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ABSTRACT

     We present a detection process capable of directly imaging the transverse amplitude, phase,
and Doppler shift of coherent electromagnetic fields.  Based on coherent detection principles
governing conventional heterodyned RADAR/LIDAR systems, Fourier Transform Heterodyne
incorporates transverse spatial encoding of the reference local oscillator for image capture.
Appropriate selection of spatial encoding functions allows image retrieval by way of classic
Fourier manipulations.  Of practical interest:  (i) imaging may be accomplished with a single
element detector/sensor requiring no additional scanning or moving components, (ii) as detection
is governed by heterodyne principles, near quantum limited performance is achievable, (iii) a
wide variety of appropriate spatial encoding functions exist that may be adaptively configured in
real-time for applications requiring optimal detection, and (iv) the concept is general with the
applicable electromagnetic spectrum encompassing the RF through optical.

1.0 INTRODUCTION

     The ability to spatially image and manipulate both amplitude and phase of RF through optical
coherent electromagnetic fields enables interesting adaptations of current RADAR and LIDAR
systems.  Candidate RADAR/LIDAR functions potentially enhanced through exploitation of
spatial field imaging include target classification and identification, Doppler field imaging,
adaptive spatial filtering optimizing target discrimination and/or suppression of electronic
counter measures, and coherently phased sparse arrays for improved spatial resolution and
detection of low cross-section targets.  As will be demonstrated in this paper, intrinsic to
heterodyne square-law detection physics is the ability to detect and manipulate spatial field states
as well as the temporal state through a process named Fourier Transform Heterodyne (FTH).  As
a result, FTH based field imaging introduces the spatial dimension via a detection process fully
analogous and complimentary with existing RADAR and LIDAR concepts and technology.

                                                          
† Electrical and Computer Engineering Department, University of Arizona
‡ United States Naval Academy, P.O. Box 12939, Annapolis, MD 21412

Approved for public release; distribution is unlimited.



Form SF298 Citation Data

Report Date
("DD MON YYYY") 
00011999

Report Type
N/A

Dates Covered (from... to)
("DD MON YYYY") 

Title and Subtitle 
Field Imaging Radar/Lidar Through Fourier Transform 
Heterodyne

Contract or Grant Number 

Program Element Number 

Authors Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Los Alamos National Laboratory P.O. Box 1663, MS-D448 Los
Alamos, NM 87545

Performing Organization 
Number(s) 

Sponsoring/Monitoring Agency Name(s) and Address(es) Monitoring Agency Acronym 

Monitoring Agency Report 
Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 

Abstract 

Subject Terms 

Document Classification 
unclassified

Classification of SF298 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
unlimited

Number of Pages 
20



1.1 Field Imaging

     The transverse and longitudinal
components of a propagating coherent
electromagnetic field are shown in Figure 1.
The spatial amplitude and phase distributions
comprising the transverse field lie in a two-
dimensional surface normal to the
longitudinal direction of propagation with
constant phase surfaces spaced a wavelength
apart1.   The propagating field conveys spatial
information to an observer at z through the
temporal variations in the spatial amplitude
and phase distribution.  Observing (imaging)
the field with eyes, film, CCD camera or other

photosensitive device subjects the transverse field to a process referred to as squared modulus or
square-law detection.2  The square-law imaging of a complex field composed of a spatial
amplitude and phase distribution, ΦImage, results in the observer imaging the field’s intensity3

2

Imagei Φ∝I ,

with all phase information lost.  Preservation of both spatial amplitude and phase prompts a
detection process that sidesteps the limitations imposed by the square-law operation.

     The goal of this paper is the introduction of a heterodyned imaging detection process that
circumvents the square-law limitations, and therefore, is capable of directly imaging the
transverse amplitude and phase of coherent electromagnetic fields.  Section 2 introduces the
underlying principles governing FTH field detection through the calculus of Fourier spatial
projection operators, while Section 3 demonstrates Fourier projection concepts and field imaging
via a simple experimental setup based on a HeNe laser and a 69 element spatial phase modulator.
Finally, practical considerations and potential RADAR/LIDAR applications exploiting spatial
field imaging are discussed in Section 4.  It should be noted that while the emphasis of this paper
is on systems operating in sub-millimeter through optical wavelengths (i.e. physical-optics
approximation4 where the transverse dimensions of the field, aperture, and other surface
curvatures are large compared to wavelength), the theory is relatively general and in many cases
is readily extended to longer wavelength systems.

