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ABSTRACT

The successive stages of the fireball due to a nuclear explosion in
air are defined (Sec. 2). This paper is chiefly concerned with Stage C,
from the minimum in the apparent fireball temperature to the point where
the fireball becomes transparent. In the first part of this stage (C I),
the shock (which previously was opaque) becomes transparent due to
decreasing pressure. The radiation comes from a region in which the
temperature distribution is given essentially by the Taylor solution; the
radiating layer is given by the condition that the mean free path is
about 1/50 of the radius (Sec. 3). The radiating temperature during this

1/h

stage increases about as p~ , where p is the pressure.

To supply the energy for the radiation, a cooling wave proceeds from
the outside into the hot interior (Sec. 5). When this wave reaches the
isothermal sphere, the temperature is close to its second maximum. There-
after, the character of the solution changes; it is now dominated by the
cooling wave (Stage C II). The temperature would decrease slowly (as
pl/6) if the problem were one-dimensional, but in fact it is probably
nearly constant for the three-dimensional case (Sec. 6). The radiating
surface shrinks slowly. The cooling wave eats into the isothermal sphere

util this is completely used up. The inner part of the isothermal sphere,




i.e., the part which has not yet been reached by the cooling wave, con-
tinues to expand adiabatically; it therefore cools very slowly and
remains opaque.

After the entire isothermal sphere is used up, the fireball becomes
transparent and the radiation drops rapidly. The ball will therefore be
left at a rather high temperature (Sec. 7), about 5000°.

The cooling wave reaches the isothermal sphere at a definite pres-

sure p_ 5(01/00)3‘/3

bars, where Pq is the ambient and Po the sea level
density. The radiating temperature at this time is about l0,000o. The
slight dependence of physical properties on yield is exhibited in approx-

imate formulae.
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1. INTRODUCTION

The radiation from the fireball has been studied intensively by
many authors. Already in the Summer Study at Berkeley in 1942, Bethe
and Tellerl found that the energy transmitted by a nuclear explosion
into air is immediately converted into x-rays, and studied the qualita-
tive features of the transmission of these x-rays. At Los Alamos,
Mars‘nak2 and others showed that this radiation propagates as a wave,
with a sharp front. Hirschfelder and Magee5 gave the first comprehensive
treatment of this early phase of the fireball development, and also
studied some of the later phases, especially the role of NOE'

Many optical observations have been made in the numerous tests of
atomic weapons. Some of the results are contained in "Effects of Nuclear
Weapons,"lL pp. T70-84 (see also pp. 316-368). A summary of the spectro-
scopic observations up to 1956 was compiled by DeWitt.~ Careful scrutiny
of the extensive observational material would undoubtedly give a wealth
of further information.

On the theoretical side, there has been some analytical and a good
deal of numerical work. Analytical work has concentrated on the early

phases. One of the most recent analytical papers on the early flow of




radiation (Stage A of Sec. 2) is by Freeman.6 Brode and Gilmore7 treat
also Stage B, the radiation from the shock front, with particular emphasis
on the dependence on altitude.

The most complete numerical calculation has been done by Brode8 on
a sea level megaton explosion. We shall use his results extensively,
but for convenience we shall translate them to a yield of 1 megaton.
Wherever the phenomena are purely hydrodynamic, we may simply scale the
linear dimensions and the time by the cube root of the yield, and this
is the principal use we shall make of Brode's results, e.g. in Sec. 3b.
Where radiation is important, this scaling will give only a rough guide.
Brode calculates pressures, temperatures, densities, etc., as functions
of time and radius, for scaled (l-megaton) times of about 10~/ to 10
seconds. The calculations show clearly the stages in fireball and shock
development, as defined in Sec. 2, at least Stages A to C.

Brode and Meyerott9 have considered the physical phenomena involved
in the optical "opening” of the shock after the minimm of radiation,
Stage C I in the nomenclature of Sec. 2, especially the decrease in
opacity due to decreased density and to the dissociation of N02.

Zel'dovich, Kompaneets and RaizerlO have investigated how the energy
for the radiation is supplied after the radiation minimum and have intro-
duced the concept of a "cooling wave" moving into the hot fireball. The
present report is largely concerned with an extension of the ideas of
Zel'dovich et al. to the actual case of density varying with time, more
general opacity fumction, radiation absorption varying with wave length,

etc.
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Much effort has been devoted to the calculation of fireballs at
various altitudes. Brodell made such calculations in 1958, in connection
with the test series of that year. Gilmore12 made a prediction of the
Bluegill explosion in 1962. Since then, many more refined calculations
of Bluegill have been made.

For any understanding of fireball phenomena it is essential to have
a good equation of state for air and good tables of absorption coeffi-
cients. For the equation of state, we have used Gilmore's tables,13
although Hilsenra,th'slh give more detail in some respects. The two cal-
culations agree. Gilmore's equation was approximated analytically by
Brode.

For the absorption coefficient we have used the tables by Meyerott

15,16 which extend to 12,0000. These were supplemented by the

17

et al.,
work of Kivel and Bailey ' and more recent work by Taylor and Kivel18 on
the free-free electron transitions in the field of neutral atoms and
molecules. At higher temperatures, there are calculations by Gilmore
and Latter,l9 Karzas and Latter,eo and curves by Gilmore21 which are
brought up to date periodically. The most recent calculation on the
absorption of air at about 18,000o and above have been done by Stuart
and Pyatt.22 This temperature range is not of great importance for the
problem of this paper, but is important for the expansion of the iso-
thermal sphere inside the shock wave before it is reached by the cooling

wave.

Brode8 has used the average of the absorption coefficient over




frequency, the opacity, which is sufficient for treating the internal
flow of radiation. A realistic treatment of the flow to the outside
requires the absorption coefficient as a function of frequency; Brode
merely wanted to obtain reasonable overall results for this flow. He
approximated the opacity by an analytic expression. Also in most of the
other work cited above an average opacity has been used. An exception
is some of the recent work on the radiation flow in high altitude explo-
sions (Bluegill), where the frequency dependence must be, and has been,
taken into account. Gilmore21 has calculated and made available curves
of effective opacity, in which the radiation mean free path was averaged
(using a Rosseland weighting factor) only over those frequencies for
which it is less than 1 kilometer.

This list of references on work on the fireball dynamics and opac-

ity is far from complete.

2. PHASES IN DEVELOPMENT

The energy from a nuclear explosion is transmitted through the outer
parts of the weapon, including its case, either by radiation (x-rays) or
by shock or both. Whichever the mode of transmission inside the weapon,
once the energy gets into the surrounding air, the energy will be trans-
ported by x-rays. This is because the air will be heated to such a high
temperature (a million degrees or more) that transport by x-rays is much
faster than by hydrodynamics. This stage of energy transport (Stage A)

has been extensively studied by many authors (e.g., Hirschfelder and




Magee in Report LA-2000) and will therefore not be further considered

here.

During Stage A, temperatures are very high. The Planck spectrum of
the air is in the x-ray or far ultraviolet region, and hence is immedi-
ately absorbed by the surrounding air. The very hot air is therefore
surrounded by a cooler envelope, and only this envelope is visible to
observers at a distance. The observable temperature therefore has little
physical significance. It is observed that the size of the luminous
sphere increases rapidly, and the total emission also increases, up to
a first maximum.

When the temperature of the central sphere of air has fallen, by
successive emission and re-absorption of x-rays, to about BOO,OOOO, a
hydrodynamic shock forms. The shock now moves faster than the tempera-
ture could propagate by radiation transport. The shock therefore sepa-
rates from the very hot, nearly isothermal sphere at the center. This
is Stage B in the development. The shock moves by simple hydrodynsmics.
Its front obeys the Hugoniot relations, the density being given by (3.4).
Behind the front, the air expands adisbatically, and at & radius of 80% |
of the shock radius, the density is apt to have fallen by a factor of 10
or more compared to the shock density, while the temperature has risen
by a comparable factor, (3.16). Thus the interior is at very low demsity,

and hence the pressure must be nearly constant (otherwise there would be

very large accelerations which soon would equalize the pressure). This

greatly simplifies the structure of the shock, and leads to such simple
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relations as (3.2) between shock radius and pressure.

Well inside the shock, the "isothermal sphere" pursues its separate
history. It continues to engulf more material because radiation flow
continues, though at a reduced rate. H. Brode has kindly calculated for
me the temperature histories of several material points, based on his
paper RM-2248. These histories clearly exhibit the expansion of the iso-
thermal sphere in material coordinates. The expansion can also be treated
by a semi-analytic method which I hope to discuss in a subsequent paper.
The isothermal sphere remains isolated from the outside world wmtil it
is reached by the cooling wave, Sec. 5.

