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Preface

This book is the result of our attempt, over the past few years, to gather

the basic tools required to do research on radiating flows in astrophysics.
The subject of radiation hydrodynamics is very large and cuts across many

disciplines in physics and astronomy: fluid dynamics, thermodynamics,

statistical mechanics, kinetic theory, and radiative transfer, to name a few.
The relevant material is scattered widely among a large number of books,

journal papers, and technical reports; indeed, some Of it exists only m

folklore among practitioners in the field. As a result it has been difficult for

both students and research scientists to do productive work in this area
with a clear understanding of the full significance of the assumptions they

have made, of how their work relates to other problems, and without
having to reinvent techniques already in use.

In writing this book our primary goal has been to expose the great

foundation-stones of the subject, and to erect upon them solid, if incom-
plete, walls of methodology on which others can later build. Accordingly,

we have quite deliberately concentrated on fundamentals, and have limited

severely the discussion of applications to only a few examples whose
purpose is to instruct, to illustrate a point, or to provoke deeper thought.

The book divides naturally into three parts; throughout we have attemp-
ted to keep the discussion self-contained. In the first part, comprising

Chapters 1 to 5, we focus on the dynamics of nonradiating fluids, both ideal
and real, classical and relativistic, and then consider applications to a few

astrophysically interesting problems: waves, shocks, and stellar winds. AS
an illustration of numerical methods we outline the basic von Neumann–

Richtmyer technique for one-dimensional Lagrangean hydrodynamics.
While many of these topics are covered in other books, it is nevertheless

necessary to develop them here to the level of completeness, and with the

particular emphasis, required to make a meaningful connection to the
theory of radiating fluids.

The second part of the book, Chapters 6 to 8, deals with the physics of
radiation, radiation transport, and the dynamics of radiating fluids. Here
we have attempted to emphasize the very close relationship of radiation
hydrodynamics to ordinary fluid dynamics, and to display the underlying

unity and strong parallelism of the two formalisms. We therefore approach
radiation hydrodynamics as the study of a composite fluid, consisting of
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material particles and photons. We develop both the continuum and
kinetic-theory views for both matter and radiation, exploiting the concep-

tual advantages of each in order to paint a complete picture of the physics

of the composite radiating fluid. An essential difference between the
dynamics of radiating and nonradiating fluids is that because photons

typically have Imuch longer mean free paths than their material counter-
parts (perhaps approaching or exceeding the physical size of the entire

flow), they can introduce a fundamental global coupling between widely

separated parts of the flow, which must be treated by a full transport
theory. We have attempted to counter what seems to be a commonly held

opinion that radiation transport theory is an arcane art, accessible only to
specialists, by arguing that conceptually it is simply a nonlocal kinetic

theory for a special class of particles (photons) that do not experience body
forces but interact strongly with the material component of the fluid
locally, while being responsive to the global properties of the flow. We

have found this paradigm to be extremely fruitful for our own thinking.

Furthermore, we have attempted to show how radiation transport fits
naturally into fluid-dynamical computations, in particular how a fully

Lagrangean treatment of radiation transport can be incorporated into

numerical calculations of one-dimensional ffows in both the diffusion and

transport regimes. Finally, we discuss a few illustrative examples of as-
trophysical ffows in which radiation plays an important role.

The third part of the book is a short appendix on tensor calculus. We

have found that many astronomers and physicists working on radiation
hydrodynamics problems are unfamiliar with tensor techniques, and there-

fore cannot appreciate the power, beauty, and deep physical insight they

afford. In the text we exploit tensor concepts to write equations that are

covaliant by inspection, an approach that allows one to make the transition

from ordinary fluids, to relativistic fluids, to radiation almost automatically.
The appendix summarizes only the basic material used in the text, and we

assume that our readers have this minimum background. Those who do not

should read the appendix first; the effort will be amply repaid.
The theory developed in this book has a wide range of application,

including such diverse astrophysical phenomena as waves and oscillations
in stellar atmospheres and envelopes, nonlinear stel~ar pulsation, stellar

winds, supernova explosions, accretion flows onto compact objects, the

initial phases of the cosmic expansion, and many others. It also has direct

application in other areas, for example to the physics of laser fusion and of
reentry vehicles. Since our professional backgrounds are those of

solar/stellar astronomers we have focused almost exchrsivel y on stella]--

oriented applications. We have limited the discussion by choice to rela-
tively low-energy phenomena, and by necessity mainly to one-dimensional
flows. Even with these restrictions the essential physics of the problem

emerges clearly. We hope that this book will serve as a useful starting point
and as a guide to a larger literature.
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1
Microphysics of Gases

The material component of the astrophysical fluids that we consider in this

book is typically a dilute gas composed of single atoms, ions, and free.

electrons. Insofar as we are interested in the large-scale dynamical be-
havior of this compressible fluid in response to imposed external forces

(both gravitational and radiative), it often suffices to view the gas as a
continuum and to describe it in terms of macroscopic properties such as

pressure, density, temperature, etc., along with certain macroscopic trans-

port coefficients that specify energy and momentum transport within the
gas itself (i e., thermal conduction and viscosity effects). But when we seek

actually to calculate these macroscopic properties and their relationships
with one another, particularly when the gas is not in equilibrium or when it

interacts with a radiation field, we must examine its microscopic properties
in detail and develop appropriate models on an atomic scale. In this

chapter we therefore discuss the microphysics of gases from three distinct

points of view, each of which complements the others, and all of which

yield useful information. Throughout this chapter we ignore radiation,
returning to its effects in Chapter 6.

A very basic macroscopic description of gases is afforded by the theory

of thermodynamics. Although it is possible to develop such a theory within
a purely axiomatic framework [see, e.g., (Cl, Chap. I)] we shall instead

regard it as the formal expression of empirical results obtained from astute
experimentation. An alternative description is provided by kinetic theory, in
which one develops a model of the gas as a system of individual particles

interacting according to prescribed laws of force. In the end the results of

kinetic theory can be no better than our knowledge of the laws of
interaction among the constituent particles (and our ability to solve the

equations that result from these laws), and are, in this sense, model

dependent. But, in practice, this theory gives a remarkably accurate

account of the behavior of real gases even for manifestly crude atomic
models. A rather different approach, in some ways more powerful than the
preceding ones, is taken by classical statistical mechanics, by which we can
calculate the most probable state of a gas under prescribed external
conditions and evaluate all of its properties quite completely in terms of

fundamental atom ic constants and an irreducible set of thermodynamic
parameters. We obtain this complete picture, however, only for gases in

1



2 FOUNDATIONS OF RADIATION HYDRODYNAMICS

equilibrium. In contrast, despite its dependence on a definite (and usually

oversimplified) atomic model, kinetic theory permits one to treat non-

equdibrium gases in regimes where both thermodynamics and statistical

mechanics provide little, if any, information. Thus it is apparent that it will
repay our efforts to consider each of these approaches in turn.

Even though most astrophysical fluids are composed of several chemical

species, for the purposes of developing the basic theory we shall confine
attention to a pure hydrogen gas and consider mixtures of elements only
where required in specific applications. By doing so we can treat all the

essential phenomena (e.g., ionization) but still enjoy expository simplicity
while obtaining equations in their least complicated forlm. Furthermore, we

shall show that it is usually adequate to describe a gas by a single set of
macroscopic parameters (e. g., temperature) despite the fact that the gas

may be composed of at least three rather different constituents (atoms,
ions, and electrons). Finally, on the spatial scales of interest here we can

usually ignore plasma properties and view the gas as an electrically neutral,

single-component (in the sense just mentioned) material. Extensive discus-

sions of multicomponent gases can be found in (Bl), (C4), and (HI), while
plasma properties are treated in some detail in (C4, Chap. 19), (Kl), and

(s2).

1.1 Thermodynamics

1. Equation of State of a Perfect Gas

The force exerted by a gas on the walls of a container is directed along the

outward normal to the containing surface. In the absence of external forces
acting on the gas, it will exert the same force per unit area, the pressure p,

on all points of the walls. Experiment shows that the pressure exerted by a
gas at constant temperature is inversely proportional to its volume V
(Boyle’s law), and that the pressure exerted by a fixed volume of gas is

directly proportional to its thermodynamic temperature T (the law of
Charles and Gay-Lussac). These results are colmbined into an equation of
state for a perfect gas, which states that

pV= n9?T, (1.1)

where n is the number of moles of gas present (i. e., the mass of the gas

divided by the atomic mass of its constituent particles), and ~ is the
universal gas constant. Equation (1. 1) provides an excellent approximation

to the behavior of dilute (i e., low-density), gases, the main case we
consider in our work; more accurate expressions for imperfect (i.e., real)
gases are given in (Hi, Chaps. 3 and 4).

It has been established experimentally that the number of particles in a

mole of gas is a universal constant, Auogadro’s number do; hence n moles
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contain n.do particles. We can therefore rewrite (1.1) as

p=NkT (1.2)

where N is the number density of particles per unit volume, and k = !%/.s40
is Boltzmann’s constant. If the particles in the gas have atomic weight A,

then the density of the material is p = NAm~, where tn~ is the mass of a

hydrogen atom. Thus we can write (1 .2) alternatively as

(1.3)p = pkT/AmH = pRT,

where R = k/Am}~ is the gas constant for the particular gas being consi-

dered. In some applications it is convenient to use the specific volume
v = I/p, the volume per unit mass; (1.3) then becomes

pv = RT. (1.4)

Equations (1. 1) to (1.4) can be used interchangeably, as convenient.
The state of a gas is described by slate variables such as p, p, T, etc. One

finds empirically (and can show theoretically, cf. $$1.2 and 1.3) that all

thermodynamic properties of a gas are specified when the values of any
two state variables are given.

2. First Law of Thermodynamics

Experiments show that a gas may exchange energy with its environment by

absorbing or releasing heat and by performing mechanical work, and that
in such processes an energy conservation principle applies. Consider a
reversible process, in which the gas is taken infinitely slowly through a

sequence of equilibrium states, each differing only infinitesimally from its
antecedent. Then if ~ is the internal energy in a volume V of the gas
(which we will later see can be identified with the energy of microscopic

motions and internal excitation of the particles in the gas), the first law of
thermodynamics states that

d~ = dQ– dW. (2.1)

Here dQ is the amount of heat gained or lost (counted positive for gains)
and dW is the work done by the gas (counted positive when the gas

delivers work to its surroundings) in an infinitesimal process.
We can write dW in terms of state variables because the force exerted by

the gas on an element of the container’s surface is 8F = pn i3A, and thus the
work done if the surface moves by an infinitesimal displacement dx is
a(dwj = i5F odx= p(n “ dx) 8A= p 8V where i5V is the volume element
swept out by 8A. Hence, summing over all surface elements,

d8=dQ–pdV. (2.2)

In terms of the specific internal energy e (i.e., internal energy per unit
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mass), we have

de=dq–pd(l/p), (2.3)

where dq is the heat input per unit mass.

If in some process the volume changes by a finite amount, then the total
work done by the gas is A W = j p(V) dV, which clearly depends on the

nature of the process, that is, on how p varies with V. We therefore say

that dW is an inexact differential. In contrast, it is found experimentally

that % for a gas in equilibrium depends only on the state of the gas as
defined in $1; hence Atr4 in any finite process depends only on the values of

the state variables in the initial and final states but not on the details of the

process between them. We therefore say that dt$ is an exact differential. It

follows that because dW is an inexact differential, dQ must also be an
inexact clifferent ial.

An adiabatic process is one in which the gas exchanges no heat with its

surroundings (dQ = O); such processes can be achieved by thermally insu-

lated systems, Consider now the .Toule-Kelvin experiment in which a
perfect gas at temperature Tl, confined to a volume VI within a thermally

insulated container, is allowed to expand adiabatically into an additional
volume Vz initially containing a vacuum, lt is found empirically that the

final temperature of the gas is again T,. In this process A Q = O (adiabatic)

and A W = O (because the gas meets no resistance in its expansion and

therefore does no work); therefore by the first law A%= O. In general, we
can write Z5= ti’(T, V); but we have just shown that A~ is zero for arbitrary
A V at fixed T, hence we reach the important conclusion that, for a perfect

gas, ‘z%is a function of T only [see also equation (5.5)].

If an input of heat dQ into a systelm induces a temperature-change dT,
we define the heat capacity C as

C= (dQ/dT). (2.4)

This quantity depends on the amount of material present; it is more useful
to work with the specific heat c, the heat capacity per unit lmass, given by

~=(ddT). (2.5)

If the volume of the gas is unchanged during the delivery of dq, we have
the specific heat at constant volume c.; similarly, if the pressure is un-
changed we have the specific heat at constant pressure c,,.

