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ABSTRACT

Using an equation of state of air in completely tabular form,
a one dimensional, spherically symmetric blast wave calculation has
been numerically carried out. An IBM 704 computer was utilized for
the calculation. The Rankine-Hugoniot conditions at the shock front and
the isentropic changes of the shocked fluid were determined by iterative
methods. The numerical methods employed are discussed in some detail,
as are the details of the equation of state. The initial starting con-
ditions for this numerical integration were those of Problem M. The
numerical results are presented in graphical form. Comparison to Problem
M is also displayed graphically. The comparison to Problem M is good,
the small differences being attributed to that of equation of state and

finite differencing methods.
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1. INTRODUCTION

This work was undertaken in order to develop a sharp shock
blast wave code. As a means of checking the present coding, Problem M,l
a blast wave calculation for an energy release of 13.5 KT carried out
at Los Alamos around 1945, was chosen as the comparison problem. The
initial conditions of Problem M were used as the starting data for this
code, thereby permitting each calculation cycle to be compared to those
of Problem M. Such a comparison serves as a guide to determine if the
present code is functioning properly, and if it is, serves also as a
check on Problem M, for since the results of that problem have been used
extensively, an independent comparative blast calculation is desirable.
The results from this problem differ somewhat from those of Problem M,
since the calculations for the latter were carried out on slow, semi-
automatic equipment, with a substantial portion of M done by hand on
desk calculators. Thus approximations consistent with realistic calcu-
lation times were necessary. In addition, a new equation of state for
airz’a’h was used. Improvements in the numerical methods of Problem M
were possible using the present day high speed, completely automatic
computing machines.

The new equation of state data were in tabular form. Several
exploratory attempts to find an analytic fit to these data indicated that
s complex system of fits would undoubtedly be necessary. In general,

since most analytic fits to equation of state data are poor except in




limited regions, and since the range of thermodynamic variables in blast
problems is quite extreme, it was thought that if this new equation of
state were used completely in tabular form, it would be more useful

and accurate than an extremely complex system of fits. Given the rela-
tive specific volume and the specific internal energy, this tabular
equation of state determines the pressure by a double interpolation of
the tabular entries, or symbolically, P = P( V/VO,E). The details of
the equation of state are discussed in Section 9.

The method used to determine the isentropic changes within
the fluid of the shocked sphere is given in Sections 2 and 3.

The Rankine-Hugoniot conditions at the shock boundary are
determined by an iterative method which is discussed in Section L.

The addition of new fluid elements to the calculation is re-
quired as the shock discontinuity progresses further into the undis-
turbed fluid. This addition is considerably complicated by utilization
of a "sharp shock" calculationl’5’6rather than a "smeared shock' calcu-
lation.7’8’9 The addition procedure is explained in Section 5, and
other fluid element adding schemes which were tried are described in
Section 6.

The initial conditions chosen for this numerical integration
represent the hydrodynamic state of an energy release of 13.2 KT at a
time 12 milliseconds after detonation. There is a difference in total
energy between this problem and that of Problem M because of the new
equation of state used. Comparison values from the present problem and

from Problem M are displayed graphically in Section 1l.
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2. THE BASIC EQUATIONS AND BOUNDARY CONDITIONS

We consider the region of a fluid bounded by a shock front.
Within this bounded region the hydrodynamical state of the fluid is
described by four equations: the equation of® continuity, the equation
of motion, the conservation of energy in the form of the first law of
thermodynamics, and the equation of state. Spherical symmetry is assumed,
and the Lagrangian form of the equation of motion is used. 1In the Lagran-
gian formulation we are concerned with the properties of fluid elements,
which are tagged or identified by their initial positions, andbwe follow
these elements along in space and time observing the changes of their
fluid properties. Thus, the radius, pressure, density, velocity, in-
ternal energy, and acceleration of each fluid element are functions of
the element's initial position and the time, or R(r,t), P(r,t), po(r,t),
v(r,t), E(r,t), and a(r,t). R is referred to as the Eulerian radius
and r as the Lagrangian radius, that is, R is the physical position of
a fluid element at time t, and r is that element's initial position.

