), so if at

some height ZO the incoming wave has wave-vector components
[~, k,(zo)], the reflected wave at ZO has components [~, –kz(zo)].

In a stratified medium, wave reflection is governed by several effects.

First consider gravity-modified acoustic waves for which the dominant
terms in the dispersion relation (53.7) are obtained by ignoring buoyancy
eflects (equivalent to setting Ox = O), which yields

k:= (oJa)2– (1 /4Ff2) – k: (54.61)

where If is the density scale height. Suppose first the wave is propagating
into regions of increasing temperature. With increasing temperature, (oJa)2

decreases as “r-’ but l/4H2 decreases as T-2; thus at sufficiently high
temperatures, we tend to recover the pure acoustic limit k:= (0/a)2 – k:
and reflection occurs as described in the preceding paragraph.

On the other hand, suppose a wave at height z,, whose frequency is not
much larger than the loc~al value of the acoustic cutoff frequency w. (z J, is

propagating into regions of decreasing temperature. If, for the moment, we

assume that k:<< (1 /4Ef2), then (54.61) simplifies to

k:=(ti2-co~)/a2. (54.62)

Nlow o. rises as ~ 1, hence it is clear that k= ~ O, hence the wave is

reflected at some height z, where @ = tia(z, ). Including the k: dependence

from (54.61), we find that reflection occurs where

(54.63)~ = [a:(zr)+azkt]”z>

that is, at a slightly smaller value of aJOthan given by (54.62). Reflection

occurs when w ~ o+, because, as discussed in $53, the wave runs into an

atmospheric resonance where it in effect tries to move the whole atmos-
phere simultaneously (k= = O), but is unable to overcome the inertia of all

that material. More detailed anal ysis shows that as a wave propagates into

regions of decreasing density scale height, PI lags farther and farther

behind w, until they become 9@ out of phase and the wave ceases to
transport energy; beyond that point the wave appears only as an evanes-

cent disturbance.
Reflection of internal gravity waves (~s co~v) occurs for different

reasons. Writing the dispersion relation as

k:= [(o.)Jco)2-l]k:+(~2-~ %)/u2 (54.64)

we see that the first term on the right-hand side is positive (and dominates
for low-frequency waves with co<<co~v) while the second term is negative

because CO.> ti.v [cf. (53.10)]. Thus, as discussed in $53, fol- a fixed k.,
\ k: -+ O as ti increases from very small values to the value set by the lower

propagation boundary curve given by (53.12). The maximum frequency
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attained on this curve is ~~v, which is reached asymptotically as ~ ~ m.

Thus in a varying medium, a gravity wave that can propagate with

frequency w at a given height is surely reflected at any height where the
local value of ~Bv(z) decreases to ~. Physically this occurs because, as

described in $52, co~v is the natural frequency for pure buoyancy oscilla-

tions in which buoyant fluid bobs vertically up and down at the effective

free-fall rate. lf one attempts to drive the oscillation faster, the fluid cannot
fall back to its equilibrium position at the rate it is being driven, and the

motion becomes purely evanescent in the vertical direction.

For small kX, the lower propagation boundal-y is given by

0)0 = (ci)Bv/o)a)akX, (54.65)

hence gravity waves can be reflected even when u<< ti~v if they propagate

from a region where 0< tiO to one where @ = tiO. Because the ratio
(ORJOU ) is a slowly varying function (except in an ionizing medium, see

below), this type of reflection tends to occur when gravity waves with small
kX propagate into regions of decreasing a.

We noted in $52 that co~v >0 only in a stably stratified medium, and that

gravity waves cannot exist in a connectively unstable region, where ti~v <

0. It follows that near an interface between stably and unstably stratified
regions, ~~~, will fall to zero from the value characteristic of the stable

region, hence cdl gravity waves will be reflected back into the stable layer,
with only evanescent disturbances penetrating into the convective layer.

