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Executive Summary

Incentives for implementing new pollution-control technologies for oxides of nitrogen (NOx) and
hazardous air pollutants (HAPs), including volatile organic compounds (VOCs), are both
regulatory and economic. Of immediate concern, given considerable regulatory pressure, e.g.,
the promulgation of a NESHAPS (National Emissions Standard for Hazardous Air Pollutants)
for NO4 emissions in CY 2000, new de-NOjy technologies are necessarily being explored. This
project has emphasized evaluations of non-thermal plasma (NTP) technologies for treating jet-
engine test facility exhaust and other hazardous air pollutants (HAPs. The removal of nitric
oxide (NO) has been the primary focus of our work, with a secondary focus on HAP removal,
should regulations on these substances become more stringent or conventional technologies for
their removal fail to perform adequately. This report will describe our technical activities and
results for the completion of the project, with emphasis on work carried out since the December
1999 Annual Report.

A Memorandum of Agreement (MOA) was established in March 1999 with Tinker Air Force
Base (AFB) to test an NTP de-NOy unit on one of their small jet engine test facilities — a Cruise
Missile Test Cell (CMTC). We also forged a team with Tinker and their collaborators, the Air
Force Center for Environmental Excellence (AFCEE) and URS-Radian International
Corporation (the gas sampling and analysis contractor for the test). Tinker AFB helped to
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support the project at their site, interfacing the NTP-unit activities with CMTC operations, and
also paid for associated gas sampling and analysis work that was contracted through AFCEE to
Radian. The field demonstration was necessary to provide further data and operating experience
to more fully evaluate performance and economic projections for NTP de-NOy technology and to
provide data and experience for designing larger systems with more confidence.

We evaluated various design options for NTP reactor systems for the field-pilot demonstration
on Cruise Missile Test Cell (CMTC) exhaust at Tinker AFB and downselected to a corona
radical shower (CRS) reactor system, developed by our partners at McMaster University, for the
field-pilot unit. Since the 1999 Annual Report, final iterations on the design of individual
components for the field-pilot equipment, obtaining bids for the fabrication of components,
getting the NTP system equipment fabricated and installed in a 20-foot trailer, transporting the
equipment trailer to the test site, and executing the field tests have been our main activities.
Among the major items completed were the fabrication of the main CRS reactor and its
enclosures and acquiring and installing the reactor power supplies, the electrostatic filter
elements, catalytic converters, and the variable-speed fan used to draw exhaust gas through the
system, the gas ductwork, and the data acquisition system.

This report will concentrate on preparations for and the execution of the small-pilot-scale field
demonstration on NO, removal carried out at Tinker Air Force Base during March 27 — April 4,
2000. In these tests, a small amount (< 1%) of the total CMTC effluent normally exhausted to
the atmosphere was ducted through the NTP-based gas-processing system. Earlier project work
has been described in several other reports and publications.

The field tests at Tinker AFB show promising results for some system operating conditions. The
CRS NTP reactor uses a large collection of fine nozzles, connected to a source of high voltage,
to inject a mixture of air and dilute ammonia (NH3)/nitrogen (N3) into the portion of the CMTC
exhaust-gas stream sampled by the plasma reactor. The combination of non-thermal plasma
formed at the nozzle tips using the injection gas functions to produce active species for de-NOx
(e.g., O-atoms, N-atoms, NH radicals, etc.). NO in the presence of O-atoms is rapidly converted
into NO, (de-NO but not de-NO,). In the presence of NH3 and the plasma, conversion of total
NOx (NO + NO,), actual de-NOy, takes place. Because the concentration of NO in the CMTC
exhaust was quite low (< 10 ppm), a bank of automotive catalytic converters was placed after the
CRS reactor in the field-pilot system. The purpose of this bank was to further promote de-NOx
(conversion of NO, to Ny) in the presence of a catalyst (and facilitated by entrained
hydrocarbons in the gas stream that are activated by the plasma). For larger-scale jet engine test
cells (JETCs), where the NO concentration is ~ 50 ppm, such a catalyst bank is not necessary. In
the field tests, 70-100% de-NO normally was achieved because the CRS reactor was operated
primarily under oxidizing conditions. For some cases (main gas flow rate < 80 Nm?®/h), the
combination of radical chemistry, reaction with NHj, and reactions in the catalytic bank resulted
in conditions for which 65-80% total de-NOy was achieved.

High de-NOy values were limited to a flow rate range up to about 80 Nm?/h, instead of our
originally-planned main gas flow rate of 120 Nm’/h because of the number of catalytic
converters placed in series with the CRS reactor. We have discovered that, to achieve high de-

3




NO up to 120 Nm?/h, six catalytic converters, rather than the four we used, would be required.
However, the field test demonstrated that the CRS reactor was doing its job — the high de-NOx
performance was just limited by the treatment-flow capacity of the catalytic converters. Also,
we ran the catalytic converters without any external heating. External heating would have
allowed an increase in catalytic treatment-flow capacity but would have added to the operating
energy requirements of the system.

Analysis of residues in the reactor in the CRS NTP system inlet and outlet filters showed a
significant change in the amount of sulfate and nitrate compounds collected. Sulfates, as
expected, were very low because there is little sulfur present in the JP-10 engine fuel. However
there was a change in collected nitrate compounds from about 18 ng/cm? at the inlet to about 64
pg/cm2 at the outlet electrostatic filter. This implies that the system is indeed converting NOy
into nitrate compounds, a desirable effect we had intended to demonstrate.

In addition, scale-up of de-NOjy systems was studied and cost analyses and economic
assessments for various NTP reactor systems compared to conventional selective catalytic
reduction (SCR) - wet scrubber technology were carried out. These indicated that NTP
technology is cost-competitive for jet-engine exhaust de-NOy. In particular, we have estimated
costs that can be compared with earlier-reported NTP Jet Engine Test Cell (JETC) de-NOy
systems. In this report, we also present the total annual cost of JETC de-NOy systems as a
function of the operating scale (i.e., the exhaust-gas flow rate). The cost per unit mass of NOy
removed (in $/ton NO) also has been calculated, depending on system scale (flow rate) and duty
factor (total operating time per week or year), and shown in the report. The economic analyses
provide a basis for selecting the most appropriate de-NOy system technology for a given DoD
application.




Project Objectives and Goals

Our overall project objective was to evaluate and develop new technology, namely non-thermal
plasma (NTP) reactor technology for DoD air emissions control applications. A key goal was to
provide a basis for selecting the most appropriate NTP technology for DoD applications. To do
so, we would evaluate the performance of prototype and pilot-scale NTP reactors (corona,
dielectric barrier, electron beam) and assist in the commercialization of the technology. NOy
abatement has been our primary focus, while HAP and specialized VOC control has been a
secondary focus (should other technologies prove inadequate or emissions standards become
more stringent). These goals were to be met by: 1) formulation of a predictive, reactor
simulation model for use in prototype development and scale-up; 2) experimental verification of
the modeling results; and 3) formulation of engineering scaling and optimization criteria and the
application of these to the demonstration of scaleable laboratory-pilot and field-pilot reactors.
The development of an efficient NOx processor was a key goal. A comparison with conventional
technologies (relative costs and benefits) was also an important goal.

