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ABSTRACT

A fluid-dynamic computing method is proposed in which the materials
are represented by discrete particles interacting with one another by
means of pair forces, Details of technique, accuracy, and stability are
discussed in preliminary form. Results are presented of some simple
tests of the method, and it is shown that even though considerable de-
velopment effort is yet required, the method appears to have some de-

sirable properties not present in any other.
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I. INTRODUCTION

The perfection of high-speed electronic computers has opened the
way for solving a wide variety of complicated problems for which no so-
lutions previously were possible. Among these are the problems of com-
pressible fluid dynamics, for which numerous techniques have been devel-
oped, mostly using finite-difference approximations to the appropriate
partial differential equations. In many applications, particularly those
involving one space dimension, the results have been very satisfactory.
Sufficient precision has been obtainable so that direct use could be made
with confidence in experimental design work. In situations depending
upon two space dimensions, there are likewise successful techniques, but
at present they all are limited in applicability. One method may be
successful in a situation in which another would fail. In some cases,
problems have been solved by using one method for part of the flow and
another for the rest. This has been quite successful for cases when a
period of validity exists for both methods, but has led to frustration
when circumstances would force use of this procedure for a problem in
which both methods would give questionable results at the time of change-
over,

We are here proposing a computing technique for solving problems in
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multidimensional compressible-fluid dynamics that avoids some of the

troublesome features of other existing methods. It is based on a repre- -
sentation of the fluid by a set of mass points which are accelerated by
mutual forces and whose conseqguent motions represent that of a fluid.
For reference, the technique is referred to as the "Particle and Force"
(PAF) method.
We illustrate the need for a new computing method by reviewing
briefly some of the existing multidimensional techniques which have been
used at the Los Alamos Scientific Laboratory. This review will also
serve as a basis for demonstrating some of the properties of the new
method.

1. Eulerian finite-difference methods

Every numerical technique for solving fluid-dynamics problems has as
its basis the differential equations of motion, or equivalently the con- v
servation laws from which the equations are derived. A principal differ-
ence among techniques comes from the nature of the coordinate system used
in the study. In Eulerian techniques the coordinate system is at rest re-
lative to an external observer, and fluid flows by the lines of constant
coordinate. In devising a finite-difference approximation to the partial
differential equations of motion, one constructs a grid of coordinate
lines which divides space into a set of finite zones or cells., The fluid
at any given instant is then described by specifying a set of values for

each cell of such quantities as velocity, temperature, and density. The

cell-wise values are interpreted as some sort of cell-wise averages.




Space derivatives in the equations of motion are written as the ratio of
intercell difference to cell size. In addition, the passage of time
occurs in finite steps of interval &t each, so that the time derivatives
are represented by the ratio of the difference from end to beginning of
a cycle, to dt. Thus the differential equations become algebraic equa-
tions by which new values for each cell (i.e., those at the end of *the
nth time cycle) can be determined from the known values at the beginning
of the cycle. Starting of a problem requires specification of appropriate
initial conditions, and progress through time requires boundary condi-
tions, translated into appropriate finite-difference form. With proper
care in the formulation, and with small enough space and time intervals,
the calculation may be both stable and sufficiently accurate (see refer-
ence 1), The qualification is expressed because for some situations the
proper formulation is not at present known, while for others the achieve-
ment of accuracy would be only at the expense of intolerable amounts of
computing time. The most vexing difficulties with the Eulerian methods
are of three types. First, moving regions with structure which is small
compared to the over-all dimensions of the system are difficult to re-
solve properly. It is wasteful to have fine zones throughout the entire
space through which the small structure will move, and it is very diffi-
cult to devise a good means for creating and destroying zones, so that a
region of fine resolution follows the structure. A second difficulty
concerns the boundaries between materials, which must have a special ex-

plicit treatment or else be subject to an unrealistic smearing diffusion.
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Third, there is an inherent lack of Galilean invariance and isotropy.

One of the overwhelming advantages of the Eulerian approach is that
there is no difficulty in treating problems in which there are large dis-
tortions or slips in the fluid.

2. lagrangian finite-difference methods

The approach is similar to the Eulerian described above, in that
the space containing the fluid is divided into finite zones, and the con-
figuration advances through time in finite steps. The fundamental differ-

ence is that the Lagrangian coordinate system follows the motion of the

iggig.u’s As a result, two of the principal difficulties of the Eulerian
methods are avoided. Those regions in which fine résolution is necessary
retain their fine zoning because the coordinate system moves right along.
Material interfaces are easily treated because coordinate lines can be
placed along them and will forever follow them. The difficulties in the
Lagrangian approach arise when the fluid develops internal slips or
large distortions. Special techniques have been developed to allow slip
lines to be handled; when it is initially known, for example, where the
slip will occur, then a coordinate line can be placed there with special
treatment given. But when the slip-line position is not initially known
the matter is considerably complicated., Distortions are even more ser-
jous in limiting applicability. When, for example, initially rectangu-
lar cells have become distorted into arbitrarily shaped quadrilaterals,
the initially-appropriate form of the difference equations may be quite

inapplicable, although, here again, special techniques have been
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proposed6 which hold promise for solving the difficulty somewhat. The
Lagrangian method also has trouble with collapsing free surfaces (as in
the shaped-charge problem); some attempts to solve this difficulty are
also discussed in reference 6.