The equation of continuity or>conservation of mass states
that the initial mass of a specific fluid element remains in that
element and there is no transport of mass from one element to another,

or

O A o (2.1)

where V is the specific volume or the reciprocal of the density.




From Newton's second law the volume force is given by
-
F. = p= = -grad P
and for spherical symmetry,

ov 1 9P (2.2)

R
Combining this with (2.1), we have

v _ _1 R P __ 3R oF (2.2")

We require the changes of the fluid within the bounded volume to be

isentropic, or
dE = -Pav. (2.3)

The equation of state is in tabular form. The table is arranged so
that for a given relative specific volume and specific internal energy
the pressure is determined by a double interpolation scheme or, symboli-

cally,

P = P(V/VO,E). (2.1)

See Section 9 for a more detailed discussion of the equation of state.
The above equations are valid behind the shock. At the shock,
however, the equations of Rankine and Hugoniot are to be used. They are

as follows:
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p(u = E,) = pog ’ (25)
V- Py = poﬁu ’ (2.6)

E, - By = 2(V + By) (1/pg - 1/0f)- (2.7)

The material velocity of the unshocked region, Uqs is assumed to be zero.
é is the shock velocity, u, the material velocity of the medium behind
the shock, and ¥, the shock pressure.

There are two boundary conditions, one at the center of the dis-

turbance, the other at the shock. They are as follows:

R(0,t) = 0 (for all t) (2.8)

and

R(E,t) = ¢ (for all t), (2.9)

where ¢t 1is the Lagrangian radius of the shock front and is a function
of time or ¢ = &(t). Equations (2.5), (2.6), (2.7), and (2.9) are not

independent,as can be readily verified.

3. INTEGRATION OF THE BASIC EQUATIONS

The integration of the basic equations is carried out numeri-
cally in a stepwise manner. The differential equations are gpproximated

by finite difference equations. In order to set up these difference
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equations the bounded region is divided into finite regions or fluid ele-
ments of concentric spherical shells each of equal Lagrangian radial width.
The radii bounding the elements are numbered consecutively outwards from
the center, O, 1, 2, 3, 4, -+, i-1, i, i+l,---. The pressure, density,

and internal energy of the entire element are considered to be that of the
centroid of each fluid element but the acceleration and velocity are asso-
ciated with the bounding radii. Iet us consider the equations for a typical
fluid element bounded by radii ry and riq at time t = n-1 and integrate
these equations over a time interval At. We let the subscripts indicate
the Lagrangian radii where the quantity is assumed located and the super-

script, the time. Equation (2.2') then becomes

2
1 6(??’1 e pa-1 _ gl n- _n-3/2
- 1 1+5 1-5 _v -
g T 3 5" RE , (3.1)
Po Ar? 1 + Ar7 2
1+3 1-2 w
3 3

where Ar7 . = (r - r?), and where an average of the two bounding
2

i+l

ArB's is utilized for computational convenience. Solving for the velocity,

we have
n n-1
1 R, - R

n-3 _ n-3/2 n-1 _ i i

vy S =y + a; Bt = =, (3.2)
and for the radius,

n n-1 n-%

Ry =R; ~+V ot . (3.3)

Now, having the new outer radius of the element at t = n and assuming
that we have previously, in a similar manner, determined the inner radius v

at t = n, we are in a position to determine the volume of the element at
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time t = n.
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Equations (2.3) and (2.4) in difference form become

2, =5 -(P?+%2:OP?-%) [(v/vo)ni_% - (v, :] (3.5)
and
- P = P(V/V , E) . (3.6)

Assuming that we know all the above quantities except P? % and E? 1
- =2

and have determined the volume of this element at time t = n-1, we can
solve Equations (3.5) and (3.6) simultaneously by iteration.