The radiation to the outside now comes from the shock. Early in
Stage B, the shock has a precursor of lower temperature, caused by ultra-
violet radiation from the shock, and the observable temperature is still
below the shock temperature (Stage B I). However, the observable radius
is very near the shock radius. Later, as the shock front cools down,
the shock radiates directly and its temperature becomes directly observ-
able (Stage B II). The first maximm in visible radiation probably
occurs between Stages B I and B II. As the shock cools down, the radi-
ation from the shock front decreases, and the observable temperature
decreases to a minimum (Ref. L4, par. 2.113, p. 75) of about 2000°.

When the shock is sufficiently cool, its front becomes transparent,
and one can look into it to higher temperatures (Stage C). The central
isothermal sphere, however, remains opaque and, for some time, invisible.

Because higher temperatures are now revealed, the total radiation increases

1k




toward a second maximme. This stage has been very little considered
theoretically, except in numerical calculations, and forms the subject
of this report.

We shall show that for some time in Stage C, the radiation comes
from the air between isothermal sphere and shock front (Stage C I).
During this time, the radiation can be calculated essentially from the
temperature distribution which is set up by the adiabatic expansion of
the material behind the shock (Secs. 3 and 5f,g). The temperature and
total intensity of the radiation increase with time toward the larger,
second maximum.

The energy for the radiation is largely supplied by ;. cooling wave
(Sec. 5) which gradually eats into the hot interior. When this cooling
wave reaches the isothermal sphere, the radiation temperature reaches
its maximm (Sec. 5e); it then declines again as the cooling {rave eats
more deeply into the isothermal sphere (Stage C II). This process ends
by the isothermal sphere being completely eaten away (Sec. 6).

After this has happened, the entire fireball, isothermal sphere and
cooler envelope, is transparent to its own thermal radiation (Stage D).
The molecular bands, which previously appeared in absorption, now appear
in emission (Stage D I). Emission will lead to further cooling of the
fireball, though more slowly than before. Soon, when the temperature
falls below asbout 60000, the emission becomes very weak, and subsequent
cooling it almost entirely adiebatic (Stage D II). At sea level, the

pressure may go down to 1 bar before the temperature falls below 60000;

15




in this case there is no Stage D II. At higher elevation, there usually
is.

The fireball will then remain hot, at about 6000° or a somewhat
lower temperature due to adiabatic expansion in Stage D II. The only
process which can now lead to further cooling is the rise of the fire-
ball, which leads to further adiabatic expansion and, more important, to
turbulent mixing at the surface with the ambient air (Stage E). The
time required for this is typically 10 seconds or more, being determined
by buoyancy.

At very high altitude, the shock wave never plays an important part,
but radiation transport continues until the temperature gets too low for
effective emission. In other words, Stage A continues to the end. Of
course, a shock does form, but it is, so to speak, an afterthought, and
it plays little part in the distribution of energy. At medium altitude,
let us say, 10 to 30 kilometers, the stages are much the same as at sea
level but the shock wave becomes transparent earlier, i.e., at a higher
temperature, because the density is lower; this means that the minimum
emission comes earlier. Stage C proceeds similarly to sea level, but
at the second maximum of radiation the pressure is still much above
ambient, therefore Stage C II involves a greater radial expansion of the
isothermal sphere than at sea level which proceeds simultaneously with
the inward motion of the cooling wave. Moreover, there is much adia-
batic expansion after the cooling wave has penetrated to the center.

The temperature at which radiation stops is higher, due to the lower

density.
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We believe that the theory developed in this paper will be useful
in studying the dependence of phenomena on altitude (ambient pressure),

but we have not yet exploited it for this purpose.
3. RADIATION FROM BEHIND THE SHOCK (Stage C I)

a. Role of N02

The diatomic species in equilibrium air, both neutrals and ioms,
show very little absorption in the visible at temperatures up to about
4000°%K. This is shown clearly in the tables by Meyerott et al.l6 We
define "the visible" for the purposes of this paper, arbitrarily and

incorrectly, as the frequency range

hv = 1/2 to 2-3/4 ev

1

4050 to 22,300 cm”

2.48 to 0.45 p (3.1)

Then, even at a density as high as lOpO (po = density of air at NTP
= 1.29 X lO'5 gm/cma), the mean free path is never less than 100 meters
at 4000°, 1000 meters at 3000°, and still longer at lower temperature.
These values refer to hv = 2-5/8 ev; for lower frequencies, the mean
free path is even longer.

In the sea-level shock wave from a megaton explosion, the temper-
ature range from 3000 to 4000° occupies a distance of about 10 meters

(see Sec. 3b). Thus this region is definitely transparent, even at the
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highest possible density of about lOpO. For explosions at higher alti-
tude, this conclusion is even more true.

The tables by Meyerott et al. do not include absorption by triatomic
(and more complicated) molecules. Of these, NO2 is known to have strong
absorption bands in the visible. After this paper was completed, I
received new calculations by Gilmore23 which include the effect of NOE'
The effect is very striking as is shown by Table I, which gives the
gbsorption coefficient for the "typical® frequency hv = 2-1/8 ev, and
for several temperatures and densities (the absorption is strong from
about 1-3/4 to 2-3/4 ev).

Table I. Absorption Coefficients at hy = 2~1/8 ev
with and without NO

2
o/p o 10 10 10 10 1
T 2000 3000 Looo 6000 3000
Without 0 1.7'8 8.5'6 3,172 1.7
With 5.3 1.272 1.572 3.172 3,77

Note: For each value, the power of 10 is indicated by a superscript.

Because NO2 is triatomic, its absorption depends strongly on density.
As the shocked gas expands, the N02 dissociates and the gas becomes trans-
parent. Brode and Meyerott9 have calculated, under reasonable assump-
tions, the effect of this dissociation on the optical properties of the
fireball. We shall not discuss the effect of N02 any further, but shall
assume that this substance has almost disappeared by the time we are con-

sidering.
18




b. Temperature Distribution behind the Shock

We wish to calculate the temperature distribution behind the shock.
We can do this because the material which has gone through the shock
expands very nearly adiabatically, as long as it is not engulfed by the
internal, hot isothermal sphere. We are interested in the period when
the shock temperature goes from about 4000 to a few hundred degrees, i.e.,
until the strong cooling wave (Sec. 5) starts. For a l-megaton explosion,
this corresponds roughly to t = 0.05 to 0.25 second.

At a given time, the pressure is nearly constant over most of the
volume inside the shock, except for the immediate neighborhood of the
shock; the shock pressure is roughly twice this constant, inside pressure.
Comparing two material elements in the "inside" region, we may calculate
their relative temperatures if we know their temperatures when the shock
traversed them, and assume adisbatic expansion from there on.

A material element which is initially at point r will be shocked

when the shock radius is r. The shock pressure at this time is¥*

-3
= t .
P (r) = 20(y, - 1)¥r (3.2)
where
Y = yield in megatons
r = radius in kilometers
P ssure
s o1=E pre (3.3)

pE  energy per unit volume

*Notations for thermodynemic quantities similar to those of Gilmore
(Report RM-1543).
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and the average of y' is taken over the vblume inside the shock wave.
The basis of (3.2) is that the total energy in the shocked volume, Y,
is the volume times the average energy per unit volume, the latter is
the average pressure divided by y' - 1, and the average pressure is
close to one-half of the shock pressure.

The density at the shock is

t
s 77 -1°07y

l.

P ~ o (3.4)

]
s
where the subscript 5 refers to shock conditions. Now an examination of
Gilmore's tableslj sﬁows that 7' does not change very much along an adi-
abat. As an example, &e list in Table II certain quantities referring
to some adiabats which will be particularly important for our theory.
These are the adiabats for which the temperature T is between 4000 and
12,000° at a density of 0.1p,. In the second line we list the temper-
ature Ts for the same entropy S at a density Py = 10po. This is close
enough to the shock density (3.4) so we may consider T, as the temper-
ature of the same material when the shock wave went through it. (Adia-
batic expansion, i.e., no radiation transport, is assumed.) The third
line gives 7' - 1 for the "present" conditions, p = O.lp, and T, the
fourth line is the same quantity for the shock conditions. It is evident
that 7' - 1 is nearly constant for T = 4000 and 60000, not so constant
for 8000 and 12,0000. On the average 7' - 1 ~ 0.18. The last two lines
in Table II give the number of particles (atoms, ions, electrons) per

original air molecule under "present" and shock conditions.
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Table ITI. Adiabats

("Present” density, 0.1p; shock density, lOpO)

T 4,000 6,000
T, 9,000 10,500
y' -1 9.213 0.194
7g -1 0.208 0.190
Z 1.13 1.27
Z 1.3 1.6

Assuming an adisbat of constant ¥ = 7', the density of a mass

element is

o = ps<§s_)l/7

8,000

18,000

0.14k4
0.190
1.68

| 2.06

12,000
28,000
0.153

10,20

2.06

3

(3.5)

Now Py is a constant, and at any given time, p is the same for all mass

elements except those very close to the shock, hence

-1
P~ Py /7

(~ means proportional to).

