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ABSTRACT

A method is described in which difference equations are derived by
application of the principle of virtual work to a particular fluid model.
Some other innovations involve the viscous pressure, different time

intervals for different points, and a method of handling the collision

of free interfaces.




These notes describe several innovations in lLagrangiaen, time-
dependent, two-dimensionel hydrodynamics. These are incorporated in a
code called WAT now in use on the IASL IBM Model 704 computers. When
applied to problems that involve only one-dimensional motion it appears
to be as accurate as one-dimensional treatments with comparable mesh

size. In several two-dimensionel problems it has given reasonable results.

I. The Fluid Model -- Differential and Difference Equations

We partition the fluid into a number of discrete zones, adopt a
specific physical model of the partitioned fluid, and use D'Alembert's
principle to obtain exact equations of motion for the model. These are
differential equations in time, and we difference them in a straight-
forward way.

The fluid is divided into cells of quadrilinear cross section, as
in Figure 1. We will teke all inertia to be concentrated on point par-

ticles at the cell vertices; the materiel within each cell exerts
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pressure determined through an equation of state by its internal energy
E and volume V.

Suppose point (i,j) is displaced infinitesimally by 3s. Work is
done on the surrounding four cells and the system's energy is modified

by BE.

BE = Py 88 * Wy Py 188 Wiy g ¥ Py 5.1°8 V50,54

5s WV (1)
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According to & genersl principle of mechanics (D'Alembert's

principle) a force F acts on the particle (1,5)

or

Fis= PPy, 5% 51 Piin, 515, g0

: ]
*Py1, Y0441, an
The equation of motion of point (i,j) is then
Fy
r.. = (2)
iJ Mij




which may be differenced in time

WOt 2rF + t-At t

T, . . r, .. F, .
=ij =iy = _ ~ij (3)

(at)? - My

In addition we need to keep account of the internal energy per unit

mass through

p, .4V, .
dey = 7Y )
oo
where (péVo) is the mass of fluid in the cell.

We take the mass Mij of the particle at vertex (i,Jj) to be half the
mass of the shaded regions in Figure 1.

The difference equations are written in full in the appendix for
cylindricel (r,z) coordinates. It is a straightforward task to compute
them for other coordinate systems. In cartesian (x,y) coordinates they
reduce to Kolsky's equations2 only for the case that the mesh is exactly
rectangular.

Kolsky's equations are obtained by regarding the vertices as re-
presentative points fixed in a continuous fluid. A pressure gredient
at the vertex is estimated and used to compute an acceleration. This
cen be done in many ways and the present method can be regerded as just
enother, different, way of doing this. However, I would suggest that in

a highly distorted mesh, where it is difficult to define a sensible




pressure gradient, the present method still makes physical sense -- the
force on each particle is determined by the reaction of the mesh to its

displacement.

ITI. Artificial Viscosity

To spread shock fronts over several zones, we introduce an artificial
viscous pressure q, following Richtmyer and von Neumannl. A somewhat
detailed interpretation of the viscous pressuret!s role is useful in
finding & form appropriate to two dimensions. For example, our exper-
ience is that the isotropic form, g proportional to (g%)a, is not
adequate in a mesh far from square, where shocks coming from different
directions see cells of quite different thickness.

In one dimension, Richtmyer and von Neumann's form for g cen be

written
q = ap(tu)? (5)

where p is the density in the cell, a is a dimensionless constant of the
order of unity, and A&u is the velocity of approach of the two boundaries
of the cell.

If Au is a good deal smaller than sound velocity in the cell, no
discontinuous behavior is expected and numerical integration should

proceed smoothly. Addition of g to the pressure can be regarded as an



expedient to increase the sound velocity in the cell so that this con-

dition is always met.