3. Combination Eulerian-Lagrangian techniques

7

Some unpublished work has been done  on a technique in which the co-
ordinate system is Lagrangian in one direction and Eulerian in another
(in two space dimensions). Another alternative would be to have a
Lagrangian coordinate system for part of the fluid which moves through
an Eulerian system in which the dynamics of the rest of the fluid is
calculated. Both approaches are nicely suited to some situations which
are not well treated in a homogeneous coordinate system of either pure
type.

Another combination form which has been extensively applied is
called the Particle-in-cell (PIC) method.8 The entire space occupied by
the fluid is covered by an Eulerian mesh of cells, and the fluid is re-
presented by a set of particles (essentially a Lagrangian mesh) which
move through the cells. The finite-difference equations are written re-
lative to the Eulerian mesh; the particles are moved with velocities
determined from adjacent cells, The method has the Eulerian advantage
of calculating distortions with ease and the Lagrangian advantage of
giving information about motions of fluid elements, especially of mate-~

rial interfaces which are automatically handled well. PIC-method disad-

vantages include the Eulerian difficulties in lacking fine resolution
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and invariance, together with an additional disadvantage of requiring the
storage of information for both the Lagrangian and Eulerian systems,

L, Series methods

The dependent variables are expressed as infinite series in func-
tions of position with time-dependent coefficients. The approximation
comes in truncation of the series so that only a finite number of coeffi-
cients remain. Their changes through time proceed in a sequence of fin-
ite intervals, governed by equations obtained from substitution of the
series into the appropriate partial-differential equations. Very little
work on this method has been done at Los Alamos, but Thomas9 has reported
successin application to calculations of stability of plane-parallel flow.,
A variety of difficulties concerning computational stability, conserva-
tion, running time on computer, and interpretation are forseeable.

5« Particle methods

The PAF method, which we are proposing in this report, was inspired
by the heuristic studies of Pasta and Ulam1o on the dynamics of a set of
particles with mutual forces, With forces dependent on separation only,
their calculations represented adiabatic motion with no dissipation.
Nevertheless, their results on a pair of Taylor-instability calculations
were quite encouraging, and strongly suggested that a real fluid-dynamic
computing method could be obtained from a generalization of their ideas.
Presentation of the resulting techniques is the main purpose of this
report.

Kolsky11 recently has also described a generalized particle-like

method which differs considerably from the one here proposed.
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II. DESCRIPTION OF THE METHOD

A. Differential Theory

The particles whose dynamics we follow are to represent a fluid.
Insofar as we may be aided in formulating the method by referring to
classical particle-dynamic theory, we may proceed with that guidance. We
know, however, that at some point a divergence will be necessary so that
the dissipative effects in a real fluid can be represented. Our particles
are not molecules whose internal energy is carried by velocity fluctua-
tions; indeed, we expect that the velocity of a particle is to represent
the mean velocity of the finite mass of fluid it represents. The macro-
scopic kinetic energy of the fluid is exactly the kinetic energy of all
the particles. The internal energy is represented by an additional var-
iable. If this latter is expressed as a function of particle positions
only, then only adiabatic motion can be represented. Compression and
subsequent expansion can return the set of particles to exactly their
initial configuration with no dissipation. Thus a special prescription
is needed to describe variations of particle internal energy.

We start by considering the dynamics of a set of particles de-

scribed by the following nomenclature.
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i,j = indices describing the particle number
ms = mass of particle #j -
;3 = space coordinate of particle #J
G% = velocity of particle #j
5 v

i3 = force exerted by particle i onto particle J
- - -
r..=r, - T,

ij J i

-3

r,.. E|r,.

1J ‘ 1J
- - .
55 = r. ./r.. (a unit vector pointing from particle #i

1J to particle #j)

- -
Mj = mjuj = momentum of particle #3
K 1 0 4.0, = kineti f ticle #J

.= —=m,u, .u, = kinetic energy of particle j

J 2 3d Jd & P J 5
Jj = internal energy of particle #j

Additional nomenclature will be introduced as required by developments

of the theory.

We commence by assuming that the particles are governed by the

equations of motion

a7, —*
_J - Y
Ty 3T 2, Fi; (1)
i
d?j .
T <Y (2)

The summation over i, modified by the presence of *, does not include
the term i = j, and is further restricted to include only certain neigh-

bors of J as discussed further ahead. Summation without * includes all .
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particles in the system.

Next, we assume that the force function can be divided into two

parts

F_‘)ij = .s-)ijfij + 8 (3)
where

fij = f(rij’Ji’Jj)

The first term in the force is associated in form with the equation
of state of the fluid; the second term is introduced to achieve dissipa-
tion in the same manner as the "artificial viscosity" of von Neumann and

Richtmyer,120r for the purpose of including real viscous effects.