Technical Approach
To meet our technical objectives, we planned a four-year effort starting with technology

assessment and laboratory evaluation tests, progressing through laboratory-pilot equipment
optimization and scaling, and culminating in the development of NTP technology selection
criteria, which are based upon both historical and new field-pilot testing. In the first year a
comparative assessment of electric-discharge driven and electron-beam driven NTP reactors was
to be performed, reaction kinetic models were to be developed, and experiments for issue
resolution were to be designed. In the second year reactor scaling criteria and optimization
models were to be developed and scaling studies initiated with laboratory-pilot apparatus. In the
third year reactor scale-up, optimization, and system engineering were to be completed to the
point of starting the design of a field-pilot unit, that unit being focused on the removal of oxides
of nitrogen (NOy) from air emissions streams. The fourth year has concentrated on completing
the design of the field-pilot unit, constructing and testing the unit at a selected DoD site (Tinker
Air Force Base) and providing criteria for selecting the most appropriate NTP technology for
DoD applications. The field-pilot reactor was meant to approach a practical scale device (an
order of magnitude scale-up in flow capacity from a bench-scale unit; i.e., flow rate in the 100
Nm?/hr range). In a practical, higher-flow application, one would use several scaled-up reactors
in parallel to treat the exhaust gases from an emissions source.

The comparative assessment work has built upon a 1995 National Institute for Standards and
Technology (NIST) workshop on NTP applications to air pollution control and considerable
progress made in the field since then. NIST and one of their affiliates was tasked to assist in
plasma chemistry model development and the evaluation of reaction-chemistry parameters.
Reactor performance measurements have been carried out using combustion gas analyzers
(CGAs), GC/MS (gas chromatography/mass spectrometry), TDL (tunable diode laser) and LIF
(laser-induced fluorescence) probes, with ARL taking the lead on optical/laser measurements.
ARL has also carried out CFD (computational fluid dynamics) calculations to predict and
optimize fluid flow patterns and treatment residence times in a planar-flow, dielectric-barrier
NTP reactor. Los Alamos has focused on electric discharge physics, electrical drive circuit
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engineering and optimization, and the design and construction of laboratory bench-scale and
scaled-up field-demonstration reactors. McMaster University has been contracted to ARL to
assist in reactor evaluations and testing, economic assessments, and pilot-unit design. Earlier
SERDP work, EQ (Environmental Quality) work, and the NIST and McMaster University
collaborations have fed into this project from its inception.

The results related to the above work have been described in our 1998 and 1999 Annual Reports
and references therein [1, 2], as well as many other previously submitted project reports and
published papers.

At the start of this project, study was completed to give a snapshot of the state-of-the-art for NTP
technology as applied to air emissions control at that time (1996). That study drew from and
cited most of the available key literature on the subject. Based on the information available then,
the study presented an overview of NTP processing for air emissions applications, pointed out
the major types of reactors considered appropriate for the DoD applications of concern, provided
an initial comparison of different types of reactors, and identified the issues to be addressed and
the methodology to be employed in pursuing the project objectives. The following summary
observations and conclusions were presented in it:

e NTP-based devices have been initially demonstrated for several emissions-control
applications; however, present experience has shown that each different NTP reactor (e.g.
pulsed corona, barrier discharge, e-beam, etc.) has unique characteristics with respect to
target gas destruction, electrical efficiency, and propensity for toxic byproduct formation,
depending on its design and electrical characteristics.

e Electric-discharge driven NTPs are emerging as potentially very attractive candidates for
NO, and HAP/VOC emission control due to the relative simplicity and potential flexibility of
the NTP reactors, which are scaleable to high gas flow rates with banks of reactors in
parallel.

e Electron-beam driven NTPs seem quite attractive due to the efficient production of energetic
electrons. However, their applicability for treating relatively small flows of contaminated air
is questionable due to the present high cost of e-beam equipment. The development of
smaller and lower-cost e-beam sources is not a present reality and further work is still
required in developing long-life, vacuum-gas separation windows. The treatment of large-
scale NO,/SOy flue-gas emissions dates back almost 20 years with electron-beam systems.
In spite of this maturity, commercial equipment is not yet available and issues still remain
with vacuum foils, commercial acceptance, and overall system costs.

o Over the past several years, flue-gas treatment with pulsed corona reactors has been
demonstrated at reasonably large pilot-plant scales. An analogous situation to electron-beam
systems exists: although demonstrating promise, the technology is not yet commercially
available and practical issues such as the development of industrially-robust, fast-pulse
electrical switchgear still are not resolved. Pulsed corona reactors also inherently produce
very low specific pump power (power per unit volume of process gas), making them a
reasonable match for NOy processing, but underpowered by at least one or two orders of
magnitude for VOC processing with reasonably compact reactors.




e Dielectric-barrier reactors produce active species (e.g., radicals) with energy efficiencies
similar to pulsed corona reactors, but lower than electron-beam reactors. However, the
specific pump power of barrier reactors typically surpasses that of pulsed corona by one to
three orders of magnitude. Although an established technology for ozone generation for a
century, barrier reactor technology for NOy and VOC processing has evolved to the small
pilot plant scale only during the past five years.

e At present, all forms of NTP processing are relatively high in energy consumption, which has
a strong effect on system economics. Therefore, their field of target applications naturally
divides into two regimes: 1) low flow rate with a wide range of contaminant removal; 2) high
flow rate with a low degree of contaminant removal. Given the current state-of-the-art,
pulsed corona and barrier reactors will most likely be commercialized for low flow rate NO
and VOC service within a relatively short time (e.g., two years). However, significant
advances in the scientific and technological understanding of NTPs is required to develop
optimized, large-scale (high flow rate) practical systems.

e A future development that shows promise for dramatic economic improvements is the
concept of staged, hybrid systems. Two possibilities are an absorber that can trap NOy or
VOC:s at a high flow rate and be regenerated off-line at more economical conditions; or a
low-removal NTP reactor in series with an absorber, which can make a major change in the
regeneration-disposal economics of the absorber subsystem.

Many of these observations and conclusion still hold true at this time. However, information not
available at the time of the study was the concept of hybrid NTP reactors like the corona radical
shower (CRS) device (that is described later in this report) and test results using it for de-NOx.

New literature on NTP de-NOy was reviewed as it became available, laboratory measurements
and modeling studies on NTP-initiated NOy removal were carried out, and experiments aimed at
adsorber-NTP hybrid systems were also done. We have confirmed our ideas that tailored
adsorber flush gases can produce improved de-NOx results; one case with No/Ar mixtures has
definitely shown reductive-mode (conversion to N, and O;) de-NOx [3].

Scaled-up systems have been studied and cost analyses and economic assessments for various
NTP reactor systems compared to conventional selective catalytic reduction (SCR) - wet
scrubber technology have been completed. These studies indicate that NTP technology is cost-
competitive for jet-engine exhaust de-NOy. In particular, we have estimated costs that can be
compared with earlier-reported NTP JETC de-NOy systems.