A large number of useful relations can be deduced directly from the first
law (2.3) by choosing different sets of state variables. Because any thermo-

dynamic variable can be expressed in terms of any other two, in calculat-
ing derivatives it is helpful to employ a notation of the form (tlz/dx)Y to
indicate that (x, y) are the independent variables chosen, and that y is

being held constant in the calculation of the derivative of z with respect to
x. Now suppose that we have any three variables (x, y, z) con netted by a
functional relation F(x, y, z)= O, in which any two of the variables may be
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considered to be independent. Then it is straightforward to derive [see,
e.g., (S1, $3–3)] the important relations

(dx/dy)z = l/(dy/dx)z (2.6)

and

(dx/aY)z(dy/dz) x(az/dx)y = -1. (2.7)

Furthermore, if w is a function of any two of (x, y, z), then

(dx/dy)w (ay/dz)w = (dx/dz)\v. (2.8)

Suppose now that we choose (T, p) as the independent variables. Then

de= (ile/~T)OdT+ (~e/c7p)~dp, (2.9)

hence from (2.3),

dq = (de/dT)Od-T+ [(de/@)~ – (P/P2)l @. (2.10)

In a process at constant volume dp = O and dq = CvdT; therefore

c. = (de/dT)@. (2.11)

This result is completely general. For a process at constant pressure
dq = CDdT, and in view- of (2.11), we have

Cp= c. + [(~e/dp)T – (p/P2)l(dP/d73D. (2.12)

For adiabatic processes dq = O, therefore

Cv(dT/&3), = [(p/P2) – (de/dP)T], (2.13)

where the subscript s indicates the derivative at constant entropy (cf. $3).
These results can be cast into a standard form by using the following

definitions. Write the coefficient of thermal expansion of the gas as

~ = (d In v/dT)D= -(din p/dT)P, (2.14)

its coefficient of isothermal compressibility as

K-J.= ‘(d ]n ‘ddp).r = (d h ddp). r, (2.15)

and its coefficient of adiabatic compressibility as

K, -–(d in U/dP), = (dk p/alp),. (2.16)

Then (’2.9) and (2.1 O) become

(~e/dp)r = (p/p2)- (cp - cU)/f@ (2.17)

and

(tIT/13p],= (CP- cu)/~P% (2.18)

Suppose now we take (p, T) as the independent variables. Then

de= (de/dT). dT+ (de/dp)T dp (2.19)
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and

dp = (ap/dT)p dT+ (@/dp).r dp, (2.20)

so that (2.3) becomes

dq = [(de/dT). – (p/p2)(@/dT)U] dT+- [(de/dp)~ – (p/p2)(dp/@)~] dp.

(2.21)

By considering a process at constant pressure we find

CP= (de/dT)P– (p/p2)(ap/2T)p; (2.22)

a process at constant volume implies

CU= c, + [(tie/dp).r – (p/p2)(dp/t3p).r] (dp/dT)0; (2.23)

and an adiabatic process implies

cP(dT/dp), = (p/p2)(@/dP)-r – (de/dp)-r. (2,24)

Using (2.6) and (2.7) we can rewrite (2.22) to (2.24) into the standard
forms

(de/dT), = c. – 13P/P, (2.25)

(de/dp).r = K~[(p/~)-(~ -c.)/p] (2.26)

and

(dT/dp), = K~(CP– CU)/@C,,. (2.27)

Finally, choosing (p, p) as independent variables we find by a similar

anal ysis

(de/dp)P = Krcv/6> (2.28)

(de/dp)p = (P/P2) - CD/6P, (2.29)

and

(f3P/m)s = c./f%P%. (2.30)

The specific enthalpy of a substance is defined as

h=e+pv=e+(p/p). (2.31)

Thus

clh = de + p d(l/p)~ alp/p, (2.32)

so from the first law (2.3) we have

dq = dh – dplp. (2.33)

We then see that for a process at constant pressure we have, quite
generally,

CP= (W/dT)P. (2.34)

Comparing (2.34) with (2. 11), we see that enthalpy plays the same role in
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isobaric processes that internal energy does in

volume.

3. Second Low of Thermodynamics

7

processes at constant

The first law of thermodynamics is insufficient by itself to provide a
complete theory for thermodynamics. From practical experience, it is

found that certain physical processes can not actual] y be realized despite the

fact that they conserve energy. In general terms, one finds that in certain
processes energy may be channeled into forms in which it becomes
effectively unrecoverable from the .@ as useful work or as heat that can be

transferred to its surroundi rigs. In a sense the energy has been degraded; in

fact, the energy has been dissipated at the molecular level by processes that
result in a more highly disordered system. We return to this point in $11.

These empirical findings are summarized into a second ktw of ther?no-
dynamics, which may be stated in several equivalent forms. For our

purposes it is most direct to introduce a state function S, called the entropy
of the system, defined such that if the system exchanges an amount of heat
dQ with a reservoir at a temperature T in a reversible process, then

dS = dQ/T. (3.1)

The second law is equivalent to the statement that in any cyclic trans-

formation, the following inequality holds:

(3.2)

where the integral is evaluated over the entire cycle.

Consider now a reversible cycle. Let the system traverse the cycle in one
direction, and let dQ1(T ) denote the heat received in the process. Now
reverse the cycle, and consider a new cycle with dQJT) = –dQj (T). 111

both cases the material starts and ends in the same state. Now because

(3.2] holds for any cycle we must simultaneously have

4

dQ, (T)<o

T–

and

$ $

dQ1(T) <odQz(~) . _ _

T T–’

whence we see that for a reversible cycle

(3.3a)

(3.3b)

(3.4)

We can Jlow show that dS is a perfect differential, and hence that the

entropy difference between two states is independent of the nature of the
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reversible processes connecting those states. Thus let A and B be two
definite states at chosen points on a reversible cycle, and let path 1 denote

a process leading from A to B and path 2 a different process leading from

B back to A. Then by (3.4),

H=(p3,+(J:%)2=”-

But by (3.1),

‘3 dQ

U )
~ ~ , ==S@)– S(A),

hence from (3.5)

(3.5)

(3.6)

(3.7)

which shows that the entropy difference is path independent, as stated.

Consider now an irreversible process ~ joining states A and B. Follow
this process by a reversible process R that returns the system from B to A
in a cycle. From (3.2) we then have

(3.8)

or

the equal ity holding only if 1 were reversible.
We can now prove that the entropy of an isolated systelm must always

increase, In such a system dQ = O (because the system is isolated from its

surroundings), and hence from (3.9) we immediately have

S(B)2S(A), (3.10)

the equality holding on] y if all processes occurring were to be reversible.
13ut all natural processes are actually irreversible, for they always take
place at a finite rate with finiie departures from a sequence of perfect

equilibrium states. Thus the entropy content of a natural system tends
always to increase, and a thermally isolated system will therefore ultimately

find itself in equilibrium in the state of maxilmum entropy consistent with
imposed external constraints.

In terms of entropy we can rewrite the first law for a reversible process
as

TdS=d6+pdV (3.31)

or

“rds = de+pd(l/p) (3.12)

where s is the specific entropy.
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4. Thermal Properties of a Perfect Gas

For a perfect gas we can derive explicit expressions for the thermodynamic
variables; in practice these are extremely useful because we can often

approximate astrophysical fluids as perfect gases. We recall that the

.Toule–Kelvin experiment implies that for a perfect gas the internal energy
e = e(T), hence from (2.11) we have an exact relation

(4.1)

From kinetic theory we will find that for a perfect gas co is a constant,

hence

e = CUT, (4.2)

where we suppress an additive constant.

Now, using (1.3) in (2.14) and (2.1 5), we find the thermal expansion
coefficient is

/3= l/T (4.3)

and the isothermal compressibility is

K-r= ~/~, (4.4)

Then f rolm (2. 17) we immediate y obtain the important relation

% = % + (Blip) = c. + R (4.5)

The ratio of specific heals for a perfect gas is the constant

?’ =(4C”) = 1 +(N%). (4.6)

From kinetic theory we shall find -y = 2 for a perfect monatomic gas.
The specific enthalpy for a perfect gas follows from (2.31), (4.2), and

(4.5) as

h = CDT+RT= CPT. (4.7)

The specific entropy of a perfect gas can be calculated directly from (4.2),
(3.12), (2.11), and (1.3), which imply

ds = C. (dT/T) – R(dp/p). (4.8)

Or, in view of (4.5),

ds = cP(dT/T) – R(dp/p). (4.9)

Thus

(4.10),$=~O+culfl-r-RlllP

or

s=s&+coln T–Rlnp. (4.11)

We cannot evaluate the constants in (4.1 O) and (4.11) from thermodynamic
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considerations alone; they can be calculated explicitly using statistical

mechanics, cf. $12.
Now consider an adiabatic change for a perfect gas. From (4.8) and (4.5)

we have

cvd(ln T)=(~–cU) d(ln p), (4.12)

ol-

T = To(p/pO)T-’. (4.13)

Equivalent forms of (4.13) are

P = Po(P/Po)’ (4.14)

and

p = po(T/To)T’(W-l). (4.15)

From (4. 13) to (4.15) we see why y is called the adiabatic exponent.
Relations of the form (4.13) to (4.15) are called polytropic laws; they can

be generalized to cases other than perfect gases [see $19 and $56 below,
and (C5, Chaps. 9 and 12)].

Finally, from (2. 16) and (4. 14), we have, for the adiabatic compressibility
of a perfect gas,

K, = ~1’yp. (4.16)

5. Some Consequences of the Combined First and Second Laws

A great many useful results can be derived from the combined first and

second laws for reversible processes as expressed by (3.12), along with the
fact that dS is an exact differential. Thus suppose we expand de as in (2.9)

to obtain

ds = T-’(de/dT)O dT+ T-l[(de/dp).[-– (p/p’)] dp. (5.1)

Now because ds is exact we know that we can also write

ds = (&s/dT)OdT+ (dS/dP)T L@, (5.2)

and we thereby conclude that

(~s/dT)P= T-’ (de/i)T)O (5.3)

and

(Wdp]-r = T1[(de/dp)-r - (p/p*)]. (5.4)

Moreover, (d2s/dT dp) = (t32s/dpdT); hence from (5.3) and (5.4) we obtain

(de/dP)-r = [P – ~(dP/d~)o]/P2 = [P - (~ T/KT)]/P2, (5.5)

where we have used (2.6), (2.7), (2.14), and (2.15). In particular, for a

perfect gas, we now see from (4.3) and (4.4) that (de/dp)T = 0, hence
e ~ e(T) in agl-cement with the Joule–Kelvin experiment.
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From the first law alone we were able to derive (2.12), giving a relation

between c. and c,,; but now in light of (5.5) we can rewrite this result as

Cp– Co = –(T/p2)(dp/dT)0 (t@/dT)p. (5.6)

Or, using (2.6), (2.7], (2. ”L4), and (2.15), we have the general expression

~,, – C. = f12T/KTp. (5.7)

From experiment we find that K-r> O for most substances, hence (5.7)
implies that (CP—CO)= O for most materials, a result that follows directly

from kinetic theory and statistical mechanics.
From (5.3), (5.4), and (5.5) we see that by ~aking (p, T) as independent

we have

(ds/dT)O = cv/T

and

(&S/d~)T- = ‘@/K-@2,

and thus

Tds = C. dT– (~~/K@2) dp.

By a similar analysis, one finds by taking (p, T) as independent

(8e/dp)~ = (K-,-p- @T)/p,

(&s/aT), = Co/T,

(ds/i3p)-r= –~/p,

and

T ds = CPdT– (~T/p) dp.

Finally, by taking (p, p) as independent we find

(dS/dP)o = KTC.//3T,

(Wdp)p = -c,,/hJT

and

T ds = (K&v/~) dp – (CD/@) dp.

1.2 Kinetic Theory

6. The Distribution Function and Boltzrnann’s Equation

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

We can gain a much deeper insight into the physical properties of gases by
forsaking the macroscopic picture of thermodynamics and developing in its
place a microscopic kinetic theory. We restrict attention to a gas composed
of a single species of particle. A macroscopic sample of gas typical Iy
contains an enormous number of particles; for example, in a stellar
atmosphere the characteristic particle density is N = 10’ Gcnl–3. Such large
n urnbers immediately show that there is no hope (nor any point] in our
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attempting to develop an exact particle-by-particle description of the
system, but instead that we require a statisticcd picture that gives the
distribution of particles in space and over velocity.

The large particle density quoted above ilmplies that the average distance

between particles is quite small: ciO= (4mN/3)-’/’ = 3 x 10-6 cm for N–

10’ b. This spacing is very large, however, compared to a typical particle

size, which we can estimate to be of the order of a Bohr radius UO=
5 x 10-9 cm; these numbers imply that the particles occupy only about a
part in 108 of the volume available to them. The interparticle spacing is

also very much larger than the de Broglie wavelength L = h/p= h/=T
associated with each particle; for example, for atomic hydrogen at T =

104K, A=2x10-9 cm, so that A<<aO<<do.
Furthermore, if density fluctuations in the medium are random, the

fractional root-mean-square fluctuation in a macroscopic volume, say

1 cm3, is very small: 6N/iV = N“2/N = N-~’z. For example, in a stellar

atmosphere, a characteristic scale of interest for fluid flow is of the order of

100 km (a pressure scale height) so that even a 1 cm3 volume with its
fractional rms fluctuation of 10-8 would be considered minuscule. These

numbers show clearly why it is usually reasonable to consider the gas to be
a continuum: the smallness of dO implies that the material is exceedingly

fine grained from a macroscopic view, and the smallness of N- J‘2 implies

that it is extremely smooth.
The considerations outlined above show that to a very high degree of

approximation we can consider the gas to be a dilute collection of classical

point particles (because their wave packets are so high] y localized). For
electrically neutral particles the interparticle forces are very short range,

typically falling off as a large power of the interparticle separation;

therefore we can well describe the motion of a typical particle as a

sequence of straight-line paths, each interrupted by a brief collision with
another particle. Because we view the particles classically, the collision,

which is characterized by a collision cross section, can be described by

classical mechan its. Furthermore, because the probability y of collisions is so

small, we can neglect the possibility that three or more particles may
collide simultaneously, and can consider only binary collisions. As we shall

see in $10, the situation is rather different for charged particles interacting

by Coulomb forces, which are long range; in that case the dominant
contribution comes from large numbers of overlapping weak collisions.

To describe the physical state of the gas statistically, we introduce the

distribution function f(x, u, t) defined such that the average number of

particles contained, at time t, in a volulme element d3x about x and a
velocity-space element d3u about u is fd3x d3u. We demand that f 20

everywhere (no negative particle densities), and that as Ui ~ +~, ~ ~ O
sufficiently rapidly to guarantee that a finite number of particles has a finite
energy.

Macroscopic properties of the gas are computed f:rom the distribution
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function. For example, the particle density is

.