The correspondence with fluid mechanics comes through an examination
of the conservation laws in forms appropriate to the nature of the con-

tinuum to be represented.

1. Conservation of mass. This is automatic. Fach particle has

constant mass, mj, so that the total does not change with time. Like-

wise the change of mass in any fixed volume exactly equals the amount

flowing over the bounding surface.

2. Conservation of momentum. To satisfy this requirement, the re-

striction is the same as in classical particle dynamics, namely

- -
F,..=- Fji' Proof of this is demonstrated as follows. Consider the mo-

iJ
mentum change rate of a particular subset of all the particles

*
vd dﬁ{ -
a }: m, —4 = }: }? F,.
dt J at y iJ

J(subset) j(subset) i
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We break the sum over i into two parts and write

a * - -
& Z Z Fig * Z Z 13

i(inside) j(subset) i(outside) j(subset)

where "inside" and "outside" refer to inclusion or exclusion from the
subset. In the first double sum, each pair of particles enters twice,
so that the total contribution to the sum from a particular pair is

F;j + F}i' Since there must be no contribution to momentum change from
particles within the subset, the sum of the two terms must vanish. The
second double sum does not thereby vanish, since each pair enters only
once. Thus with E;j = - Elj’ the momentum change of any subset of par-
ticles arises only through external forces, as required.

The restriction also means that

f£,.=17,.

i Ji
- (4)
85 " &si

3, Conservation of energy. Here we must make a break from the
usual procedure in particle meéhanics. In devising a reasonable approach
we will thereby be able to establish some of the crucial parts of the
technique. The basis for the energy discussion is that the rate of
change of energy of a particle should be given by the rate that the
other particles do work on it. This work rate is in turn given by the
product of force by velocity. (To be properly symmetric, the velocity
through which the work flux is carried from one particle to another

must be the mean value of the two velocities.) Thus we write

-16-




* — -
4 - i + u,>
aT (KJ + JJ) = Fij —-——-—-—Jle (5)
i
It follows that the total energy of an isolated system is conserved

*
am@%*%*a Z ZFij (uy +uy) =0
3 7 1

where equality to zero follows from separate vanishing of the sum of con-
tributions from each pair. Likewise the energy of any subset of particles
changes only through work done on them by external particles.

Now, we already know that

-
daX, du
J =m\u. .- _J.
at 35 T

*

~3
=a’.-z F,.
dJd 1J
i

Combination of this with (5) can be arranged to give

ad , -
_g=lZF."_"
T 2 15709 = uy) (6)
i
or
aJ * a *
r
_d__1 ij .1 2y .7
T QZfIJ It +ezg13 (uy uj) (7)
1 i

B. Finite Time Intervals

In practice, the numerical computations must proceed through a

sequence of finite time advancements, whose steps are of duration bt,
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This is accomplished through a replacement of (1), (2), and (6) by

- n+1 —-n *
u, u

J -5 2 n
m‘j_————&b = z Fij (8)

r - T — n+1
—_J =
5t Y3 (9)
*
JJ.n+1 - Jjn : > ) 5 . >
= — < - >
= 22 Fij ( ui> <uj (10)
i
where
<P>=1 (% + TP

This shows how the variables for the beginning of cycle #n+1 are ob-
tained algebraicly from those at the beginning of cycle #n. The choice
of time-centering of the equations is Jjustified as follows:

Eq. (8) — At the beginning of the calculations for the advance-
ment through a cycle, the only information available for the force cal-
culation is that which pertains to the beginning of cycle #n. The force
is thus labeled with index n.

Eq. (9) — After calculation of the new velocity by (8), there is
some arbitrariness as to what velocity should be used to determine the
new coordinate. To show that the newly calculated velocity is preferred
over that which the particle had at the beginning of the cycle, we appeal
to a simple example of stability properties.v Suppose that, in one dimen-

sion, a particle is subjected to an external potential which is a function

-18-




of the particle position only. Then

du _ .2
at - "~ %% X
at

are the appropriate equations for small oscillations about a potential
minimum centered at x = 0., The solution can be written
in t
u=u_ e ©°
inm t
o

X=X €
o

In finite-difference form, analogous to (8) and (9), we write

un+1 - un = - W 2 ot xn

n+1 n n+e€
X - X =u ot

where if € = 1 we have the proposed procedure, and if € = O we have the
alternative whereby the particle is moved with its beginning-of-cycle

velocity. We try the solution

n iondt
u =u_ e
o)

n iondt

=X e

e}

»x
1

and find the condition for solution to be

(r - 1)2 = - re(woﬁt)2
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eu»&t. Instability of the difference approximation is indi-

m

where r
cated by the presence in o of a negative imaginary part, or equivalently
by a magnitude of r which exceeds unity., For € =0, T = 1% inSt and

x| =~1 + wézate , indicating unconditional instability. For € =1,

however, r = 1 = (woat)2 iy/w(woat)LL - 2(w08t)2 . If woat > 2, thenr

is real and one of the solutions has magnitude exceeding unity. If
moét < 2, then \r\ = 1, indicating the achievement of stability for suf-
ficiently small values of 8t. (The time interval per cycle must be less
than ﬂ-1 times the period of oscillation.)