2.0 FOURIER TRANSFORM HETERODYNE

2.1 Fourier Projection Operator

     Central to FTH field imaging are Fourier projection concepts based on square-law heterodyne
detection principles relating the spatial distribution of an image field, ΦImage, to that of a
(typically user defined) reference field, ΦRef.

[1]
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Figure 1.  Transverse and longitudinal components of
propagating electromagnetic field.



Referring to Figure 2, the heterodyning of the image field, ΦImage, with the reference field, ΦRef,
in a square-law detector of surface area, s, results (after filtering) in a complex intermediate
frequency (I.F.) current.  As will be demonstrated, the magnitude (β) and phase (α) of the I.F.
current conveys the spatial Fourier projection of the reference field onto the image field

�� ΦΦ≡ΦΦ=
s

dydxe RefImageImageRef
i *,αβ .

The derivation of Equation 2 follows from Poynting’s relation5,6,7 which relates the induced
detector current, I, to the detector’s quantum efficiency, η, and the spatial distribution of the
image and reference electromagnetic fields, ΦImage and ΦRef respectively, over the detector
surface, s, through

( )I k d
s

= × ⋅��η E H s    [Ampere],

where
.,, constantkRefImageRefImage =+=Φ+Φ= HHHE

Assuming the image and reference fields are transverse electromagnetic in nature,

( ) ( )yxiti
Image eyx ,, φωρ −−=Φ ,

( )yxiti
Ref eA ,θω −′−=Φ ,

and the reference fields form a complete orthonormal8 basis set such that

( ) ( ) ( ) ( )yyxx
s
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′′− δδθθ ,,,,,,

,
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Figure 2. Heterodyned square-law detection can be perceived as a Fourier projection with the intermediate
frequency (I.F.) current conveying the magnitude (β) and phase (α) of the projection.



then the detector current at the intermediate frequency, ∆ω = ω -ω′, reduces to

( ) ( ) ( )
�
�

�
�
�

�
Φ=∆ ��

+′

s

yxkkiti
Imageyx dydxeyxAkkkI yx ,,,,Re2,, θω

µ
εηω

( ) ( )( )yxyx kktkkAk ,cos,2 αωβ
µ
ε +∆= [Ampere].

Complex Fourier coefficients, ( ) ( ) ( )C k k k k ex y x y
i k kx y, , ,∝ β α , can then be formed from the I.F.

current’s complex phase and magnitude, resulting in the following transform pair relating the
image field, complex Fourier coefficient and reference basis set:

( ) ( ) ( ) ( ) ( ) ( )
����

−=Φ⇔Φ=
s
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yxkki

yxImage
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In general, spatial variations may be present in both the reference beam and detection quantum
efficiency. Taking these variations into account, Equation 8 would be rewritten as

( ) ( ) ( ) ( ) �
�

�
�
�

�
ΦΦ=∆ ��

∗

s
RefImageyx dydxyxyxyxkkkI ,,,Re2,, η

µ
εω ,

with ( ) ( ) ( )yxiti
Ref eyxyx ,,, θωρ −′−′=Φ .

Finally, if the image field is heterodyned with a discrete set of reference fields (ΦRef(x,y)→ Φm,n),
then Equation 11 reduces to the following Fourier expansion pair

( ) ( ) ( )Φ ∆ Φ ΦImage l Image l m n m n
nm

x y x y l C x y, , , , ,, , ,ω = = �� ,

��
∗ΦΦ≡ΦΦΦΦ=

s
nmImageImagenmImagenmnml dydxC ,,,,, ,,, .

The bracket operator notation of Equation 2 has been introduced to simplify notation.
Additionally, the index l, representing the lth I.F. bandpass frequency (∆ωl) has been included to
account for Doppler shifts.

     Of practical interest in the development of synthetic apertures and multi-element detectors
(such as focal plane arrays and phased array9 receivers), the detecting surface, s, can be
partitioned into multiple detection surfaces and coherently summed in the following manner

�����
∗∗ ΦΦ�ΦΦ

i is s
nmImage

s
nmImage dydxdydx ,, .

[8]
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     Finally, generalized to three-dimensional (3-D) surfaces, the Fourier projection operator
conveys the degree of correlation between image and reference fields,

( ) ( ) ( )λλη ,,,,,,,,,,, ppsHEsJ tzyxtzyxdkd ImageRef
ss

ΦΦ⇔⋅×=⋅ ���� ,

where J is the induced current density, t the time variable, p the field polarization and λ the
wavelength.  The projection is maximized when image and reference field states are matched
(matched filter condition).  Field states may be tailored to introduce signal uniqueness, and/or
noise & clutter suppression for the design of optimal detection processes.  Spatial and temporal
field states include time, frequency, polarization, and spatial amplitude & phase.