We have demonstrated how a typical element is integrated
from time t = n-1 to t = n; this process is carried out for each element
starting from the center and working toward the shock front. The last
element, however, needs to be treated differently, as there is no Ar5

conveniently available. The acceleration is formed as follows:

2
n n-1 n-1
n-l__ 2 (RI) (‘” - PI—%)
P 2 _ _ )
0 rI (2§ rI rI-l)

(3.7)
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The subscript I indicates the element adjacent to the shock. After
carrying out the above scheme we have all the information required within

the bounded region. We now determine the shock quantities.
4. DETERMINATION OF THE SHOCK QUANTITIES, OR THE SHOCK FITTING

The method used to determine the shock conditions is discussed
in TA-1148 (Ref. 5) and is an iterative scheme. We briefly outline it
here as follows: One guesses a shock volume gvg = VE/VO (the recipro-

cal of the shock compression). From the simultaneous solution of

Equations (2.4) and (2.7) (an iterative process), the values of V, Eg’

and %% = -8 of the Hugoniot are determined. The shock velocity is
g
<«
e" =NV W, (4.1)

§n - gn-l . %? (én . én-l). (1.2)

Using the relation for the total time derivative of the shock volume in

terms of the above determined quantities, we have

= (1), e o[ S5, @) Joo

and in difference form,

14




(dV )n _ Vz L Vz(\lf-Po) . (Wn)z(l-V;_%)+ Po - P11

g
dt - 2 n n :
3™ + s £? 2t -r, - T, (4.37)
From the above VZ and the value at n-1 we can determine an average change
in the shock volume in the time interval At. Adding this to Vn-l, we

g

have a calculated volume CVE, or

aPE g () (1.1)

VZ - vrg‘fl + AVE-% . (4.5)

c

Comparison of gvz and CVE determines whether the iteration is com-
pleted. If it is not, a new guess is carried out based on previous guesses.
When the "shock fitting" is completed, the integration of all the equations
from time t = n-1 to time t = n has been completed. Integration from
time t = n to time t = n+l, etc., is carried out by repeating the steps

of Sections 3 and 4. However, when the shock position & becomes greater

than Ty + Ar = rI+l’ a new fluid element must be added to the calculation.

5. ADDING A NEW FLUID ELEMENT

In order to add a fluid element, or mass point, one needs to
obtain values of the pressure, volume, internal energy, velocity, and

the radius at the appropriate Lagrangian radii and times, i.e., we need

Since the shock fitting is dependent

15




upon the pressure and volume gradients behind the shock front [cf. (h.})],
the new fluid element values and the shock quantities are determined
simultaneously by an iteration scheme. Thus during the course of a shock
fitting when the results of Equation (L4.2) indicate that "2 rp+ v =T,
the normal shock fitting scheme is interrupted and the above mentioned
values of the new fluid element are created in a method consistent with
gvg. (This method is discussed in more detail later in this section.)

The shock fitting is then continued at (h.j), using now, however, the
pressure and volume just created. If the comparison of 8V§ and cVg is

not satisfactory, a new gVE is‘made and the mass point adding, shock
fitting iteration is continued. The creation of the new element values is
carried out on each of these iteration cycles. This iteration scheme is

continued until V, and agree to the desired accuracy. The inter-

\)
gt ct
ruption of the shock fitting scheme is made only on the intergration

cycle when gn; r.+ Ar = After the new fluid element is added,

I I+l
the interruption of the shock fitting scheme stops and the calculation
continues in its normal manner, except that there is one more mass point,
until it is again determined by (4.2) that another element ﬁeeds to be
added.

The quantities of interest for the new fluid element are

created by the following method. First, the time at which the shock

position equals Ty + Ar = rry 18 determined.

