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DETONATIONS NEAR THE WATER SURFACE

Charles L. Mader

ABSTRACT

The results of an experimental and theoretical study of
the compressible flow resulting from a sphere of 9404 explosive
initiated at its center and partially immersed in water are

described.

The flow was studied experimentally using radio-
graphic and photographic techniques,

Compressible hydrodynamic

calculations were performed using multicomponent Eulerian numer-

ical techniques.

I.  INTRODUCTION

The prediction of water waves generated by large-
yield explosions has been based on extrapolation of
empirical correlations of small-yield experimental
data. The accuracy of such predictions is unknown
so there is a need for a detailed description of the
mechanism by which waves are generated by explosions.
The effect of detonation depth needs to be better
understood. The ''upper critical depth,' i.e., the
depth at which a peak of the wave amplitude occurs,
is not understood. The effects near the explosion
when the flow is quite compressible, such as surge,
shock wave propagation, separation of the shock
wave from the bubble, and the wave pattern near the
explosion have previously received little theoreti-
cal or experimental attention in the region of the
upper critical depth.

This is a progress report of a study of the
early interaction of the detonation products with
the water and air interfaces and the resulting wave
profile near the detonation. The initial phase of
this study was described in Ref. 1.

To determine if compressible hydrodynamic cal-
culations were feasible, given the techniques devel-
oped during the last 15 years for describing deto-
nation phenomenon and equations of state, thelearly
time behavior of the diverging detonation was cal-

culated and compared with experimental radiographic

results. The calculated results were also compared
with detailed early time measurements of the shock
wave in water produced by a diverging detonation
and with late time measurements where the interac-
tion of the detonation products and the water was
followed for at least one complete oscillatlon of
the bubble.

observed short- and long-time behavior of an under-

The observed agreement between the

water detonation and the detailed one-dimensional
compressible hydrodynamic calculations suggests

that the calculated energy partition between deto-
nation products and the water is sufficiently accu-
rate to be used in multidimensional studies of wave-

generation mechanisms.

11. PHERMEX EXPERIMENTAL RESULTS

The Los Alamos Laboratory radiographic facility
PHERMEX2 (Pulsed High Energy Radiographic Machine
Emitting X-Rays) is a radiographic facility which
produces an x-ray pulse by impinging 27-MeV elec-
trons, generated by a standing wave linear accel-
Radia-

tion intensities of 5.0 R are obtained at the exper-

erator, upon a 0.7-mm diam. tungsten target.

imental system being studied (positioned approxi-
mately 3 m from the target). An x-ray film is
placed approximately 0.75 m behind the experimental
system in a protective aluminum case. This arrange-
ment gives radiographic resolution of * 0.1 usec

and * ,02 cm without time smear.




A sphere of explosive consisting of a_0.635-cm
radius PETN (Estex XTX8003, 80/20 By wt. PETN/ ‘
silicone binder) and 0.635 cm of 9404 was detonated
at the center. The sphere was placed half in the
water in the radiographs taken at 15.8 and 26.3
Usec after detonation was initiated. The detonation
wave arrived at the explosive surface in 1.5 usec.
The sphere was placed two-thirds in the water in the
radiograph taken at 61.3 usec. The position o? the
water-detonation product interface, the splash wave
and the water shock wave may .be determined from the
radiographs. The static and_dynamic radiographs
and sketches of the prominent features of the radio-
graphs are shown in Figs. 1, 2, and 3.

One—dfmensional SIN calculations similar to
those described in Ref. 1 were performed for the
explosive sphere in water at one atmosphere’density
and in air at one Los Alamos atmosphere. The water
equation-of-state parameters used were identical to
those described in Ref. 1. The equation-of-state
parameters used for 9404, PETN, and air are given
in Table I. The position of the water shock and
bubble radius as a function of time are shown in
Fig. 4.
radiographic study shown in Figs. 1, 2, and 3. The
calculated pressure of the water shock and the 940k~
The position

Also shown are the positions found in the

water interface are shown in Fig. 5.
of the air shock and the 940L-air interface as a
function of time is shown in Fig. 6. The calculated
pressure of the air shock and the 940k-air inter-
face as é function of time is shown in Fig. 7.

Since the position of the water-detonation product
interfacq and the water shock wave along the verti-
cal axis ‘in the radiographs is in good agreement
with the one-dimensional calculations, we used the
results of the one-dimensional calculations to ob-
tain estimates of the pressures in the water and
the positions of the air shock, air-detonation pro-
duct interface, and the pressures along the verti-
cal axis at the times of the radiographs. The

results of this exercise are sketched in Fig. 8.