Field-Pilot Demonstration at Tinker AFB

Introduction

This project has always planned for a field-pilot demonstration because it was determined to be
necessary for providing further data and operating experience to more fully evaluate economic
and performance projections for NTP de-NOy technology and to design larger systems with
confidence. Because it was expected that the criteria pollutant NO would become much more
stringently regulated in the near future and DoD jet-engine test facilities emitting considerable
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quantities of NOj typically have no pollution control equipment (they have been regulatorily
‘grandfathered’ as mobile sources), our work has focused on NOy emissions control, with a
secondary focus on other hazardous air pollutants. In November 1998, a technical white-paper
report, “Initial Designs of Electric-Discharge Non-Thermal Plasma Field-Pilot Demonstration
Units for NO, Removal In Jet-Engine Exhaust: White paper for SERDP Project CP-1038” [4],
on initial equipment-design options for a field-pilot demonstration was completed.

In that report, four candidate NTP reactor design concepts (pulsed corona, dielectric barrier,
NTP-adsorber, and corona radical shower) were evaluated for the field-pilot demonstration on
jet-engine exhaust de-NOy. The report discussed the exhaust stream to be addressed, the test
setup, the four candidate reactor systems, and projected operating parameters and specifications
for a field-pilot unit. Because the cost and logistics of using an electron-beam NTP reactor are,
respectively, too high and too complicated for this project, we limited our candidate systems to
those based on electric-discharge-driven NTP reactors, which previous economic analyses have
shown to be more cost effective (e.g., see the reports “De-NOy Cost Estimates in Units $/Ton
NO, Removed”, Los Alamos National Laboratory (September 1999) [5] and “Final Report:
Semi-Pilot Plant Test for Non-Thermal Plasma Reactors — Electrostatic Precipitator System for
Control of NO Released During Army and Related U.S. Department of Defense (DoD)
Operations”, McMaster University (December 1999) [6].

Realizing the performance and economic shortcomings of stand-alone NTP reactors, some
workers in this discipline (particularly this project team) have proposed the use of staged or
hybrid systems to better match particular air-emissions control applications. Initial evaluations
of staged hybrids show promising performance and economics. However, rigorous pilot-plant
tests are required to provide further data and operating experience to more fully evaluate
economic and performance projections and to extrapolate designs to full-scale units. The
demonstration of a small-scale, field-pilot unit directed toward scale-up has been a key goal of
this project and a key goal in providing the DoD with further information in providing a basis for
selecting the most appropriate NTP technology for a given emissions-control application.

Taking the above opinions and economic assessments into account, it was decide to downselect
to a corona radical shower staged hybrid system for the field-pilot demonstration unit. This was
done even though a pulsed corona system showed a slight cost advantage over the CRS system.
Justification for this choice was based on three key points:

e Promising results for achieving high de-NOy and relatively high yield (amount of NO,
removed per unit of energy consumed) were demonstrated in laboratory experiments;

e Compared to pulsed corona, a CRS system is much more amenable to NH3 addition and the
subsequent generation of dry particulates, rather than the production of liquid acids (nitric
and nitrous);

e CRS systems operate with a relatively simple DC power supply, which is both less
complicated and less expensive than the modulator power supply required for a typical
pulsed corona system.

Details of the equipment for our CRS system will be discussed further below.
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A Memorandum of Agreement (MOA) was established in March 1999 with Tinker Air Force
Base (AFB) to test an NTP de-NOy unit on one of their small jet engine test facilities — a Cruise
Missile Test Cell (CMTC). A team was also forged with Tinker and their collaborators - the Air
Force Center for Environmental Excellence (AFCEE) and URS-Radian International
Corporation (the gas sampling and analysis contractor for the test). Tinker AFB helped to
support the project at their site, interfacing the NTP-unit activities with CMTC operations, and
also paying for associated gas sampling and analysis work that was contracted through AFCEE
to Radian.

Since the 1999 Annual Report, final iterations on the design of individual components for the
field-pilot equipment, obtaining bids for the fabrication of components, getting the NTP system
equipment fabricated and installed in a 20-foot trailer, transporting the equipment trailer to the
test site, and executing the field tests have been our main activities. Among the major items
completed were the fabrication of the main CRS reactor and its enclosures and acquiring and
installing the reactor power supplies, the electrostatic filter elements, catalytic converters, the
variable-speed fan used to draw exhaust gas through the system, the gas ductwork, and the data
acquisition system.

This sections that follow will concentrate on discussions of preparations for and the execution of
the small-pilot-scale field demonstration on NOx removal carried out at Tinker Air Force Base
during March 27 — April 4, 2000. Because of size and operational flexibility considerations, we
decided to use a CMTC for conducting the demonstration. In these tests, a small amount (< 1%)
of the total CMTC effluent normally exhausted to the atmosphere was ducted through the NTP-
based gas-processing system.

Test Setup

Figure 1 below shows a schematic diagram of the field-test setup. In this arrangement, a small
portion of the emissions stream that is actually discharged to the atmosphere (through the
exhaust plenum room and chimney) was processed by the NTP system. A centrifugal fan was
used to draw exhaust gas into the test reactor system. Because we originally planned on
handling only a slipstream of 100-500 SCFM (59-294 Nm®/h) capacity, no deleterious back-
pressure effects on the engine were envisioned. The CMTC exhaust slipstream was collected
using a nominal 8 in (20 cm) diameter galvanized steel pipe inserted approximately 3 ft (0.9 m)
down into the top of the main exhaust chimney. The collected exhaust was then carried to the
CRS NTP system trailer through about 75 ft (23 m) of insulated, plastic-lined, air-handling
ductwork.

The on-line gas analysis equipment sampled the exhaust gas at the inlet to the CRS system and
either at the outlet of the CRS reactor or further downstream of the reactor and catalytic
converter bank (before the centrifugal fan). Additionally, analysis of byproduct liquids (if any)
and particulate effluents were to be performed through other, off-line analytical techniques. The
analytical techniques and results are described in detail in the Radian gas sampling and analysis
report [7]. Figure 2 is a photograph showing the plasma-processor equipment trailer positioned




in the field next to a CMTC chimney at Tinker AFB. The flexible exhaust-collection duct and
gas-sampling lines are clearly seen in the photo.

Equipment Descriptions

Figure 3 shows a schematic diagram of the CRS/NTP demonstration system. As discussed
earlier in this report, we have chosen to employ a hybrid system, consisting of a corona radical
shower (CRS) NTP reactor plus a catalyst bank and electrostatic filters (to capture any
particulate/solid de-NOy treatment products). Also mentioned earlier is the fact that a catalytic-
hybrid architecture is required because of the necessity of handling the very low NOx
concentrations (< 10 ppm) in cruise missile engine exhaust; the catalysts most likely will not be
required for JETCs, which have NOy concentrations of order 50 ppm. The field equlpment isa
significant scale-up in flow capacity (an order of magnitude — 120 Nm?/h versus 12 Nm?/h) from
the existing McMaster lab-scale system. The original system design was provided by McMaster
personnel and major modifications later carried out by Los Alamos personnel. The length of the
system that is housed within the equipment trailer is approximately 18 ft (5.5 m).