2.2 FTH Field Imaging

     Applying Equations 13 - 14, and referring to Figure 3, the basic steps involved in image
field capture follow:

•  Heterodyne the image field,ΦImage, with the local oscillator (l.o.) whose transverse amplitude
and phase is sequentially modulated with a known set of reference spatial phase functions,
ΦRef = Φm,n, that span a valid basis set.

•  Measure the projected detector current’s magnitude and phase and form the complex Fourier
coefficient, Cm,n, for each spatial function, Φm,n.

•  Through Equation 13, reconstruct the image field from the basis functions, Φm,n, and the
measured Cm,n:

( ) ( )�� Φ=Φ
m n

nmnmImage yxCyx ,, ,, .

While a single element system is demonstrated in Figure 3, image capture rates may be improved
through reference field partitioning and multi-element detection (see Equation 15).

[16]
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Figure 3.  Fourier transform heterodyne field imaging.  Based on coherent detection principles, FTH applies
Fourier projection concepts through the transverse spatial encoding (Φm,n) of the local oscillator for
electromagnetic field capture.  FTH preserves both spatial amplitude and phase information.



3.0 EXPERIMENT

     A simple experiment demonstrating the FTH concept has been constructed.  Illustrated in
Figure 4 with photographed apparatus in Figure 5, the experiment implements a Zeeman split
HeNe laser (∆f = 250 kHz) for source and local-oscillator lines, and a 69 element spatial phase
modulator to encode the 36 term basis used in the experiment.  A description of the experimental
procedure follows:

•  The two orthogonally polarized laser lines (∆f = 250 kHz) at the output of the HeNe laser are
separated with the polarizing beam splitter into two beams paths.

•  The first beam illuminates the target forming the image, ΦImage, while the second beam
passes through the 69-element spatial modulator generating the nth reference term, Φn, n =
0,1,...,35.

•  The two beams are recombined and heterodyned at the single-element silicon detector
generating a 250 kHz intermediate frequency current In.

•  A digital oscilloscope measures the 250 kHz I.F. current’s phase and magnitude from which
the Fourier coefficients, Cn, are formed (see Figure 6).

•  Once all 36 basis coefficients, Cn, n = 0,1,...,35, are sequentially measured, the resulting
magnitude and phase of the detected image, ΦImage, are displayed on the computer screen.

Target

Φn ΦImage

Cn

2-D
Image

In
(I.F.=250 kHz)

Zeeman
Laser

∆f = 250 kHz

Beam Expander

2-D Phase
Modulator

(SLM)

Beam ReducerDetector

Polarized
Beam Splitter

Half-Wave
Plate (45°)

Mirror

Mirror
Beam Combiner

Digital
O-Scope

Computer

Modulator
Interface

ΦImage

Figure 4.  Schematic diagram of FTH experiment.



Figure 5.  Experimental apparatus.
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Figure 6.  A digital oscilloscope measures the 250 kHz I.F. current’s phase and magnitude from which the Fourier
coefficients, Cn, are formed.



     The 2-D spatial phase modulator, implemented to encode the reference beam phase front, is
the commercially produced Meadowlark Optics Hex69 spatial light modulator (SLM).  The
Meadowlark SLM is a 69 pixel, two-dimensional array of hexagon shaped, liquid-crystal
variable retarders developed for real time programmable phase masking applications.  As
Meadowlark Optics conveniently supplies the software to generate the first 36 terms of the
Zernike10 polynomial expansion set, the Zernike set was adopted for the experiment and
Equation 12, in circular coordinates, takes on the form

( ) ( ) 35,...,1,0,, ,2 =′=Φ→Φ −′− ner rZiti
nref

n θπωθρ .

The beam targets employed in the experiment are
catalogued in Figure 7.  Note that commensurate
with the rather limited 36-term expansion set,
simple target geometry was maintained throughout
the experiment.