TEMPERAIWRJ3GRADIENT AND ION[ZATION EFFECTSON 7H!3BRLJNT.v.iilSjdji
FREQUENCY

For a perfect gas in hydrostatic equilibrium, (d Jn pO/dz)=
(din pO/dz) – (d In TO/dz), and (dpO/dz) = –pOg; using these expressions in

(52.6) we find

@& = (Y— I)(g/a)*+ g(d In TO/dz)= a:(z)+ g(d in TJdz).
(54.66)

In (54.66), w,(z) denotes the local value of the buoyancy frecluency in the

absence of a temperature gradient. We see that if the temperature in-

creases upward coBv is increased over UE and the possibility of gravity-wave

propagation is enhanced. If the temperature declines upward, ~~v is smaller

than ti~, and gravity-wave propagation occurs on] y for a more restricted

range of frequencies. Indeed, if (dT/dz) is sufhciently negative, w~v <0
and gravity waves are completely suppressed, the atmosphere becoming

convective y unstable.
For an ionizing gas we can rewrite (52.6) as

~:v=g[(uw – (m,~. )l (54.67)

where J71 is given by (14.19) and H and HP are, respectively, the density
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and pressure scale heights:

H-’ = –(d In (lO/dZ)=I&’ +(d In ~o/dZ)–(d ]11&L/dZ) (54.68)

and

~P = –(d in pO/dz)-’ = pO/pOg = 9i!T/p,g. (54.69)

Ionization effects Imust be accounted for in the mean molecular weight I-L

and in (d in W/dz); for example, for pure hydrogen w = 1/(1 +x) [cf.

(14.32)] where x is the degree of ionization [cf. (14.6)]. Note that the
approach of r, toward unity in an ionization zone can cause the difference

between (1/Ef) and (l/r, I-I,,) to become very small, thus sharply diminish-
ing w~v in that region.

An alternative expression for co~v can be obtained (T3) by expanding the
density derivatives in (52.4) as (dp/dz) = (@/dp)~(dp/dz) + (FJp/dT),, (dT/dz)
and demanding that (dp/dz)u~ inside the element equal (dp/dz) in the

ambient atmosphere. One then finds

OJ;V = g~[(dT/dz).d – (dT/dz)J, (54.70)

where, from (14.24) and (14.27),

p = –(din p/dT),, = T-’{l +~x(l–x)[$+(eJkT)ll (54.71)

for ionizing hydrogen. Furthermore, we can evaluate (dT/dz).d as

(dT/dz)c,. = (dT/dp)s(dp/dz)a. = (–pg)(T/p)(rz– 1)/rz = –(rq – l)gT/a2,
(54.72)

where az is given by (48.23). All thermodynamic quantities in (54.70) to

(54.72) are to be evaluated allowing for ionization effects; for example rl
and (rg – 1) for ionizing hydrogen are given by (14.29) and (14.30).

In an ionizing medium, the acoustic cutoff frequency is again given by

Coa= a/2ff as in (53.3), but now Ef is defined by (54.68) and CL2 by (48.23).

H the gradients in T and w are small enough to be neglected, then in an
ionizing medium El= HP = a2/rl g, whence

ti&, =(r L-l)g2/a2. (54.73j

The ratio (OJ~v/od) in (54.65) is then

(@Bv/@,L)~2(r L– ]) ’’z/rl, (54.74)

which varies with height only if r, varies.

FORMULATIONOF THE WAVE EQUA-l_lON

To derive a wave equation for acoustic-gravity waves in a general stratified

medium, it is convenient to work with scaled variables, as in 553. When the
temperature, and therefore the density scale height H, varies with height,
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the ambient density is given by

[J

z

Po(Z) = dzl) exp –
z,

HYDRODYNAMICS

d.z’/H(z’) 1 (54.75)

where z, is an arbitrary reference height chosen at a convenient location.