If we now introduce the abbreviation

(3.6)

(3.7)

which is proportional to the mass inside the mass element considered,

and if we use (3.2), we find that at any given time

21




p ~ ml/7 (3.8)

The radius R is given by

3 _|dm  f Gm _ -1 .
R _Ip J‘mwy m const (3.9)

We shall set the constant equal to zero which amounts to the (incorrect)
assumption that (3.8) holds down to m = O. Actually, the isothermal
sphere gives the constant a finite, positive value.

To find the temperature distribution, we note that the enthalpy
H= —ft—u32=2 (3.10)

We are using the enthalpy rather than the internal energy because the
interior of the shock is at constant pressure, not constant density.

The thermodynamic equation for H is
T dS = dH - v dp (3.11)
At given pressure, i.e., given time, (3.8) to (3.10) give

-1 Yy L g3/ (1)

H~p (3.12)
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Now the approximate relation between internal energy and temperature is

given by Gilmore,15 Fig. 5, Vize,¥*
11 -0.1
E = k2 X 10 (g—) T'1> erg/gm (3.13)
0

where T' is the temperature in units of 10lL degrees.

Using p = E{;§¥:r7from (3.3) and setting 7' = 1.18, which is a reasonable

average (see Table II) we may rewrite (3.13):

E = 7.0 X 1000 p'l/9 T'5/3 (3.14)

where p is the pressure in bars. Since H is proportional to E, (3.12)

and (3.14) give
0~ 29~ gLe8/ (1) g (3.15)

Using 7' - 1 = 0.18, which is not far from the average of Table II,

*The thermodynamic relation

6+

v

leads to a relation between ¥ - 1 and the exponents in the relation

E=p"XqY
namely,
x=(y -1) (y - 1)

Since we have chosen 7 = 1.18 and y = 1.5 this relation gives x = 0.09.
This is in sufficient agreement with x = 0.1 as used in (3.13).
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7~ g0 (3.16)

The numerical calculations of Brode8 are in good agreement with this at
the relevant times, from about 0.05 to 0.5 second.

It will be noted that (3.16) was obtained without integration of
the hydrodynamic equations; it follows simply from the equation of state.
The weakest assumptions are (1) the relation between E and T, (3.13), and
(2) the neglect of the constant in (3.9). But in any case, T will be a

very high power of R.

C. Mean Free Path and Radiating Temperature

The emission of radiation from a sphere of variasble temperature is
governed by the absorption coefficient. For visible light, the absorption
coefficient increases rapidly with temperature.l6 For any given wave
length, the emission will then come from a layer which is one optical

mean free path inside the hot material.®

*Actua_'l.ly the maximum emission comes from deeper inside the fireball.
To see this we compute the emission normal to the surface, J =

- 3 .
Jare(R)e D(R)dR where €& = g}él—v—- e hv/KT is the emissivity, and the remain-

c 4
ing notation is as in the text (below). The integrand has a meximum at
R¥/4* = mx + ohv/kT*. The optical depth at the maximm is D¥ = D(R¥) =
*
+
w mdhv{k‘r which is about 2, rather than 1 in the blue. By steepest

descents and with occasional use of l/na = 0 it turns out that J =

A/ 21 hy
e

2k




Assume that the mean free path is

L =2 '™ (3.17)

where the exponent n and the coefficient &l depend on the wave length.

Then the optical depth for a given R is

D(R) =J &‘(’ﬁ:) (3.18)
R

Using (3.15) and (3.17),

D(R)'H—Tf (T(R) oy

MR (3.19)

A typical value of n is 5 [ef. (5.52)], and @ is 10 or somewhat larger.

Thus to make

D(R) =1 (3.20)

we need
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Since the interesting values of R are of the order of avfew hundred
meters, the emitting layer will be defined by the fact that the mean
free path is about 5 to 10 meters.

Equations (3.18) to (3.21) hold for emission in the exactly radial

direction. At an angle O with the radius we get instead

L(R,8) = C’L(R) (3.22)

ose

The apparent temperature of the emitting layer is then, according to

(3.17),

l/n

T(R,8) = T(R,0) (cos 8) (3.23)

where T(R,0) is the emission temperature for forward emission. The
intensity of emission is a known (Planck) function of the wave length
and the temperature. Since the apparent temperature decreases (though
slowly) with 8, according to (3.23) there will be limb darkening. On
the many photographs of atomic explosions, it should be possible to
observe this limb darkening and thus check the value of n.

The relation (3.17) needs to hold only in the neighborhood of the
value (3.21) of 4 and is therefore quite general as long as 4 decreases
with increasing teﬁperature. The exponent n should be determined at

constant pressure. For certain wave lengths, especially in the ultra-

26




violet, (3.17) is not valid; these wave lengths are strongly absorbed by

cold or cool air (Sec. 4c). For example, at p = p. and T = 20000, the

0
mean free path is less than 1 meter for all lightl6 of hv > 4.7 ev
(M <0.26 p). Since the emission of light of such short wave length from
such cool air is negligible, the fireball will not emit such radiation at
all.

A detailed discussion of the absorption coefficient in the visible
will be given in Sec. Ub. As can be seen from the tables of Meyerott
et a:l..l6 and from our Table VI, for a density p = Po the mean free path
is of the order of 5 meters at about 6000°. This corresponds to a pres-
su.rel5 of about 25 bars. For p = O.lpO the requisite mean free path of
a few meters is obtained for about lO,OOOO, with p ~ 7 bars. Thus for a
relatively modest decrease in pressure, the effective temperature of
radiation increases from 6000 to lO,OOOo s corresponding to a very sub-
stantial increase in radiation intensity. This is the mechanismb of the

increase in radiation toward the second maximum. A more detailed dis-

cussion will be given in Sec. 5f.

d. Energy Supply
As long as the radiating temperature is low, not much energy will

be emitted as radiation, and this emission will only slightly modify the
cooling of the material due to adiabatic expansion. However, when the
radiating temperature increases, the radiation cooling will exceed the
adisbatic cooling to an increasing extent. It then becomes necessary to

supply energy from the interior to the radiating surface.
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Most of the radiation comes from a thickness of one optical mean
free path near the radius at which (3.21) is satisfied. Let J be the
radiation emitted per unit area per second (which will be of the order
of the black body radiation; see below and Sec. 4c); then the loss of
enthalpy due to radiation, per gram per second, will be

oH J
) y) _ (3.24)
( t rad {p

Adisbatic expansion, according to (3.11), will give an enthalpy change

SHY _1
) T p

adi

A

(3.25)

As long as the shock is strong, i.e., as long as p is large compared to

the ambient pressure Py» the pressure behaves as

p~ t-l°2 (3.26)

where t is the time from the explosion; therefore,

M) _ L2
“\st)

adi

(3.27)

o

The radiation will be a relatively small perturbation as long as

(3.24) is smaller than (3.27). This will stop being the case when
J _ D
r=12% (3.28)

Now using (3.21) this gives
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Because of the steep dependence of temperature on R, (3.16), the radi-
ating surface R will be close to the shock front Rs. Now the Hugoniot
relations state that for 7 close to 1
1/2
R = (212) (3.30)

P

1
where pl is the ambient density and Ps = 2p, the shock pressure. Further-

more, for the strong shock case,

R A,to.u
S
RS
T =25 Rs (3.31)

Inserting into (3.29),

0.06 & o2 =y pll/2 (3.32)

The black body radiation at temperature lOlL T' is

11 T:h

J.=5.TX 10 erg/cm2 sec (3.33)

0

Actually, only the radiation up to about hvo = 2.75 ev can be emitted to

large distances because the absorption is too great for radiation of
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higher frequency (above, and Sec. Lc). The fraction of the black body

spectrum which can be emitted is given, in sufficient approximation, by

Yo
-1
8:%.[ quue-u=l-e O<l+uo}%ug+%ug> (5.51;)
0
where
hyv
- _0 -

For T = 80000, we have u

b = L and the effective emissivity is then

€(L4) = 0.57 (3.36)

In (3.34) we have neglected the fact that the infrared, below about
1/2 ev, also camnnot be emitted (Sec. 4a), and have approximated (e - 1)™T
in the Planck spectrum by e™"; both corrections are small. T, = 8000°

has been chosen as a reasonable average temperature (see Sec. 5). Near
ag mp

"105

this temperature, € varies about as T » S0 that the actual radiation

to large distances is about

oy
]

5.7 x 101 otk eL) o'\ 2
3 O ‘f‘or

5.3 X 10°T p'2*2

(3.37)

Solving (3.32) for p, with Py = 1.29 X 10'5 (normal air density) gives
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0.\ 1/3
p = 20<—i> ‘]:"5/5 bar (5'58)

?