The test system consists of a nominal 8 in diameter (21.1 cm ID) inlet pipe, inlet filter, CRS NTP
reactor and associated DC power supply, a parallel bank of four automotive catalytic converters,
an exhaust-filter bank, an induced-flow fan, and the gas-handling ductwork elements which
connect various parts of the system together. Most system elements are constructed of
aluminum, except for the injection-gas manifolds and associated nozzles (stainless steel), the
actual filter elements (composite foam or fiberglass), and the catalytic-converter housings (steel).

The inlet pipe is connected to the flexible duct that brings the collected exhaust from the CMTC
chimney and delivers it to the CRS reactor. The inlet filter is an ordinary residential fiberglass
furnace filter, modified to fit inside the pipe. This filter is intended to capture carbon particles
(soot) entrained in the engine exhaust gas.

The CRS NTP reactor consists of six parallel-flow channels, each measuring 10 cm wide x 60
cm high x 125 cm long. The flow channels are made from aluminum and are arranged side-by-
side in parallel. Aluminum housings are on the top and bottom of the channel array. The bottom
housing is connected to a support frame equipped with wheels so the reactor can be rolled
around. The housings serve to make the reactor gas tight, prevent access to high voltage, and to
hold the plumbing for the injector manifolds and the feedthrough for the high voltage power
supply. Each flow channel is equipped with two NH3/N; injection-gas manifolds (to feed gas
from both top and bottom) and an injection-nozzle array. Each array consists of six 0.375 in (9.5
mm) OD nozzle pipes that hold 56 stainless steel injection nozzles (short lengths of hypodermic
needle material) of 0.998 mm ID that protrude approximately 4 mm transverse to the nozzle
pipes and perpendicular to the gas flow direction. The nozzle pipes are oriented vertically, being
welded into horizontally-oriented 1 in (2.54 cm) OD gas manifolds. The gas manifolds are
insulated from the reactor housing and the external injection-gas manifolds by segments of
Teflon tube that are about 6 in (15 cm) long. These nozzle-pipe gas manifolds are connected via
welded-on threaded studs and busbars to the 50 kV/85 mA, positive-polarity high voltage power
supply (Spellman, Model number SA50%*4) that drives the electrical corona discharge. The two
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elements of the corona-electrode structure are the injection-gas nozzles (which are at high
potential) and the flow-channel side walls (which are at ground potential).

The engine-exhaust gas inlet to the CRS reactor consists of a nominal 8 in (20 cm) diameter
aluminum pipe that serves as a diagnostic spool for connecting sampling probes and a duct in the
shape of a truncated tetrahedron. The outlet is a similar truncated tetrahedral duct (a shape
commonly used for other ductwork in the system). The ductwork is normally flanged and bolted
to various parts of the CRS system assembly. Rubber gaskets are used to provide seals between
the flanges and other mating surfaces. Figures 4 and 5 show photographs of the CRS reactor
(with the top housing and gas-handling ductwork removed) and a detail of a single injection-
pipe/nozzle assembly. Six of these assemblies are employed in each of the six CRS reactor flow
channels.

Downstream of the CRS reactor proper is the catalytic converter bank. It consists of four 3-way
commercial automotive catalytic converters (Walker, part number 15147) connected in parallel.
The inlet and outlet of the converters consist of tetrahedral ductwork and flanges similar to those
used in the rest of the system. The catalytic converters are not heated but operate at the nominal
collected engine exhaust temperature. Normally, heating provides better de-NOx performance.
However, heating also requires extra energy input to the system and in overall increase in system
cost. We have chosen to operate the catalytic converters at ambient temperature to avoid adding
an external heat source and also to demonstrate system performance under more rigorous
conditions.

The CRS reactor and the catalytic converter bank both play a role in removing NOy from the
treated engine exhaust. Using NHj injection, it is expected that a portion of the NOx would be
converted to solid nitrate compounds (e.g., ammonium nitrate suitable for agricultural fertilizer).
A commercial electrostatic filter (Air Sponge Filter Co., microsponge filter pads) is placed
downstream from the catalytic converter bank to capture such particulates for collection and later
analysis. The filter cross section is approximately 53 cm x 63 cm and its thickness is
approximately 2.5 cm. It is housed in a flanged aluminum box with gas-handling ductwork
connected on the upstream and downstream sides. The filter box was sized for employing more
than one filter element but one seemed sufficient for this application.

A centrifugal fan (American Fan Co., Model AF-9-R104135) is located downstream from the
electrostatic filter. It is driven by a 1 hp, variable-speed electric motor. The fan functions to
draw the collected slipstream engine exhaust from the CMTC chimney, through the CRS NTP
system, and discharge the treated exhaust gas to the atmosphere via an exhaust pipe mounted
through the roof of the equipment trailer.

Figures 6,7, and 8 are photographs of the interior of the equipment trailer showing the various
components that comprise the CRS NTP hybrid system.
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CRS NTP Reactor System Operating Principles and Conditions
Figure 9 shows a conceptual drawing of a single CRS reactor flow channel. In our de-NOx
system, six of these channels are arranged side-by-side in a parallel gas-flow configuration.

Each of our CRS reactor flow channels basically consist of aluminum side walls (which serve as
ground plates), an array of nozzle pipes and associated injector nozzles, and top and bottom
manifolds which deliver the injection gas to the nozzles. The active volume of a flow channel is
approximately 10 cm wide x 60 cm high x 125 cm long. The nozzles are made from large-bore
hypodermic needle stock. They have an ID of about 1 mm and protrude about 4 mm from the
nozzle pipes. The nozzles point perpendicular to the ground plates and are oriented transverse to
the exhaust gas (main gas) flow. The nozzles are connected to a high voltage power supply,
which drives corona discharge at the nozzle tips, through the nozzle pipes and injection-gas
manifolds. In our tests, the voltage was typically 20-25 kV, while the current was in the range of
about 10-20 mA.

Injection gases are supplied to the electrically-insulated manifolds from two external gas-supply
tanks. One tank contained low-hydrocarbon compressed dry air. A second tank contained 10%
NHj in a balance of dry nitrogen. The NH3/N, mixture was combined with the dry air in an
external mixing manifold and diluted to provide an injection gas containing NH3 in a
concentration of a few times that of the NO concentration in the CMTC exhaust (main gas flow
into CRS reactor). The gas feeds were regulated by manually-operated flow meters (Hastings
Company). In our tests, the typical gas flow rates into the mixer were 0.5 N L/min for the
NH;/N, mixture and 190 NL/min for the air, respectively. Representative main gas flow rates
through the reactor were in the approximate range of 500-2,500 NL/min (30-150 Nm®/h). To
obtain the flow rate, the main gas speed was measured with an air-velocity transducer (Omega
Instruments Co., Model FMA-902-V-S) and converted to flow rate, knowing the area of the
sampling pipe that housed the probe. The main gas temperature was measured with a
commercial temperature probe. Typical main gas temperatures at the entrance to the CRS
reactor were in the range 20-50 C for the engine operating in the power range of about 75% and
above (where most of our tests took place).