16




Let

In general, since tl + t2 % A&t, a weighted average of tl and t2 is used

to describe the time of crossing. This time becomes t* = tn-l + Tl’ where
tl
Ty = gp (2AF -ty - b)) (5.1)

We also designate T. such that T2 =Nt - T For convenience we indi-

2 1’
cate by I the fluid element being added. The quantities of interest
for the new mass point at the time t = t* are now determined. The radius
is

=r_= g¥, (5'2)

*
RI I

The shock volume at this time, t = t%, is determined by

1 -1
¥ = e
VE= R (Tsz + TlVI;)- (5.3)
Using V¥, we next solve Equations (2.7) and (2.4) for Eg and \yg. The
inner bounding radius is determined at time t = t* by
n n«%
* = -
Rfq1=Rpg -Vl T» (5:4)
and the volume at time t = t* is
V¥ - r. - R¥* r2 + R¥* (R*' +r . (5.5)
I-2 A3 I I-1 I I-1\ I-1 I
I-3 \

17



The internal energy at time t = t* is obtained by a three point interpola-

tion, or

E* 1 = 0.533 E¥ + 0.667 E
I-3

: - 0.200 E¥ 5/ (5.6)

*
I-3/2
jol * *

where EI-5/2 and EI-5/2

times t = n and t = n-1. Pf 1 is obtained through the equation of state
-2

(2.4) since V¥ 1 and E¥ 1 are now known. The velocity of the new mass
-2 -2

point at t = t* is the material velocity of the shock, or

v¥ = [vo(w* - PO) (1 - vg)]% . (5.7)

We now know all the necessary quantities of the new mass point at t = t¥;

are determined by interpolation from values at

however, in order that they will fit into the general differencing scheme ‘

it is necessary to advance them to their proper times. First we determine

1
n _n-3

RI’ vI , and Vg_%.
n n-1 n-l
RI = Ry +vIZAt, (5.8)
where
B or - v+ 2a (5.9)
I I I1° 211’ :
1 ax
n-s _ _I _ '
vy S o= vEL 5 (T2 Tl), (5.10)
and
y¥* - Pf_%
¥ = m— "2,
at = - —— (5.11)
po._z- *

18




The volume of the new element is then at t = tn

- 3 {0 %) () + s allf oo

Since we have P¥ 1, EX ,, V¥ 1, and v
I-3 I-3’ 'I-3 I-

(3.6) for the values of P?_% and E

1, we can solve Equations (3.5) and
2

n
I

formed element to change isentropically from t = t*¥ to t = t". We now

1, that is, we require the newly
-2

have all the necessary quantities for the new point.

6. OTHER ELEMENT ADDING SCHEMES

Several other schemes were tried in order to add the new fluid
element; however, that of Section 5 proved to be the most satisfactory in
regards to smoothness of the P, V, E, v, and R profiles at the time of
adding, and particularly in regards to the conservation of total energy.

The other methods sre now briefly discussed. The determination
of t* is the same for all the methods tried and is that described by
Equation (5.1).

a. Use of the Shock Quantites at Times t* and t*'l

1
Equations (5.8) - (5.12) were used to determine Rg, vg 2

V;_% with, however, the exception that agzi was used for af. Having the
1

. * Yo
shock quantities at the present * time t and at the previous * time t s

, and

the assumption is made that the internal energy of the new element at time

Il

t = tn is the average of these shock internal energies. Then PI 1 is
-2

determined by the equation of state (2.4).

19




This method produced relatively smooth profiles at the time of
adding; however, the conservation of the total energy of the problem was
not so good as that of the method of Section 5.

b. Original point on the Hugoniot

n _n-s n

Using the scheme of 6a to determine Ry, vy 2, and Vil a
point on the Hugoniot between time t* and time t*-1 is chosen as repre-
sentative of the entire new element. We follow along the adiabat or ex-

pand the new element isentropically to the volume va 1+ In this manner

-2
we determine the pressure P? , and the internal energy E? 1 at time
- _ -2

2
t = t?, The representative point chosen was the point corresponding to

the shock quantities as the shock crossed the centroid of the new element.
The results proved to be poor, and changing the representative point
brought little improvement. This scheme, though physically real, is not
consistent with the differencing scheme. This is clear if one considers
the region between the shock and the last mass point. This region is not
carried (in this problem) in the regular advancing scheme until the new
point is added, i.e., the differencing scheme of this small region con-
siders that only the region possesses mass. The energy, pressure, ete.,
are ignored until the new mass point is added, and only then are the
isentropic changes carried. Thus this method is not appropriate for our
present differencing scheme.