Eq. (10) — The right side contains the average of the old and new
velocities, which combination is introduced to assure rigorous €nergy
conservation in the time-difference form of the equations. (Mass and
momentum have likewise been conserved; proof of this is the same as for
the differential equations.) To demonstrate energy conservation we start

from the identity

1 [(-» n+1 >2 <—->n>2} - . (—) n+1 —>r>
= jlu, -\ u, <u, > u, - u,
2 J J /. J J J

Thus, from (8), the change in kinetic energy of a particle is

i

*
—_
UL Sl &2 F P <T>
J J 1J J
i

Combination of this with (10) gives for the change in total particle

energy, Ej’
*

-3
Er.‘+1-E.n—1ZFij-<E’>+<€j>> (11)
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- — .
Since Fij = - Fij’ this result shows that the energy transferred from
particle #i to particle #Jj is equal in magnitude but opposite in sign
from that transferred from #j to #i, thus proving the contention of

conservation.

C. Dissipation

There is at least one other form alternative to (10) which could
be considered for the internal energy calculation. The total energy
difference could be calculated in a form analogous to (11), but with any
time centering of the right side. The result would still be conserva-
tive as long as the proper reciprocal symmetries were preserved. From
the new total energy of the cell, the new kinetic energy could then be
subtracted giving the new internal energy.

The reason for the specific choice of the form (10), however, fol-
lows from the requirement of monotonic dissipation. With (10), proper
choice of the é;j forces can always result (at least to lowest order in
®t) in increasing entropy, while in most of the alternative forms there
can be circumstances leading to significant decreases in entropy.

D. Neighbors

Two kinds of particle-wise sums have been introduced so far. The
unmodified summation is over all particles of the system, while a summa-
tion modified by superscript * means a neighbor sum. Thus %f ;;j de-
notes a sum over the neighbors, i, of particle #j. Such a modified sum-
mation is required in order to achieve a proper fluid-dynamic represen-

tation, in which elements of fluid do, indeed, interact only with
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those adjacent. There are several methods by which the neighbors of a
particle could be chosen, so that some criteria must be evolved for de-
ciding among them. Important among these criteria is the requirement

of reciprocity: for rigorous conservation of momentum and energy it is

necessary that particle #1 be a neighbor of particle #j if and only if

#3j is a neighbor of 4. This is satisfied by the neighbor-choosing
method in which all those particles lying closer than some given dis-
tance to #j are considered to be neighbors of #3j. The distinguishing
distance must be the same for all particles, with the result that in re-
gions of high compression each particle will have many neighbors, in
violation of the requirement of interaction only with adjacent elements.
We have therefore used a somewhat different means for finding neighbors.

The neighbor-choosing procedure we have used involves two steps.
First, for each particle we find the N other particles lying closest to
it. (In Cartesian coordinates, N is twice the number of space dimen-
sions.) Since the reciprocity condition is not automatically satisfied
by this, we proceed in the second step to add to the neighbors of each
particle just those necessary to give complete reciprocity. As a re-
sult, each particle can have more neighbors than the ideal number, N,
but we do not therefore modity the nature of the interparticle forces
or any of the procedures so far described. An argument Justifying this,
and a demonstration of its validity, are given in Part III.

The following table shows how many neighbors a particle would

have under various circumstances, in Cartesian coordinates.
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Number 77 = Number of Neighbors
of Ordinary Maximum Possible| Usual Extreme
Dimensions N Total Total Total
1 2 ~ 2 L 3
2 L ~5 9(?) 8
3 6 ~ 8 15(2) 12

The numbers are not meant to have any absolute significance, only to indi-
cate approximately the magnitudes to be expected. The numbers for three
dimensions were guessed as extrapolations from one- and two-dimensional
observations.

A combination of the above two procedures also might be appropriate.
The search for N nearest neighbors could be conducted only among those
which lie closer than a prescribed distance. This would mean that a small
number of particles far from the rest could actually become completely de-
tached, and no longer influénce the rest.

E. Boundary Conditions

The boundary adjacent to a vacuum is simply a point, line, or sur-
face separating a region with particles from one without any. One might
speculate that no special consideration would be necessary for obtaining
properly the surface motion, and in Part III it is shown that such is
indeed the case.