For Py = Pgy T = 0.8, this is 1L bars.

At higher temperature (T' > 1), the ultraviolet can be transported
as easily as the visible although it will not escape to large distances
(Sec. 4¢). Then it is reasonable to use the full black body radiation

(3.33) for the emission. Inserting this into (3.32) gives

1/3
p = uo<?i) 7'%/3 (3.39)
Po

For Py = Pgo T' = 1.0, this is 40 bars.

Thus for p greater than 14 to 40 bars, the radiation is only a
fraction of the adiabatic cooling, for lower pressure radiation cooling
is more important. At the lower pressures then, energy must be supplied
from the inside to maintain the radiation. This gives rise to a "cooling
wave" moving inwards as will be discussed in Sec. 5.

It is interesting that the condition (3.38) refers to the pressure
alone. Neither the local density nor the equation of state enters. The
opacity of air enters only insofar as it determines the radiating temper-
ature T' through the condition (3.21).

A more accurate expression for the limiting pressure will be derived

in Sec. 5e. It will turn out to be considerably lower, about 5 bars.
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L. ABSORPTION COEFFICIENTS /

a. Infrared

The main absorption in the infrared is due to free-free electron
transitions. These are treated incorrectly in the paper by Meyerott et
al.,l6 in which it is assumed that such transitions occur only in the
field of ions. At the important temperatures of 8000° or less, the degree
of ionization is lO-5 or less. Therefore, the free-free transitions in
the field of neutral atoms and molecules are much more important than
those in the field of ions, even though each individual atom contributes
far less than each ion.

The effectiveness of neutrals in inducing free-free transitions has
been measured and interpreted by Taylor and Kivell8 at the Avco-Everett
laboratory. As compared to one ion, the effectiveness of the most impor-

tant neutral species is

N,: 2.2 £ 0.3 X J.o'2
N: 0.9 £ 0.k X J.o'2
0: 0.2 £ 0.3 X 10'2

Thus nitrogen gives about the same contribution whether molecular or
atomic, and the contribution of oxygen is very small. As a result, one
atom of air is equivalent to about @ = 0.8 X 1072 ion (of wnit charge).

The free-free absorption coefficient in en™’ is then

Hep

0.87 X 10%r'"1/2 <2—) 2(e')(hv) -3
0

7.0 p'-1/2 <°——) 2(e')(hv)'5 (4.1)
Po
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where e~ is the number of electrons per air atom, the quantity tabulated

13

in Gilmore, and hv is the quantum energy in ev. Table III gives some
mmbers for hv = 1 ev, four temperatures and three densities. At 8000°,
the free-free absorption is substantial, at lower temperatures negligible.
At 12,000° the transitions are mostly in the field of ioms, i.e.,
Meyerott's numbers need only slight correction, and the absorption is
large.

Table III. Free-Free Absorption Coefficients (cm-l)
for hv = 1 ev

T p/py = 1 0.1 0.01
4,000 6.8-6 1.977 4,179
6,000 5.5k 1.057 1.977
8,000 .12 8.7 . 2.4

12,000 2,171 1.5072 1.1270

Note: for each value, the power of 10 is indicated by a superscript.

Another cause of absorption in the infrared is the vibrational bands
of NO, which have an oscillator strength of abouteu 107 and hv = 1/k ev.

The resulting absorption coefficient is about

_ P
byg = 0+2 Eg (vO) (4.2)

where (NO) is the number of NO molecules per air atom. This is a few

percent at p/pO =1 and T = 4000 to 8000°, giving u = 2 X 107 to0 1072

cm-l. While this is of the order of magnitude relevant for emission,
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(3.21), it is small compared to the free-free absorption at this low
frequency, except at T < 50000. Its main effect is therefore to lower
the radiating temperature in the infrared somewhat.

Since the free-free transitions are the main cause of infrared
absorption, the electron density governs the temperature and density

1

dependence. For p/po 2107 and T < 80000, the main species of positive

+
ions is NO . The ionization energy of NO is 9.25 ev; therefore, the

electron density is roughly proportional to
3/2 9.25 ev
P exp ( —'e‘Tcr—) (4.3)

From 6000 to 8000°, this gives a factor of about 10 in the electron
density, in accord with Gilmore's tables. Near 8000°, we may write

approximately

hep ~ (7) ~ o3/ g (4.4

Writing p ~*pT"l'5, this gives

uff~p3/2 T (4.5)

The temperature dependence of the absorption in the visible will turn

out about the same.

b. Visible

In the visible and for temperatures below about lO,OOOO, the main
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causes of absorption are the molecular bands of

N, (first positive) from about 1 to 2-1/k ev

Ng (first negative) " " 2.1/2 to 3-3/k ev
NO (B bands) " " 2-1/2 to 6 ev

and the continuous absorption due to O  photodetachment from about 1-1/2

ev up. The N, second positive, and O, Schumann-Runge, although they con-

2 2

tribute, are usually weaker than the combination of N’

2

NO and cover the same region of the spectrum (or less). O~ photodetach-

first negative and

ment is mostly important at the higher density, p/pO = 1.
There is commonly a “window" of low absorption below 1 ev, between

free-free absorption and N (l+), and another at about 2-1/2 ev, between

2
N. and the other bands (Table IV). The latter window is filled in by O~

2
photodetachment. At higher temperature, such as 12,0000, the photoelectric
effect on N and O becomes important and the molecular bands almost dis-
appear; the absorption coefficient is then almost wniform over the entire
spectrum.

The table by Meyerott et al. should be consulted for details. Apart
from the free-free transitions, this table seems to be in error on the
N2(1+) absorption at 80000, which should be increased by a factor of L.
With these corrections, Table IV gives the absorption coefficients at
8000o for a few frequencies and densities, mentioning in each case only
the most important species of absorbers. For p/po = 0.1 and 0.01l, the
contribution of NO and O2 in the wave length region considered is negli-

gible. The windows at 1 and above 2 ev are noticeable in the table; beyond

5 ev there is a rapid increase in absorption.
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Table IV. Contributions to Absorption Coefficients at 8000°

hv (ev) 5/8 1-1/8 1-5/8 2.1/8 2-5/8 3-.1/8
plog =1

ff 1.7°2 0.372 0.10%  o.o4 0.2  o0.017
N, .12 2.1 oa® ook 05672
o 0.217%  0.2872 0.3172 0.3272
NO, Ng, o, 0.35172 2.2'2
Total 1.7'2 1.472 2.472 1.1672 0.6872 3.172
p/py = 0-1

£ 0.3672  0.067 0.2 0.0

N, 0.617 1127 067 0.c27  0.307
0~ 0.057  0.067 0.0772  0.077
N, 0.55 4.2
Total 0.36™ o.67'3 1.27 0.5372 0.6472 467
p/po = 0.01

£ 1.0 0.17° 0.5  0.02™ 0.017”  0.017
N, 1.397 2.6 1.037 0.057

o 0.137  0.177  0.27 0.2
NZ 0.037 4T 37
Total 1.07 1.67 2.87 1.257 4P T




The concentration of all the absorbing species depends strongly on
temperature: The N2 first positive absorption starts from the electronic
level A, which has an excitation energy of 5.7 ev; NO itself requires
high temperature for its formation} and NZ and O  are ions whose concen-
tration behaves like the electron concentration, discussed above in
Sec. L4a. Therefore, the absorption depends strongly on temperature. N2
first positive is the most important absorber, and its temperature depend-

ence (relative to the ground state of N.) is about

2

exp ( 2.%81) (1.6)

The concentration of N2 up to 6000° is nearly independent of density,

but at 8000° it is about proportional to pl/2 (per air atom) so that near

Wy ™ 05/2 ° (4.7)

2

which is nearly the same dependence as derived in (L4.4) for the free-free
transitions. In terms of pressure we get
~ /2 of (4.8)

N,

Table V gives the absorption coefficients for four temperatures,
three densities, and six wave lengths. In the visible (1-1/8 to 2-5/8 ev)

the strong increase in absorption with temperature is evident, a factor
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of about 200 from 4000 to 6000°, about 10 from 6000 to 8000° except for
the lowest density, and 10 to 50 from 8000 to 12,0000. In most cases,
the dependence on wave length is slight until the rapid increase of
absorption in the ultraviolet which sets in at about 2.5 ev for hOOOO,

3 ev at 6000 and 8000°, and not at all at 12,000°. The especially strong
increase for lLOOOo is due to the Schumann-Runge bands, which are not very
sensitive to tem;perea.i:ure*’'r (see Sec. Lc).