To see this, let the equation of state of the fluld be represented

by & 7 law,

p= (r-l)ep

and we have the energy equation

de = (p+q)

°pl8

The sound velocity is

P = @, = @+

p 1y &
p+(71)p

vwhich can be written, using Eq. (5)

® = ci + a.(‘y-l)(éu)2 (6)

where R is the sound velocity with g=0.
So, one sees, the effect of q is to add (Au)2 multiplied by a

factor of the order of 1 to the square of the physical sound velocity,




and this will insure that two boundaries of & cell never approach each

other repidly compared with the effective sound velocity in the cell.
Following this interpreﬁation, we have made g depend on the largest

of the (6) velocities of approach of pairs of vertices of each cell, i.e.,

2
Vv .
4= a (po o) [(ﬁzﬁ) ] some Au-r < O

v r max, of 6 pairs (1)

=0 every Au-r > O

where Au and r represent the relative coordinate and velocity of a pair

of vertices.

ITT. Stability

A few experiments with simple stability criteria using the sound
transit time through an average, or alternatively, the smallest, dimen-
sion of a cell have convinced me of the value of & more accurate, if
more complicated criterion. When the mesh becamevdistorted, only &
criterion using the smallest distance seemed adequéte, and this wasted
a great deal of computation by nearly alweys demanding too short an
interval -- in the limit when two points coalesce, for example, & zero
interval is demanded.

We obtain & more accurate criterion by, as usual, linearizing the
equations of motion abou£ an average motion, following von Neumann and

Richtmyerl. Let 5z dr, . denote & (small) departure from the exact

ij° ij
solution of the difference equation (3). The pressure in each cell will




change to first order in %z, 5r, by

2
_9223" av]
= povo c [5- 5z + ST 5r (8)
all
vertices

vhere c is the sound velocity, c2 = gﬁ, and the sum expresses the total
change in V due to displacements at all four of its vertices. For the
moment, we neglect the dependence of g, the viscous pressure, on the &'s.

Then we obtain equations of motion for the &'s,

AL t t-At

5z, . - 28z.. + Bz, . 2 ov v, .
ij ij ij - ( p c2) - ( ij){t i 5z. .
At2 M PoVo  Td 024470235 14
BVi. 8Vi BVi.
+5—418r..+g——‘j—-82.. + sl br,
rij ij zi,J+l i, 1l ri,j+l i, 1
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3

i+l F1 i+l H1
avi _
+ 5——-1—— dr, ‘} + similar terms for neighboring cells
r i+,
i+,
(1-1,5); (i-1,3-1); (1,3-1). (9)

There is a similar equation for ®¥. In a compressed notation for the

right hand side,
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52O _ opgt 4 5t

= > = D5t° (9')
(&t)

An accurate stability limit would be obtained by finding the larg-

est eigenvalue of the (linear) operator D

ij ~ Tmax

The solutions of difference equation (9) change character, from
oscillatory (neutrally stable) to exponentially growing (unstable) as At

is increased beyond Atmax’

2 L '
wmx

We construct a local stability limit for each point by replacing all

of the factors gx p2c2, gz p2c2 by the largest of them.

v, . oV ‘
We also use the larger of the two factors gzld, g;ii. The largest
ij ij

eigenvalue will then occur for that mode in which all terms in the

approximate D are in phase, and we construct a locel Atmax from an a?

ij
defined by
- v "\ 7T
i3
zij largest
a%. = ﬁg— larger of © |<at eny %X p 3 = kbi.. (11)
J ij BVi. vertex Po J
i 150
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Another source of instability is the viscous pressure q, which de-
pends on a reletive velocity, Eq. (7). To first order in the perturbation
a term will be added to the right hand side of Eq. (9) for each cell

having (i,j) as a vertex. The one added to the terms written out in

Eq. (9) is
1 avij 8'(poVo)i(j 2] A(th - th'A$) + 2|ou] A(Grt-art—ét)
M,.o0oz,. v, . A Ot r At ¢
ij iJj ij

As in Section IT, A identifies the largest rate of approach of any
pair of points around the cell. Again, we let all coefficients of the

8%s take on the value of the largest one, and assume the mode that makes
2

all of them add. The result is that we add to &y 55 Eq. (11):
r oV, N\
6_1"1 _
. - largest value
4o, zlJ : o V
ij & 32 among the cells 00
S T3 larger of .- of which (i,J) | V |2ulp |, (12)
J ij is a vertex
I Ty
And finally, Ammax is determined for each point by
(at)2 by + Atbl, < 1. (13)

IV, Use of Many Time Intervals

In many problems, a large reduction in computation can be realized




by moving each point with the time interval demanded for its stability.
In this section the scheme used in WAT to do this is outlined.