111. PHOTOGRAPHIC EXPERIMENTAL RESULTS
The experimental arrangement is sketched in

Fig. 9.
tating-mirror camera, and an optical arrangement

Three cameras, a 1-sh flash, a GMX-8 ro-

that gave an 18-in. diam field of parallel light,

were used to make a high-resolution shadowgraph of

TABLE |

HOM EQUATION OF STATE CONSTANTS

PETN 9hoy AR (0.76 Bar)

A ~3.10639868833 +00 ~2.88303447687 +00 ~2,36733372864 +00
. ~2,25210297095 +00 ~2,25310150671 +00 ~1.23356432554 400
[ +1.93865645401 01 +2.09836811364 -0l +2.15170143603 ~02
0 +1.06761114309 ~02 ~1.62402872478 ~02 ~2.95528542190 +03
E ~5.71317097698 ~05 +4, 14247701072 ~O4 +1.225497842445-04
K ~1.43880401718 +00 ~1.27244575845 +00 ~5.533761€9904 -0l .
L +4,17630232758 ~01 +4.27159472916 ~01 +2.44880013455 ~03 "
" +h.43146793248 -02 +4,61539702874 ~02 +1,80516553555 ~02
N +2.43302842995 ~03 +2.54544398316 ~03 ~1.21968671688 ~03
[ +5.15057824089 -05 +5.31474988838 ~05 -2.53726183472 -05
Q +8.10009012302 +00 +8.24707528084 +00 +9.88588851357 400
3 ~3.67433055630 -01 -4,89534325865 ~01 ~2.35014643148 -0t
s +1.38196579791 -03 +6. 12169699021 ~02 +3.3698€7666054 ~02
T +8.14028829459 ~03 ~3.22067926443 ~03 ~h.21156020156 -03
Y ~7.34294504930 ~04 -5.13495324073 ~06 +1,63045512702 ~04
C; +0.5 +0.5 +0.5
2 +0.1 40,1 +0.1
I +1.55 g/en’ 1,844 +0.00107567
'tJ 40,231 mbar 0,363
0 40.740 cm/usec 0.8880
Tey +3369 °K 2460
Prox +0.40 40.40 +1.0 -03
Phin +1.0 ~08 +3.0 ~08 +1.0 -08
Isentrope

Pressure 0.40 0.40 5.0 -0

the gas bubble 302 psec after the load ring pulse.
A wax shutter was used to prevent overwrite. The
time was chosen so that the surface-wave tip, if
resolved, would be within the field. The wave tip
was obscured by detonation products but the gas
bubble {products/water) interface was clearly re-
solved. The bubble radius was 8.03 cm. Another
camera, the GMX-6 Dynafax framing camera, viewed a
36-in. by 36-in, field, half of which was below
water level. Back lighting for this camera was
accomplished with the GMX-2 electronic xenon flash
unit and a diffuser screen made from Mylar drafting
paper. The camera was operated at 2151 rps so that
the nominal time between frames was 29 usec; expo-
sure time was | usec per frame. The third camera
was a Bolex H-16 Reflex cine camera with a framing
rate of 64 frames per second and exposures times of
0.002 sec per frame. Quantitative data obtained
from the first two cameras are plotted In Fig. 10,
Also shown are the results of one-dimensional SIN.
hydrodynamic calculations for the explosive system
immersed in water at 1 bar. The deviation becomes .
significant after 100 ysec. Two-dimensional hy- ‘
drodynamic calculations will obviously be required
to describe the flow at later times. - ;

The results from the cine camera are shown

in Figs. 11 and 12. Since these data are affected

by bottom and side effects in the geometry used,

additional experiments in a larger tank will be

required to determine the magnitude of such effects.




1V. TWO DIMENSIONAL COMPRESSIBLE HYDRODYNAMIC
CALCULATI1ONS

The EIC. code,>
(P1C) method, was used to study the dynamics of a

which uses the Particle-In-Cell

sphere of 9404 detonated at the water surface. Par-
ticle plots are shown in Fig. 13, The calculated
position along the vertical axis was in agreement
with the SJN one-dimensional calculations described
previqusly. The splash wave was not as large or as
high as observed and the detonation products and
air shock did not travel as far as predicted by the
SIN calcplations. Since the resolution available
from a PIC;ca1¢ulation is severely limited, such
disagreement hay be expected. The calculations did
indicate that larger splash waves occur with time
and increasing water depth.