A rigid wall can be produced by an image method in which the neigh-
bors of a particle near the wall include the images of itself and of its
neighbors. Each image particle has the reflected properties of the cor-

responding one in the system. This is easily accomplished if the wall
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is straight (or flat), but becomes more complicated if the wall is curved.
In this latter case one might, for simplicity, be content to allow a .
given particle to be influenced by its own image only (or images, if the
wall forms a small pocket).
So far our studies have been limited to examples with only the sim=
plest boundary conditions; much thought and experimentation will be re-

quired to perfect general techniques,

F. Fluid-Dynamics Eguivalence, Choice of Force Functions

The most difficult, but most important, question to be answered is:
How well will results from the proposed computing method represent the
solution of a fluid-dynamics problem? At this time only a partial answer
can be given, and most of the rest of this report will show that which so v
far has been learned.
Up to this point, no specification has been made of the force func-
tion, except as implied by the dependence of the E;jfij part upon the
mutual distance, the internal energies, and an ordering variable (such
that the force vanishes between two particles if they are not neighbors),
together with the statement that the é;j part is included only to produce
dissipation. Already it follows that goodness of the method will depend
upon some statistical properties of the particle behavior. An ideal
particle-and-force treatment might base the force between two particles
upon particle-wise volumes and interparticle area. (Both of these depend
in complicated fashion upon the positions of all the other surrounding "

particles, and would therefore require very large amounts of computing
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time.15) In the PAF technique, however, the force between two particles is
completely independent of the other surrounding particles, with the im-
portant exception that the two particles must be neighbors.

The E;jfij part of the force function has been chosen in such a way
as to represent the equation of state in a rectangular array of particles.
Consider the case of two dimensions, with the particles all having the
same mass, m. For a polytropic gas, for which the equation of state is
p = (7 - 1)pI (in which p, p and I are respectively pressure, density, and

specific internal energy), the force between two particles

in a horizontal direction is thus

f.. = (pressure) times (area) . .
1J . T
m Yos
= (y - 1)(gg> (5/ times (D) .
=( -1)J . .
a
K3
L] . b
(7-1) (J.+J.) ¥
f.. - = o a (12)
ij 2r,,
i

The same form results for the vertical direction, and (12) is thus the
force function (actually appropriate to use in one, two, or three dimen-
sions).

More difficult to derive is the form which should statistically re-
present a more general equation of state. For p = p(p,I), the recipe cor-

responding to the polytropic gas treatment would lead to
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. . nd
horizontal: fij =D p(éb, m>

. . m J
vertical: fij =ap =0’ m)

The result cannot, therefore, be directly related to the requirement
which states, in effect, that the horizontal force should not depend
upon b, while the vertical force should not depend upon a. (If, however,
the motion is purely horizontal, then b is constant and the requirement
is satisfied.)

Actually, a rectangular array is configurationally unstable, as
has been pointed out by Birkhoff and Lynch,“+ and the particles will
most usually be distributed "randomly." (A discussion of configuration
instability is given in Appendix I.) In addition, the randomness of
spacing will probably be maintained at least at a rate comparable to the
rate of the over-all dynamics. Thus the area between particles should,
statistically, be proportional to the mean interparticle distance, while
the volume used to calculate the density should be proportional to the

square thereof. This leads, therefore, to the proposal for general equa-

o n Ity
"ty P o " 2m (13)
(ry5)

tion of state

f..
1J

to be appropriate for & space dimensions. (The constants of proportion-
ality are chosen to give agreement with the polytropic equation of state,
and the density formula for a square arraye.)

>

1
Incidentally, Beyer has pointed out ” that, at least with a
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rectangular array of particles, an infinite line at any angle through
them will have the proper force acting across it when the fluid is a
polytropic gas. It would be useful to have a generalization of his ob-
servation to the determination of the probability of finding a specified
force across a finite line segment through a random distribution of par-
ticles with generalized force function,
The é;j forces are much more easily specified in general., Indeed,
we have chosen
-
i

g5 i (1k)

I
5
€

=1
1
F

for a region of compression and é;j = 0 for a region of expansion; w is
a constant with dimensions of reciprocal time. (An alternative form is
discussed in Appendix II.) The analogy to viscosity is easily demon-
strated and the contribution that the é;j force makes to stability is
discussed in Part III. The dynamic effect can be seen as follows. Con-

sider a group of particles for which the fij forces vanish. Then (1)

becomes
dﬁ{ * - -
m gt = mw ? (ui - uj)
- -
=/{m(u,"' - u,
Nows(Z, - 2
>
where G{'ssgiZl G; is the average velocity of the’{ neighbors. If this
i

average is constant in time then particle #j, starting from ﬁ;o att =0,

will change velocity according to

-~ - - - -9ant
w, = u,t+ (U, -u.')e
J J Jo J
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The velocity will decay to the mean velocity of its neighbors, with

a decay time of (7Zw)-1. )
Thus, the crudeness of our proposed method is now laid bare. If it

can be made to work as proposed, or with relatively minor variations, then

it will have tremendous advantages of generality without requiring the

great computing time of most proposals of this generality. The proof of

applicability must come through considerable analytical study of the sta-

tistics of such a system, together with an analysis of numerous computing

experiments. These projects are in progress in Group T-3 of the lLos

Alamos Scientific Laboratory, and contributions or suggestions will be en-

thusiastically welcomed.
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III. PAF IN ONE SPACE DIMENSION

The one-dimensional form of PAF differs little from the usual tech-
niques of one-dimensional Lagrangian finite difference methods. The prin-
cipal difference for which concern was felt is the fact that a PAF par-
ticle can have either one or two neighbors on each side, as a result of
the reciprocity requirement. Thus, for example, as a compression wave
moving to the right approaches a particle, there will come a time when
that particle will have two neighbors to the left and one to the right.
Briefly, its rightward acceleration will be too great., Soon, however,
the situation is reversed -— after the front of the compression wave has
passed, the particle will have for another brief time two neighbors to
the right and only one to the left. As a result, the effects of previous
over-acceleration can be expected to be removed; the computations dis-
cussed below show that the expectation is indeed realized.