Because of the geometry of the injection nozzles, a relatively high electric field exists at their
tips when the high voltage is applied from the power supply. This results in the generation of
free radicals (e.g., O-atoms, N-atoms, OH, NH, NH,, etc.) and other active species (e.g., Os,
metastable molecules, plasma electrons, etc.) in a plume of injection gas. The active-species
corona plume (cone-shaped structure) diverges from the nozzles where it fans out and the active
species mix with the main CRS reactor gas flow and react with the entrained pollutants in that
gas stream. The injection-gas flow rate is normally adjusted so that the corona discharge is flow
stabilized (does not transition into an arc). From bench-scale laboratory experiments, the
required stabilization flow velocity was determined to be in the range of approximately 2-10 m/s,
depending on the current and voltage supplied to the nozzles.

The active species reactions with the pollutants entrained in engine-exhaust gas/flue gas have
been evaluated in detail by various workers. Here we will present a much-simplified reaction set
to serve as an example for describing the main aspects of the de-NOy process, which is our main
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interest. The simplified reaction scheme consists of the reactions listed below (M designates an
arbitrary background gas species):

O +NO +M — NO; + M (radical-induced oxidation)
N +NO — N+ O (radical-induced reduction)

NH, + NO — N, + H,O (radical-induced conversion of NO to N,).

In moist gas (like our test jet-engine exhaust, which had a typical humidity of almost 1%), OH-
radicals are produced by the corona-discharge plasma. The following reactions of OH-radicals
with NO and NO; are the primary producers of nitrous and nitric acids, respectively.

OH+NO+M — HNO;+M
OH+NO; +M — HNO;+ M.

These acids can be neutralized by a wet scrubber, yielding benign products. However, fairly
high costs and maintenance activities are associated with wet scrubbing and a liquid effluent still
remains.

In the presence of NHs, it is possible to produce dry, collectible solid particulates by a reaction
such as

NH; + HNO; — NH;NO;3; (ammonium nitrate).
The product ammonium nitrate can be employed as a useful agricultural fertilizer. Its value can
also be used to offset the operating cost of a de-NOy system. The above reaction is one of the
key features of the CRS reactor — it can operate in a dry-scrubbing mode like an electron-beam
reactor but with considerably lower cost and complexity.
Additionally, NH; addition can play a role in the conversion of NO to N by reactions such as
OH +NH; —» NH, + H,O
NH, +NO — N, +H;0.
The presence of hydrocarbons entrained in the engine-exhaust gas results in quite complex
chemical reaction sets. Those will not be described here; for further information, the reader is
referred to the literature on this subject. However, using a simplified reaction scheme taken from

Penetrante et al 1997 [8], the influence of hydrocarbons and a catalyst on the conversion of NO
to N, is described below.
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First, in the presence of entrained hydrocarbons, active-species reactions in the non-thermal
plasma oxidize NO to NO,

NTP + O, + HC+NO — NO, +HC™,
Where HC'® is a partially oxidized hydrocarbon.

A selective-reduction catalyst, which utilizes the hydrocarbons, is then used to chemically reduce
the NO, to N; (a very desirable result) by reactions of activated hydrocarbons on the catalyst
surface. In the overall process, the hydrocarbons are also eliminated by reactions with O, on the
catalyst surface.

Catalyst + NO, + HC™® — N, + CO, +H,0.

Penetrante et al 1997 [9] have also shown that, in the presence of entrained hydrocarbons, O and
OH react with the hydrocarbons to produce HO, and hydrocarbon radicals. With the
hydrocarbons, NO is mainly oxidized to NO, by reactions with these radicals, regenerating OH
in the process. Overall, because of the recycling of OH, the energy cost for NO oxidation to NO;
is reduced.

The hybrid CRS-catalytic-converter hybrid system makes use of the synergy of direct radical-
induced reduction, oxidation of NO to NO,, reactions of ammonia to convert NO to N and
NH4NO;, and catalytic conversion of NO; to N,. Because many reaction schemes come into
play for the hybrid system, it is envisioned to be a highly useful tool for engine test facility de-
NOy, once the process is optimized.

Emission Conditions for a Cruise Missile Engine Test Cell

Exhaust-gas emissions (particularly NO, total NOy, CO, CO,, and total hydrocarbons — THCs)
for a representative Tinker AFB JETCs have been previously characterized by Spicer et al [10].
However, emissions from Tinker CMTCs have not been fully characterized. Some limited
emissions sampling and analysis work has been carried out on two CMTCs at Tinker during
March 1999 by McMaster University and Los Alamos personnel, with assistance from Tinker
personnel, have provided preliminary emissions data for a CMTC. That work is described in an
earlier report from McMaster University [6].

These limited data were used to guide the design of our field-pilot de-NOy system and to provide
guidance for field operations. The data would also be used in providing input to the plans and
statement of work of the Tinker AFB contractor in charge of the CMTC exhaust-gas sampling
and analysis field work.

Based on the Spicer data and the limited McMaster-Los Alamos-Tinker sampling work, we
projected the CMTC exhaust gas parameters that might be encountered in the field. Table 1 lists
the estimated CMTC gas composition and exhaust emissions, along with those for a
representative JETC.
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The actual emissions, as measured by the sampling and analysis contractor, will be presented
later in this report.

Summary Description of Major Tasks for Emissions-Reduction Field Tests

Pre-Field Tests: Using a bench-scale CRS system at McMaster University, a series of lab-scale
tests to determine the destruction efficiency and determine the plasma operating conditions for
the selected Tinker AFB emissions were carried out. This information helped allow us to specify
the operating-parameter range for the demonstration equipment to be fielded. For example, it
pointed out the need to include catalytic converters for the very low NO concentrations
characteristic of a CMTC.

Also, at Los Alamos, the field-test system was assembled in the laboratory and subjected to
shakedown tests to qualify the equipment for field service and to provide operational guidance
for the field work. The shakedown concentrated on identifying stable operating regimes for the
CRS voltage and current, as well as demonstrating at least a 50% removal of NO,.

Field Tests: The trailer-mounted unit (power supplies, plasma reactor, catalytic converter unit,
electrostatic filter bank, and gas-handling ductwork) was transported to Tinker AFB
unassembled in the 20-ft equipment trailer. The equipment trailer was sited as close to a CMTC
chimney as possible (to keep the exhaust-gas collection ductwork short). The individual system
parts were then assembled in the field and mounted in the trailer. Electrical power was supplied

to the equipment trailer from base power (a 208V/3-¢ source).

Individual test runs were characterized by a combination of corona voltage and current fixed at a
stable operating point. The plasma-processor system was operated in blocks of time (e.g., one to
two hours) for a series of test runs that would coincide with non-interference with the normal
CMTC engine tests. The plasma processor did not have to run continuously during these time
blocks - only long enough to achieve stabilize operation and to collect analytical samples. For
each test run, gas samples were taken at the entrance to the plasma processor and downstream of
the CRS reactor and electrostatic filter bank. The mobile unit is a low capacity system designed
for demonstration - not full-scale testing. Therefore, the entire emission or process-gas stream
was not treated by the plasma unit (only a low flow-rate portion). The approximate flow
capacity of the plasma system was designed to be 120 Nm®/hr (an order of magnitude scale-up
from the McMaster bench-scale system). However, in the field, our representative operating
range was in the nominal range of 30-150 Nm?/hr.