Up to sixteen different time intervals are defined, each a factor
two smaller than its predecessor. Each pointt!s acceleration is then
advanced with the largest interval that meets its stability criterion;
its acceleration is taken constant over its interval, but its position
is advanced as needed to advance the pressure in cells that touch & point
being advanced with a smaller time interval. The velocity is always
edvanced to the center of ﬁhe interval through which the position is to
be advanced; positions are then always accurate to order (Am)3. A table
(tij) is kept current of the time to which each position has been advanced,
and another (tzj) of the state of the velocities. In Figure 2 an outline
flow chart of the calculation is shown. The time intervals are Amw,

W= 0’1’2’...’whax; Amo is the iargest interval. F,end FEJ are flags
(up or down) thap tell, respectively whether a given interval has Jjust
been processed, and whether a given cell's pressure has been brought up
to the current time. A table is available of the i,j coordinates of all

points to be moved with a given interval Atm..

V. Collision of Free Surfaces

WAT is provided with a routine for handling the collision of two
free surfaces. In figure 3 a typical situation is depicted, where the

points and cells have been numbered one dimensionally.
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The first problem is to compute the time at which & point on one
free surface crosses the other, as point j! has done. We make use of
the sense of a point with respect to each line segment defining the sur-
face that it may cross; it defines a point as being "inside" or "outside"
of the reglon bounded by the line. The sense of point j with respect to

the line through j*, j'+1 is the sign of the expression

(Zj'zj')(rj'+1'rj') - (rj-rj,)(zj,+l-zj,).

A point has not crossed & given segment unless its coordinates lie between
those of the end points of the segment, within a tolerance given by the-
travel of the point during a time cycle, and unless its sense with respect
to the segment has changed. When both of these conditions are fulfilled,
we compute the time and coordinate of the intersection of the path of the
particle with the segment. In general, one gets two solutions for each
segment, and further, the above conditions may have been met for more
than one segment, so the intersection is rejected unless the time of
intersection is less than At, and unless the sense of the path -- from
"outside to inside" -- is correct at the intersection.

In general it is necessary, for each point j, to examine every seg-
ment j', j'+1 of the opposing interface. The labor is reduced in WAT by
first locating all of the points in & coarse Eulerian mesh. Then only

if two points, not neighbors, fall within the same or neighboring cells’

does the code look for intersections. Possible crossings by each point

16




of every segment connected to one of the points are examined.

When a valid intersection is found, the three particles involved --
the intersecting one and the two that define the line segment -- are
taken to collide inelastically. That is, the qenter of mass velocity
is given to each of them, and the relative kinetic energy is distributed
as internal energy among the participating cells.*

From then on, point j is attached to the interface of cell j*; that
is, the volume of cell j' is computed using the segments j*,j and j,j'+1

as its boundary, and the equation of motion of point j has a term

pjlyvjl

added to the force. It is necessary to maintain two tables: for each
particle j, the cell to which it is attached, if any; for each cell j!,

the foreign point or points that are along its inner boundary, if any.

*
Other models for the inelastic collision were tried, but this one led

to the smoothest subsequent motion of the collision interface.
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APPENDIX

Difference Equations in Cylindrical Coordinates

The system is assumed rotationally symmetric about the r=0 axis.

Indexing is as in Figure 1.

T
volume Vij = §(rijfrij+l+ri+j) [(Zij+l-zij)(ri+lj-rij)
- (zi+l,,j-zi,j)(ri,j+l-rij)]
+ E(r +r +1 ) Bz -z Y (r -r )
3ViI+LHL Ti+l) Tipl i+l TiHl LV iH] i+l Hl
- (Zi,j+l-zi+lj+l)(ri+lj-ri+lj+l)]
acceleration
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