In Sec. 54 we shall need the mean free path in gm/cmz, suitably
averaged over the "transparent" region. From Table V it appears that a
reasonable estimate of this region is from hv = 1/2 to 2-3/h ev. We
have averaged p/u as calculated from Table V, with the weighting factor

uBe-u, u = E—iﬁggggi (4.9)
which does not vary much (from 0.84% to 1.33) between 1-1/8 and 2-5/8 ev.

The result is given in Table VI.

*After completion of this paper, I received new absorption coefficients
by F. R. Gilmore, cf. ref. 23. Aside from including the absorption by
NOo (see Sec. 4a), Gilmore includes the free-free absorption in the
field of neutrals, based on ref. 18, and also new data on f numbers for
the important bands.2 The most important change is a reduction in the
f number of the N, first positive system from 0.02 to 0.0028, which will
substantially reduce the absorption in the visible. Unfortunately, this
will further raise the theoretical radiating temperature (Sec. 5d),
which is already higher than observed.

1-

Some recent Avco-Everett experiments may indicate that the free-free
electron transitions in the field of the N atom are enhanced in the
visible as compared to the infrared. This may compensate to some extent
for the reduction of the N2 first positive bands (see footnote above).
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Table VI. Average Mean Free Paths (gm/cm?)

T p/pg =1 0.1 0.01
6,000 0.86 1.3k4 3.15
8,000 0.105 0.20 0.76

12,000 1.2572 1.8272

A fair approximation to Table VI is

- 0.3 1.
e - 2.7 X 10 2<3 ) o' =T (4.10)
2 Po
]
Gilmore's equation of state can be approximated near T = 1, p/pO = 0.1

by

0.9
p =55 ("—-) 7'3/2 (4.11)
Po

Using this in (4.10) gives

2

1-6.5 gm/cm (k.12)

- 0.10 p /3 1

Tlo

c. Ultraviolet

The absorption in the ultraviolet is generally high at all tempera-
tures. At low temperatures, the absorption is mainly due to the Schumann-
Runge bands; at higher temperature (8000°) these are replaced by NO B and

7, and at high temperature (12,000°) by photoelectric absorption in 0,

Lo




N, and O. The Schumann-Runge bands start from the electronic ground state

of 0., hence are available at low T; at higher T, the spectral region of

Y
strong absorption spreads due to excitation of vibrational states; but at
still higher T, oxygen dissociates and therefore the bands die out (at
80000, they contribute less than 10% of the absorption). The photo-
electric absorption in N and O requires not only the presence of these
atoms but also their electronic excitation,* and therefore does not become
important wntil about 10,000°.

Table VII gives, for density p = O.lpo, the spectral regions of
strong absorption. In accord with Sec. 3b, we define this by p > 107
(mean free path less than 10 meters) or p > 1072 (2 < 1 meter). The
table shows that strong absorption covers a particularly wide spectral
region at hOOOO, shrinking substantially at 6000°. Very strong absorption,
po> 1072 cmhl, occurs in quite a large spectral region for T = 4000° but
shrinks to practically nothing at 6000° and to nothing at 8000°. At
12,0000, very strong absorption occurs again but is now in the visible.
The strong sbsorption in the ultraviolet (hv > 3.5 ev) means first

of a1l that the UV is not emitted to large distances and can therefore

not be observed; e.g., at T = 4000° and hv = 3.5 ev, we have

*e should also add the photoelectric absorption from excited states of
NO, which should be especially noticeable at 8000°.
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The fraction of the Planck spectrum beyond u = 10 is only about l%, 50

that emission of these frequencies is negligible.

Table VII. Ultraviolet Absorption: Spectral Regions (hv in ev) with
Large Absorption as a Function of Temperature for p = O.lpO

T b>1072 et w>1072 em™t
2,000 Lo7 - 7.2 5.5 = T2
3,000 3.9 = T2 o7 - 7.2
4,000 3.5 - Te2 4.6 - 7.2
6,000 L.0 - 7.1 5.8 - 6.0
8,000 2.7 - 6.3 None

12,000 A1l 2.7 = 3.5

The ultraviolet can, however, be transported quite easily at 8000°
and even more easily at 12,000o if there is a temperature gradient. Such
a gradient is always available, whether we have adiabatic conditions
(Secs. 3b, 5f) or a strong cooling wave (Sec. 5d). Therefore, there will
be a flow of ultraviolet radiation at the radiating temperature, defined
in Sec. 5, which will be shown (Secs. 5d, 5f) to be about 10,000° or
slightly less. To calculate this flow, we should determine the tempera-
ture gradient from considerations such as Sec. 5d or 5f, and then insert
this into the radiation flow equation. This is similar to (5.3) except
that only the ultraviolet contribution to the flow should be taken into

account.
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When this is done in a case of constant (frequency-independent)
absorption coefficient, the ultraviolet transport will be related to the
visible radiation transport as the respective intensities in the Planck
spectrum. This condition seems to be nearly fulfilled at 12,0000. At
8000°, the absorption in the near ultraviolet (2.75 to L.2 ev) is about
three times that in the visible; then the UV transport will be one-third
of that corresponding to the Planck intensity. Since the radiating
temperature near the second radiation meximum is between 8000 to lO,OOOO,
the actual UV transport will be between one-third and the full Planck
value, relative to the visible radiation. According to (3.36), the UV
contains sbout 43% of the Planck intensity at 8000°; hence the total

radiation transport at this temperature is about
57 + 1/3 X 43 = T1%

of the black body radiation. At 12,000o we get the full black body value.
For simplicity we have assumed the full black body radiation in Sec. 5,
even though the UV is not emitted to large distances. But this problem
could, and should, be treated more accurately.

Having discussed the influence of the UV on the total radiation flow,
we now examine what happens to the UV radiation after it has gone through
the "radiating layer," i.e., the layer which emits the visible light to
large distances. The very near ultraviolet, 2.75 to 3.5 ev, will be
partially absorbed at LOOO to 6000°, especially if the layer of matter

at these intermediate temperatures becomes thick, 0.3 to 0.5 gm/cm? Or SO.
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The UV beyond 3.5 ev will be strongly absorbed at 1000°. Thus the layers
of air at intermediate temperatures get additional heat which counteracts
and may even exceed the adiabatic cooling. This will tend to increase
the thickness of the medium-temperature layer. This in turn will (mod-
erately) lower the radiating temperature, but three-dimensional effects

act the opposite way (Sec. 6).
5. THE COOLING WAVE

a. Theory of Zel'dovich et al.

Zel'dovich, Kompaneets, and Raizer 10 (quoted as Z) have considered
the loss of radiation by hot material when the absorption coefficient
for the radiation increases monotonically with temperature. They have
shown that in this case a cooling wave proceeds into the hot material
from the outside. This is to say, the cool temperature outside gradually
eats its way into the hot material, while the material in the center
remains unaffected and merely expands adiabatically.

For simplicity, Zel'dovich et al. consider a one-dimensional case.
They further assume that the specific heat is constant and express their
theory in terms of the temperature. This is not necessary; we shall
merely assume that both the enthalpy H and the absorption coéfficient
for radiation are arbitrary but monotonically increasing functions of the
temperature. Like Z, we shall assume, in this subsection only, that the
radiation transport can be described by an opacity (Rosseland mean) rather

than considering each wave length separately.
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The fundamental statement of Z is that the cooling wave keeps its

shape, i.e., that the enthalpy (and other functions of the temperature)

is given by
H = H(x + ut) (5.1)

Here t is the time, x is the Lagrangian coordinate, and u is the
Lagrangian velocity of the cooling wave. We have written x + ut so that
the cooling wave proceeds towards smaller x, i.e., inwards. H is, of
course, a decreasing function of x + ut. The Lagrangian coordinate is

best measured in gm/cm2 and is defined by

x=jde (5.2)

where X is the geometrical (Eulerian) coordinate. For given pressure p,

the density p is a function of H so that X(x) can be calculated from

(5.2). The Lagrangian velocity u, measured in gm/cm? sec, is a constant.
For any given H, we know the temperature T, hence the opacity K and

the raediation flow

i
Jgﬂ%égf{_) (5.3)

where a is the Stefan-Boltzmann constant,

>

a=5.7X10 erg/cm? sec deg
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The equation of continuity is

R~ (5.4)

The energy in radiation has been neglected, which is justified in
all practical cases. Using (5.1), (5.4) can be integrated over x to

give

wWH+J=¢C (5.5)

where C is a constant. This is the fundamental result of Z.
If the opacity increases monotonically with H, then in the interior

J will be very nearly zero, and therefore

C =uH (5.6)

where HO is the enthalpy in the undisturbed interior, hot region.