Thus defining

[~

z

E(z) = exp dz’/2H(z’) 1 (54.76)
z,

we can write PO(Z)= po(zl)/132(z), which is the generalization of (53.16).
In scaling the perturbation variables, we note that k= is no longer

constant \vith height. We therefore absorb the dependence on k= into
depth -dependent amplitude functions defined by

PI PI T, UL w,
‘(<’’-kXX)E(Z). (54.77)

pO~(z) = pOP(z) = TOO(Z) = U(Z) = w(z) = e

Using iwU(z) = ikXP(z) to eliminate U(z) in favor of P(z), the linearized
fluid equations (52.24), (52.25), and (52.27) become

id?(z) – (ik~/co)P(z) –[(1/2FI) – (d/dz)] W(z) = O, (54.78a)

and

icoR(z)

The coefficient

gl?(z) – [(V2H) – (d/dz)]P(z) + icoW(z) = O, (54.78b)

- (ioJa2)P(z) + p~’[(dpO/dz) - a-2(dp0/dz)] W(z) = O.

(54.78c)

of W in the energy equation (54.78c) reduces to

~;’[(dpd~z) – a-2(dpo/dz)l = –(l/H) + ~-2( P0/PO%)

= –[(l/@–(l/r LHp)]= –@:v/g,

hence (54.78c) can be rewritten as

(54.79)

i~R(z) – (ida2)P(z) – (co&/g) W(z) = O. (54.78d)

The derivatives (d W/dz) and (dP/dz), which are (–ilcz W) and (– ikzP) in an
isothermal medium, now depend on gradients of TO and p, and cannot be

written in simpler form.

We eliminate R, first between (54.78a) and (54.78 d), and then between
(54.78b) and (54.78d) to obtain two equations relating P and W:

P(z) = [icoa2/(ti2– u2k~)][(ti~v/g) – (1/2H) + (ddz)]w(z)
(54.80a)

and

W(z) = [ioJ(u’ – ~&)][(g/a2) – (1/2H] + (d/dz)]P(z). (54.80b)
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From (54.78d) the density amplitude function is then

R(Z) = [ioJ(~2–a2k:)][ (&Jg)(a2k:/co2) –(1/2~ + (d/dZ)]w’(Z).

(54.81.)

The temperature perturbation for an ionizing gas can be obtained by first
writing (pl/pO)= (d In pO/d In To)O(T1/TO)+ (d In pO/din po)~(pl/pO), which is

general, and then applying the cyclic relation (iI in pO/d In pO)-d

(d In pO/~ In TO)O= (d In To/dIn p,JP to obtain

(T1/TO) = (d In TO/FJIn pO)p[(d in pO/~ in pO)~(p,/pO) - (pI/pO)]. (54.82)

Alternatively we can write p = pkT/~m~, where v is variable, which
implies

(din po/din TO)P= T@ = 1 –(din w/Jln T(,)P = Q (54.83)

[cf. (2.14) and (14.33)], and then using (din pO/EJIn po)~ = pOK-r[cf. (2.15)]
we have

T,/T. = [IGrP, – (P,/Po)]/Q

or

@(z) = [K-~p#(Z) – 17(z)]/Q.

Substituting (54.80a) for P and (54.81) for /?, and
from (54.83) in the form

p.KT~l = 0(r3 – ~) + ~

we obtain, after some reduction,

(54.84a)

(54.84b)

using (52. 10) with T

(54.85)

G(z) =
i@(r3— I) ~:V

S w(z)+ ‘
(
—–~+:) w(z). (54.86)

(co - a’k:) g

Recall ing from (54.73) that O:v is proportional to (rl – 1) when gradient
terms can be neglected, we see that @(z) becomes small relative to W(z) in

ionization zones, where both rl and rq approach unity.