N(X> t)=
JJJ

f(x> u, t) du , du, du,, (6.1)

—m

and the mass density of the material is

p (x, t)= AmHI’V(X, t), (6.2)

where A is the atomic weight of each particle. Similarly the average

velocity of an element of gas (and hence its macroscopic flow velocity) is

V(X>f) = {u)= N–’
M f(x> u>t)u du, du, dux. (6.3)

—cc

To study the microscopic properties of the gas it is helpful to decompose

the particle velocity u into

U=v+u, (6.4)

where now U is the random velocity of the particle relative to the mean
flow; notice that (U) = O.

We now seek an equation that determines how the distribution function

changes in time. For the moment, ignore collisions and assume that the gas

particles do not interact. Suppose that at a time tO we choose a definite

group of particles located in the phase-space volume element (dxO, dye,
dzo, duo, duo, dwo) around the point (xO, yo, zO, UO, q,, We). Let the

external force acting on these particles be F(x, t) so that they experience
accelerations a(x, t) = F(x, t)/m,where m is the particle mass. We assulme

that a(x, t)is a smooth function, so that the phase-space element will evolve
into a new element (dx, dy, dz, du, do, dw) centered on the point
x = XO+UC)dt and u = U. + a dt. The phase volume of this new element is

related to that of the original by

d’x d’u = ~(X, y, Z, U, ‘u, W/XO,Yo, Z,, U(I,u,, wo)(d’x)o(d’u)o (6.5)

where ./ is the Jacobian of the transformation [cf. equation (A3.3)].

Bearing in [mind that (x, y, z) and (u, v, w) are independent sets of vari-
ables, we see that

J=

1 0 0 dtoo

o 1 0 Odt O

o 0 1 OOdt

(t)aX/dx) dt (daX/?y) dt (dcL-Jdz) d “1 o 0

(&\/dX) dt (tklY/dy) dt (t@./dZ) dt O 1 0

(~a./~x) dt (daZ/dy) dt (&Zz/dZ) dt O 0 1

(6.6)
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Thus J = 1 + O(dtz), and hence to first order in dt the volume of the

phase-space element remains constant, that is,

d’x d’u = (d’x)o(d’u)o. (6.7)

Now the number of particles inside the original phase-space element is

L$No= f(xo, u~, to)(dsx)o(d%)o; (6.8)

in the absence of collisions all of these particles end up in the new element,

and thus 8N0 must equal 8N, where

f3N=f(x, +uo dt, uo+adt, to+dt) d3xd3u. (6.9)

By virtue of (6.7) we therefore find that in the absence of collisions the
phase-space density of a group of particles is invariant, that is,

f’(xo + % 4 uo+ a dt, to+ ch) = f(xo, UO,tO). (6.10)

By expanding to first order in d~ we then find

(df/dt)+ui(df/dxi)+ a’(df/dui) = 0, (6.11)

which is known as the collisionless Boltzmann equation, or Vlasov’s equa-
tion.

Equation (6.1 1) holds, of course, only in the absence of collisions and is

thus not yet the equation we seek. When collisions occur, their effect is to

shuffle particles around in phase space. Thus at tl= to+d, some particular
particle that was in the original group, but which suflered a collision during
the interval dt,will not, in general, find itself within the velocity element

d3u centered around u = U. + a dt, but rather in some other velocity
element (d3u)’ centered around some other u’ #u, Similarly, other particles

not originally in the velocity element (d3u)o may suffer collisions during dt

that leave them with a final velocity within c13u. Therefore, when collisions

occur, f is no Iongel- invariant, and we must add a source term on the
right-hand side of (6.11) which gives the net rate at which particles are

shuffled into the phase-space element under considerate ion. We write this
net rate symbolically as (Df/Dt)CO1l, where we use the Lagrangean time

derivative (D/Dt) because we have followed the motion of a particular

group of particles in the fluid (cf. $1 5). Thus the desired equation is

(df/dt)+ u’(df/i)x’) + a[(df/duL)= (Df/Dt)CO,l, (6.12)

which is known as the Boltzmann transport equation.
We must next obtain an explicit expression for (Df/Dt)COll; as will be seen

in $7 it can be expressed in terlms of an integral over the distribution

functions of the collision partners. But before doing that it is well to
emphasize that (6. 12) provides only an approximation to the physics of real
gases, Jn particular, ~ is only a one-particle distribution function, which is
based on the tacit assumption that the probability of finding a particle at a
particular point in phase space is independent of the coordinates of all
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other particles in phase space. Such a description is inadequate for any-

thing but a dilute gas, and for a system of N particles the most general

description is given by the .N-particle distribution function f~, which is
defined such that fN(xl, . . . . x~, u,, . . . . Uav,t)dxl dxN dul . du~ gives

the joint probability of finding the .N particles in phase-space elements

(X,, x,+dxl), . . . . (xN, xJv+dx.,,r), (Ul, U, + dul), . . . . (Udv,U, + du,Ar).

Notice that f.v depends explicitly on the coordinates of all the particles.
The time evolution of ~, is described exactly by Liouvdle’s equation,

which determines the continuous trajectory of a point representing the

system in an abstract 6N-dimensional phase space. In practice it is too
difficult to handle the problem with this degree of generality, so Liouville’s
equation is reduced to a less complicated system of equations known as the
BBGKY hierarchy. These equations provide a systematic way of treating

correlations among particle positions, velocities, and interactions, and thus
allow one to describe to various degrees of approximation how a given
particle perturbs all others in its vicinity. One can allow for correlations

between two, three, or more particles. The BBGKY equations permit one
to construct a kinetic theory for dense gases; for further details the reader

can consult (B2, $10.2) and (C4, 516.7). We shall not pursue these
approaches further because we will deal exclusively with dilute gases.

Boltzman n’s transport equation can also be derived directly from

Liouville’s equation; see (HI, 449-452).

7. The Collision Integral

DVNAMICSOF BINARY COLLIS1ONS

Consider two particles of mass ml and Tnz starting from infinity with initial
velocities u, and U2, which suffer a CO(Iision and move away to infinity with
velocities u{ and uj. Then, because the total momentum of the systelm

comprising both particles is conserved, we have

mLul + m2u2= rnlul + nquj = (ml + m2)G (7.1)

where G is the velocity of the center of mass of the system in the
laboratory frame. Let giz and g[z be the initial and final velocity of particle

1 relative to particle 2, and g2J and g;, the velocities of particle 2 relative
to particle 1, that is, g~~=u,–u~=–g~, (7.2a)

and

g\2=u; –u; =–g;l. (7.2b)

Then clearly

g12=lfh21=g2i=’x (7.3a)

and

g;2==gj1= g’. (7.3b)
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Using (7.2) in (7.1) we can express the laboratory velocities of the particles
i n terms of their relative velocities and the center-of-mass velocity:

U, =G–mzgzj/(m[+mz), (7.4a)

Uz = G+ m[gzl/(ml + mz), (7.4b)

U! =G–m2gj1/(m J+rn2), (7.4C)

uj=G+ m.,g~l/(ml +rnz). (7.4d)

Thus knowledge of G, glz, and g~z is equivalen~ to knowledge of u,, U2, u;,
and u:, and vice versa.

In the collision the total energy is conserved, and because the inter-
particle potential can be set to zero at infinite separation, this is equivalent

to the statement that the sum of the initial kinetic energies equals the sum

of the final kinetic energies:

;(17LLU;+ m2u;) =+(m,u;zi- m2uj2). (7.5)

Equations (7. 1) and (7.5), along with the statement of conservation of mass
(m, + m, = m \+ m:) are known as the summatiomd irmariants of the
collision.

Using (7.4) it is easy to show that

and

~(mlu; z+n12uj2) =$( A4G2+ Iiig’z) (7.6b)

where M is the total mass of the system

A4=i’rL, +J’rr2, (7,7a)

and rii is the reduced mass

From (7. 5) and (7.6) we immediate y see that

g = g.’, (7.8)

which shows that the relative velocity of the two particles is changed only
in direction bUl not in magnitude by the collision.

A specification of the ful I three-dimensional trajectories of the particles
is a bit complicated [see, e.g., (VI, 35 1–353)], but we do not require this

much information and can consider the collision in the plane of the relative
orbit of the two CO1lision partners. Assume that the interaction between
particles is a central force, that is, one that depends only on the magnitude
of their separation X12 = lX1– X21. Let the force exerted by particle 1 on
particle 2 be F, and by 2 on 1 be –F; then

mlxl = —F (7.9a)

—-.
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and

mzxz = F, (7.9b)

so that

m,mzx- W, rnJx2 -xl) = (m, + WLJF. (7.10)

Thus the relative orbit of particle 2 with respect to 1 is identical to the

motion of an equivalent particle of mass tfi around a fixed center of force

F.
Decomposing (7.1 O) into radial and tangential components we find

and

rti+2ie=o. (7.llb)

We can integrate (7.11 b) straightaway to find conservation of angular
rnontenturn

rzti = constant = gb, (7.12)

where b is the impact parameter of the collision, that is, the perpendicular

distance of particle 1 from the straight-line extension of the incident
relative velocity vector g of particle 2 (see Figure 7.1).

Using (7.1 2) in (7.11 a), and integrating with respect to t after nlultiply -

ing through by r, we obtain the energy integral

~(r’ + r202) + c~(r)/fi = constant = $g’ (7.13)

where ~(r) is the potential energy of the interaction. Suppose now that the

interaction can be represented by a power-law potential

~(r) = Cti/rc’. (7.14)

Then using (7.14) in (7.13) and eliminating d~ in favor of CM via (7.12) we

‘m,

Fig. 7.1 Geomeu-y of binary collision
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obtain the integral

H )

~2 -112 b dr~. “ l.*. = —
r rz

=fh’R)[’:--(91

z 2 m -“2
d~

O!e

(7.15)

where < = (b/r) and

Here O is measured from an axis parallel to the initial asymptote of the

orbit. The apse A of the orbit is the point at which (dr/dO)= O, which
occurs when R = RO= (6/<.) where <0 is the largest root of the equation

When R = RO, 6 achieves the value 00 shown in Figure 7.1; the angle of

deflection x between the asymptotes is the supplement of twice 130,hence

[
X(8) = ‘Tr-2 ‘“[1 - &’-(2/a) (</3)~]-”2 d~.

o
(7.18)

Equations (7.16) to (7.18) show that x depends on b, g, and the inter-

particle potential only through the parameters a and 1.

THE COLLISIONCROSS SECTION

The rate at which collisions occur can be expressed in terms of a collision
cross section. Suppose the initial velocities of the particles are U1 and u’;

these suffice to fix the center of mass velocity G, the relative velocity g, and

the orientation of the plane of the relative orbit. The initial velocities do
not completely fix the properties of the collision, however, because they do

not determine the impact parameter b, which must therefore be taken as an
independent variable. When b is also given, the collision is uniquely

determined.

Choose a particle to act as a collision center and bombard it with an
incident flux of particles; let J be the number of particles in the incident

beam crossing a unit area normal to the beam in a unit time. Then the rate

of collisions having impact parameters on the range (b, b + db) within an
increment ds of azimuthal angle (see Figure 7.2) is RI = .9b db da Alterna-
tively we can assign to the process a dijferertticd cross section w(g, x),
defined such that the rate at which particles are scattered out of the

incident beam into an increment of solid angle d Q around some direction
n’ specified by the angles (x, =) is & = .$b(g, x) do. But RI and % refer to
the same particles. Therefore noting that d Q = sin x dx ds we conclude
that

cr(g, x) = b ldb/~Xl/sin x. (7.19)
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Fig. 7.2 Scattering from a COIIision centel-

Another useful notation for the cross section is m = cr(u,, Uz; U(, u!) because
the initial and final velocities together are suficient to determine the

collision uniquely. In calculating COIIision rates we may write either cr d Q

or the differential target area b db de, as convenient.
For the important case of power-law interactions we find from (7.16) and

(7.19) that
cr(g, x) d Q = (aCa/rii)2’C’g-4’a8d~ d&. (7.20)

Another extremely useful model is to imagine that the particles are rigid

elastic spheres of diameter d that interact only on contact. In this case, if /30
is the angle of the point of contact relative to the incident path, then

b = d sin 6., and x = m–200 (see Figure 7.3) so that from (7.19)

~=+dz, (7.21)

which is independent of both the relative speed g and the deflection angle

x of the collision partner. Despite the extreme simplicity of this model, it
actually yields useful estimates of collision rates, mean-free-paths, and

transport coefficients, and we shal I employ it in later work.

L!
— —A

b

v

Fig. 7.3 Collision of two rigid spheres,
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In addition to the differential cross section itself, various angular mo-
ments of the cross section will appear i n later developments. The total cross
section is

For rigid spheres we find

cr-r(rigid sphere) = rrd 2, (7.23)

which is clearly just the geometrical cross section of the two colliding

particles. For power-law interactions (7.22) diverges, hence classically the

total cross section is infinite; convergence of the integral is, however,

obtained when quant urn-mechanical effects are taken into account (W2, 9).
“rhc transport coefficients for viscosity and thermal conductivity arc

related to the moment

For rigid spheres

(T(2) = $rd 2. (7.25)

For power-law interactions

0-(2) = 2m(aCJrii)2’ag–4’c’AJa), (7.26)

where

J

m
A2(a) = sinz x(L)1 dg (7.27)

c1

is a pure number tabulated in (C4, 172) for various values of v = a + 1.

The differential collision cross section has certain important invariance

properties:
(a) Time reversal. If we reverse the sense of time (i.e., run the collision

backward) each particle must merely retrace its original trajectory. Therefore

U(u,, U2; u;, Uj)=a(–u; , –u:; –u,, –UJ. (7.28)

(b) Rotation and reflection. Let u“’denote the vector obtained from u by
transformation under a rotation of the coordinate axes in space, or under a
reflection with respect to a given plane, or both. Because the collision

event depends only on the magnitudes and relative orientations of u,, Uz,
U1, u.j it is obviously unaffected by these transformations, hence we must
have

U(u,, U2; Uj, u:) = a(u;, Uj; u~~,u:’”). (7.29)

(c) Inverse collisions. The inverse of a collision is defined to be the

collision obtained by interchanging (ul, %) with (u(, uj). AS shown in
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P
I

u‘, u’~ –U’l -u’~ -u ‘1 ~ -Uj U2 u,

X
Fig. 7.4

P’

Invariance properties of bina~ COIIisions.