Equation (5.5) becomes

J = u(HO - H) (5.7)
and using (5.3)
N
_ b a(T")
R Rl G oy >-8)

which can be integrated to give x(T), since H(T) and K(T,p) are known
functions. We have put in evidence the fact that K depends on pressure

in addition to T. Over most of the range of T, K(T) is the most rapidly




varying (increasing) function of T and the variation of HO - H is less
important; therefore, T(x) becomes steeper as T increases; but when H
gets very close to HO, the most rapidly varying function in (5.8) is

Hb - H, and H approaches HO exponentially as ézx for small x. The qual-
itative behavior of T(x) is shown in Fig. 1, in accord with Z. To obtain

this shape it is essential that K(T) increase much faster than o

Ho

Fig. 1. Temperature distribution in cooling wave.

On the outside, we finally come to a point Xq where only one optical

mean free path is outside X . From this point we get black body emission,

i.e., (5.3) is replaced by

J(xl) =J = amll‘ (5.9)

Using this in (5.7) we find
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U= (5.10)

To determine u we therefore have to proceed as follows:

1. Find the temperature T, at which the opacity K(Tl) is such that there

is one optical mean free path outside X15 i.e.,

I
I K(T) ax(T) = 1 (5.11)
0

For this purpose we must know, of course, the temperature distribution

T(x) for T < Tl'

2. Determine J(Tl) from (5.9) and H(Tl) from the equation of state.
Knowing the internal enthalpy H, then gives u from (5.10). Note

that u is the Lagrangian velocity of the cooling wave. It has the cor-

rect dimension.

To solve problem 1, Z assume that the material which has gone through
the cooling wave will expand adiabatically. We shall find that this is a
reasonable assumption in most conditions (Sec. 5d4) but that at early times

(Sec. 5f) and in certain late stages other considerations apply (Sec. 6b).

b. Inside Structure of Fireball, Blocking Layer

In early stages (Stage B I), just after the shock wave is formed,
the isothermal sphere expands, by radiation diffusion, into the material
which has been heated by shock. This process, which will be treated in

a subsequent report, depends on the temperature and temperature gradient
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in the isothermal sphere. For its occurrence it is important that the

opacity actually decreases with increasing T at higher temperafure. Many
calculations of K(T) in this temperature region have been made. Curves
have been compiled, especially by Gilmore,21 and revised as more infor-
mation has become available. The most recent and most extensive calcu-
lation, to my knowledge, is by Stuart and Pyatt.22

All calculations agree that TB/K(T), which is the important quantity
according to (5.3), has a pronounced minimm at asbout T' = 2, T = 20,000°.
(The temperature of the minimum increases slightly with increasing den-
sity.) Molecules are no longer present at these temperatures, and
absorption is mainly by bound-free electron transitions in atoms and
atomic ions, with some contribution from broadened atomic lines (bound -
bound transitions) whose calculation is the most difficult. Radiation
transport, then, is most difficult around Tb = 20,0000, and temperatures

around T, constitute an effective blocking layer for radiation.

b
Until about 0.5 second, the central temperature of a l-megaton sea

level explosion is greater than T. , according to the calculations of

Tb
Brode.8 Radiation flow can then be considered as teking place separately
in an interior and an exterior region. The interior flow is détermined
by the central temperature Tc’ and this flow generally decreases with
time because Tc decreases and with it the quantity TB/K. The exterior
flow is dominated by the cooling wave and increases with time because

the decrease of density causes a decrease of opacity for any given T.

The two flow regions are separated by a blocking layer in which the
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temperature is around Tb’ and in which the temperature distribution is
essentially that originally established by shock and subsequent adiabatic

expansion. It is to this condition that the temperature distribution

(3.16), T~ R-lo, refers.

The radiation flow through the blocking layer is

4 h b d log T
I, = - 58 b Rb d log R (5.12)

The mean free path for radiation in the blocking layer (at 18,0000)

according to Gilm.ore21 is about

. 6 (o V1
. = O <55) cm (5.13)

The radius Rb at which this temperature occurs, for a l-megaton explosion

at sea level, is = 300 to 400 meters. Using T ~R10, this gives
2

9 (e \*?
J,=T7X10 (——) (5.14)
Po
This is equivalent to black body emission at the effective temperature

-0.325
) (5.15)

Using the equation of state at 18,000°,

- P
Teffb 3300( O
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Lol
= (%5) (5.16)

‘where p is in bars. Equation (5.15) becomes

0

-0.
Ters,p = 20,00 P * (5.17)

The "blocking layer"” will deserve its name only if the radiating temper-

ature is higher than Te ££,b°

c. Velocity of Cooling Wave

The velocity of the cooling wave is given by (5.10), where H, is
the enthalpy at the point to which the cooling wave has proceeded. If
inside this point there is a noticeable flow of radiation, J 0’ (5.10)

should be generalized to

J'l-JO

Ry -

Usually, the main dependence on the internal conditions is through HO,
the effect of JO being less important.

As HO increases, i.e., as the wave progresses more into the interior,
the velocity of the wave will decrease. The limit will be reached when
the cooling wave penetrates the isothermal sphere; then HO is the enthalpy
in that sphere and Jj = O. We now use the black body formula (3.33) for

the emission of rediation at the radiating surface T , (3.14) for the
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internal energy in the isothermal sphere of temperature Tc and 7' = 1.15

in that sphere; then (5.18) becomes

5.7 X 107 1'%

1
u =

mn

T
1/9 1 2
0070 P T'5/3 ) T'5/3 gm/m sec ‘ (5019)
c 1

Typically, p = 5, Ti =1, T; = 3; then u = 0.15 gm./cm2 sec. The expres-
sion (3.33) includes all the black body radiation. If only the radiation
actually emitted to large distances is to be included (which is reasonable

at lower temperatures, Ti < 0.8) (3.37) should be used; then u will be

smaller, 0.1 gm/cm2 sec or less.

Before the cooling wave reaches the isothermal sphere, HO

This is partly corpensated by the fact that JO > 0. An interesting inter-

mediate state is when the cooling wave has just reached the blocking

is smaller.

layer. Then, using T' = 1.8 ana (5.14),

b
J. - J
Yy T Hi - H: (5.20)

i 1.1 1
Til_l6pll-)+

= 0.70 pl/9 L 573 (5.21)
2.7 - Ty

Clearly this makes sense only if the subtracted term in the numerator is
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smaller than the first term, i.e., when the pressure is sufficiently
high. As the pressure decreases below about 10 bars, the blocking layer
"opens up" and ceases to block the flow of radiation.

In the very beginning, when the cooling wave just starts, the top
temperature of the cooling wave, To, is close to the radiating tempera-

ture T.. Then (5.18) becomes

1
b R (g_%)r (5.22)

1

If we use (5.12) for J, assume d log T/d log R and R to be constant, and

use (3.14), then

~ (2L (5.25)
‘1 (T2 > d‘I‘)T

For further discussion, see Sec. 5f.

As T increases, u decreases from (5.23) via (5.21) to (5.19). After
the cooling wave has penetrated to the isothermal sphere, u is apt to
increase again because Tc in the denominator of (5.19) will decrease due
to adiabatic expansion of the isothermal sphere. Thus the velocity u is
apt to be a minimum when the cooling wave has just reached the isothermal
sphere.

The variation of u with time is not very great. Likewise, the shape

of the cooling wave changes only slowly with time. The shape is obtained
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by integrating (5.8); it depends on time because K is a (rather slowly
variable) function of the pressure, and Hy is a (slow) function of time.
This justifies approximately the basic assumption (5.1) of Z: While the
cooling wave does not preserve its shape exactly, it does so approximately.
The picture is then that at any given time t there are up to five
regions behind the shock. In Fig. 2 the temperature is plotted schemat-

ically against the Lagrange coordinate r. GStarting from the center,

there is first the isothermal sphere (I in Fig. 2).

Fig. 2. Schematic temperature distribution. I, isothermal
sphere; III, cooling wave; VI, undisturbed air; E
shock front. IT, IV, and V are expanding adiabat-
icallye.