Because H and w~v contain gradients of T and K, we cannot simplify

(54.80) and (54.81 ) as we did (53.32). Nevertheless (54.80a) and (54.80b)
can be combined into a single wave equation for W (or P), namely

+3-[:’+-$)1%

.:(*_&)]w=o.
In an isothermal medium, (54.87) reduces to (d2 W/dz2) + k: W = O, where
k: is given by (53.11) with ~~ replaced by co~v and a suitably general
expression for o.. For a nonisothermal medium we can still obtain the
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swne simple form by defining a new variable (/J as

O(Z) = W(z){k~ –[w/a(z)]’}/{k~– [w/a(z,)]2},

where z, is a convenient reference height. Let us also define

h.(z) = [(~ ’–co~)/a2]+ (a&ti2)(k~/~2);

in the isothermal limit ho = k: and is constant. Then we find

[d’@(z) /dz2]+ h(Z) L/J(Z)= O

where

(54.88)

(54.89)

(54.90)

with K’= k~–a2w2.

SOLUTIONOF 7-FE?WAVE EQUATION

We have reduced the linearized fluid equations (52.24) to (52.26) to a

single, second-order, ordinary differential equation (54.90). “I_hisequation
can be represented by a difference equation and solved as a two-point,

boundary-value problem along lines discussed in $59. In practice, it is

important to allow a variable step size Az in the difference representation

of (d2@/dz2) because the vertical wavelength 27r/[h (z)]”2 varies substan-
tially over distances comparable to a wavelength, especially for internal
gravity waves.

At the lower boundary, we specify a velocity or pressure perturbation

that drives the wave or else specify the net upward energy flux; because the

problem is linear these conditions are all essentially equivalent. At the

upper boundary, the easiest condition to impose is to allow only an

outgoing wave. The justification for this condition is that in a stratified
atmosphere the velocity amplitudes increase exponentially with height, and
we can always place the upper boundary above the height range where we

would expect the waves (in a nonlinear treatment) to become highly

non] inear and dissipate, and thus be unable to reflect back into the region

of interest.
From the (complex) solution for ~(z), W(z) can be determined from

(54.88) and (d W/dz) can then be obtained from (54.87). The scaled
amplitude functions P(z), R(z), and 6)(z) follow from (54.80a), (54.81),
and (54.86). The linear wave perturbations p ~, p,, T,, u~, and WI as

functions of (x, z, t) are then determined from (54.77). All the perturba-
tions are complex variables; we take the physical perturbation to be the
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real part of the corresponding perturbation variable. Thus at point (xi, Zi, t;j

in the fluid, the velocity is

V,(xi, Zi, t,)={Re [ul (xi, z,, ti)], O, Re [w,(xi, z,, ti)]}, (54.92)

the gas pressure is

p(xi, z,, t,)= pO(zi) + Re [p, (xi, Zi, t,)], (54.93)

and similarly for the other variables.
The magnitudes and phases of the wave perturbations are obtained from

the standard formulae for complex variables. From (54.77] one sees that
the phase lag between any two variables (say p, and w,) is the same as that

between their amplitude functions [i.e., P(z) and W(z)]. Moreover one

sees that although the phase of each variable changes with x and t, the
phase lag between two variables is a function of z only. ThLIs

f3pw(zi) = tip(xi, z,, t,)– aw(xi, z,, t,)==8P(0, z,, 0) – I&/((),Zi, o).
(54.94)

Because the derivative (dW/dz) in (54.80), (54.81), and (54.86) cannot

in general be replaced by —ikzW we cannot write analytic expressions like

(53.32) for the ratios (J’/ W), (R/W), and (@/ W) or like (53.37] for phase
differences. Instead, these must be computed from the numerical solutions

for the amplitude functions. 130wever, in the special case that k= and H are
almost constant, so that we can take (d W/dz) = –ikz W and H= Hp, we find

the phase differences for an ionizing gas are

tan 8PW ~(2kz~-’[(rL-2) /r1], (54.95a)

tan 8RW = (2kzH)-’{[2(r1 - l)a2k~/rl~’]– 1}, (54.95b)

and

tan 8@w = (2kz~-’[(r1 –2)/rl:l

+(kzll-’[l– (akX/~)z][(rl– ~)/r L(r3– I) Q]. (54.95C)