     For the purpose of providing a comparative
baseline between measurement and theory, the
complex coefficients were directly evaluated from
Equation 14 resulting in

( ) ( ) ( ) ( ) 35,...,1,0,,,,
2

0

1

0

,2 =′= � � nddrrerrrTC rZi
n

n

π
θπ θθρθρθ ,

with

( )θ,rT  ≡ beam targets of Figure 7,

( ) ( ) 1,, =′= θρθρ rr  for a plane wave, and

( ) ( ) 2

2

,, ωθρθρ
r

err
−

=′=  for a simple Gaussian beam11.

From Equation 13, given the measured coefficients, the field image is expanded through

( ) ( ) 35,...,1,0,,, =Φ=Φ � nrCr
n

nnImage θθ ,

and the intensity (energy) evaluated with

( ) ( ) 2
,, θθ rrIntensity ImageΦ= .

Plotted in Figure 8 are measured spectral coefficients (no target) along with the calculated
spectral coefficients for the simple plane wave and Gaussian (ω = ½) models.

[17]
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A) B) C)

Figure 7.  Beam targets:  A) No target,  B) 1/3
Center block, C) ½ Dielectric block (glass
microscope slide with transmission T = 90%
and phase shift ∆θ = 0.9π ).
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Figure 8.  Measured spectral coefficients for no target.  Included are plane-wave and Gaussian (ω = ½) coefficients
for baseline comparison (coefficients have been normalized) with Gaussian model providing the best fit.

The Gaussian model was evaluated for the remaining targets of Figure 7, generating baseline
comparison with measurements.  The theoretically predicted and experimentally measured
amplitude, phase, and intensity (energy) for the beam targets of Figure 7 are plotted in Figures 9
� 11.  Both calculated and measured coefficients are normalized and a constant phase offset was
added to the measured coefficients, equalizing pedestal/piston.  Figure 11 was further subjected
to the linear transform, described next, to clarify the phase image.

     A consequence of raising the Zernike polynomials to an exponent, as prescribed by Equation
12, is noted in the fact that the 36-term basis set is no longer orthogonal.  A non-orthogonal basis
set will result in the off diagonal coupling of the expansion coefficients which, depending on
coupling strength and image spectrum, can in turn degrade image fidelity.   The magnitude of off
diagonal coupling of Equation 17 is on the order of a rather high 5% - 10%.  The coefficients
can be decoupled through the following linear transform12
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Figure 9.  No target.  A) Theoretically predicted and B) Experimentally measured amplitude, phase, and intensity.
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Figure 10.  1/3 Center block.  A) Theoretically predicted and B) Experimentally measured amplitude, phase, and
intensity.
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Figure 11.  1/2 Dielectric block - Diagonalized.  A) Theoretically predicted  (T = 90%, ∆θ = 0.9π), and B)
Experimentally measured amplitude and phase.  Within the limitations imposed by the 36 Term Zernike expansion,
the formation of the phase shift discontinuity caused by the microscope slide edge is visible down the center of the
phase image.
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     The transform is sensitive to systematic errors including source coherence, pixel distribution
and geometry, and SLM phase drift that introduce deviations from the ideal basis functions (a
strong endorsement for the use of orthogonal basis sets), and hence difficult to apply in practice.
However, the transform was successful in bringing out the phase structure of Figure 11.  Within
the limitations imposed by the 36-term expansion, the formation of the phase shift discontinuity
caused by the microscope slide edge is visible down the center of the phase image.

     It is important to remember that the primary purpose of the experiment is the demonstration
of the underlying principles governing FTH imaging.  Images shown in Figures 9�11 do indeed
indicate that the basic mechanisms expected, such as Fourier projection, are present and valid.
However, care should be taken when interpreting image content as the actual image essentially is
filtered through the relatively low-resolution 36-term expansion window.  Sharp amplitude and
phase structure in the imaged field tends to excite energy into higher spatial modes that will fall
outside of the 36-term window and result in image distortion.

4.0 CONSIDERATIONS & EXAMPLE APPLICATIONS

4.1 Practical Considerations

     Practical improvements based on the simple FTH experiment described in Section 3 are
briefly discussed in sections 4.1.A – 4.1.E.  Practical considerations include active phase-front
correction, phase locked detection, pulsed mode correlated double sample, basis functions, and
aperture dimensions based on spatial resolution requirements.

Phase-Locked
Detection

Detector
α , βα , βα , βα , β

SM
Controller

Spatial Modulator

Interferometer
Detector Array

Expander

Reference

Phase-Front Generation
(Active Feedback Controller)

Image

Primary

Figure 12.  Practical FTH receiver.  Note that an all-reflective spatial modulator is used in this example.