2

This may be followed by a region II in which the temperature distribu-

tion is essentially that established by adiabatic expansion behind the

pL



shock, Eq. (3.15). Next comes the cooling wave III in which the temper-
ature falls more steeply, according to (5.8). (At late times, region II
is wiped out and III follows immediately upon I.) Region IV includes
the material which has gone through the cooling wave, and now cools adi-
abatically; hence the temperature falls slowly with r (sec. 5d). D is
the material point from which the cooling wave started originally; region
V, outside that point, is also expanding adiabatically, but from shock
conditions; thus it is the continuation of region II. Finally region VI
is the air not yet shockedf As time goes on, the cooling wave III moves
inward, wiping out region II and then eating into region I. Region IV
accordingly grows toward the inside, but its outer end D stays fixed.
Region V expands into VI by shock.

We note once more that u is the velocity in Lagrange coordinates,
and in gm/cm? sec. The problem is made somewhat more complicated by the
three dimensions and the adiabatic expansion, cf. Sec. 6, but the prin-

cipal features remain the same.

d. Adiabatic Expansion after Cooling. Radiating Temperature

When a given material element has gone through the cooling wave, it

is left at the radiating temperature T Thereafter, it will expand

l.
adisbatically. Equation (3.25) shows that for adiabatic expansion

oH _1lop
(5?) o= ‘p—gt- (5.2)4-)
adi

or, using (3.10)
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d log H _ y' - 13 log p -
S5t = 7T St ()‘25)

As long as the shock is strong, (3.26) holds and therefore

L%@:-l.gy -1 (5.26
&

Gilmore'sl5 Tables 11 and 15 show that for T = 5000 to 80000, and p =
1t010 bers, y' varies from about 1.13 to 1.20, so

o T .
g—%gg—é = - 0.1k to - 0.20 (5.27)

At late times, p no longer decreases as fast as t~ ,» 80 H also decreases
more slowly but (5.25) remains valid.
We use now the approximate equation of state (3.1:) (together with

H = y'E) and find

7'~ /15 B0

..l_ + _3. v -1
A,pl5 5 77
facy pp (5‘28)
with
s _2 7' -0.9
S T3 7!
= 0.1%6 to 0.167 (5.29)
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using (5.25) and 7' = 1.1 to 1.20. A given material element which went
through the cooling wave at temperature T; and pressure Py will now (at

pressure p) have the temperature
g
T =1’ (P—) (5.30)

If we assume Tm to be independent of time, then at a given time in the

adiabatic region (IV of Fig. 2)

1 0 log p 0 log p
dlog T _ 4. m_B m -
3 = i Tw (5.51)

1.28 _ 0.8 7' - 0.9
= - = T

m m

where tm is the time at which the material element x was radiating. The
last step in (5.31) assumes that the velocity of the radiation wave is
constant but is valid vhatever the time dependence of the pressure; (5.32)

assumes p ~ t'l'e, i.e., strong shock conditions. It should be noted

that t in the relation p ~ t'l‘g, and therefore t in (5.32), is the total
time since the nuclear explosion.

The velocity u of the cooling wave was calculated in Sec. 3c, (5.18),
(5.19), etc. The condition for the radiating surface, now as in Sec. 3c,
is that there be one optical mean free path outside it for 'visible" light
as defined in Sec. 4b. Since we now use material coordinates in gm/cm ’

we should use mean free paths in the same unit. Table VI and (4.10) and

(k.12) give the required information. We write (4.12) in the form
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Ap-l/3 p'-n

e— —_— L_A.
2 (5.33)
- 2
with A = 0.10 gm/em” and n = 6.5.
The optical depth is, according to (5.32) and (5.33)
o0 T'
1
oo | & (. __ax pl/5 din T (5.54)
p/n dinT') A e |
1/3,m
' T
AN (5.3)
n O. 7!‘ 0.9 A
Setting D = 1, 7' = 1.15, A = 0.10, and n = 6.5 gives
065 _ 0.11 gn cn® -1/3 (5.56)
1 - ut p *

This is an explicit expression for the radisting temperature in terms of

the velocity of the cooling wave. The latter depends in turn on the

t

1

in the 10.5 power and thus can be determined very accurately.

radiating temperature, increasing with Tih, so that T, occurs altogether

Equation (5.36) can be further reduced by using the relation between

pressure and time which is, for a strong shock, approximately

o 1/2
tp)/6 = 1.0 Yl/5 <—l) (5.37)




where t is in seconds, p in bars, and Y in megatons, and Py is the den-

sity of the ambient, undisturbed air. Then (5.36) becomes

1/2

z p
uTi6'5 = 0.11 Y'l/) (—O> pl/2 (5.38)
Py

The right hand side of (5.38) gives the complete dependence on Y and Py
since; in deriving (5.36), we have only used the opacity law (5.33) and
the adiasbatic cooling of air; (5.52), both of which are independent of
the explosive yield Y and of the ambient density of the air.

Now insert u from (5.19); then we obtain

110.5 1./2
T P
1 -1/3 [Po 7/18
v = O. 6 Y —— .
"2E Tibfa L (pl) P (5.39)

This equation gives the radiating temperature in terms of the central
temperature Tc and of the quantities on the right hand side. The radi-
ating temperature is proportional to a low power of the central temper-
ature (about the 1/6 power); thus as the inside cools, the radiation

decreases (see Sec. 5e for details). It also decreases slowly with time

due to the pressure factor on the right hand side, Ti ~'pl/27. For given

P and Tc’ the radiation temperature is higher for lower yield, 7] ~'Y'o'032,

1
and for higher altitude, Ti ~'p£1/21,

For sea level, for Y = 1, and for p = 5 bars (ef. Sec. 5e for this

choice) Brode's calculations give ’I‘; ~ 3.6; then (5.39) yields T]'_ = 1.08,




or a radiating temperature of 10,8000. This is a reasonable result,
thoush appreciably higher than the temperatures usually observed. How-
ever, as we shall shov in Secs. 5e and f, our calculation gives the max-
imum temperature reached, and is likely to be somewhat too high due to

our approximations.

e. Beginning of Strong Cooling Wave

Equation (5.19) gives the inward speed of the cooling wave in gm/cm?
sec. Precisely, this is the speed at which the point of temperature Tl
(radiating temperature) moves relative to the material, once the cooling
wave 1s fully established. But even if there is no cooling wave, i.e.,
if we have simply adiabatic expansion behind the shock, a point of given
temperature T, will move inward. This "adiabatic motion" is the minimum

velocity which the point Tl can have. Therefore, if the adiabatic speed
is greater than (5.19), it will be the correct velocity. Of course, there
will still be a cooling wave because this is needed to supply the energy
for the radiation; this "weak cooling wave" will be described in Sec. 5g.
But its inward motion, more accurately the velocity of its foot (point C
in Fig. 2), will not be determined by the requirement of sufficient energy
flow, (5.19), but by the "adiabatic speed" which we shall derive from
(3.15). Region IV of Fig. 2 will nov be absent. Thus, outside the
cooling wave, at point C, region V will begin immediately, with the

temperature distribution given by (3.15).

It is therefore important to determine the time ta (and pressure pa)
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at which u of (5.19) becomes larger than the adiabatic speed of temper-
ature Tl' Before this time ta, we have a weak cooling wave. We call
this Stage C I; afterwards, the cooling wave is strong, and the radiation
is essentially described by the theory of Sec. 5d (Stage C II). To
determine the point of separation P, between these two stages is a refine-
ment of the considerations of Sec. 3d.

The temperature in the adiabatically expanding material behind the
shock is a function of time and position, given by hydrodynamics and

equation of state. The inward motion of a point of given temperature

relative to the material is given by

ar _ (d log T/at)r
" P&t T (3 log T/p SR

(5.40)

vhere the subscript r means that the partial derivative must be taken at
given material point r, not at given geometrical radius R. We have from

(3.15)

0 log T _ 1.8
poR (7" - 1)eR (5.42)

Similarly, from (5.28)

dlogTY o9 logp_ 1l.28
- (T-§%-) =B ‘”‘5%‘2 = - =
r
0.8 ' - 0.9
= = .11-2
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assuming the strong shock relation p ~ 1712, The ratio (5.40) is then

dr _ 0.8 (7' -0.9)(y' - 1) pR -
- P d? =18 7| T ()011'5)

Here we use the relation (3.10)

-2 __ P
p = 7! -1 H (5'1“4')
and find
} 1
e Ees -oem%% (5.45)

vhere H has been labeled H1 because it refers to the radiating tempera-

ture. Here we may insert (3.30) and (3.31), viz.,

R_5 b '
= §~ﬁ? EI (5.46)

We may then compare the result with (5.18), the velocity of the cooling

wave (setting Jg = 0)

J

1
. N A
u H - Hl (5 ‘)

The comparison gives

3/2 H :
= J 5.48)
pi/z Hb - Hl 1

109\/5 (7: - 0.9) js)
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Inserting (3.33) for J,, and changing the unit of p from dynes/cm? to

l)
bars = 106 dynes/cm2 we get

/ T’17'//5
3/2 9 1 1
D =570 JP - -
1 o 102 7'-0.9 Tc5/3 _ Tlu/B
With py = 1.29 X 10'5, 7' = 1.15 this becomes
1/3 p134/9 21 \5/3 2
1 Po T;lO;9 T

Setting now P =Py and choosing, as in Sec. 54, T; = 3.6 and Ti = 1.08

yields
p, = 5.0 bars (5.50)

Thus the critical pressure is 5 bars, which was the reason for the choice
of this number at the end of Sec. 5d. There it was shown that 5 bars and

i = 1.08 so that our nunbers are consistent.