Trailer siting, provision of electrical power, and emission-stream extraction was be coordinated
by Tinker AFB personnel. Los Alamos and McMaster University personnel set up and operated
the plasma processor and associated equipment. Contractor personnel (URS-Radian
International) collected gas samples and analyzed them on line (and would provide a subset of
samples for off-line analysis, if necessary). URS-Radian International also had a trailer sited
next to the plasma processor. This trailer contained the gas analysis equipment, recording
equipment, and work stations [7].
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Setup, Run, and Sampling Times: The equipment trailer arrived at the Tinker test site on 27
March 2000. In the field, LANL personnel assembled the equipment, secured it in the trailer,
installed the exhaust-gas collection ductwork, and performed shakedown tests of the equipment
(particularly the gas flow and electrical systems). This setup process took about two and one-
half days. During the same time, Radian set up the their gas sampling and analysis systems.
Initial, preliminary tests of the CRS NTP system on CMTC exhaust took place late in the
afternoon of 29 March. As Tinker engine-test schedules and engine availability permitted, the
main CRS system test runs were carried out during the period 30 March — 4 April (excepting the
weekend days of 1 and 2 April). Testing was completed on 4 April and system disassembly and
packing for shipment was completed by 5 April. The equipment trailer was then sent back to
Los Alamos on 6 April.

The NTP processor was run for approximately four hours per day (2 hours in morning and 2
hours in afternoon), during which time gas sampling and analysis was performed. It was desired
that on-line gas-sampling instruments record during the entire run times and that particulate
samples be taken at periodic intervals, starting with a baseline before the NTP processor is turned
on.

Gas Sampling and Analysis Plan: Under contract to Tinker AFB through AFCEE, a detailed
gas sampling and analysis statement of work was prepared by URS-Radian International with
input from LANL and McMaster University. A description of the test procedures and the results
of the gas sampling and analysis work are contained in the Radian report [7].

Summary Results from Field Tests

The test plan called for emissions measurements of the following species: oxides of nitrogen
(NO and NO,), nitrous oxide (N,0), sulfur dioxide (SO,), oxygen (O,), carbon dioxide (COy),
carbon monoxide (CO), ozone (0O3), ammonia (NH3), total and speciated hydrocarbons, nitrates
and/or nitrites (as acids or particulates), and particulate matter. The reader is referred to the
Radian report [7] for how measurements of these analytes were performed using continuous
emission monitoring techniques, Fourier Transform Infrared (FTIR) analysis, and selected
manual techniques. The subject report also contains detailed results of the planned-for and
measured CMTC emissions, both at the inlet and outlet of the CRS/NTP test system.

We originally anticipated injecting ammonia in concentrations 1.5 to 2 times the total expected
NO, concentration in the exhaust. However, at times, this rose to a few to several times the NOy
concentration, thus requiring modification of some of the analytical equipment and techniques.
These modifications precluded the measurement of some of the compounds of interest to us,
particularly simultaneous data collection of some cyclic compounds (e.g., benzene). Such
modifications and their effects on the planned measurements are described in detail in the
referenced URS-Radian International Report [7].

Also, the presence of significant quantities of exhaust-gas soot passing through the CRS system
prevented us from optimizing the operation of the pilot-test device in the field (particularly not
being able to achieve long-term stable current-voltage operation). However, data of special
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interest, i.e. removal of total oxides of nitrogen and the generation of nitrite and nitrate
compounds were able to be acquired under limited sets of plasma-processor system operating
conditions.

Additionally, high de-NOy values were limited to a flow rate range up to about 80 Nm’/h, instead
of our originally-planned main gas flow rate of 120 Nm?’/h because of the number of catalytic
converters placed in series with the CRS reactor. We have discovered that, to achieve high de-
NOy up to 120 Nm?/h, six catalytic converters, rather than the four we used, would be required.
However, the field test demonstrated that the CRS reactor was doing its job — the high de-NOj
performance was just limited by the treatment-flow capacity of the catalytic converters. Also,
we ran the catalytic converters without any external heating. External heating would have
allowed an increase in catalytic treatment-flow capacity but would have added to the operating
energy requirements of the system.

Figure 10 shows representative plots of the removal of various species of interest from the
collected slipstream CMTC exhaust versus the slipstream gas flow rates, using the hybrid
CRS/NTP reactor system with a bank of catalytic converters. The data were selected from that
which demonstrated relatively stable current-voltage operating conditions (which would be
expected to provide rather uniform corona around the majority of the injector nozzles). Also, the
operating conditions, in terms of injected air flow, injected NH3/N, mixture, total NO
concentration, and electrical power delivered to the CRS reactor, were relatively constant for the
representative data set presented here.

The plots in Figure 10 represent the concentrations of the following species: [NO], nitric oxide;
[NO,], the sum of nitric oxide and nitrogen dioxide or [NO + NO;]; and [NOy], the sum of NOx
and nitrous oxide or [NOy + N,O]. Typical, CMTC emission concentrations at the inlet of the
test system were of order [NO] ~ 7 ppm, [NO;] ~ 1 ppm, and [N,O] ~ 0.5 ppm. Figure 10 shows
high NO removal; however, this is mainly oxidation to NO, (and some N,O), so the parameters
[NO,] and [NOy] are of greater interest in evaluating system performance. Typical values for
these parameters, corresponding to Figure 10, were [NOy] ~ 7.5-8 ppm and [NO,] ~ 8-8.5 ppm.

Other parameters corresponding to Figure 10 are the injection air flow rate (about 183 NL/min),
the 10% NH3/N, mixture injection flow rate (0.5 NL/min), and the electrical power supplied to
the CRS reactor (in the range 227-346 W; average of 287 W). Data points on the figure
correspond to a main gas flow rate range of 36 Nm’/h to 130 Nm*/h (about 600 NL/min to 2167
NL/min).

It is observed that the removal of NO is very high (typically 85-100%). However, as mentioned
before, this removal is actually conversion to NO, and N>O. As seen in the plot for NOy, values
for de-NOy can actually go negative if sufficient N,O is produced under some reactor operating
conditions. Sometimes, even some NOy can be created, which also may contribute to negative
values of de-NO,. The maximum value of de-NOy achieved was 81% at a main gas flow rate of
36 Nm>/h. This is actually higher than the values achieved in the earlier bench-scale laboratory
tests. The de-NOy values drop off at higher flow rates, because of the reasons concerning stable
operation and number of catalytic converters previously discussed. However, the de-NOy value
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is still 69% at 72 Nm>/h (which is a six-fold scaleup from the McMaster bench-scale laboratory
unit). Even considering the shortcomings of non-optimized performance for the field-pilot unit,
quite reasonable de-NOy was still achieved.

It is interesting to examine the plasma specific power (supplied electrical power P divided by
main gas flow rate Q) P/Q for this system. The average electrical power is 287 W. Dividing this
by the gas flow rate for the two cases of 69% and 81% de-NOj gives average plasma specific
powers of 14.4 J/NL and 28.7 J/NL, respectively. Even taking the high value of 346 W for the
69% de-NOj value gives P/Q = 17.3 J/NL. To achieve a similar de-NOy value, a stand-alone
electrical-discharge plasma reactor (e.g., pulsed corona or dielectric barrier) requires about 50
J/NL of specific power. This shows the beneficial effects of a hybrid system employing
ammonia injection and catalytic converters.