Figure 7.4, the inverse collision can be obtained from the direct collision by
a combination of a time reversal, followed by a 180° rotation about an axis
n perpendicular to the center-of-mass momentum A4G, and then by a

reflection through a plane PP’ perpendicular to n. Itfollows from (7.28)
and (7.29) that direct and inverse collisions necessarily have the same cross

section:

)- ( )cr(u, ,u2; u{, u: —o- U;>u; ;u, ,uz (7.30)

BASIC FORM OF THE COLLISION IN7-EGRAL

We are now in a position to evaluate the collision term (Df/ Dt)CO,,in (6.1.2).

Label target particles in the phase-elelment considered with the subscript
“ 1” and their collision partners with the subscript “2”. We calculate first

R .U,, the rate at which particles of type 1 are scattered out of the

phase-space element clqx, dqul. For each particle of type 1, the number of

particles of type 2 moving with velocities on the range (uz, U2+ duz),
incident within a range of impact parameters (b, b + db) and within azimuth

range ds in a unit time, is (fz dsuz)gb db d.s, where g is the incident speed

of particles 2 relative to particle 1, and for brevity we have written

fz = f~(x, UZ,[). The total number of collisions is obtained by summing over
all impact parameters, azimuths, and incident velocities, and then mdtiply -

ing by the number of particles of type 1 present, namely f, d3xl dsul. Thus

R0,,Ld3x1 d3u, =–
UJJ )

fxfzgbdbd&d3u, d3x, d’u,. (7,31)

In calculating ROU,we have tacitly made the assumption of rnolecukw

chaos, that is, that both sets of particles are independently distributed
according to f without any correlation between velocity and position or
location of other particles.

Next we calculate Ri,,, the rate at which particles not originally within

the phase-space element dsxl d3u1 are scattered into that element. We
now wish to consider only those collisions whose result is a particle ~moving
with velocity u, within d3ul after the collision. This is most simply done by
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considering inverse encounters of the form (u;, uj) + (ul, uJ. By an argu-
ment similar to that used above we find

Ri,, d3x1 d3u1 =
(HJ )

fifhg’bdbd& d3uh d’xl d3u; (7.32)

where f:= f(x, u{, t)and f-j- f(x, uj, t).
Equation (7.32) can be cast into a more useful form by noticing that

d3u1 d3uz=d3u{ dsuj, which can be proved as follows. From (7.4) we

know that we can express (u,, UJ in terms of (G, g); hence we can write

d3u, d3u, =.T(ul, u,/G, g) d3Gd3g, (7.33)

where J is the Jacobian of the transformation. From (7.4) we find

~= 1 –rn,/(m, + J’nJ
=1.

1
(7.34)

rn2/(?n~+ ?n2)

Therefore, d3u Ld3uz = d3G d3g. Similarly we can express (uI, u:) in terms

of (G, g’) and write

d3u; d3u~=.T’ d3Gd3g’=d3Gd3g’ (7.35)

because one finds Y =1. But G is unchanged by the collision, and from
(7.8) g = g’ because the relative velocity changes only in direction. There-

fore d3Gd3g’ = d3G d’g, which in turn implies from (7.33) and (7.35) that
d3u( d3u~ = d3u Ld3uz. Using this result and (7.8) we can thus rewrite

(7.32) as

Rin d3x1 d3ul =
(Hj )f{ figbdb d&d3uz d3x1 d3u, (7.36)

where now in fj and fj we consider U; = U{(ul, U2) and u; = U4(U1, uJ.
The net rate of scattering into dsxj d3ul k simply (Dfl/Dt)~oIl =

Ri,, + ROU,, so that the Boltzman n equation for fl, accounting for binary

collisions, becomes

(df,/dt)+ u’(af,/axi)+ a;(13f,/Wi) =
JJJ

(f[fi–flfz)gb db de d3u2,

(7.37)

or, i n terms of the differential cross section,

JJ
(dfL/at)+ ui(dfl/dxi)+ ai(afJd~’) = (.fif:-flfz)gd~) dQ d3~2

(7.38)

Jn m(~), Q denotes the angles between g and g’. From (7.37) and (7.38) we
see that the Boltzmann transport equation is a nonlinear integrodifferential
equation for the distribution function f; its complicated mathematical
nature makes the equation difficult to solve.
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ALTERNATE FORMS OF THE COL.LISION TNTEGR4L

It is convenient to develop here several equivalent forms of moments of

the collision integral for later use. Let Q(u J be any function of the particle
velocity u,, and define

l=
M

Q(ul)(f; f:–f1f2)ga(n) df) dqul d%L2. (7.39)

Suppose now that we merely interchange the labeling 1 and 2 on all
particles; obvious] y the same value of 1 must result. Adding the two

expressions, we see that an equivalent expression for f is

[=;
JJJ

[Q(ul)+ Q(u2)l(f;f4–f,f2) gin(Q) ~Q d3u, d’uz. (7.40)

Suppose now in (7.40) we replace the collision by its inverse; the integral
must have the same value because for every collision there is an inverse

collision with the same cross section, and we are thus merely writing two

completely equivalent expressions for the sum over all collisions of the
value, before the collision, of the function Q. Thus

where we have used the facts, proven earlier, that u(Q’) = ~(~), d Q’ = d Q,
g’ = g, and d’u{ d’u~ = d3u1 d’uz. Adding (7.40) and (7.41) we have

1=–~
JH

[~Q(uI) + 8Q(u2)l(f’& f,f,)w(n) dQ d3u, d’uz, (7.42)

where

8Q(u) ==Q(u’) – Q(u). (7.43)

By the same line of argument leading to (7.41), we see that

JJJ
Q(u~)f,f2gcr(f_k) dQ d3u1 d3u2=

JJJ
Q(df;.fk’u(Q’) dQ’ d3u{ d’uj

—
=IJJ

Q(uJ)f;fjga(Q) dfl d3UL d3u2.

(7.44)

Then using (7.44) in (7.39) we see immediately that

~=
JJJ

8Q(u L)flfzgcr(Q) dfl d3u1 d3u2. (7.45)

We have shown above that I is unchanged undel- interchange of u, and U2;
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thus, from (7.45), we see that

L=~
JJJ

[dQ(u,) +@(u,)]f,fw(Q) d~ d’ul d3tt2. (7.46)

8. The Maxwellian Velocity Distribution

Boltzrnann’s equation is quite general and can be applied to a wide variety

of physical situations. First, let LIS suppose that the gas is in a state of
equilibrium: the material is homogeneous, isotropic, and at rest. The

distribution function will then be independent of both position and time,

and therefore the number of particles in each velocity class must be

constant. If this is to be true when there is a reshuffling of particles by
collisions, then it must be possible to pair each COIIision with its inverse,
and we will have detailed balance. That is, in equilibrium we must have

(Df/Dt)CO,l= O. We see from (7.37) and (7.38) that this will be the case if

fO(”l)f(l(u2) ‘fo(uj)fo(u~ = O, (8.1]

which is thus a sufficient condition for equilibrium; here the subscript zero
denotes the equilibrium distribution function. Taking logarithms of (8.1)

we have
In f[)(u,) +ln fO(u2)= In j“O(u~)+ln fo(uj), (8.2)

which states that In f[, is a function such that the sum of that function for

the two collision partners is conserved in the collision for any possible

collision. Hence In f. must be expressible as a linear combination of

sumrnational i nvariants.
We saw in $7 that the total mass, momentum, and energy of the collision

partners are summational invariant; it is possible to show that these are

the only linearly independent summational invariants that exist for struc-
t ureless point particles (C4, 50). Therefore we can write f,, as

lnfO=a, +&z. u+~3u2= –$@rn(u-v)2+y, (8.3)

where ~ must be positive to guarantee that ~- O as Iul + ~; the factor lm
was chosen to silmplify later resu Its. In (8.3), v must be the mean velocity

defined by (6.3) because the distribution function must be isotropic in the
frame in which the material is at rest. Hence, in terms of random velocities

U, we have
MU) = A exp (-@m U’) (8.4)

We can determine the normalization factor in (8.4) by invoking (6.1):
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or

A = (@n/27r)3’2N.

To evaluate /3 we use ~O(U) to calcujate a direct Iy

25

(8.6)

measurable c[uantity-
the pressure. By definition, p equals the momentum transfer from the gas

to a wall per unit area per unit time. Erect a perfectly reflecting wall in the

(Y, Z) plane, and confine the gas to the region xs O so that particles hit the
wall only if UX>0. If an incoming particle has velocity ( UX, UY, U=), after

hitting the wall its velocity is (– UX, U,, U=), and the momentum transferred

to the wall is 2mUX; the flux of these particles per unit area and time is

f-J~O(U). Therefore the pressure is

p=(:~uzJ:~uJ:~2mux)uxA’-(B’’’u2)duxux
.

= mA
M

j7:e-(BmUV2) ds u

—cc
.

(8.7)

r HmA 27T 512–(@&/2)~4 ~U = _ _
= ~rrmA e

—w. 2rr ~m

Here we noticed that, by symmetry, the averages ( U~), ( U~), and ( U~) are
identical and hence equal to ~( .!J2). Now combining (1.2], (8.6), and (8.7)

we find NkT = N/@; therefore

(3= l/kT. (8.8)

The equilibrium velocity distribution, the MaxweWm distribution, is thus

f,(u) = N(m/2mkT)3’2 exp (–mU2/2kT). (8.9)

Equations (8.7) to (8.9) can be viewed as giving the definition of the

kinetic temperature. In equilibrium, the kinetic temperature is identical to
the absolute te]nperature of thermodynamics. But, more important, a

kinetic temperature can be uniquely defined by an approach similar to the

one above even in situations where the thermodynamic definition can no
longer be applied (see $30). We shall therefore take the kinetic tempera-

ture as the fundamental operational definition of T in our later work.
The distribution of particles in speed (magnitude of U] is

fO(U) dU = N(m/2vkT)3’2 exp (–mU2/2kT)4rrU2 dU. (8.10)

The most probable speed, at which the maximum of ~0 occurs, is

Un,, = (2kT/m)”2; (8.11)
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the average speed is

(U)= N-’ ~- Ufo(U) dU=(8kT/nnt)]12;
o

and the root-mean-square speed is

[J 1
(~’)’”= ~-’ ‘U2fo(f_l) du ‘“= (3kT/m]lZ (8.13)

o

The distribution function N- lj_O(U) can be factored into the product

N-’fO(U) dux dUy dUZ = [[b(CJ<)dUxl[@(Uy) du,l[d~(u,) duzl

(8.14)

where

@(LJ.) = (m/2n-kT)’)2 exp (–mU~/2kT), (8.15)

and similarly for UY and UZ. In contrast to f[), @ peaks at U, = O and by

symmetry ( U.y)= O (the range being —~s Ux s~); as remarked earlier

( U;)”2 = ({ U2)/3)J’2= (kT/m) “2.
The distribution function gives a complete description of the microscopic

properties of the gas, hence a knowledge of ~C)is sufficient to derive all

macroscopic properties of a gas. For instance, the total translational energy

of .hrparticles is

~,,,,,,. = A&n{ U’))= (@kT) V,

whence we have the important result that for a perfect

p = ;(i%.al,,/v) =%,,,s,

(8.16)

gas

(8.17)

where Z1,..,,Sdenotes the translational energy per unit volume. The trans-

lational energy per unit mass is

et,.~,,,= :RT, (8.18)

.,-
– 2kT. The specific enthalpy (per unitand the energy per parbcle IS et,.l,,s –‘

mass) is

h = e,,.,,. + p = SRT, (8.19)

hence the enthalpy per particle is i = SkT. For a gas of point particles
without internal structure (our present model), the total internal energy
‘ig=?g ,,2,,,, because there are no other modes of energy storage available to
the particles; as we shall show in $12 the situation is different for a gas of

real atoms.
From (8. 18) we see that e,..,,, is a function of T on Iy, as expected from

the Joule–Kelvin experiment, and using (2.1 1) we have

cm= ~R =3(k/m). (8.20)



MICROPHYSICS OF GASES 27

Hence from (4.5) or (4.11)

CV=~R =~(k/m), (8.21)

and therefore

~=:. (8.22)

The above results justify the statements made in $4 that cm, Cp, and y for a

perfect gas are all constants.
Finally, using (8.20) and (8.21) in (4.10) and (4.11), we find that the

entropy of a perfect gas is

s=sO+$R lnT– Rlnp=s~+R in’T-Rlnp. (8.23)

As was true for thermodynamics, kinetic theory is unable to evaluate the
additive constants.

Suppose now that we have a mixture of gases containing several non-
interacting chemical species (i. e., particles whose identities do not change
when the state of the gas changes); as before, assume the particles have no

internal structure. Then

(8.24)

where n< is the number density of particle species s, and

p= ~ p, = m,., ~ n,A, (8.25)
s s

where As is the atomic weight of species s. If the mixture is in equilibrium

at a given temperature T, then experiments show that

(8.26)P=zp, =En,kT=NkT
s s

which is Dalton’s law of partial pressures. Now from (8.16) and (8.17)

n,k-r = p, =~& =~n,m, {U$) (8.27)

which implies that $m, (U~) = ~kT, that is, that all particles have the same

amount of kinetic energy (the principle of equiparrition of energy). Furthel--

more, we again find that (8.20) to (8.22) hold for Cu, CP,and -y, and also that
the velocity distribution for each species is Maxwell ian:

f,,, (U,) = (m./2nkrr)3° exp (-m, U~/2kT). (8.28)

It must be stressed that (8.26) to (8.28) apply only in equilibrium where

all particles have the same kinetic temperature. In general, different species

of particles may have different kinetic temperatures as defined via equa-
tions (8.7) and (8.8); we discuss this question further in $10 where we shall

show that the use of a single kinetic temperature is a good approximation
in the cases of primary interest to US. Furthermore, when the species can

interact “chemically” (e. g., in a gas of atcnms, ions, and electrons, where
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atoms can ionize to ions plL]s electrons, and vice versa, or in a relatively

cool gas where atoms can form molecules), the internal energy of the

mixture contains terms in addition to translational energy, and the expres-

sion for e, c., c,, and the adiabatic exponent must be modified (cf. $14).