STRUCTURE OF IWE SOLAR ATMOSPHERE

To illustrate the theory developed above, we discuss the propagation of

linear acoustic-gravity waves in the solar atmosphere using a semiempirical

model derived from an analysis of spectral data (V2), (V3). The model is
approximately in hydrostatic equilibrium, but small adjustments are neces-

sary to match observed scale heights. The required nongravitational forces

are usually pararrteterized in terms of a “turbulent pressure” gradient; the

ultimate origin of these forces is presently unknown but presumably they

result from small-scale fluid flo\v and magnetic fields.
The temperature structure, shown in Figure 54.1, exhibits an initial

decline as implied by radiative equilibriLml at an open boundary (cf. ~82).
This region, known as the photosphere, contains the surface (about one
photon mean free path into the Sun) from which most of the visible light is

emitted. Moreover, this is the region where radiation interacts strongly
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Fig. 54.1 Atmospheric structural parameters in a model solar atmosphere.

with wave-induced local temperature perturbations (cf. S102). At about

500 km above the visible surface, the temperature passes through the
temperature minimum region and then rises outward in the chromosphere
where the cores of strong spectral lines in the solar spectrum are formed.
The temperature rise is thought to result from dissipation of mechanical

(i.e., W’ave) and magnetic energy. The initial rise is followed by a plateau
from about 1000 to 2000 km; here nonradiative energy input continues to
increase the internal energy of the gas, but nearly all this energy is

consumed in ionizing hydrogen, and the temperature rises only slightly.

Above the plateau, the temperature rises abruptly through the transition
region (whose thermal structure is determined by a balance between

radiative losses, nonradiative energy dissipation, and thermal conduction)

into the corona, a tenuous envelope at about 1.5 x 106 K, which is the seat

of the solar wind (cf. 3361 and 62).

The propagation of acoustic-gravity waves, including their refraction and
reflection properties, is governed by the average values and gradients of

the temperature, mean molecular weight, and ionization fraction, which
determine r,, r2, and ~~, H and Ho, and the parameters az, w:, and ti~v

that appear in the wave equation and dispersion relation.

As shown in Figure 54.1, the adiabatic exponents are all near $ in the
photosphere and begin to decrease a short distance above the temperature

minimum, as hydrogen begins to ionize. They continue to decrease until

the top of the temperature plateau near 2200 km, at which point they rise
sharply back toward ~ as hydrogen ionization becomes essentially com-
plete.

The sound speed, also shown in Figure 54.1, exhibits relatively 1ittle
variation over the height range O to 2000 km; a varies only as T”2 and
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Fig. 54.2 Upper curues: acoustic cutoff frequency and buoyancy frecluency in a
model solar atmosphere, assuming r, = ~. Lower curues: acoustic cutoff frequency
and Brunt–Vaisilii frecluency in a model solar atmosphere, allowing for ionization
and temperature gradient effects.

even this variation is largely offset by the decrease of r, in the chromos-

phere. In the transition region a rises sharply as T increases to coronal
values. The acoustic cutoff frecluency co. = a12H, shown in Fiamre 54.2, has

a distinct maximum near 750 km where H has a definite minimum and a
has a weaker maximum. Above that height W. decreases in the chromos -
phere because H increases as T increases and I-L decreases [cf. (54.68)]

while a decreases slightly owing to the decrease in rJ. In the transition
region ~a decl-eases sha~ly M T–”2 as T rises tO COrOnal values.

The Brunt-Viiisala frequency exhibits much more dramatic changes,

primarily as the result of changes in r,. From Figure 54.1 one sees that Ff
and EIP are nearly equal in most of the chrolmosphere, hence in this region
co~v = (1’1– l)g/rlH [cf. (54.67)]. Noting that H varies relatively slowly,

one infers that co~v in the chromosphere should respond mainly to changes
in (.r, – I.)/rl. The correctness of this inference is seen from Figure 54.2,
which shows o~v calculated with realistic values of rl and with r] = ~;
almost all of the chromospheri c drop in OJBv is caused by ionization effects.
As hydrogen becomes fully ionized in the upper chromosphere, @v rises

S1ightly again and then decreases sharply to very small values in the corona
in response to extremely high coronal temperatures. In addition, 0131,
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decreases from its maximum near 750 km downward into the photosphere.