4.1.A. Active Phase-Front Correction

     The subsystem generating the spatial phase-fronts will require systematic monitoring and
calibration for the removal of phase distortion introduced, for example, by alignment error or
modulator drift.  Inserting an interferometer into the phase-front beam path is one approach to
direct wavefront monitoring of short-wavelength sub-mm through optical systems.  Referring to
the phase-front generation subsystem of Figure 12, as the spatial modulator (SM) scans through
pre-programmed phase functions, the interferometer array monitors the phase-front interference
distribution and provides corrective feedback through the SM controller.  Note that each SM
element must be programmable within a spatial phase-shift of at least ± π (for the wavelength of
interest) or larger depending on the feedback algorithm implemented.

4.1.B. Phase Locked Detection (Optical Systems)

     FTH systems may be required to acquire Fourier projected coefficients at a high rate of speed.
Detection of coefficients requires the precision measurement of the I.F. phase and magnitude.
Unlike the simple technique applied in the experiment of Section 3, precision high-speed
acquisition can be accomplished through techniques employing multi-pulse and I.F. phase-
locking13 for measurement of magnitude and phase (α and β).

4.1.C. Pulsed Mode Correlated Double Sample

     FTH imaging resolution can be limited by the fundamental coherence properties governing
laser and RF sources.  The degradation is a manifestation of transverse amplitude and phase
fluctuations on the order of the coherence time14, τc, which is intrinsic to a given coherent source.
In essence, source variations cannot be distinguished from image induced modulations, thereby
limiting resolution.

     What follows is a description of a correlated sampling algorithm that can aid in mitigating the
limitations imposed by a source’s finite coherence.  Correlated double sampling (CDS), as
applied to FTH, is the process of removing source fluctuations from the target by correlating the
outgoing transmitted pulse to the return, target-modulated pulse, through a common reference.

lc = τcc

τt /2

Source

Figure 13.  Imaging resolution may be limited by the fundamental coherence properties governing Laser
and RF sources.  Correlated sampling algorithms can aid in mitigating the limitations imposed by a source’s
finite coherence time, τc.

Target



     For example, a pulsed transmitter-receiver system acquiring one coefficient Cm,n per pulse
would implement the following algorithm.

•  Measure the Fourier projection coefficient, CX m,n, from the basis function Φm,n  of the
outgoing transmitted pulse.  The measurement must be performed within the sources
coherence time τc.

•  Measure the Fourier projection coefficient, CR m,n, from the basis function Φm,n  of the
target-modulated return pulse (after a transit time τt).

•  Subtract the common transverse amplitude and phase error:
Cm,nΦm,n = (CR m,n - CX m,n)Φm,n     →   Cm,n = CR m,n - CX m,n.

As both the outgoing and return pulses are compared to a common reference, it is essential that
the reference field is properly conditioned (for example, spatially and/or temporally filtered) and
stationary over the transit time τt.  Note that as an additional benefit to employing CDS, any
stationary spatial phase or amplitude structure in the reference field will be subtracted out.

4.1.D. Basis Functions

     FTH receivers, in general, may implement basis functions in which both amplitude and phase
are modulated.  Complex modulators are practical only if they can achieve sufficiently high
modulation rates and are readily calibrated.  Systems in which the phase is modulated through a
refractive/reflective element or a RF phased array are referred to as pure phase modulators.
From Equation 12, pure phase modulation requires the phase function argument

( ) ( ) ( )��
�

�
��
�

�
Φ

′
= yx

yx
iyx Ref ,

,
1ln,

ρ
θ ,

remain real for synthesis with a refractive or reflective spatial modulator.  For example, the
familiar two-dimensional Cartesian exponential Fourier series (x,y normalized to a unit square)

( ) ( )ymxmi
nm eyx +−=Φ π2

, , ,

possesses the real phase function

( ) ( )ynxmyx += πθ 2, .

Implementation of Equation 25 suggests a spatial phase modulator generating an x,y phase
pattern across the modulator with slope proportional to m,n respectively.  Furthermore, as
coherent fields are longitudinally periodic, the spatial phase “wraps around” every 2π, limiting
the dynamic modulation requirements to ± π.

[23]

[24]
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4.1.E. Aperture Diameter

     Field imaging, as does any other electromagnetic imaging technology, requires the
appropriate matching of the receiver aperture diameter to a given set of resolution requirements.
To resolve a target feature size, δ, at range R and wavelength λ will require a minimum aperture
diameter of 15

][44.2 mRDo δ
λ= .