9. Boltzmann’s H-Theorem

We have seen above that (8.1) is a sufficient condition for equilibrium; we

shal I now prove that it is also a necessary condition, and hence that the

Maxwellian velocity distribution is the unique equilibrium distribution
function. Suppose that the sample of gas is thermally isolated, is honlo-

geneous so that f is independent of x, and that external forces are absent.

Consider the functional

H(c) = ~ fk ~) Ill ~(U, t)] d’u (9.1)

introduced by Boltzmann. Differentiating with respect to time we have

(dH/dt) = ~ (1 + In f)(df/dt) d3u. (9.2)

Clearly, if (df/dt) = O, as it must be for cquiiibrium, then (dH/dt) = 0, which
is therefore a necessary condition for equilibrium. We shall show that

(dH/dt) = O implies (8.1), which is thus both necessary and sufficient for
equilibrium.

For a uniform gas (df7dx:) -O, and with no external forces UL=0, so from
(7.38)

(af/dt) ==(ly/Dt)co,l=
H

(f{f; – flf2)W(Q) d 3~2> (9.3)

hence

(dWdt) = J’jj ( I+ln fl)(fjfi–.fif2) ga(Q) dfl d3u1 d3uz. (9,4)

Then, by virtue of (7.42), we immediately have

The i ntegrand in (9.5) is clearly greater than zero whether (f[fj) < (f, f2) or

(f lf~) > (flfz). Therefore,

(dH/dt)~O, (9.6)

the equality holding only when f~f~–f1f2 =0.
It can easily be shown that H(t) is bounded from below [see (C4, 67) or

(HI, 465)] because the total kinetic energy of an assembly of particles must
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be finite. Given this fact and (9.6) we conclude that IY(~) continually

decreases to some final value, at which point (dH/dt) = O and we recover

(8. 1); this proves the necessity and sufficiency of this condition.
Although we have treated H(t) as an arbitrary functional for our present

purposes, it has a much deeper physical meaning: it is proportional to the

negative of the entropy. We return to this point in $12.

10. The Time of Relaxation

We have shown in $$8 and 9 that the Maxwellian velocity distribution is
the unique velocity distribution function for a gas (or mixture of gases) of

point particles in equilibrium, and have seen that the physical properties of
such gases are easy to calculate. How quickly’ can this equilibrium state
actually be reached by a gas starting with a non-Maxwellian distribution
function? This is a question of central importance to out- work because

when there is fluid flow in the medium, any particular element of material,
initially in ecluilibrium with its surroundings, can be transported to some

other position where the ambient conditions differ from its initial condi-
tions. If the characteristic time required to reequilibrate the velocity

distribution to a Maxwellian distribution is very short compared to a

characteristic flow time, then the gas may be considered to rernai n locally
in equi] ibri urn at each point i n the flow because it rapidly accommodates to

its slowly varying environlnent.

Frolm elementary mechanics, we know that, in elastic collisions, energy
exchange is most efficient among particles of equal lmasses, and is inetTi-

cient among particles of widely differing [masses. It th LIS COJIRS as no

surprise that in a typical astrophysical fluid the longest time scale in the
ecluilibration toward a single Maxwellian velocity distribution is set by

energy exchange between the Iightest part icles (free electrons) and the
much heavier atoms and ions. In keeping with our choice of a pure
hydrogen gas, let us therefore consider co]] isions between pairs of charged

particles such as electrons with electrons, protons with protons, and
electrons with protons.

COULO)MB FORCES

Particles with charges Z, e and Zze interact by the Coulomb force

F= ZlZ2e2/r2, (10.1)

which, in contrast to forces among neutral particles [where typical values of

a in (7.14) are > 5], are extremely long range. A consequence of this long
range is that while the force exerted on a test particle falls as r–2, the
number of field particles (in a uniform medium) on a range (r, r + d-r) rises
as rz, and therefore there will be roughly equal contributions to the

collisional interaction from particles at all distances. In fact, we shall
shortly see that the dominant effect comes from a multitude of weak

——...
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collisions with particles at large distances. Because a characteristic co]] ision

time is of the order of (b/g), these weak collisions at large b inevitably

overlap one another. Therefore the assumptions underlying the binary

collision integral in (7.37) and (7.38) break down, and a different approach
is indicated.

An alternative expression for the collision integral can be developed by

considering changes in a test particle’s velocity to be a Markov process
characterized by a function P(u, Au), which gives the probability that a

particle changes its velocity from u to u+ Au in a time interval At. On the
assumption that weak collisions dominate, (D~/Dt)CO1lcan then be written
i n terms of a differential operator containing P and the distribution

function f, yielding what is known as the Fokker–Planck equation. Deriva-

tions of the Fokker–Planck equation from this statistical point of view can

be found in (B2, $10-9), (C3), and (Kl, $6.3); an in-depth analysis of this
equation for an inverse-square force is given in (RI]. Curiously enough, it

is also possible to derive the Fokker–Planck equation directly from the

usual Boltzmann collision integral (C4, $19.7), despite the radically differ-
ent physical picture employed in the derivation of that integral.

The Fokker–Planck equation provides a rather complete picture of such
important processes as dynamical friction (the systematic slowing down of

fast-moving particles by drag) and the diffusion of particles in phase space

(from which the rate of equilibration can be determined). The solution of
this equation is, however, complicated, and we shall follow instead a

different route by estimating characteristic times of relaxation for the

equilibration process; a check on these estimates is provided by direct

calculations from the Fokker–Planck equation itself (Ml).

ROLJC,HCALCCLATION OF THE DEFLECTION TIME

A test particle colliding with another particle in the field experiences a
change AE in its energy and is deflected by an angle x from its original

direction. Because the chariges are random, we expect that over a long time
interval (AE )-r = O and (X).l- = O. Nevertheless the particle’s motion suffers

an ever-growing, random-walk departure from the original trajectory, and

eventually the particle will be moving on a path essentially unrelated to its

original path. We can characterize these cumulative departures by calculat-

ing the values of I (AE)2 and z ,X2 summed over all collisions; because the
process is random we expect these sums to grow linearly with time. We can

then define an energy-exchange time t~ as

t~ = E2/{d [~ (AE)2]/dt} (10.2)

and a deflection time t~ as

tD= 1/(1 x2)/dt]. (10.3)

In the time tE the energy of a test particle can no longer be considered to
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have been even approximately conserved, and thus t~ is a representative

time for the velocity distribution to be thermalized towards a Maxwellian.

Similarly [~ gives the time required for ~ (X2) “z to accumulate to about a
radian and hence IS a representative time over which the velocity distribu-

tion becomes isotropized.

Given these definitions, both t~ and t~ can be computed with considera-
ble mathematical precision, but the analysis is intricate [see (C2, Chap. 2)].
We therefore give only a heuristic derivation of t~, which is silmple

mathematically but retains all the essential physics. Consider a test particle

of mass n-t, and charge Zle moving through a field of particles with mass
mz and charge Zze. The integral (7.18) can be evaluated exactly for a. = 1;

one finds

sin +X= [l+(riig2b/Z1Z2 e2)2]-”2 (10.4)

or

tan $X= Z1Zze2/rF~g2b (10.5)

where, as in $7, g is the relative speed of the collision partners, b the

impact parameter, and rii the reduced mass defined in (7 .7 b). Suppose we

consider electrons and protons so that Z = *1, t%= m., and g2 = (3kT/m~),

and choose b to be the interparticle spacing dO– 3 X 10-6 cm cluoted in $6.
Then, for T= 104 K, we find that x = 4 x 10-2 radians. Therefore, a typical

encounter results in a small deflection and we can make the approximation

x(g, b)= 2Z, Z2e2/tig2b. (10.6)

Suppose now that the test particle is an electron and the field particles
are ions of charge Zi; then because m. <<mi we can ignore the motions of

the field parti$les, and can also set rit = w.. If the density of field particles is

ni, then the number of collisions suffered by the test particle in a time t
with field particles having impact parameters on the range (b, b + db) is

2nn@b db; hence using (1 0.6) we have

I
~ x2=2vnigt “’:’”

J

b!,,:>.

X2(g, b)b db = (8~z?z2e4~ir/m2g3) b-’ db
s.,. h,,,,,,

= (8wZ~ei~it/m~g3) In (b,,,=/bO,i,,).
(10.7)

In what follows we shall write A= (b.,=/ b.,i,,).

CUTOFF PROCEDLIRE

The integral over impact parameters in (1.0.7) diverges at both large and
small values of b and therefore two cutoffs must be specified. The di-
vergence for small b is spurious and results from our use of (10.6), which
allows x ~ cc as b -0, instead of (10.5), which guarantees that x remains
bounded. A reasonable choice for b~i. is the value that results in a 90°
deflection, that is,

bl,,in= Z,e2/meg2. (10.8)
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The divergence for large b is physical and arises from the long range of the

Coulomb interaction, which implies, as described at the beginning of this
section, equal contributions from radial shells at cdl distances. But in a real
plasma we must have overall charge neutrality, which means that charges

of opposite signs surround each other. Therefore, individual field particles
at large distances will be partially shielded by charges of opposite sign and
will have a diminished effect on the test particle.

We can describe this shielding quantitatively with a theory developed by

P. Debye. The probability that a charged particle will be found in a volume

element dV is not just n dV (where n is k particle density), but depends
also on the electrostatic potential @ in dV. For example, if @ >0 at some

position, electrons will tend to migrate toward that position while ions will

tend to migrate away. We can account for ~his effect by int reducing a
Boltzrnann factor (cf. $12) which depends on @ = (ec$/kT). Then, fol-
electrons, the probability of being located at a point is proportional to

(10.9)7rc = exp ((1)=(1 + @),

and for ions

where we have assumed weak interactions so that {) <<1. The average

charge density, summing over all ion types, is

(10.11)

Here we have demanded large-scale charge neutrality, which implies that

n.= ~ Z,ni. (10.12)

To calculate the potential around any particular ion we combine (10.11)
with Poisson’s equation

and write

v’+ = (~/D’) (10.14)

where

D={’T/[4~e2(ne+;z’n)lY’2 (10.15)

is the Debye lengh. Solving (10.14) for @ one obtains [~ =
~-1 (Ae-,/~+ Be@ ). Demanding that (1) @ -0 as r ~~, we set B =0; and

(2) @ ~ Z,e/r (the potential of the ion itself) as r ~ O, we set A = Zie. Thus
the potential produced by a shielded ion is

~(r) = (Z,e/r) exp (-r/D), (10.16)

.
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which shows that charges are effectively completely screened at distances
larger than D. Thus, in (1 0.7), it is reasonable to set b,,,,,, = D, Numerically,

D=4.8(T/n.)’’2cm (10.17)

for a pure hydrogen plasma. For example, in a stel Iar atmosphere with

T= 104 K, n, = 10’a cm-q, one finds that D =5 X 10-5 cm, which is only

about four times ro, the interparticle spacing.

Collecting results from above we have, for a hydrogen plasma,

A = 3e-3(k3T3/8me)’~z. (10.18)

Here we have set g2 in b,,,i,, equal to (U2) = 3kT/nte. A table of [n A for a
hydrogen plasma is given in (S2, 73); a typical value for a stellar atmos-

phere is in A = 10. Furthermore, for a hydrogen plasma, we obtain

ZD= m~g2/(8me4nP In A). (10.19)

We can now justify the claim made earlier that the effects of weak
collisions dominate those of strong collisions. The characteristic time

between strong collisions (i e., a 90° deflection) is

t, = l/(d~inrTpg) = m~g3/(me4nP). (10.20)

Therefore,

t,ltD=81n A (10.21)

which shows that the weak collisions dominate by two orders of magnitude.

PRECTSE EXPRESS1ONSFOR THE DEFLECrl ON ANTI ENERGY-~XCmNGl; TIMES

Equation (10. 19) is not rigorous because we have not performed the

(complicated) integrations over all angular variables, allowing for the

motion of the center of mass, correctly. Exact calculations by Chan -
drasckhar (C2, Chap. 2) show that for a test particle of charge 2, and mass

rn,, moving with a speed UL relative to the velocity centroid of a uniforlm
field of particles having charge 22, mass mz, and an isotropic Maxwellian

velocity distribution with dispersion (U;) = (3kT/mz), the deflection time is

and the energy-exchange time is

tE = ftt~U?/[32me4Z?Zln2G(xc,) In A] (10.23)

where

x,, = (3/2( U:)) ’12UI = (m2/2kT) “2U~. (10.24)

The functions G(xO) and F-I(xO) depend on the error function and its
derivative; numerical values for G(xO), H(xO), and the ratio

(t~/t,:) = 4G(xo)/EI(xO) (10.25)

are listed in Table 10.1. An important point to notice from the table is that
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Table 10.1. The functions G(xO), If(x,,), and the Ratio of Relaxation Times (t,>/t~)

X. G (x,)) H(xJ ($JIE) Xo G(xJ H(xoj (to/tE)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7”

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.0 0.0 2.00

0.037 0.075 1.99

0.073 0.149 1.98

0.107 0.221 1.93

0.137 0.292 1.88

0.162 0.358 1.81

0.183 0.421 1,74

0.198 0.4s0 1.65

0.208 0.534 1.56

0.213 0.584 1.46

0.214 0,629 1.36

0.211 0.669 1.26

0.205 0.706 1.16

0.196 0.738 1.06

0.186 0.766 0.97

1.5 0.175

1.6 0.163

1.7 0.152

1.s 0.140

1.9 0.129

2.0 0.119

2.5 0.080

3.0 0.056

3.5 0.041

4.0 0.031

5.0 0.020

6.0 0.014

7.0 Q.O1O

8.0 0.008

10.0 0.005

0.791 0.89

0.813 0.80

0.832 0.73

0.849 0.66

0.863 0.60

0.876 0.54

0.920 0.35

0.944 0.24

0.959 0.17

0.969 0.13

0.980 0.082

0.986 0.057

0.990 0.041

0.992 0.032

0.995 0.020

tE is a minimum for XO= 1, and becomes much larger for particles moving

at speeds much above or much below the average speed of the field

particles.