Gas samples were also taken downstream of the CRS reactor itself. Unfortunately, not as much
useful data were obtained for this case. Extrapolating the limited post-CRS sampled data to the
approximate midpoint of the Figure 10 de-NOj plot (72 Nm’/h) gives CRS-only de-NOy values
in the approximate range 22-34%. At first examination, this would imply that the CRS reactor is
only achieving about one-third to one-half of the total system de-NOy function by itself.
However, the ammonia in the gas stream continues to play a role in overall de-NOy, the
significance of this role depending on the gas-processing residence time. Therefore, in
retrospect, it would have been prudent to sample the gas stream from the CRS reactor further
downstream, thus allowing a correlation of de-NOy performance with gas-treatment residence
times in the system. Because this was not done, one can only make fairly rough estimates on the
CRS-only performance, as determined by our limited data for this case.

Analysis of residues in the reactor in the CRS NTP system inlet and outlet filters showed a
significant change in the amount of sulfate and nitrate compounds collected [7]. Sulfates, as
expected, were very low (0.18 ug/cm2 inlet versus 0.22 ug/cm” outlet) because there is little
sulfur present in the JP-10 engine fuel. However there was a much larger change in collected
nitrate compounds, from about 18 ng/cm? at the inlet to about 64 pg/cm2 at the outlet
electrostatic filter — a statistically significant result. A sample wipe sample from the CRS reactor
itself showed approximately 68 ug/cm2 nitrate. This implies that the system is indeed converting
NO into nitrate compounds, a desirable effect we had intended to demonstrate.

Economics Based on NTP de-NOy System Scale and Duty factors

Previously, Kim and Chang have developed a computer-based model (SUENTP) for calculating
the costs associated with de-SO,/de-NOy based on both NTP and conventional systems [11].
That model, which was developed for a commercial power plant (mainly NO and SO,
emissions), simulates scale-up and economic factors for several eligible NTP processes for air
pollution control - electron beam process, pulsed corona process, and corona radical shower
process - and makes comparisons with the conventional technologies of Selective Catalytic
Reduction (SCR) and Wet Scrubbers. It should be noted that power plant emissions of NOy are
similar to those of jet-engine test facility exhausts (our primary target for this project). The
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SUENTP code has also been upgraded since its original inception and is now called the
SUENTP-J code.

The data obtained from pilot-plant tests are input with general data to provide information for the
conceptual design of scaled-up commercial plants. The economic evaluation procedure deals
with the total capital investment and the total annual cost. The total capital investment comes
into the indirect annual cost as the item of capital recovery.

In one of our earlier reports [12], SUENTP model results for de-NOy costs for three NTP
technologies (pulsed corona, corona radical shower, electron beam) compared to two
conventional technologies (wet scrubber + SCR and SCR + ESP - electrostatic precipitator) were
presented. That report showed that cost projections for JETC de-NOjy using NTP systems were
more favorable than the conventional technologies.

It is useful to express treatment costs in terms the total annual system cost and also in the units of
$/ton NO, removed to provide a simpler means of comparing the NTP costs with the costs of
purchasing NOy credits and the cost of de-NOy by conventional technologies. Since the earlier
reports, our colleague, Dr. Urashima, at McMaster University has run the SUENTP-J code for 87
days/year (or approximately 40 h/week) operation, a condition more closely resembling an upper
limit for actual JETC facility operations [13]. Earlier calculations were based on 292 day/year
operation (an 80% duty factor more akin to power plants than JETCs).

Clearly, both the operational duty factor (hr/wk of run time) and the scale of a treatment system
(as measured by the treated exhaust-gas flow rate) have effects on both the total annual cost and
the specific cost. In this section, we will show both costs in terms of system scale size (flow
rate) for a realistic JETC operational duty factor of 40 h/wk. The cost calculations are based on
emissions-removal condition benchmark data presented in earlier McMaster University report
[6]. We have not adjusted the benchmark conditions, based on the field-pilot test results,
because we feel the large quantities of soot prevented the attainment of optimal operating
conditions that would have an unknown effect on the cost-estimation basis.

Table 2 shows the more recent results for total annual cost and the cost of NO removal in $/ton
for three system scale sizes, flow rates of 5.9 x 10* SCFM (1.0 x 10° Nm*/h), 1.0 x 10° SCFM
(1.7 x 10° Nm*/h) and 4.0 x 10® SCFM (6.8 x 10° Nm®/h). In all three cases, the NO and SO,
concentrations are 36 ppm and 5 ppm, while the gas temperature in the reactor is 25 C. These
cases are meant to span the operational regime of a representative JETC.

This table clearly shows that de-NOj costs are high for low NO concentrations and high exhaust-
gas flow rates. It also shows that the specific costs ($/ton) for the two conventional technologies
are extremely prohibitive. The total annual cost increases with exhaust flow rate but the specific
cost decreases (because more NOy is both emitted and removed at the higher flow rates).

Previous annualized-cost estimates for a full-scale NTP-based (pulsed corona + wet scrubbers)
JETC de-NOy system by other workers [14], have ranged from $22,000 ton NOy removed to
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$138,000 ton NO, removed, based on exhaust NOy concentrations of 4 to 36 ppm and 50 h/week
operation.

Figure 11 shows the data from Table 2 for a CRS reactor system only. We believe the CRS
reactor will prove to be the best de-NOy system for JETCs, once optimized. It should provide
dry scrubbing of the exhaust gas, producing collectible particulates in the process. In addition,
the CRS/NTP system uses a DC power supply, which is much simpler and less expensive than
that for a pulsed corona system. The data in the table and the graph provides a basis for selecting
the most appropriate de-NOy system technology for a given DoD large-scale, engine-testing
application.

Conclusions

The CRS NTP reactor uses a large collection of fine nozzles, connected to a source of high
voltage, to inject a mixture of air and dilute ammonia (NHs)/nitrogen (N3) into the portion of the
CMTC exhaust-gas stream sampled by the plasma reactor. The combination of non-thermal
plasma formed at the nozzle tips using the injection gas functions to produce active species for
de-NOj (e.g., O-atoms, N-atoms, NH radicals, etc.). NO in the presence of O-atoms is rapidly
converted into NO, (de-NO but not de-NOy). In the presence of NH; and the plasma, conversion
of total NOy (NO + NO,), actual de-NOx, takes place. Because the concentration of NO in the
CMTC exhaust was quite low (< 10 ppm), a bank of automotive catalytic converters was placed
after the CRS reactor in the field-pilot system. The purpose of this bank was to further promote
de-NO (conversion of NO, to Ny) in the presence of a catalyst (and facilitated by entrained
hydrocarbons in the gas stream that are activated by the plasma). For JETCs, where the NO
concentration is ~ 50 ppm, such a catalyst bank is not necessary. The field tests at Tinker AFB
have shown promising results for some system operating conditions. In the field tests, 70-100%
de-NO normally was achieved because the CRS reactor was operated primarily under oxidizing
conditions. For some cases (main gas flow rate < 80 Nm?>/h), the combination of radical
chemistry, reaction with NHj, and reactions in the catalytic bank resulted in conditions for which
65-80% total de-NO, was achieved. This can be compared with a typical commercial catalyst-
only de-NOjy system for diesel engines, which usually achieves total de-NOx of 10-15%.