Indeed, just below the photosphere there is a convection zone that extends

deep into the solar envelope; here o~v <0, hence OBV must pass through

zero near the bottom of the photosphere.

TEMPFRTURE-GRADI ENT .L\ND10NIZ/\TrOhT EFFECTS ON TIHE Dr+\GNOST!C DI/\GRAM

Figure 54.3 shows propagation boundary curves in the diagnostic diagram

for four heights in the model solar atmosphere: (1) in the low photosphere;

(2) at 750 km, where co,, has its maximum value of about 3.4x 10-2 s-’
(-185s period); (3) at 1700” km where CO.v has a pronounced minimum at

about 1.2x 10–2 s–’ (-525 s period); and (4) in a 1.5 X 10b K corona of

full y ionized hydrogen and helium. Full allowance is made for temperature

gradients and ionization effects.
The two shaded areas on the diagram indicate ranges of (~, ~) for which

acoustic-gravity waves can be trapped in some region of the solar atmos-
phere. Region 1 corresponds to acoustic waves trapped in the chromo,s-
pheric cavity that extends from about 750 km height to the transition
region or corona. Acoustic waves with w > 1.6x 10–2 S–’ can propagate in

the middle to upper chromosphere; those propagating downward are
reflected back up if o s 3.4x 10–’ s–’, while those propagating upward

refract away from the steep temperature rise to the corona, and totally

reflect if they have horizontal Wavenumbers kX>10-4 ktl-’
(AXs 63,000 km). FJote also that acoustic waves \\ith ~ slightly less than

—
‘u-l IO-2 ~ /5
3

●A

1(3-3 _
/ 4

IO-4 I I I
)()-6 10-5 10-4 10-3 1(--2 10-1

kx (km-’)

Fig. 54.3 propagation boundary curves al foLLrheighls in a model solar atnlos-
phere. Shaded al-eas indicate ranges of (k., O] in which waves Imay be trapped in a
cavity. Lettered clots mark (kx,a) values for representative waves discussed in text.
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0.)a,IT, ax can propagate freely both just above and just below the layer at
750 km where co. = Oa,,,,<W.Thus acoustic waves at these frequencies prop-
agating upward from the subphotospheric convection zone tunnel through
a thin layer around 750 km as evanescent waves and penetrate into the

chromospheric cavity, w-here they are trapped, with most of their energy
remaining.

Internal gravity waves can be trapped similarly in the photosphere and

lowr-chromosphere region for the (kX, co) values shown as region II in

Figure 54.3. As mentioned above, ti~v rapidJy decreases toward zero near
the bottom of the photosphere. Hence, downward propagating gravity

waves will be reflected upward at the interface between the stably stratified

photosphere and the convection zone. Gravity waves propagating up\\arcf

in the photosphere having frequencies greater than about 1.2x 10–2 s–’
wil 1 be reflected downward from the middle chromosphere where o~v

drops to a local lninimum. Gravity waves with ~ < 1.2X 10–2s- 1 and
wavenumbers in the small- ky end of the propagation domain are likewise

reflected downward from the chrornosphere. Gravity waves with ~ only

slightly above 1.2 x 10–2 S–l can tunnel into the upper chrolmosphere,
where they propagate until reflected by the coronal temperature rise. In

the corona only gravity waves with periods greater than about two hours

can propagate.