THE SELF-COLLJS1ONTIME AND THE EXCHANGE T[ME J3ETWEEN SPECIES

A case of special interest is a group of particles interacting with themselves,

for which Spitzer (S2) has defined the extremely useful self-collision time.
For particles having a speed U, equal to the rms speed ( U3)”2 of their

collision partners, XO= (1.5)1’2 = 1.225, and from Table 1.0.1 we see that

tD/t~ = 1.14. Therefore in this case t~ is about equal to t~ and thus

provides a good estimate both of the time required to isotropize the
velocity distribution and of the time needed for the distribution over

energy to approach a Maxwellian. Spitzer denotes this special value of tD

as

tc= rnl’2(3kT)”2 /[(8ne4Z4n) x 0.714 in A] = 11.4(AT3)’’2/(nZ4 in A)

(10.26)

where A is the atomic weight of the particles i n units of the hydrogen

mass. A detailed numerical solution of the Fokker–Planck equation shows
(Ml) that in the neighborhood of the average energy the time required for
relaxation of a distribution that initial Iy is strongly non-Maxwellian k. quite
close to t=as predicted from (1 0.26). However, the time needed for the
distribution to become Maxwellian for energies ranging from zero to
several times the average energy is about 10tC. Thus ~Cprovides a semi-

quantitative estimate only.

.-
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From (10.26) it is immediate] y obvious that te(protons)/tC (e[ectrons) =

(rep/me)’ ‘2 = 43. The energy-exchange time between electrons and protons

follows from (10.23) by choosing U, = (3kT/rnc)l’2, ml = m., m2 = m,,
XO= (3mP/2me)“2, and using the asymptotic formula G(xo) ~ ~x~ for XO}>
1. One then finds that the electron-proton energy-exchange time is a factor
(m&m.) ‘‘2 greater than tC(protons). Thus

~C(e-e): tC(p-p): t~(e-p) = 1 :(mO/m.)’’2 :(mU/rn2). (10.27)

For a stellar atmosphere with T = 10’ K and n. = n. = 10’4 cm-3 one
finds from (10.26) and (10.27) that ~~(e-p) = 10-6s. This time may be

compared with a characteristic flow time tf – (l/v); in a stellar atmosphere
we can take the characteristic length / equal to a scale height H = 100 km,

and the characteristic velocity v equal to the sound speed= 10 km s–’, so

that tf – 10s - 107t~(e-p). Thus, in the absence of any other processes
perturbing equilibrium, we conclude that the velocity distribution of all

particles in the atmosphere must be quite precisely a Maxwellian at a single

kinetic temperature. We shall reexamine this conclusion in $84 where we
allow for the effects of recombination and inelastic collisions between

electrons, ions, and atoms.

1.3 Classical Statistical Mechanics

11. Thermodynamic Probability and Entropy

In classical statistical mechanics, as in kinetic theory, we again deaf with an
atolmic model of the gas (which can now include internal structure of the

particles). However, we do not now concern ourselves with the detailed
mechanics of collisions among the particles, but instead appeal to certain

powerful statistical principles. As before, we make no attempt to follow the

time history of particles, but consider instead only the distribution of a
large number of particles in the six-dimensional phase space (x, y, Z, Ux, +,,

u,). For the present we assume all the particles are identical and ignore
internal structure; we shall relax these restrictions later.

The macroscopic (i e., thermodynamic) state of the system is complete] y
determined when we specify the total number X of particles in the system,

the volume V they OCCLIPY,and their total internal energy ~. Associated
with this single microstate there will, in general, be an enormous number

of microstates (i.e., arrangements of particles within phase space), all of
which yield the same macroscopic properties. We define the thermo -
dynamic probability W to be directly proportional to tbe number of distinct

microstates by which a given macroscopic state can be realized consistent
with the constraints implied by specified values of N, V, and ~. A

fundamental assumption of statistica~ mechanics is that all microstates are
equally probable and that, as a result of collisions, the system continuously

evolves from one microstate to another. It then follows that the microstate
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in which we will most probably find the gas is the one that has the largest
number of microstates associated with it. As we shall see, there is one

particular microstate for which there are many more microstates than any

other, and even small departures from this state are extremely improbable.
A major task of statistical mechanics is the calculation of W. In practice

this is done by dividing the available phase volume into elementary cells,
and then counting the number of ways particles can be distributed into

these cells. The details of this procedure will be discussed in $12; here we
merely note that the total number of cel Is, and hence W, is proportional to

the total phase volume available.

In principle, statistical mechanics can be constructed without reference
to thermodynamics, and a correspondence between the two theories can be
made after the fact by an analysis of the relationships among the

mathematical expressions that emerge from the development of statistical

mechanics. It is simpler, however, to invoke the fundamental connection

between thermodynamics and statistical mecha17ics provided by

130kznwum’s relation, which states that the entropy S and thermodynamic
probability W are related by the expression

S=kln W (11.1)

where k is Boltzman n’s constant.

A complete justification of (11.1) would take us too deeply into the

foundations of statistical mechanics and thermodynamics. We can, how-
ever, render it plausible by means of a few simple examples and gain useful

insight in the process. First, we know from thermodynamics that an

isolated system tends toward an equilibrium state of maximum entropy [cf.

equation (3. 10)]. In statistical terms we expect the system to tend to its
most probable state. Boltzmann’s relation is consistent with these two

statements. It is also in this vein that we can associate entropy with the
degree of disorder in a system. We can consider a system to be completely

ordered if all the particles occupy a single cell in phase space, that is, if all
are in the same volume element and move with identical velocities, and
hence constitute a un iquc, perfectly structured, initial configuration. In

time, as collisions among particles spread them out in phase space, the
entropy rises, the thermodynamic probability increases (because more cells

in phase space can be occupied), and at the same time the system becomes

more disordered. We may therefore consider entropy to be a quantitative
measure of the degree of disorder of a system. Second, suppose we

consider the free expansion of a gas into a vacuum (the Joule–Kelvin

experiment). We know from experiment that T remai m constant in this
process, and from (4.10) we have the change in entl-opy AS M111( V’J vi)

where i and f denote “initial” and “final”. “rhus not only is the process

accompanied by an increased uncertainty in our knowledge of the system

(because each particle has a larger volume available to it) and hence in its

degree of disorder, as expected qualitatively, but also, because W ~ V (i.e.,
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the number of available cells), we see that (1.1.1.) is quantitatively just right

to describe the process. Third, consider IWO different gases at the same
temperature and pressure, originally separated by a partition in a con-

tainer. If we remo~e the partition, T and p remain unaltered, but the gases
intermingle, eventually producing a homogeneous mixture through the
whole Container. Obviously, the degree of disorder of the system has

increased. The entropy increase of the system as a whole equals the sum of

the entropy increases in the two subsystems, AS = AS, + AS2. On the other
hand, the thermodynamic probability W assigned to the whole system lmust

be proportional to the product of the (independent) thermodynamic prob-
abilities of the IWO subsystems, W = W] , Wz (i. e., particles of each gas can
independent y be distributed through the larger volume]. Again one sees

that (1 1.1) provides the correct relation.

Many other examples of’ the types discussed above can be constructed,

but we need not pursue them further because in the final analysis the
justification of (1 1.1) is that it leads to an internally consistent theoretical

structure that is in excellent agreement with experiment.

12. Boltzmunn Statistics

COUNTINGPROCEDURE

Classical statistical lnechanics, which is based on Bokzmann statistics, can
be derived as limiting case of quantum statistics, valid when the number of
phase-space cells greatly exceeds the number of particles to be placed in
them (i.e., a dilute gas). While this approach affords deep insight [see, e.g.,

(H2, Chaps. 9-12), (S1, Chap. 16), (VI, Chap. 4)] it is more direct to
proceed purely on classical grounds, and to appeal to quantum mechanical
concepts only when required.

Our task is now to calculate the number of microstates associated with a
given microstate.

Suppose that we have a fixed number M of particles within a volume V.

We consider these particles to be distributed among cells, each of which
has a definite energy .si. The number of particles in the ith cell is its

occupation number vi. We agree that al I acceptable sets of occupation
numbers {vi} corresponding to the desired microstate are those {vi} such
that the total number of particles z vi equals the given total number N, and

the total energy I VLE~equafs the given energy %’. To obtain the total
number of microstates associated with a microstate we must therefore (1)

compute the number of microstates associated with each acceptable set of

occupation numbers {vt} and then (2) sum over all such sets.
Each energy cell may correspond to several physically different states, all

having the same Ei; such states are called degenerate. The number of
degenerate states associated with the ith cel I is called the statistical weight
or degree of degeneracy gi of that cell. Having chosen some definite set {uL}

of occupation numbers that produces the desired microstate, for purposes
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of distributing particles we now discard all empty cells (vi = O), and arrange
those with non zero occupations into a consecutive sequence. We view this

secluence as a consecutive set of partitions or boxes, each of which contains

g: slots into which particles can be put.
If we were to assulme (as is acceptable classically) that the particles are

distinguishcdde, then there are ~! disti net ways we can sort J~ particles

consecutively into the sequence of partitions, no matter how they are
distributed over the slots within each partition. In addition, for each of

these A“! sortings, any of the vi particles in the ith box can be in any one of

the gi slots available in that box, hence there are (g,)” possible ways to
arrange vi within the ith box. However, each of the Vi! permutations of the

order in which the vi particles are inserted into a definite set of slots within
the ith box are actually identical, because the particles are, in fact,

physically identical (even if we assume that they are distinguishable).

Thus the total number of physically distinct microstates associated with
the particular set {v, } of occupation numbers is

W({ui})=N-! ~ (gi)’’l/nvi! (12.1)
, L

Here the products now extend over all cells [including empty cells, for
which vi! = O! = 1 and (g,)”= (g,)” = 1].

Using (12. 1) one can develop statistical mechanics along the lines
described below, and one arrives finally at an expression for the entropy.
This expression correctly predicts an increase in entropy if two different
gases, originally in volumes VI and Vz, respectively, and at the same

temperature and pressure, are allowed to mix throughout the entire
volume V = VI + Vz. Unfortunately, it also predicts an entropy increase if

the two gases are identical [see (HI, $7.6)], which is absurd. This catas-

trophic result, known as the Gibbs paradox, would imply that the entropy

of a single homogeneous gas depends on its history (i.e., how many stages
of “mixing” have occurred) instead of being a function of the thermo-

dynamic state variables alone. Gibbs showed that the paradox is resolved if
we postulate that in (12.1) we have made a counting error of a factor of

JV !, and that the thermodynamic probability given by a “correct Boltzrnann
counting” is really

W{VL}=H(gi)”’/n v,!
, t

(12.2)

Gibbs’s ad hoc correction is vindicated by the realization that quantum
mechanically the particles are actually indistinguishable; in fact (12.2) is
recovered directly from quantum statistics in the limit described at the
beginning of this section. We therefore use (12.2) henceforth.
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THE EQUIL[13RIUMDISTRTBUTIONFUNCTIOTi

Summing over all acceptable sets of occupation numbers, we find that the
thermodynamic probability associated with a definite microstate is

w= ~ W{vi}. (12.3)

As described above, the sum extends over all sets of occupation numbers
{vi} for which

(12.4)

and

~ “,s, = ~ (12.5)

where Z$ is the total energy of the system. Ideally we should evaluate the

sum (12.3), but this turns out to be algebraically quite difficult. However

for large .JV it is possible [o obtain the same results as are given by a
rigorous analysis (Fl) based on (12.3) by means of the following approxi-

mation: we assume that there is a single term in the sum, W,n=, which
dominates over al( others, and we then analyze only this one partitioning of

particles. We shall see below that this assumption is actually justified. For
expository simplicity in what follows we shall refer to Wn,= simply as W.

From (12.2) we have

In W= ~ (Ui in gi ‘Ill ~,!)=~ [V, –v, In (’u,/&)]
(12.6)

=.M–Z vi In (vi/gi),

where we have made use of the dominant terms in Stirling’s formula

lnx!=~ln 2m+~lllx+xlllx–x, (12.7)

which is valid for x j} 1, and we also have used the constraint (12.4). We

now assume that as the system evolves, the v, vary as a result of collisional

shuffling of particles, and approach a distribution for which W is maximum.

Once this state is attained, the first variation 8 W result ing from small
fluctuations 8Ui in individual occupation numbers will be zero. Thus when

W has its maximum value

8W= 8.N- ~ 8~i – ~ 8tii in (~i/gi) = –~ 5Vi In (~i/gi) = O, (1 2.8)
,

where we have noted from (1 2.4) that

“rhe variations tiui cannot be arbitrary, but must satisfy both (12.9) and the
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constraint, implied by (1 2.5), that

lW=~&, aui=o. (12.10)

The standard method for solving a variational problem subject to

constraints is to use the method of Lagrange multipliers [see, e.g., (M2,
Appendix VI)] in which one considers the variation of a linear combination

(with as-yet-undetermined coefficients) of the original equation and the

constraint equations. That is, in the equation

we can now consider the 8u,’s to be, in effect, independent; the form of the
coefficients in (1 2.11) is chosen for later convenience. The only solution of

(12. 11) for arbitrary 8v, is

–e.,vi = ctgie , (12.1.2)

and this is the distribution of occupation numbers that maximizes W.