The one-~dimensional calculations were performed for the additional
purposes of studying the behavior of internal energy and certain matters
concerning stability.

A. Negative Internal Energy

With the neighbor-search procedure which gives each particle at
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least N neighbors, even when it has flown off from the rest of the system,
it is possible to obtain negative values for the specific internal energy.
This can be seen by considering the motion of a particle which is at a
distance x from its two neighbors (both of which are on the same side of
the particle). If the particle has internal energy J, and its neighbors
have internal energy JO (assumed constant), then, for J small,

(y - 1) Ju (y =13, 1 ax

— R - = - — c—

dt 2x 2 x dt

(y - 1)J
5

O

J = const -~ In x

and since x continues to increase (since the force does not become attrac-
tive until somewhat after J = 0), it is seen that J could become negative.
This situation could probably be remedied by the combination neighbor-
searching procedure described at the end of Part II-D.

B. Stability of the PAF Procedure

Consider a one-dimensional region which is only slightly perturbed
from a constant state. For simplicity, we use a polytropic-gas equation
of state, but the results are more generally applicable. The equations

of motion are

. n n
m [ n+l B o 2= 1 Jj-1 * JJ J? ’ J§+1
5t \%3 3/)° 2 n_mn " on n
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The values of Qi are zero and one, for expansion and compression respec-

tively. Into these equations we introduce the linearizations

)

X. - X, = 0x(1 + €.
37 T ( J-2

Jj =J(1 + 203)

and drop higher than first order terms in uj, € ‘Land cj; J and dx are

J=z
constants. The resulting linearized equations of motion, plus energy
equation, are

m [ n+l n)_(y-1)J(n n n _ _ _n
5t <uj - uJ)‘ o ("3-1 SRFISIMREEE SR 1>

N\
soe (2, - o)+ e (8, - )]

+

en+1 _ en _ ot un+1 _ un+1\
3-8 7 T3-x T =& \J 31/
/
n+1 n (y - 1) 8t (.n n+1 n 01
- - - -
s 3 B ox ot P R P K P B PR 3

We assume that the time average of §+ is % and put this value in. To
analyze the stability of these equations we substitute the trial func-

tions

n ikJ n
u,.=u e T

n

J o

n ikd n
€. =€ r

J o)
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and find them to be a solution provided that r satisfies the equation

2
(r-1)[r-1+¢&(0 -cos k)] + 5— [4r sin® % + Z;%—l (1 + ) sin2k] =0

in which
£ = wdt
— cdt
H =5

and the sound speed is c = \/7(7 - 1)J/m . The equations are not stable
for those circumstances in which the magnitude of r exceeds unity. Con-
sider first the case in which the roots of r are real. At r = 1 we find

that except for certain peculiar values of k, it is necessary that u = O,

while for 1 > 0, r < 1, and no restriction therefore results. At r = -1,
LE L2
2 y ~ 1 -cosk

If & + u2/7 exceeds the right side, then r < - 1. The most restrictive
case comes from the smallest right side, and can be expressed in the sta-

bility requirement

g+£<1 (15)
4

Finally, we must examine the complex roots of r, which can be

shown to have magnitude

- 2
|r|=1/1-§(1 -COSk)+L27——1-u2 sin” k



so that, at |r| =1,

~x=1,2
£ = 55 u (1 + cos k)

In this case, if & is less than the right side, then lrl > 1. As a func-
tion of k, the right side has maximum value at cos k = 1., We thus obtain

the additional restriction for stability

g>1—;-—1-u2 (16)

In more familiar nomenclature, the two stability conditions can be sum-

marized

©0dt + - cat) <1
7 \ Ox

- N2
8t<<-y_-L'l- (8—:> w

The result may be compared to that for Example 3, p. 18 of Ref. 1, in

(17)

which a similar stability analysis is made. Finally, with

_ oot
W= ox
wdx
n="

being dimensionless measures of dt and w, we may write the stability
conditions

nH + 1 u2 <1
7 (18)

-
K o n<O0
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As an example, Fig. 1 shows a plot of the stable region for y = 5/3.

c8t/8x)
P
[

pl
°

05— X

STABLE REGION °

The points were tested by machine calculations; those marked ® were
found to be stable while those marked X were found to be unstable.