The 2DE codeh

calculate multicomponent reactive hydrodynamic prob-

has recently been developed to

lems in slab or cylindrical geometry using continu-
x-ous Eulerian eduations of motion. Numerical solu-
tions of severely distorted flow problems, such as
the interaction of shocks with V notches, cylindri-
cal voids, and aluminum rods in water, have given
results that closely reproduced those observed ex-
perimentally.5 The high resolution available with
the techinique makes it attractive for problems with
large distortions such as the problem of the explo-
sive sphere interacting with a water surface. The
present code gives accurate solutions for mixed
‘cells with two components, but approximations are
necessary if three or more components are present
inacell. Sincé the splash wave results in cells
bf water, .detonation products and air, the region
of the spjash wave is not as accurately defined as
the rest of the flow.

One-dimensional SIN calculations indicated
that the results of the calculation were only
slightly changed if the PETN-9404 explosive sphere
was replaced by an all 9404 explosive sphere with
the inner 0.h4-cm radius initially detonated at con-
stant volume. The larger "initiator'' was necessary
in the two dimensional calculations because of the
large cell size used for economy reasons.

The 2DE calculations were performed with a
mesh of 100 cells in the Z direction and 50 or 100
cells in the R direction. Several cell sizes were
tried. The largest cell size that would give re-

sults independent of the mesh size was 0.0635 cm,

which gave 20 cells along the radius of the explosive
sphere. Smaller cell size would be required for
definition of the splash wave; however, a more exact
treatment of the three component cells would be nec-
essary before such calculations could be justified.
A smaller cell size would also permit a better de-
scription of the air shock and the 940k-air inter-
face.

Calculations were performed for the 940k sphere
completely immersed under 1.27 cm of water. The iso-
plots of the calculated flow are shown in Fig. 14,
Calculations were performed for the 9404 0.625 im-
mersed in water. The isoplots of the calculated
flow are shown in Fig. 15.

A comparison of the 2DE calculated position of
the water shock, 940k-water interface, and the water
shock pressure as a function of time, and the one-
dimensional SIN results are shown in Fig. 16. A
similar comparison for the air shock and 9Lok-air
interface is shown in Fig. 17. The 2DE calculation
did not resolve the position of the air shock.
Agreement between the various calculations is neces-
sary during the early part of the flow if the calcu-
lations are accurate., The agreement is remarkable
and suggests that the 2DE calculations may be trusted

within the numerical resolution.

V. DISCUSSION

In his studies of the underwater éxplosion pulsa-
tion problem, Pritchett6’7 has demonstrated that .
theoretical results that Include the effect of com-
pressibility tend to agree with the incompressible
water calculations. Since the calculations described
in this report and in Ref. 1 show that the flow is
determined by the impulse and resulting momentum
imparted to the water by the time the shock wave in
the water has traveled three to five radii of the
initial explosive, it is clear that, if the initial
impulse assumed by the incompressible calculation
is approximately correct, the remainder of the flow
should be accurately described by the incompressible
assumption. These results suggest that we have al-
ready solved the compressible flow problem for a
sufficient interval to give us a good first approx-
imation of the initial conditions to use in an
incompressible calculation. Further numerical
studies should probably be performed with either a

good incompressible technique that accurately




describes the surface boundary or an almost incom-
pressible technique such as I1CE.

As mentioned in the introduction, we are in-
terested in the region of the upper critical depth.
The upper critical depth has been elegantly re-
viewed by Le Mehaute.9 In regard to this phenomena,
the calculations show that the water in and near the
splash wave has a large amount of momentum. In par-
ticular, as shown in Fig. 17, the velocity in the
radial direction is up to 5 times larger in the wa-
ter near thevsplash wave than in the rest of the
shocked water. This concentration of momentum near
the water surface could be a contributing factor to
the phenomenon of upper critlcal depth. Whether or
not it Is important for the late-time wave behavior,
it is the reason that the observed horizontal bubble
radius is larger than the vertical bubble radius for
explosions near the water surface, as shown in Figs.
k and 10.

The high velocity present in the splash wave is
a result of the initial water shock being quickly
rarefied and permitting a second shock to be de-
livered from the explosive products. Subsequent
shocké and rarefactions occur while the detonation
products still have high pressures. Each reverbera-
tion increases the particle velocity of the splash
wave by an increment that decreases as the pressure
of the driving detonation products decreases. The
particle velocity of the remainder of the water can-
not be increased by reverberations during the early
high-pressure motlon since a free interface is not
available.