Summing (12.12) over all i we obtain

JV=a ~ gie-@E=a Z (12.13)

is the partition function associated with the distribution. Combining (12.12)

to (12.14) we thus have

(vi/N) = (g,e-’’Z/Z (12.15)

and hence from (12.5)

Using (12.15) and (12.16) in (12.6) we find

In W =.Ar[l ‘ln (Z/.V”)]+ ~g (12.17)

whence

S = Jfk[l + 1]1(Z/.N)] + ~k~. (12.18)

If we write dS = (~S/d@Ud% t (dS/dV)% dV, then we see from the first
law of thermodynamics that

(dS/?%)U = l/T. (12.19)

Now clifferentiating (12.18) with respect to % we find

(aS/@. = k[% + (WZ)(dz/@)](@/d~j + @. (12.20)
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But from (12.14) and (12.16)

(dZ/d~) = -~ sigte”e’ = -(Z/M)%, (12.21)
1

hence (12.20) reduces to

(W/a@v = /3k,

and therefore from (12. 19) we have finally

/3= l/kT.

Having evaluated /3 we can now rewrite the

(12.22)

(12.23)

above results in the usual
forms

(U,/Ar)= (rLi/N) = [g, exp (–q/kT)l/Z, (12.24)

z = ~ gi exp (–&,/kT), (12.25)

8 = (.A’/Z) ~ Ei,gi exp (–Ei/kT), (12.26)

s = ./W[l + Ill (z/w)]+(8/’T), (12.27)

and

(%/W]= (%h) = (&’,m/,gt)W3 [-( E., - E,)//C-f]. (12.28)

Equation (12.28] is known as the 130hzrrmrm excitation formula. In (12.24)
and (12.28) the quantities n and N denote, as before, particle densities per

cm3.

FLU(2TLATlONS AROUNDEQUILIBR[UM

Having determined the equilibrium distribution function, we are now in a

position to study fluctuations around equilibrium. First, let us calculate the
probability of any other distribution of occupation numbers relative to the
probability of the equilibrium state. Let vi = v:+ A~i where r~~denotes the

equilibrium populations given by (12.24), and where the Avi are fluctua-

tions subject to the constraint (12.9). For simplicity we consider each
elementary state separately, that is, g, = 1. Assuming lAvi/v~l<<1, we have,

from (12.6),

In W=.Ar-~(v~+Avi) In (vf’+Avi)

The last two terms are zero by virtue of (12.8) and (12.9), so we find

In (W/WO) = –~ ~ (AI),)2/U~ (12.30)

which explicitly shows that the extremum WO is in fact a maximum.
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Furthermore, the maximum is very sharp. To illustrate, consider a
volume of 1 cm3 containing M = 1016 particles, and take a very small
fluctuation, say IAuil/.~ = 10-6 for all i. Then In (W/ W“) = –5 X 103, or

w/ w“ ==lo-’’3~”, which is a very small number indeed! Thus even an

extremely small departure from the ecluilibriurn distribution implies an
enormous reduction in the thermodynamic probability y, and this implies

that we will almost never observe a state that differs even slightly from the
equilibrium state (unless, of course, the system is driven to that non-

equilibrium state).

Next, let us inquire how large the fluctuations in the total energy of a
systelm are likely to be. Consider a sequence of microstates {v~)}, each of
which satisfies (1 2.4) and (12.5). Let WC)be the thermodynamic probability

of the corresponding microstate; from Boltzmann’s relation WO=
exp (,S/k), therefore for any one of these microstates

exP[(s/~l-B~l=woexP [-P;.:’’.]=;P.P [-P? d%]

(12.31)

where the last equality takes advantage of the fact that all microstates have

the same energy ~. Rewrite (1 2.31) as

(12.32)

Now relax the requirement (12.5) and suppose that the energy H. of the
crth microstate differs slightly from ~. Interpreting the right-hand side of

(12.32) as the sum of probabilities contributed to the total by the individual
microstates k, we conclude that the probability that the system has a total
energy HA is proportional to exp (– ~HA ). We therefore can calculate the

average energy of a group of microstates with energies clustered around Z$
as

Differentiating (12.33) with respect to ~ we find

~ (; H’=HT P-@-’H’=82_,H2,
afl =

()
~ e-f3Hh 2 – ~ e-13H,

(12.34)

h A

Now

{H’) = ((~+ A%)’)= %2 +2%{A%)+ ((A%)’) = # + ((A%)’)

(12.35)
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where we noted that (A~) = O because (H)= 8. Combining (1.2.34) and
(12.35) we have

((A%)’) = –(dt5/d(3) = kT2((M/dT) = kT2C0, (12.36)

where CU is the heat capacity at constant volume. But 8 ~ N and (2U M .M,

hence

((A@2)’12/$ ~ JY-1j2. (12.37)

Thus as .Ar~ ~, almost all realizations of the physical system will have an
energy very nearly equal to ‘8. In fact it can be shown (H2, 159–160) that

the distribution in energy around ~ is a Gaussian with a halfwidth

(A~),,, = (2kT2CU)’j2. (12.38)

Again (A%) ~j2/8 ~ .Y- ‘)2, so as A’”~ ~, the distribution function approaches
a ~-function centered on ~.

Finally, we return to the argument advanced earlier that we can replace

the sum in (12.3) by a single term W~=. It can be shown rigorously that
in W as defined by (12.3) can differ from in Wn,a, only by terms of order

In JV [see e.g., (Cl, 370-375), (Dl, 302-308), (H2, $7.2], or (Wl, 90-94)].
But in W,,,= MN, hence

In ( W/Wm=) = 1 + O[(ln JV)/JV], (12.39)

which shows that as .A’”-+ m, W,,,= provides an extremely good estimate of
w.

RELATrONTO THERMODYNAMICS

We can derive all thermodynamic properties of a gas from the distribution

function (12.24). A particularly compact set of formulae can be obtained in

terms of the partition function. Thus using (12.25) and (12.26) we have

~ = .A”kT’(a 111Z/aT)V. (12.40)

Therefore (12.27) can be rewritten as

S = .Jfk[l+ln (Z/.A’)+ T (d In Z/dT)O], (12.41a)

whence

s = R [1 +ln (Z/.V”)+ T (d In Z/dT)U]. (12.41b)

Furthermore, by expanding clS and d% in the first law of thermodynamics
in terms of dT and dV, one easily finds that

(1.2.42)p = T(W/a V)-r – (W7dV)~

and hence, from (12.40) and (12.41a),

(12.43)p = .hFkT(d k Z/3V)~.

And so on for other macroscopic variables. Thus once we know Z(T, V)
we can derive explicit expressions for all state variables.
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THERMODY\AMICPROPERTIES OF A PERFECT GAS

To illustrate the results derived above, let us consider a gas of .Afstructure-
less point particles in equilibrium in a volume V. The only energy as-

sociated with such particles is their translational kinetic energy e = ~muz.
Consider those particles within the phase-space VOIume element dV d 3U=
clx dy dz duXd% duz centered on a position x and velocity u. The distribu-

tion function f for these particles can be derived from (12.24) if we identify
vi with d~~~ = fdVd3u, the number of particles in the phase-space ele-

ment; write .si = ~muz; and accept from quantum statistics the Pm.di exclu-
sion principle, which i replies that the number of states available within the

phase-space element is

g, = (m/h)’ dx dy dz d% du, duz = (4rrm3/h3) dx dy dz u’ du. (12.44]

Th US

de.N = (4rrm3.N/h3Z) exp (–mu2/2kT) dx dy dz U2du. (12.45)

Integrating over V we have the velocity distribution function

d 9.N= (4rm3.AfV/h’Z] exp (–mu2/2kT)u2 du. (12.46)

Integrating over all velocities we have

Jv = (m3NV/h3Z)(2vkT/m) 3’2, (12.47)

whence we obtain the partition function for translational motion

Z,,..r,,= (2~mkT/hz)312V. (1 2.48)

Using (1 2.48) in (12.45) we see that the distribution function is none other

than the Maxwellian distribution

f(u) cl’u dV = N(m/2mkT)3’2 exp (-mu2/2kT) d’u dV (12.49)

as expected; here N = .Ar/V is the particle density per cm3.

Given the partition function (12.48) we can calculate all the thermo-
dynamic properties of the gas. Thus from (12.43)

p = .NkT/V = NkT, (12.50)

which is identical to (1.2). Similarly, using (12.40), we have

zl,.a,,, = l~VkT = (~NkT) V (12.51)

or

etn,,,s = +RT, (12.52)

in complete agreement with the results of kinetic theory. Then from (2.11)

we recover c. = ~17, and from (4.5] CO= ~11, hence y =$, again in agreement
with kinetic theory. Finally, from (1 2.48) and (12.41), we have

SC,.,,,= Jrk[Z+ln (V/M)+ In (2nmkT/h2)3’2], (12.53)

which is the Sackur–Tetrode equation for the entropy of translational
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motions. Dividing (1 2.53) by .Vrn and using the perfect gas law we find for
the specific entropy

T. l, KLI, S=:R In ‘l-f? In p- R[~+~ln (27Trrt/h2)+~h1 k]. (12.54)

Comparing (12.54) with (8.23) and (4.11) we see that none of the coeffi-
cients in the equation were determined by thermodynamics; with kinetic

theory we can evaluate explicitly only the coefhcients of In T and 1n p; but
with statistical mechanics we obtain explicit results for all coefficients

including the additive constant.

THEIZMODYNAMJC PROPERI’[ES OF A C,AS WITH INTERNAL STRUCTURE

Consider now a gas composed of atoms that have a sequence of bound
eigenstates with statistical weights gi, lying at energies Ci above the ground

state, to which the atom’s electrons can be excited. Let .s~ be the transla-
tional energy of an atom whose velocity lies within phase-space cell j,
which has statistical weight g~. Then the total energy of an atom excited to

state i and moving in phase-space cell j is & = Ei + E\, the combined
statistical weight associated with this condition is g = gig;, and the partition

function is

Z = ~ ~ ~ig~exp [–(&i + E~)/kT]. (12.55)
,,

But the distributions over translational and internal states are statistically
independent of each other because atoms in a particular excited state can

move at any velocity, and indeed in equilibrium must necessarily y have the

same Maxwel lian velocity distribution as atoms in all other excitation
states. For each term in the suln over i there will therefore be a complete

sum over j, hence

z = ~ g&-’’Jr’r ~ ge-’’ir’r = ZLr.r,,Zelec. (12.56)
1 L

Thus the partition function can be factorized.

FOI- dilute gases, the independence of translational and internal energies

is essentially perfect, and the factorization (12.56) is quite accurate. If the
particles in the gas are molecules instead of atoms then there are additional

energy states produced by molecular vibration and rotation, and the

complete partition function becomes Z = ZLraIISZ~olZvi~ZelCC.In this case the

factorization is not as accurate, however, because rapid rotation of a
molecule distorts its shape and changes its vibrational potential well, while
vibration changes a molecule’s moments of inertia and hence affects its
rotation; thus vibrational and rotational modes are explicit] y coupled,

contrary to the assumption used to derive (12.56). We do not consider
molecules further in what follows.

The translational part of (1 2.56) is again given by (1 2.48), while the
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electronic excitation part is

Ze,,C = ~ ~e-%~T (12.57)

where the subscript zero indicates that & is measured relative to the ground

state. Formally this sum extends over an infinite number of cigenstates, and

because s approaches a limiting value 8,., the ionization potential, the

individual terms remain finite and therefore (12.57) diverges. This di-

vergence is unphysical, however, because for very large quantum numbers

the eigenstates fill so large a volume that they overlap adjacent atoms in
the gas; these states are so strongly perturbed that they are effectively
destroyed. The sum in (12.57) can therefore be truncated after a finite

number of terms [cf. (M5, 111 and 295)].
Because Z,I,C is independent of V it contributes nothing to (din Z/dV).I.,

hence application of (12.43) again yields the perfect gas law. The pressure

i n a gas is thus independent of its internal excitation, and reflects OIIIY

“external” translational motion, as would be expected from its basic

definition in terms of rate of momentum transport per unit area (cf. $30).

Using (12.40) to calculate the internaf energy we have

(12.58)

where in the second term vi denotes the total number of atoms in

eigenstate i without regard to velocity, and, as before, ~ = l/kT. The

internal energy per particle is

@=~kT+(&iO), (12.59)

where (&iO)= ~ (Vi/.IY)SiO; per gram e = @/m where m is the mass per

particle.

From (12.59) we immediately find the specific heat at constant volume:

co = :R + R~2((&~O)– {ELO)2). (12.60)

For example, suppose the atom has only a ground state and one excited

state; (1.2.60) then becomes

z –(3.,. ~ + Ge–@c~o)2]= (Cu)transCv= ~R +R[G(/3s1C,) e /(. +( Cu)e,ec> (12.61)

where G = (g, /go). Notice that c. now varies and depends explicitly on T.
One sees that (CU).ICCvanishes both as T -+ O ((3 ~~) and as T+ ~
((3 ~ O), that is, when the gas is unexcited or when the excitation has
“saturated” so that (vi/vO)= (nl /nO)= (g, /gO); in both these limits heat
added to the system goes directly into translational motions, and co reduces
to the value appropriate to a gas composed of structureless particles.
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Calculations using (12.61) show that Cu has a strong maximum (whose
amplitude depends on the ratio G) at the temperature at which the gas first

becomes appreciably excited, typically near /3E10-2; for G = 1, (Cu)cjec
reaches a maximum of about 0.451L Of course, the behavior of CV for a
real gas having several excitation states is more complex and in general

must be computed numerically.