The results of this stability analysis are similar to those which
would result for a much more general class of equations with both wave-
like and diffusion-like properties. In general, the conditions for sta-
bility can be violated in either of two ways (correspunding to leaving
the stability region either to the right or to the left, in Fig. 1). In
one case, there is too much diffusion for the given sizes of &t and ox,
A perturbation to an otherwise smooth profile is over-corrected, and the

result is oscillation with increasing amplitude. Such instability is
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easily observed, and is the nature of all the unstable points marked in
Fig. 1. The other type of instability corresponds to too little diffu-
sion, ©Since the equations without the diffusion properties, and with
dx » 0, 8t — 0, have solutions with constant amplitude, the truncation
resulting from finite differences can easily be expected to add slowly-
growing influences. Such is the case with the unstable region to the
left in Fig. 1; and while two attempts were made to observe the insta-
bility in that region, the rate of growth was so small as to leave doubt
concerning confirmation of instability. Actually these results are not
unreasonable since the equation for r, giving the rate of growth, shows
that the examples tried (both chosen for large growth rate) correspond
to two too small rates to be observed with the computing code used.

C. Some Results of the Tests

1. The rarefaction wave. Gas adjacent to a wall at x = 0 is

initially at rest. Beyond the gas to the right is vacuum. Initial data

for the PAF calculation are

Number of particles = 30

Internal energy per particle = 1.0
Specific heat ratio, ¥ = 2.0
Mass per particle = 1.0
dx = 1,0
ot = 0.1
w = 1.0




The initial sound speed is thus 1.414 and the escape speed of the

free surface is 2.818, The configuration of particles together with their
internal energy, velocity, and specific volume (i.e., 8x) are shown as
functions of position for time t = 20 in Fig. 2. The datum points are

from the machine calculation, while the solid lines show the true solution.

3.0

o/ SPECIFIC VOLUME

2.0

VELOCITY

INTERNAL ENERGY

0 20 40 60 80 100
DISTANCE

FIG. 2

2. The shock wave. Gas adjacent to a wall at x = O is initially

cold and moving towards the wall. Initial data for the PAF calculation

are
Number of particles = 5 dx = 1,0
Velocity of particles = - 2,0 8t = 0.1
Specific heat ratio, y = 2.0 w = 1.0

= ]-O

Mass per particle
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The configuration of particles, together with their internal energy,
are shown for time t = 15 in Fig. 3. Datum points are from the machine
calculation, while the solid line shows the true solution., Note the usual

Lagrangian difficulty of overproduction of internal energy at the wall,

INTERNAL ENERGY

! l . ° .

0 5 10 15 20
DISTANCE

FIG. 3

For contrast, the calculation was also performed with w = 5.0, and

the results are shown in Fig. k4.

INTERNAL ENERGY
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- i
! | .
0 5 10 15 20
DISTANCE
FIG. L
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The results from the first shock calculation are also shown as a
function of time in Fig. 5. The graph shows the total energy of the sys-
tem together with the negative of the total momentum. Datum points are

from the calculation while solid lines show the true solution.
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FIG. 5

Finally, in Fig. 6 is shown as a function of time the difference
between calculated and true histories of internal energy for various values

of w,
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FIG. 6

It is apparent that the overproduction arises at early times when
the shape of the smeared shock is adjusting itself. Once this is com-
pleted, subsequent internal energy production proceeds at very nearly the

proper rate.
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Iv. PAF IN TWO SPACE DIMENSIONS

The only two-dimensional tests so far performed have been of a re-
latively simple uature, for the purpose of revealing whether or not some
basic difficuty exists. The test results have been encouraging, however,
and we are therefore developing a much more elaborate computing code
which will allow the interaction of several materials with several boun-
daries.

In the simple tests, a region of gas was allowed to interact with
one rigid wall. In the first calculation, the gas region was rectangular,
with one side initially along the wall, and the gas was cold but possessed
a velocity towards the wall. Initial conditions were much like those in

the one-dimensional shock problem.

Number of particle rows Velocity of particles
(parallel to wall) = 8 (normal to wall) = -2.0
Number of particle columns Mass per particle = 1.0
(normal to wall) =15
Specific heat ratio,y = 2.0
Internal energy per _ _
particle = 0 ®x = By = 1.0
Velocity of particles ot = 0.1
(parallel to wall) = 0 w = 1.0
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The problem is one dimensional along the center line until signals from
the side arrive. The two-dimensional effects come from lateral splash-
ing of the rectangle of gas. While exact comparison solutions for the
two~-dimensional effects were not obtained, it was possible to approximate
the effects using simple elements of shock and rarefaction theory.1

Thus, Fig. 7 shows the time history of the normal momentum of the gas.
The solid line is the theoretical one-dimensional history (that is, the
history without splash effects), while the dashed line shows the lowest
order solution with splash effects included. Datum points are from the

calculation.

250 T T T

NEGATIVE OF NORMAL MOMENTUM
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Considering the crudeness of the computational resolution, the agreement

appears quite good. Figure 8 shows the tangential momentum of one side

of the gas.

TANGENT!AL MOMENTUM

o] 1.0 2.0
TIME

FIG. 8

Here the effect is entirely two-dimensional, associated with the splash.
The theoretical curve (solid line) is based upon the lowest order effects.
Iater times were not shown because the configurational instability (see
Appendix I) mentioned earlier made determination of the computed momen-
tum ditficult. Agreement is again considered good.