Carrying the region between tﬁe shock and the last mass point
as a regular mass point, that is, considering isentropic changes, would
be advantageous; however, the special calculations involved make it cum-

bersome to handle such a calculation for the numerical integration.

20




c. vf Variation

Since it can be argued that one really needs an average velocity
for the differencing scheme and not the bounding value, v? was varied in
schemes a and b by utilizing various space'weighting factors. Although
this method was effective in changing the newiy added values to adjust
smoothly in specific cases, it was not possible to find a weighting
scheme which would be satisfactory for all cases.

d. Gradient as Three Point Fits

In the shock fitting scheme of Section 4, V, depends on (g%)

s :

and (%;) (see L4.3). Equation (L4.3') uses a two point difference as
13

the approximation to the derivative. A three point fit was carried out
for both V(r) and P(r) and the derivative evaluated at r = ¢ determined.
These values were then substituted in (L4.3) and the shock fitting scheme
used this value of Q . This scheme functioned nicely on regular cycles;

g

however, on the add mass point cycles the values of V, and cV would

gt 4
agree to only about 5 per cent. The pressure gradient used in the last
mass point acceleration term was also determined by a three point fit of
P(r); i.e., (@B) from the fit was used in Equation (3.7). This too had

or I

no appreciable effect and did not help the poor convergence described
above.

e. No Coupling in the Point Add Scheme

In this scheme the shock properties and the new point quantities‘
were not determined simultaneously. The new point quantities were deter-

mined after the shock fitting; however, the same methods outlined in

21



Section 5 for the point adding were still used. This method though good
was not so good as that of the simultaneously determined method of
Section 5.

f. Variation of the Time Interval At

Tt was found that even though the stability conditions were
good, the new mass point data could be improved if the time interval At
was reduced.

g. Combinations of the Above Schemes

Several combinations of the above schemes were tried. For
example, schemes a and e were tried, also schemes a, c, and e; or the
scheme of Section 5 with those of e and/or c, etc.

After trying a number of these combinations, the method of

Section 5 proved to be the best.
7. STABILITY CHECKS

The Courant stability condition was employed in order to en-
sure a stable differencing scheme. A stability number was calculated
for each mass point everyiintegration cycle. If the stability number
exceeded a particular value, At of the next calculating cycles was
reduced by a factor of 2. Similarly, if the stability number remained
below another particular value for several caléulation cycles, the At
of the next calculation cycles could be increased by a factor of 2. The
problem was automatically monitored for the stability time halving, but

that for the time doubling was carried out visually by the operator. The

ee




approximate difference form of the stability relation used was

Vol e .
i-5 n n *
2 R -
i i-1

In (7.1), the sound velocity was approximated by that of an ideal gas
with ¥ = 1.4. The maximum stability number and its corresponding mass

point number were stored each integration cycle and printed as so desired.

8. ENERGY CALCUIATIONS

The total energy of the problem was calculated every integration
cycle; however, the energy calculated on cycle n was the energy for cycle
n-1l, the reason being that the velocity is centered in time at n-%.

The kinetic energy of each mass point was cqmputed as follows:

(K.E.)n-i = M, 2 (vn'%)2 , | (8.1)

i-2 i-z \ i-2

where Mi-% = h/5ﬁpoér?_% (the mass of the element) and where

2 2
n-1 _ 1 n-1 n-1
Vi-d T 2[("& ) * (vi-l) :I ’