Because the pressure, as we saw above, is the same as for a gas of
structureless particles, (2.34) again leads to Cp= CV+ R where c. is now

given by (12.61). Clearly c, is also a function of temperature, and the ratio

y = (co/co) is not constant. In this case we can no longer write equations
(4. 13) to (4.15) but must instead develop more general
discussed in $14.

Finally, for the specific entropy we have, from (12.41 b),

s = S,l.a,,,+ R [In Z,lcC + T(d in Zc,.C/dT)O]

“n,+~[ln(;~e-B’’o)+(’E’’~~)l

= St,.a,,,+ Selec>

where St,,,,, is given by (12.54). As was true for e and

relations, as

(12.62)

cv> a major
contribution to s comes from the internal excitation term S.l.C.

TNTEJZPRETATJONOF l-HE BOLTZMANNH-”rHEOREM

The results of statistical mechanics afford us the means by which we can

make a physical interpretation of Boltzmann’s H-theorem. Again consider

an isolated, homogeneous sample of a gas composed of structureless

particles, with no external forces applied. An expression for the entropy in
terms of the distribution function ~ can be derived directly from (1 2.6) by

(1) writing pi= f(ui) d’u clV, (2) using (12.44) for g,, and (3) replacing the
sum by integrations over d3u dV. We find

J
S = k In W= k.N-kV in (h3f/m3)fd3u. (12.63)

Differentiating (12.63) with respect to time, and recognizing that (d~/dt)
under the restrictions stated above is (Df/ll)COll, we obtain

(dS/dt) = –kvl [l+ln (h3f7m3)l@f/~t) .~,, d’u

(12.64)

and hence that (dS/dt) 20, the equality holding in equilibrium. Thus the
physical content of Boltzmann’s H-theorem is that the entropy of an
isolated system continually increases to its equilibrium value (at which
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point the distribution function is Maxwellian), in agreement with the
conclusions reached in $3 from thermodynamic considerations.

13. Ionization

In the process of ionization a bound electron is removed from one of the
discrete eigenstates of an atom into a COntinuUW of levels in which it i5

unbound and has a finite kinetic energy at infinite distance frolm the atom
whence it came. This continuum begins at an energy EIO, the ionization

potential of the atom above the ground state. Every species of atom has a

sequence of ionization stages, each with a progressively higher ionization
potential as successive electrons are removed, leading ultimately to a
completely stripped nucleus. The relative number of atoms and ions in

successive ionization stages can be computed using the Saha ionization
formula, which can be derived as an extension of the Boltzmann excitation
formula to the continuum.

Consider a process in which an atolm in its ground level is ionized,
yielding an ion in its ground level plus a free electron moving with speed u
in the continuum. The total energy of the final state of the systelm rejative
to its initial state is s = S,O+~rnu 2 where m is the mass of an electron. Let

the statistical weight of the atom be gO,Oand of the ion gO,l where the first

subscript denotes the atomic level (in this case the ground level) and the
second indicates the ionization stage. Using (“12.44) we assign a statistical
weight

~declm(l = 2(rn/h)3 dv(4m2) du (13.1)

to an electron in a volume element dV moving with a speed on the range

(u, u + du); the factor of 2 has a quantum-mechanical origin and accounts
for the two possible spin states of the free electron. The statistical weight of

the combined electron + Ion system [s g = gO,,g.l.C,,.O,,.

Integrate over a volume element large enough to contain exactly one
electron (i e., we consider a unit process), so that we can replace dV by

(1 /n.] where n. is the number density of free electrons. We can then apply
(1 2.28) to the final system with electrons having velocities (u, u + du) to

obtain

[no, (uj/}tO,C,]= 8w(m/h)3(gQ, ,/gO,O)(l/ne)exp [-(.Sf~++nIU2)/ kTlU2 du.

(13.2)

Then summing over all possible final states by integrating over all electron

velocities we have

r(~l(),,/no,,,) = (8~m3go, ,/h3g0.0ne)(2kT/m) 3’2e-’’’””’” ~ze-x’ dx. (13.3)
o

Or, evaluating the integral,

nc),o = n0,1ne~(lt2/2nmkT) 3’2(g0,,/gO,C,)exp (c~O/kT). (13.4)
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Notice that in (1 3.2) to (13.4), and in the equations that follow, the n’s are

particle densities (per cm3).

Jn the above derivation, no essential use is made of information about
which initial ionization stage is being considered, and (13.4) can actually be

applied to any two successive stages (j, j i- 1), yielding

?tO,i= no,i+ ,~ei(h2/2mi~~kT)3’2 (g~,j/g.J+,) ex~ (&[i/kT). (13.5)

By using (12.28) in (13.5) we can obtain the occupation number of any

excitation level of ion j in terms of the temperature, electron density, and

the ground-state population of ion (j+ 1):

(1~i,i= Crnoi+ 1% gi,j go, i+-1)T-3’2 exp [(s,, - eii)/kT]
(13.6)

~ no,j+ ~necb~i(T).

In (13.6), &,i is the energy of excitation state i of ion j relative to that ion’s
ground state (hence E[j – Eii is the ionization potential from level i of ion
state j to the ground state of ion j + 1), and the numerical constant is

C, = 2.07x 10-’6 in cgs units. This is perhaps the most useful form of

Saha’s equation for our later work; it is sometimes called the Sa/aa–
Boltzmunn formula.

Using (12.24) in (13.6) for ionization stage j + 1 we find

ni,,= NiT1nC(gii/Zi+l)@,j(T), (13.7)

and again, for ionization stage j, we have

Ni = CINj-l ne(Zj/Zi+,)r3’2 exp (&li/kT) s ~j+~~e@j(~). (13.8)

Equation (13 .8) gives the relation between the total densities of atoms in
the two ionization stages, irrespective of their excitation states.

In practically all of our later work we shall restrict attention to pure
hydrogen for which only one ionization transition is possible. For hyd-

rogen, the statistical weight of quantuln level i is gi = 2i2, and the statistical
weight of the ion is gp = 1. The energy of level i below the continuum is

cH/i2 where EH equals one rydberg (13.6 eV). Thus (1 3.6) becomes

ni = 2C,i2nenp~3~2 exp (e~/i2kT) = nCnPOi~(T). (13.9)

Similarly (13.8) becomes

n~ = C1n.nPZ1+T”3’2exp (s~/kT) E n.nD@~[(T) (13.10)

where

ZH= ~ 2i2 exp (–&,~/kT). (13.11)
i=~

Here

Sii{=(l —i–2)&~. (13.12)
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14. Thermodynamic Properties of Ionizing Hydrogen

Let us now examine the effects of ionization on the thermodynamic
properties of a gas. We restrict attention to pure hydrogen, and thereby

account for the dominant process in astrophysical plasmas with only a
minimum of complication. The density of a pure hydrogen gas is

(14.1)p = n~mb[+ nPmP+ neme,

But, by charge conservation,

ne = n~, (14.2)

hence

p = nl.lml.l+nP(mP + m.) = (n~+ nP)m~l=N~mH. (14.3)

Here IV{ denotes the total number density of hydrogen atoms and ions in

all forms.

As was true for internal excitation (cf. $12), in an ionizing gas only the
translational degrees of freedom contribute to the pressure, so

p = NkT (14.4)

where now

N=n~+~+n, =N~+ne. (14.5)

Let x denote the degree of ionization of the material,

x =nP/(no + n,,) = n.$N~. (14.6)

In terms of the degree of ionization, Saha’s formula (13.10] becomes

x2/(1 – x) = Const. VT3’2e-&J~”r/Z~ (14.7a)

or, equivalently,

x2p/(1 – x2) = Const. T5’ze–e’’’kZ~Z~. (14.7b)

Furthermore, the equation of state can be written

(14.8)p =(1 ~x)N1.rkT= (1 +X)P~T.

If we regard (T, p) [or equivalently (T, N]] as given, then using (13.10) in

(14.5) we obtain a quadratic for n.:

n~O~~+2n~ = N, (14.9)

which yields

n. = [(N@~.l+ 1)”2 – 1]/@~. (14.10)

Once we know n. we can compute all the n, immediately from (13.9).
The specific internal energy is simply the sum of the translational,
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excitation, and ion ization energies of the particles per gram of material:

[
+ nPs”~ = ~(N~+ne)kT+~ ni&i H

1/
NH m~

[ L 1/
=~(1 + x) f3?T+ (1 –x) ~ (~i/nH)&iH+x&F1 m,<

(14.lla)

= ;(1 + x)92T+ [(1 – X)(&i H)+ xsE1]/mH

or per heavy particle (i.e., atom or proton), which is more convenient in
what follows,

(14.llb)~ =2(J +x)kT+(l —X)(Ei H)+ x&El.

Equation (14. 11) was written directly from its physical meaning; it can of

course also be derived from (12.40) if ZC1eCis extended to include ioniza-

tion. The specific enthalpy per particle follows immediate] y from (14.4) and

(14.11 b):

k =:(1 +x)kT+(l. –x)(&i~)+xe~. (14.12)

Computations with the Saha equation show that hydrogen in stellar
ionization zones is strongly ionized even when &~/kT—10; thus the
ionization term xs~ makes a very large contribution to Z, and represents a

large energy reservoir in the material.
In practice, because the first excited state of hydrogen lies at an energy

of 2&H above ground, one finds from the Boltzman n and Saha formulae
that whenever hydrogen has even a small population in any excited state, it
is already strongly ionized and therefore (1 – x) <<1. Hence in (14.1 1) and

(14.12) it is a good approximation simply to neglect the term in (&i~),
which we drop henceforth. It is also for this reason that we can set

Z,-, = gO,Oand ignore the temperature dependence of the partition function

in (14.7).
With these simplifications it is now relatively easy to calculate the

specific heats of ionizing hydrogen. Thus the specific heat at constant
volum; , per heavy particle, is

Z. = CUF’?IH= (&?dT)V = ~k(l +x)+ (skT+ .s~)(dx/dT)U. (14.13)

Differentiating (14.7a) logarithmically, we obtain

(14.14)

Clearly, as x -+0 or x -+ 1, t. reduces to the contribution from trans-

lational energy only; when the material is partially ionized (e.g., when
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x = ~), Z. can greatly exceed this value. This large increase reflects the fact

that when the gas is ionizing, a large fraction of the heat input to the gas is

consumed i n further ionizing the material rather than in raising its tclmper-
ature.

Similarly, the specific heat at constant pressure per heavy particle is

~p= (d@d T)r, =jk(l +x)+ ($kT+ EH)(dx/d T)D. (14.16)

lXfferentiating (14.7b) logarithmically, we obtain

(dx/2T)~ = ;.x(l - X’)[~+ (&~/kT)]/T, (14.1.7)

whence

(t,/kj = (cP/%!)=:(1 +x)+1x( I -x2)~+(s~/kT)]2. (14.18)

Again, co approaches its pure translational value as x ~ O or x ~ 1 and is
much larger than that value for partial Iy ionized material.

From the results obtained above, it is obvious that the ratio y = (cP/cO) is
no longer a constant, hence for adiabatic changes we cannot recover

relations (4.13) to (4.1 5). But, following Chandrasekhar (Cl, 121), it is
natural to introduce the generalized adiabatic exponents ~,, rz, I’q, defined

to be those values for which

(dp/pj - r[(dp/p)=o, (14.19)

(alp/p)- [r,/(r, - l)](dT/T] = O, (14.20)

and

(dT/T) - (r.- l)(dp/p) = O (14.21)

for adiabatic processes in an ionizing gas. Clearly these gammas are
variable (functions of T, x, etc.). It is obvious that only two of the gammas

are independent, and that one has a general identity

r,/(r.–l)=r2/(r2– l). (14.22)

For an adiabatic change, we know from (2.3] that

de= (p/p’) dp, (14.23)

and from (14.8) we have

(alp/p) = [dx/(1 + x)] + (~ldp] + (dT/T]. (14.24)

Also, from (14.lla),

de =~(1 +x)%! dT+[$~T+(sl./rn~)] dx. (14.25)

Thus, using (14.25) in (14.23), and eliminating (alp/p)via (14.24], we find

dp 5 dT

( )–

5 e~ dx

P “5T+ z+= 1+X”
(14.26)
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But, from (14.7b),

2 dx

()

_ 5+EE1 dT dp

x(l–x2]– 2k”~T p’
(14.27)

Therefore, using (1.4.27) to eliminate dx/(1 + x) from (1 4.26) we find, in

view of (14.20),

(%3+3 =

2+ x(1 –x)[~+(sl,/kT)]

~ 1[1p s 5+x(l–x)[_+ (s,.I/kT)]2 “
(14.28)

Clearly, in the limits x ~ O or x -1, (~z – 1)/rz ~ ~, which equals (y – 1)/7
for a perfect gas. When hydrogen is partial] y ion ized, (rz – 1)/r2 can

become as small as 0.1.
By similar analyses it is fairly easy to show that

()

dlnpr,= — 5 TX(”[ –x)[:+(s,+/kT)]’
(14.29)

a Ill p s ‘3+x( l–x){;+[;+ (EH/kT)]2} ‘

and

(!)

din”
r,–l= —

2-1 x(1 ‘X)[j+ (&~/kT)]

rlln p s = 3+x(~–x){~+ [:+(& M/kT)]2}’
(14.30)

which clearly satisfy (14.22).

In many applications it is convenient [o write the equation of state as

P = pkTlpm~-~, (14.31.)

where K is the mean molecular weight, which may be variable and hence a
function of state variables. In the present case we have, from (14.8),

When one considers

state, the quantity

often appears. In the

&=v(l+x). (14.32)

small-amplitude perturbations around an ambient

Q=l–(Jlnp/dln T)P (14.33)

present case we can use (14.17) to evaluate Q as

Q = 1 +3x(1 - x)[~+(e~/kT)]. (14.34)

All of the results derived in this section apply to a gas composed of a
single element. Results for mixtures of ionizing gases can be found in (C5,

$$9.13-9.1 8), (K2), (M3, $5.4), (M4), and (Ul, $$56 and 57).
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