Additional calculations were performed in which a circular bubble
of gas was collapsed by the passage of a shock over it. (The physical
conditions were, of course, only crudely simulated, since two materials
were not possible for the calculation to handle.) The results showed
no particular surprises, and since no quantitative comparisons could be

made, the results are not shown here.
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V. DIRECTION FOR FURTHER DEVELOPMENT

Besides those problems which have already been brought up in Parts
I to IV, there are several others which come to mind.

1. The method should be adapted to cylindrical coordinates. Par-
ticles might become rings around the central axis (assuming dependence of
the flow on r and z only), and the appropriate force law between par-
ticles would have to be found. If a ring were to have constant mass,
then its approach to the axis would cause difficulties; thus it may be
necessary for ring mass to be time-dependent. Boundary conditions will
be required.

2. Most problems of interest involve several materials with dif-
ferent state equations. A method must be evolved for treating properly
their interaction.

3. The effects of heat conduction and true viscosity will have to
be considered; it is not expected that their inclusion will be difficult.

Our program calls for an exploration of these and other matters re-
lative to eventual development of a useful computing method. Cqmments

and suggestions will be very much welcome from whomever may be interested.
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APPENDIX I. CONFIGURATIONAL INSTABILITY

Birkhoff and Lynch‘“’L have remarked that a rectangular array of par-

ticles can be deformed with no change of interparticle distances, suggest-
ing, therefore, that such a configuration must not be stable. To see in

more detail the nature of configurational instability, we consider the

simple use of a square array . . . . . .
of particles. A typical par- . . P . . ;
ticle, #j, with four neighbors . 5 ey .1 . .
numbered as shown, will have . . N . . .
zero net force on it., We now . . . . . .
suppose that all five particles R . . . . .

of this subset be displaced by
small distances without change of internal energy, and examine the re-
. - . - = /.
sulting force. The initial coordinates rj and ri (1= 1, 2, 3, 4) become
-—

f} + E} and r + e. and the resulting force is

? 2

S A
- e -5

r. €, =T, €,

1 1

i=1 l J + J

This can be expanded in powers of E’and, with use made of the equilibrium

conditions, the result is

-l




=l

f 4 f 4 -
.=-SLQ+E".-Z E’.>+Kf'--i> oe. - ¥ (..)[(s..)-?}}
J x.O J 4o 1 o SXO J o1 iJ4 ij i

where prime means derivative with respect to argument; Sxo is the unper-
turbed interparticle distance; and fo = f(6xo). The displacement men-

tioned by Birkhoff and Lynch is (to lowest order, consistent with our ex-

-5 - -5 -
€ €, = = 0 and €

3% 7 %3 2

, -
to a line from 71 to #3. The result leaves Fj = 0, Various other dis-

pansions) accomplished by taking = -EL parallel
-
placements are likewise possible with Fj = 0.

From another point of view, we may examine the question of con-
figurational instability as follows. As a result of the displacements,
if the forces on all the particles are directed towards returning them
to their initial positions, then the system can be considered stable. We
have already seen that such a tendency to return cannot in general result
from arbitrary displacement. There is one special case of interest, how-
ever, that is easily analyzed. If the only non-vanishing displacement is

that of particle #j, then the resulting force on #j is
- - fo A
F . = 2€ . &f ! ‘+ e—
J J\o Sxo

and the condition of stability is thus

fo
' — <
fo + ox 0
o}

This, then, is a necessary (but not sufficient) condition upon the force
function for configurational stability. If, for example, f(r) is pro-

portional to r-C then the stability condition is { > 1. For a polytropic
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gas in adiabatic motion, this will be satisfied, while in isothermal

motion the satisfaction is borderline.

APPENDIX II. ANGULAR MOMENTUM

After the main body of this report was written, it was discovered
that the form of the é;j force would not allow angular momentum conser-
vation, and a review of the situation both clarifies the angular momen-
tum question and leads to an alternative expression for é;j' No quali-~
tative changes would result in the discussions of this report from the
use of the alternative form of é;j’ since the two forms become the same
in one dimension and differ only slightly in two.

The angular momentum of particle #3 at the beginning of time cycle

#n is

—
Al =P x "
J J J d
so that
s -
prlo_gn S Len L 2y g (@M -2
J J 2] J g d J
(II-1)
1 - 1
(?.nH - X = m, T+ 2
J J 2 33 J
Now if, in Eq. (9) of the text, we had used the form
— n+1 -n
rj - T 1,0 —n+1
o d - -
=% 2(uj + Uy ) (1I-2)
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for advancing the particle coordinates, then the second term on the right
of (II-1) would vanish and angular momentum would change only as a re-
sult of the moment of forces. The form (II-2) is not allowed, however,
because of its undesirable property of instability, which may be proved
by analysis such as used in Part II-B. Thus there must be a discrepancy
in angular-momentum conservation, with cumulative effect proportional to
ot.

We may also examine the change of angular momentum of any subset of
particles, and find for conservation (to lowest order in 5t) that the
interparticle forces must lie along the lines of centers. This leads to

the alternative form for the dissipative force

. s 5, .
1J 1J
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