1 -
viT2 4 Y2 3/2
n-1 i i
i 2

with

u’.‘é - E‘;é M. 1. (8.2)
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The energy within the small region between the shock and the last mass

point is obtained by jnterpolation. The kinetic energy is

n-1 L[ n-1 2
(K'E')e-% - 5("5-%) Mg (8.3)
where
2 . 2
n-1 n-1 -1
(vn-%) - ( I ) * [g (l - Vz )]
E-3 2
1
n-3 n-3/2
. n-1 1 V1
an VI - 2 ) ) b
and where
Mn-l_ h/}:r n-1 _ ) (n-l 2 n-1 )
g_% = pO 3 rI ‘g + rI 13 + rI .
The internal energy is
-1 _ _n-1
Uid " Ted My (8.4
where
n-1 n-1 n-1 n-1
gl gl By - Erl n-1 & T E;
E-5 3 2L, Rn-l ¢ - 2 .
gn-l I I-1
2

The total kinetic energy is then the sum of all these elemental

kinetic energles, or

(8.5)

N[~

I
(x.E)*T - (K.E.)I;:% + g,l (K.E.)}.

2k




Summing over all the elemental internal energies also gives the total in-
ternal energy; however, the ambient internal energy of the medium must
first be subtracted.

I

Pt = 3 up

2 i=1

- 4/3 &poEo[Kgn'l)a - gg]. (8.6)

N~

The total energy of the problem is then

n-1
£ = (&kE) 4 (0 (8.7)
Figures 13, 14, and 15 show the total energy, the total internal
energy, and the total kinetic energy, respectively, plotted as functions

of the time.
9. THE EQUATION OF STATE OF AIR

The equation of state is in tabular form. The pressure is
determined as a function of the specific energy and the relative specific
volume through the table searching, double-quadratic, interpolating sub-
routine 1-B and a table of thermodynamic values. This table is composed
for specific values of loglO(V/VO) and corresponding to each is a set of
values of PV and E. There are 15 loglo(V/VO) values ranging in 0.2 inter-
vals from -1.2 to +1.6. For each loglO(V/Vb) there are 61 sets of PV,

E values. Each set of PV, E corresponds to a specific temperature, thus
61 temperatures are represented. These temperatures range in value from

200°K to 2,512,000°K.
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The basic data sources for the table were References 2, 3, b,
and 10. The temperature range is divided into three parts: low, inter-
mediate, and high. Reference 2 was the source for values in the low
temperature range (200K - 1900°K). As these data were in quite a
different form from that desired, it was necessary to interpolate the
data and rearrange it to conform with the above chosen tabular form.
Reference 3 was the source for the intermediate range values (2000°%K -
15,000°K). Values in the high temperature range (15,950°K - 2,512,000°K)
were taken from Reference 4. Here again, the data were not in the de-
sired form and interpolation was required. The contribution of radiant

energy to these thermodynamic values was added using the relation

[e0]
=
=
=

5 K T _ aT
r 15 (hC)5 P p (9.1)

where a is the radiation density constant

(pV), = 1/3E,. (9.2)

After these processes were carried out for the high temperature range,
Reference 10 became available. Comparison of the values in Reference 10
with the above interpolated ones proved quite good, and the high tempera-
ture range values were therefore not changed. As each of these references
assumes somewhat different models for the basic constituents of the air
gas, it is not surprising to find that in the regions of overlapping

there was some disagreement. Although the disagreements were small,

their manifestations in the iterative schemes were acute. The thermo-
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dynamic functions in the region of overlapping were then plotted and so
adjusted as to form a continuous fit. The final tabular internal energy
values are based on the ground state of the molecule.

The loglO(V/Vo) values in the table are normalized to the air
model of Reference 3 at standard conditions. By changing the initial
density constant in sub-routine 1B, the normalization of the table is
effectively changed to that of any initial density within the limits of
the tabular data.