4.2 Example Applications

     Several potential RADAR/LIDAR applications exploiting spatial field imaging are presented
in Figures 14 - 17.  For clarity, the examples focus on the spatial concepts discussed in this
paper.  However, due to the complimentary nature of the spatial/temporal heterodyne detection
process, any practical system design would by necessity focus on the functional integration of
FTH concepts within today’s highly developed RADAR/LIDAR infrastructure.

     Spatial signature discrimination and Doppler field imaging concepts allowing enhanced target
classification and/or identification are illustrated in Figures 14 and 15 respectively, while Figure
16 provides an example of electronic counter measure (ECM) suppression through spatial field
filtering.  The ECM suppression principles of Figure 16 are similar to techniques already
practiced in current RF RADAR systems deploying phased array receivers.16, 17 From Equation
26, aperture diameters at longer RF wavelengths (> cm), can become prohibitively large for high
resolution at long ranges.  Referring to Figure 17, resolution and sensitivity may be enhanced
with a sparse array of coherently phased receivers.  The total induced signal, given the scattered
image field (ΦImage) and the 3-D surface formed by the receiver aperture and reference field
(ΦRef) discretely sampled at ri, is defined through the spatial projection operator (Equation 16)

( ) ( ) ( )������ ΦΦ=�⋅×=⋅
i

ImageiRef
i

i
ss

ttCdkd λλη ,,,,,,, prprsHEsJ .

Equation 28 relates the coherent summation of the projection coefficients, Ci, to the spatial
projections of the image and reference field surfaces evaluated over the receiver aperture at
location ri.  Receivers phasing (ΦRef) is accomplished through addition or subtraction of phase
pedestal offsets at the receiver local oscillator and delay offsets to the Ci before summation.

     As a practical note, the target reflected phase fronts of examples Figure 14 - 17 may exceed a
wavelength in depth, leading to ± π phase ambiguities in the retrieved images.  For applications
requiring preservation of phase depth, the ambiguities may be resolved through multiple
wavelength interferometry18 where the target is illuminated and imaged, preferably
simultaneously, with two or more wavelengths resulting in the two-dimensional synthetic phase
image:

( ) ( ) ( )
21

21,,,,
21 λλ

λλλφφφ λλλ −
=−= swhereyxyxyx

s
.

The technique may also be used to reduce image phase sensitivity due to fluctuations resulting
from moving target dynamics (target scintillation).

[26]

[27]

[28]
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Figure 14.  Field imaging – spatial signature discrimination.  Field imaging may be a useful tool to aid or
enhance RADAR/LIDAR target classification and identification. Real-time configurable spatial reference
functions permit the synthesis of adaptive spatial filters and/or optimal detection algorithms.
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Doppler shifted index representing the lth I.F. bandpass frequency, ∆ωl, (see Equations 13-14) .
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Figure 16.  Spatial field filtering - electronic counter measures suppression.  Provided the target signature is spatially
distinguishable from the Electronic Counter Measure (ECM) signature, field based spatial filtering can potentially
aid in discriminating the desired target(s), ΦTarget , from the unwanted ECM induced clutter and noise, ΦECM .  Shown
in the above example, spatial filtering is accomplished by first pre-sampling the image field, ΦImage, followed by the
construction of a reference set with components orthogonal to the ECM spatial signature.  The spatial filter
coherently nulls (through orthogonal field projection) the lower-order spatial ECM components at the detector
(before entering the I.F. circuitry), while passing the higher order target signature.
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Figure 17.  Coherently phased sparse-array.  Coherently phased sparse arrays for improved spatial resolution and
detection of low cross-section targets.  Receivers phasing (ΦRef) is accomplished through addition or subtraction of
phase pedestal offsets at the receiver local oscillator and delay offsets to the Ci before summation.
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5.0 Conclusion

     We have demonstrated a detection process capable of directly imaging the transverse
amplitude, phase, and Doppler shift of coherent electromagnetic fields.  The detection process,
Fourier Transform Heterodyne, incorporates Fourier projection principles through transverse
spatial encoding of the local oscillator for field imaging.  Appropriate selection of spatial
encoding functions allows image retrieval by way of classic Fourier manipulations.  The
underlying principles governing FTH imaging were demonstrated via a simple experimental
setup based on a HeNe laser and a 69 element spatial phase modulator. Several potential
RADAR/LIDAR applications exploiting spatial field imaging where presented.
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