AD lABA-I-I C ACO USTIC-GRAVITV WAVF2 IN “I-HE SOLAR ATMOSPHERE

Results obtained from numerical solutions of (54.90) in the model solar
atmosphere just described exhibit the refraction, partial reflection, and

tunneling effects described earlier in this section. They also demonstrate
the general trends for phase differences and amplitude ratios of high- and
low-frequency wave pert urbations as discussed in $53 [cf. (53.33) and

(53.37)]. The waves chosen as representative examples are shown as
lettered dots in Figure 54.3. They comprise sets of t’reely propagating

gravity waves and acoustic waves, some of which have very srnal I k,
somewhere in the computational domain, pl LE one case of a fully reflected

~-avity wave that tunnels through a thin evanescent layer. More extensive

results are given in (h93) and (M4).

One readily sees a strong response to the dominant features of the solar
model in the computed height dependence of the eigenfunctions, phase

differences, and relative arnpl itudes of the waves. Phase lags are shown in
Figure 54.4 for two of the freely propagating gravity waves, for the

reflected gravity wave, and for an acoustic wave with relatively small kZ
(long period). The phase lags discriminate readily between the acoustic and
gravity-wave regimes and exhibit effects of partial reflection more strilc-
ingly than do the other wave properties. From the discussion following
(53,’73), we expect all the perturbations to be approximately in phase for

acoustic waves, with the 1argest phase differences occurring where tiJco is
largest; the magnitudes of the phase differences in Figure 54.4d do in fact
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Fig. 54.4 Phase shifts for acoustic-gravity waves in a model solar atniosphere. (1)
Spw. (2) &,v. (3) 8-,,”.

follow closely the variations in O. shown in Figure 54.2. Also, as expected
from (53.37), pl and p, lag w ~ for the acoustic wave, and TI leads. The

example shown in Figure 54.4d is a relatively low-frequency acoustic wave;

at higher frequencies the phase differences are much smaller, as can be

seen in the eigenfunctions for a high-frequency acoustic wa\)e shown in

Figure 54.5d.

Gravity waves, which experience substantial partial reflection from the
large variation of w~v in the chromosphere, show oscillations in the phase

differences on a scale of half the vertical wavelength. “I”hese oscillations are
an interference pattern that results from the superposition of upward and

downward propagating waves. Figures 54.4a,b,c show phase differences for

gravity waves that propagate energy upward, hence have negative k, and
propagate phase downward. In this case pl S1ightly leads Wl, while T, Ieads
and p, lags by amounts that approach 90° as wlco~v and colalc. become very
small. The phase oscillations approach &90° as reflection becomes nearly
complete, which accounts for the extreme behavior seen in Figure 54.4c for



WAVES; SHOCKS, AND WINDS 223

a gravity wave that is evanescent between about 1525 and J750 km in
height.

The eigenfunctions for the same three gravity waves and fo]- a high-

frequency acoustic wave are shown in Figure 54.5; the relative perturba-
tion amplitudes for this set of waves are shown in Figure 54.6. Here we see

other effects of the variation of temperature and ionization in the solar
model. The eigenfunctions again show the marked difference in phase

behavior between gravity (a, b, c) and acoustic (d) waves.

Figure 54.6d shows that acoustic waves in the soJar atmosphere behave
very nearly in accordance with the asymptotic (isothermal) relations

(53.34). Here k== k, hence sin CY= 1 and cos a is very small. One sees that
luL1/a =(lw,l/a) cos a is indeed small, and that lpll/pO=I’ lw,l/a and

IT, I/TO= (~ – 1)”2 Iw ,1/a both appear to have the perfect-gas value of 17at
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Fig. 54.5 Scaled eigenfunctions for acoustic-gravity waves in a model solar
atmosphere.
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low heights, and to vary in the manner predicted by (53.34) as r decreases

nearly to unity with increasing height in the chromosphere.