High de-NOy values were limited to a flow rate range up to about 80 Nm®/h, instead of our
originally-planned main gas flow rate of 120 Nm®/h because of the number of catalytic
converters placed in series with the CRS reactor. We have discovered that, to achieve high de-
NOx up to 120 Nm?/h, six catalytic converters, rather than the four we used, would be required.
However, the field test demonstrated that the CRS reactor was doing its job — the high de-NOx
performance was just limited by the treatment-flow capacity of the catalytic converters. Also,
we ran the catalytic converters without any external heating. External heating would have
allowed an increase in catalytic treatment-flow capacity but would have added to the operating
energy requirements of the system.

Analysis of residues in the reactor in the CRS NTP system inlet and outlet filters showed a.
significant change in the amount of sulfate and nitrate compounds collected. Sulfates, as
expected, were very low because there is little sulfur present in the JP-10 engine fuel. However
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there was a change in collected nitrate compounds from about 18 pg/cm2 at the inlet to about 64
ng/cm? at the outlet electrostatic filter. This implies that the system is indeed converting NOx
into nitrate compounds, a desirable effect we had intended to demonstrate.

We originally anticipated injecting ammonia in concentrations 1.5 to 2 times the total expected
NO, concentration in the exhaust. However, at times in the field, this concentration
unfortunately rose to a few to several times the NO, concentration, thus requiring modification
of some of the analytical equipment and techniques. These modifications precluded the
measurement of some of the compounds of interest to us, particularly simultaneous data
collection of some cyclic compounds (e.g., benzene), as described in the Radian report.

In addition, scaled-up de-NOy systems were studied and cost analyses and economic assessments
for various NTP reactor systems compared to conventional selective catalytic reduction (SCR) -
wet scrubber technology were carried out. These indicated that NTP technology is cost-
competitive for jet-engine exhaust de-NOx. In particular, we have estimated costs that can be
compared with earlier-reported NTP Jet Engine Test Cell (JETC) de-NOx systems. In this report,
we have also presented the total annual cost of JETC de-NOy systems as a function of the
operating scale (i.e., the exhaust-gas flow rate). The cost per unit mass of NOy removed also has
been calculated, depending on system scale (flow rate) and duty factor (total operating time per
week or year). The economic analyses provide a basis for selecting the most appropriate de-NOx
-system technology for a given DoD application.

Recommendations for Future Work

Under this project, much has been learned about the application of NTPs to actual CMTC

emissions. However, there is still more work to be carried out to fully optimize the CRS NTP

reactor under real-world conditions. If future work were possible, it should concentrate on:

e The design and testing of inlet soot filters to prevent the introduction of large amounts of soot
into the CRS NTP reactor;

e Tests to more completely optimize the voltage-current operating characteristics of the reactor
under actual field conditions (including the presence of moderate soot content);

e Installation of two more catalytic converters in the system and subsequent performance
testing with the additional catalytic converters in place (particularly testing to achieve high
de-NOy for higher exhaust-gas flow rates);

e Potential repetition of field tests under more fully optimized conditions and the incorporation
of knowledge learned from the above-mentioned work.
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Table 1: Estimated CMTC exhaust-gas parameters as compared to those for a
representative JETC.

Source Data Variable Units JETC CMTC Value
Value (Est.)

Gas Flow Qgas Nm®°h 1.0E+05 6.6E+03
1.7E+06 1.3E+04

Fuel JP-5 JP-10

Final Exhaust-Gas
Composition

N2 Cn2 % 80.98 | 78.00-79.10
02 Coz % 18.00 20.90
CO; Cco2 % 0.50 0.30
H>0 Ch20 % 0.50 0.50
Density (Normal) Dgas kg/Nm® 1.283 1.283
Exhaust Gas Temperature | Tgas C 25 30-40
NTP Inlet Temperature TnTPin C 25 25-30
Pressure Prgas torr 720 720

Emission Data

NOx Cnox ppm 36.00 ~5-10
SO, Cso2 ppm 4.59 ~1-2
HC (VOC) Chc ppm 60.00 78.00
Cco Cco ppm 53.36 ~5

Particles Crant mg/Nm3 - ~1




Table 2: Total annual cost and specific cost comparisons for NTP vs conventional
technologies.

Gas Flow Rate: 1.0 x 10° Nm*/h (5.9 x 10* SCFM)

Pulsed Corona Electron Wet Scrubber | ESP + SCR
Corona Shower Beam + SCR
Total Annual Cost (k$) 592 690 1,119 734 759
Specific Cost ($/ton NO) 76,358 88,999 144,333 94,674 97,899
Gas Flow Rate: 1.70 x 10° Nm°/h (1.0 x 10° SCFM)
Pulsed Corona Electron Wet Scrubber | ESP + SCR
Corona Shower Beam + SCR
Total Annual Cost (k$) 5,922 6,806 9,964 15,648 14,259
Specific Cost ($/ton NO) 44,932 51,639 75,599 118,725 108,187
Gas Flow Rate: 6.8 x 10° Nm*/h (4.0 x 10° SCFM)
Pulsed Corona Electron Wet Scrubber | ESP + SCR
Corona Shower Beam + SCR
Total Annual Cost (k$) 20,176 23,872 30,651 79,863 105,056
Specific Cost ($/ton NO) 38,270 45,281 58,139 151,485 199,272




"GV IOYULL, 18 DLIAD B U0 WalSAS XON-9P d.LN Jo uonensuowap jofid-p[ary 10J dnjas 1591 Jo weiderp onewoyos :J aang

lem \
ng _

SIS

9250-00-1-010

wajsAs
sisAjeuy

wolsAs
Jojoeay

s
Bulldweg dIN
[pbnyuan

]

Asuwiyn
1sneyx3y
auibug

1sneyxg yomponQg
suoissiw3




CMTC
chimney

‘|nsu|ateq
exhaust duct

Plasma processor
-equipment trailer

Figure 2: Photograph of plasma-processor equipment trailer as placed for field tests on a
CMTC at Tinker AFB.
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Main CRS reactor HV bus
support frame connector

Injection gas Injection gas Ground HV
tube & nozzles manifold plates stand off

Figure 4: Photograph of CRS reactor assembly, with top housing and gas ductwork
removed.




Figure 5: Photograph showing a detailed view of a single injection-pipe/nozzle
assembly.
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Figure 6: Interior view of CRS system equipment trailer (photo taken from rear of
trailer).
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Figure 7: Interior view of CRS system equipment trailer showing system inlet and part of
CRS reactor.




Variable-speed Post processor DC power
induced fan filter enclosure supply

Sampling Catalytic converter
lines bank (4 units)

Figure 8: Interior view of CRS system equipment trailer; photo taken from the right front
looking toward the rear of the trailer.
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Figure 9: Conceptual Drawing of a

single CRS flow channel.
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Figure 10: Plots of removal fractions of various NOy species, using data from CRS NTP
catalytic hybrid system field-pilot tests on a CMTC at Tinker AFB.
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Figure 11: CRS model calculations of total annual costs and specific costs of NO removal from
Jet Engine Test Cell (JETC) exhaust versus system scale size (expressed in terms of exhaust-gas
flow rate).