The sub-routine functions as follows (see Figure 1l): Given
a value of V/Vb (normalized to the table) and E, the sub-routine searches
the table values of loglo(V/Vo) and finds the three nearest ones. This

effectively locates the three bracketing sets of PV, E values of constant

loglo(V/Vo) or, let us say, curves 1, 2, and 3. Having found these bracket-

ing curves, it then searches the sets of PV, E values of each bracketing
curve for the three PV, E sets nearest the given value of E. It then
quadratically interpolates, for each curve, the three PV, E values for
the value of PV corresponding to the given E. Finally, it quadratically
interpolates the three above determined PV values and their corresponding
loglo(V/Vo) values for the PV corresponding to the given V/VO. The

pressure is then obtained from this PV value, since V is known.

10. INITIAL CONDITIONS (STARTING DATA)

The initial conditions for this integration were chosen to be
those of Problem M (see LA-2000, Chapter 6, Section 6.2). These condi-

tions were prepared by J. Hirschfelder and J. Magee and represent the
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hydrodynamic state of a 13.5 KT explosion 12 milliseconds after detonation.
Radiation transport was considered in the determination of the fire ball
developmental stages. The pressures, velocities, radii, and volumes of
Problem M were used directly; however, the internal energies were de-
termined from the present equation of state using the given pressures and.
volumes. This was necessary in order to maintain a pressure, a volume,

and an internal energy consistent with this equation of state. Similarly
the shock pressure of Problem M was used directly and, from the Hugoniot
conditions, using this shock pressure, the shock volume and energy were
determined.

These initial data are:

Undisturbed Medium

o = 1.1613 x 1072 gn/em” Py, =1x 108 dynes/cn’ Ey = 2.1421 x 10°
ergs/egm

Shock Quantities

¥ = 7.7246 x 107 dynes/em®  V, = 1.3860  E = 3.1162 x 100 ergs/gm

1]

£ = 7.9879 x 10 meters 2.7608 meters/millisec

v
]

V, = 2.7253 x 1077 /sec

Regular Mass Points

Initially there were 16 mass points. The isothermal sphere

is contained between the center and mass point 1.

Ar = 3.99) meters At = 6.25 x 1072 millisec
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These data are identical to Problem M starting data except for
the change to a new equation of state, which changes the‘topal energy to
13.2 KT; also, At is one-fourth that of Problem M, and there are cor-

responding changes in the velocity at n-%.

11. RESULTS AND COMPARISON TO PROBLEM M

The results of this integration are presented in grephical form
in Figures 2-16. Comparison to Problem M is also shown. The_integration of
the present problem was carried out to a shock'overpressure of about 3
atmospheres, corresponding approximately to a shock radius of 350 meters
and an‘elapsed calculation time of 300 milliseconds or 312 milliseconds
after detonation. The calculation was not carried ﬁurther, however, as
the large amount of machine time required indicated a nged for a_logis-
tical change in this problem. -The time difficulty arose not through‘the
use of the tabular equation of state, but through the ever increasipg
number of mass points added to the calculation as the shock progressed.
It is believed that if the methods of H. H. Goldstine and J. von Neumann6
were employed, this difficulty would be alleviated.

The comparison to Problem M is quite good, as the comparative
figures indicate. The small differences in the comparative plots are
due primarily to the differences in the equations of state used. Also,
the method of adding new fluid elements contributes to some of this
difference (see Figure 16). The number heading each adiabat in Figure 16

refers to the fluid element followed. Initially, since there are 16 fluid
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elements, the pressure-volume point heading the adiabats are identical;
however, the pressure-volume points of the newly added points (17, etec.)
do not agree because of the difference in the adding schemes.

Since itvwould be extremely tedious to compute the energy of
Problem M for each integration cycle, no comparative plot is made in
Figures 13, 14, and 15. The initial nonsmoothness of the internal energy
curve can be attributed to the two point interpolation scheme used for the
energy calculation in the region between the shock and the last mass point.
Although the starting data of Problem M had an energy content of 13.5 KT,
that of the present problem contained 13.2 KT. Again this difference is
due to the equation of state differences. The positive change in the
total energy from the first integration cycle to the last, representing
about 1400 integration cycles, was 0.66 per cent. The total energy of
Problem M, with the shock front located at 2000 meters, is 13.1 KT,

representing a 3 per cent loss.
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