The estimated period of a 1.27-cm radius 9404
sphere immersed in water at | bar pressure is 0.1
sec and the maximum bubble radius is 44.2 cms. As
shown in Fig. 12, the observed maximum radius is
slightly larger and the period is 4 to 5 times
larger than the estimated radius and period. The
large momentum of the water near the surface of the
bubble is consistent with this observatlon.

The late-time experimental data shown in Fig.
11 suggests that the plumes formed after collapse
of the bubble may be the primary source of the
large waves characteristic of the upper critical
depth. B. G. Craig of GMX-8 is presently studying
the long-term plume and wave behavior for the A.E.C.
Tamarin committee. The results of this study may
indicate where future theoretical studies should be

concentrated.
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Fig. 1.
The static and dynamic radiograph at 15.8 usec of a
1.27-cm radius explosive sphere detonating half im-
mersed in water. A sketch of the prominent features

of the radiograph is shown.

Fig. 2.
The static and dynamic radiograph at 26.3 usec of a
1.27-cm radius sphere of 9404 detonating half im-
mersed in water. A sketch of the prominent features

of the radiographs is shown.




Fig. 3.
The static and dynamic radiograph at 61.3 usec of a
1.27-cm radius sphere of 9404 detonating two-thirds
immersed in water. (The dynamic radiogrphs also
shows some New Mexican folk art added by the
technician.) A sketch of the prominent features of
the radiograph (sadly without any folk art) is shown.
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Fig. 4.

The water shock and explosive-water interface radius
as a function of time for a 1.27 cm radius explosive
sphere in water at 1 bar. Also shown are the positions
determined from the radiographic study.
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The water shock and explosive-water interface pres-
sure as a function of time for a 1.27-cm radius explo-
sive sphere in water at 1 bar.
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Fig. 6.
The air shock and explosive-air interface radius as a
function of time for a 1.27-cm radius explosive
sphere in air at one Los Alamos atmosphere,
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The air shock and explosive air interface pressure as a 0.1
function of time for a 1.27-cm radius explosive
sphere in air at one Los Alamos atmosphere.
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Fig. 8.
Sketches of the important features of the flow of a
1.27- cm radius explosive sphere interacting with a
water-air interface at the times used in the radio-
graphic study. The calculated one-dimensional pres-
sures in bars and positions of the air shock and
air-detonation-product interface in centimeters are
shown along the vertical axis. '
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The experimental arrangement for the photographic
study.

Fig. 10.

The detonation product-water radius calculated using
the one-dimensional model and the experimental data
as a function of time. The experimental data is shown
with a bar whose top is the horizontal radius and
bottom is the vertical radius through the initial center
of the explosive charge.




Fig. 11.
Selected frames from the cine camera data. The time
between frames was 0.0156 seconds, the exposure
time was 0.002 seconds per frame. The grid behind
the shot was 4 in. between lines.
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Fig. 11. (cont




Fig. 11. (cont)
Fig. 11. (cont)
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Fig. 11. (cont) Fig. 11. (cont)
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Preliminary cine camera data of the detonation pro-
duct-water radius as a function of time.
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Fig. 13,
PIC (Particle-In-Cell) calculations of a 1.27-cm radius
sphere of 9404 initiated at its center and immersed in Fig. 13. (cont)
water at various levels. The X" plotting symbols on
the left indicate the position of cells that have been
shocked to temperatures greater than ambient,
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Fig. 14.

Two-dimensional Eulerian calculations of a 1.27-cm
radius 9404 sphere initiated at its center by a 0.4-cm
radjus initiator and immersed under 1.27-cm of wa-
ter. The pressure contour interval is 20 kbars, the
density contour interval is 0.2 gm/cc, and the velocity
contour interval is 0.05 cm/usec. The position of
mixed cells (9404-water, 9404-air, water-air or
9404-water-air) is shown with an “X" plotting
symbol.
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Fig. 15.
Two-dimensional Eulerian calculations of a 1.27-cm
radius 9404 sphere initiated at its center by a 0.4-cm
radius initiator and immersed to a depth of
1.5875 cm. The contour intervals are the same as
Fig. 14.
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Fig. 16.
Calculated position of the water shock, 9404-water
interface and water shock pressure as a function of
time for the SIN and 2DE calculations.
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Fig. 17.
Calculated position of the air shock and the
9404-air interface as a function of time for the SIN . CM/je:475(200)
and 2DE calculations.
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