Similarly the amplitude ratios for the gravity waves in Figure 54.6a and

54.6b follow closely the relations (53.35). The ratios lT,l/TO and lu,l/a,
both of which are proportional to (co~v/co), are much larger for the
lower-frequency wave D than for the higher-frequency wave A, and both

follow the increase in co*v in the low chromosphere. The ratio ]T~l/TO
drops sharply below Iu, I/u in the middle chromosphere because r ap-

proaches unity. The ratio lpll/pO, not shown in Figure 54.6, follows IT,I/To
very closely for gravity waves; the physical reason is that in gravity waves

the density perturbation is produced mainly by the difference in tempera-

ture between the adiabatically oscillating fluid and its surroundi rigs. Figure

54.6 contains only gravity waves of a single horizontal wavelength, hence it
does not show the dependence of Ip,I/pOon k=’ which results from the fact
that in gravity waves the pressure perturbation acts mainly to drive

horizontal flow; hence as the horizontal extent of the flow increases (AX

becolmes larger) the pressure ,perturbation needed to drive it increases.
Figure 54.6c illustrates in another way the characteristics of standing

waves: for a perfect standing wave the nodes of 1P,1, Ipl 1, and IT1 I would all

~000 B (2000, 800)
[ I I I [ I I

(a)

20001- -1

‘O;.=
0 2000 4000

HORIZONTAL DISTANCE (km)

AD (250, 25)
2000 1 I I I I I I

(b) I

-2000 0 2000

HORIZONTAL DISTANCE (km)

Fig. 54.7 Constant phase path (curve 1). phase-velocity path (curve 2), and
group-\eloci[y path (curve 3) for acoustic-gravity Yvaves in :1 model solar atmos-
phere.
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fall midway between the nodes of Iw] 1, with two nodes per vertical

wavelength, and the amplitude would be exactly zero at each node.

Figure 54.7 ill ustrates refraction of acoustic-gravity waves in response to
the continuous variation of properties of the solar atmosphere. Because the

sound speed changes little with height, high-frequency waves show 1ittle

bending of the direction of the phase velocity VP or group velocity v~.
Gravity waves, in contrast, show strong refraction from the large changes
in co~v, with VP bending away from the vertical as mBv decreases, and v~

bending toward the vertical. Though the direction of v, tends toward the
vertical, the magnitudes of both u~ and WE decrease to zero as ~~v

decreases to O.

5.3 Shock Waves

The theory developed in $$5.1 and 5.2 applies only to small-amplitude

disturbances, which propagate essentially adiabatically and are damped

only slowly by dissipative processes. As the wave amp] itude increases, this

simple picture breaks down because of the effects of the nonlinear terms in

the equations of hydrodynamics. When nonlinear phenomena become
important, the character of the flow alters markedly. In particular, in an

acoustic disturbance a region of compression tends to overrun a raref actio n

that precedes it; thus as an acoustic wave propagates, the leading part of
the profile progressively steepens, eventually becoming a near discon-

tinuity y, which we identify as a shock.
Once a shock forms it moves through the fluid supersonically and

therefore outruns preshock acoustic disturbances by which adjustments in
local fluid properties might otherwise take place; it can therefore persist as

a distinct entity in the flow until it is damped by dissipative mechanisms.

The material behind a shock is hotter, denser, and has a higher pressure
and entropy than the material in front of it; the stronger the shock (i.e., the

higher its velocity) the more pronounced is the change in material proper-

ties across the discontinuity. The rise in entropy across a shock front
implies that wave energy has been dissipated irreversibly; this process

damps, and ultimately destroys, the propagating shock (sometimes rapidly).

In contrast to acoustic waves, internal gravity waves do not develop

shocks. Instead in the nonlinear regime they break and degenerate into
turbulence. We will not discuss these phenomena in this book; see for

example, (M3) and (M4).
Shock phenomena are of tremendous importance in astrophysics. As we

saw in $5.2, the growth of waves to finite amplitude occurs naturally and
inevitably in an atmosphere having an exponential density falloff. Thus, as
Biermann (B3), (B4) and Schwarzschild (S8) first recognized, small-
amplitude acoustic disturbances generated by turbulence in a stellar con-
vection zone can propagate outward with ever-increasing amplitude until

they steepen into shocks that dissipate their energy, thus heating the
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