Té = 3.6 leads to T
We had to rely on Brode's solution to find Tc for a given p; this
could only be avoided by obtaining an analytic solution for the isothermal

sphere which will be discussed in a subsequent paper. Apart from this

our treatment is analytical, making use of the equation of state and the

absorption characteristics of air.
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f. Maximun Emission

In this section we consider Stage C I, i.e., the condition when the
pressure is larger than p_, (5.50). Then the radiating surface is in
the adiabatic region described in Sec. 3c. The condition for its posi-
tion is, (3.21), 4 = R/50. From Brode's curves, the position of a point

of temperature 7' near 1 is given approximately by

1/3 ' -0+10 p-1/l+

R=0.78Y (5.51)

This expression comes purely from the numerical calculation, except that
the correct dependence on yield is inserted. Y is in megatons, p in bars,
R in kilometers. Equation (5.51) holds from P =5 to 100 bars within

about 5%. The absorption coefficient is given in (h.lO), which yields

1.5
=2 p
=L 27X107 (_0) o'
M P

8 X 107 p'l'u5 T"b"9 cm (5.52)

using the equation of state (4.11). Equating this to 1/50 of (5.51)

gives

pthe8 k.5 Y'l/5 p 120 (5.53)

Tl - 1.3,_( Y-O.O7 p-0o25 (5.5)4.)

Thus the radiating temperature increases as the pressure decreases.
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i.e., the increase of temperature with time is fairly fast. This is
entirely due to the "opening up" of the shock, i.e., the decrease in
absorption with decreasing density (pressure).

For given pressure, the radiating temperature (5.54) is slightly
higher for smaller yield, an effect which has been observed. A factor
of 1000 in yield corresponds to a factor 1.6 in temperature, hence a
factor 7 in radiation per unit area. The total radiated power (assuming

black body) at given p is proportional to

2 prh o y2/3-0.26 _2/3-1 (050 -5/3 (5.56)

The relatively low power of the yield is remarkable in this formula,
which describes Stage C I. Since the total energy radiated should be

approximately proportional to Y, the duration of Stage C I is then pro-

portional to YO.6O. The observed time to the second radiation maximum

0.5

]
is about proportional to ¥ « Our theoretical dependence of T on yield

is therefore somewhat too strong. The time dependence of (5.56) is quite

strong, about as te.

As we have shown in Sec. 5e, Stage C I ends when the pressure reaches

H
5 bars. For this value of p, and for ¥ =1, (5.54) gives T = 0.92.
This is slightly less than the 7' = 1.08 deduced in Sec. 5d for the same

p and Y from the cooling wave. The discrepancy must be due to a small




inconsistency in our approximations.

In our one-dimensional theory, the end of Stage C I marks the max-
imum of radiation, both in temperature and total emission. In Stage C I
the radiating temperature increases with decreasing pressure, (5.54),
because the material becomes more transparent. In Stage C II the reverse
is the case, (5.59), because the material which has gone through the
cooling wave becomes thicker with time, (5.32). This material provides
opacity for the visible light from the fireball; since it becomes more
opaque, the radiation must now come from a layer of smaller absorption
coefficient, (5.35), and therefore of lower temperature. As (5.36) shows,
the increase of thickness (t in the denominator) is more important than
the continued decrease of density (factor pl/B). These results will be
modified in the three-dimensional theory, Sec. 6.

The maximum temperature has been calculated as T' = 0.92 or 1.08,
from our two calculations; it is clearly close to 1, i.e., l0,000o.
This number is not too much out of line with observation considering
that we have calculated a maximum. In fact, the transition from Stage
C I toC II cannot be sudden as we have assumed; the cooling wave must
begin gradually, and therefore the temperature peak which we have calcu-
lated will actually be cut off (Fig. 3). The observable maximum may

easily be 1000° lower than our calculation.
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Fig. 3. The calculated increase in temperature in Stage C1I,
and decrease in Stage C II (straight lines), and the
estimated actual behavior.

The radius of the radiating surface increases with time in Stage

¢ I. Inserting (5.54%) into (5.51) gives

~ y0e 3% P-0.225 ~ £0+27

R (5.57)

In Stage C II, the surface moves rather rapidly inward relative to the
material, due to the cooling wave. In addition, for sea level explosions
at least, the pressure is no longer much above ambient, so that the out-
ward motion of the material slows down. Thus the geometric radius of the
radiating surface no longer increases much, and soon begins to decrease.
Therefore, the total radiation will reach its maximum at the same time

as, or very soon after, the maximum of the temperature.
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ge Weak Cooling Wave

In Stage C II the cooling wave dominates the radiation (Sec. 5d).
In Stege C I the cooling wave also exists, because the energy of the
radiation must be provided. However, the speed at which the wave proceeds
invard is now governed by the adiabatic expansion, (5.45). In order to
obtain the correct flux of radiation J. at the radiating surface, we

1
must therefore use (5.18) in reverse: The temperature To at the inner
edge of the cooling wave (point B in Fig. 2) will regulate itself in such
a way that (5.18) is satisfied, with u given by (5.45). Using (5.46),

‘we thus get the condition

3/2 H
%5(7'-0.9& = L (3, - 3,) (5.58)

Py

or solving for HO

I -
o~"h 1 13 ’51 3/2 ik
H 1-3,/3 77 =09 ES'P T, (5.59)

and inserting numbers:

Neglecting JO’ we find that HO increases rapidly as p decreases.
We may insert (5.5!); then the right hand side varies as p's/2 ~'t3.
Thus the cooling wave starts very weak and then rapidly increases in
strength. Its "head" (point B in Fig. 2) is at first close to its foot
(point C). As time goes on, it moves more deeply into the hot material,

eating up region II of Fig. 2. The energy which is made available for
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radiation is essentially the difference HO - le The material drops

suddenly in temperature from To to Tl as the cooling wave sweeps over
it, and the energy difference is set free for radiation.

The term JO depends on Hb, on p, and on the temperature gradient
in the region inside the cooling wave (region II). If this region is
adiabatic, the temperature gradient can be calculated from (3.15). Since
Jl is also related to the temperature gradient in the adiabatic region
IV, the ratio JO/Jl tends to unity as Hj ~ H;. Thus the left hand side
of (5.59) will have a certain minimum value. This seems to indicate
that there is no cooling wave at all until the pressure has fallen below
a certain critical value. We have not investigated this point in detail.
It is possible that it is simply related to the break-away of the lumi-
nous front from the shock wave, i.e., the beginning of Stage C.

Equation (5.59) describes the weak cooling wave in Stage C I no
matter what the distribution of temperature in region II. The stage
comes to an end when Hb reaches the maximum possible value, Hc' There-
after, the wave described by (5.59) becomes inadequate to supply the
radiation energy: Since the enthalpy can no longer increase, the speed

of the cooling wave has to increase. This speed is then given by (5.19),

and Stage C II has begun.
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6. EFFECT OF THREE DIMENSIONS

a. Initial Conditions and Assumptions

The fact that the fireball is spherical causes some deviations from
the one-dimensional theory of Sec. 5. In this section we shall discuss
Stage C II, the penetration of the cooling wave into the isothermal
sphere, in three dimensions. Initially, we assume that the cooling wave
has just reached the isothermal sphere; we call the corresponding time
t = ta’ and the pressure is the critical pressure Pa = 5 bars derived in
Sece 5d. Subsequently, the mass of the isothermal sphere decreases due
to the cooling wave.

We assume that the material, which is at temperature T > Tm = 4ooo®
at the initial time ta’ will stay in this temperature range throughout
Stage C ITI. This is reasonable because this material will be heated by
the uWltraviolet radiation coming from the inside, because of the strong
absorption of air of medium temperature (3000 to 6000°) for UV (Sec. lec).
The UV heating is expected to compensate approximately the cooling due
to adiabatic expansion of this material; this is confirmed by rough
estimates of the heating and cooling. We do not know how the temperature
is distributed in the "warm layer" between the radiating temperature T,
and the temperature Tm = MOOOO; this could only be determined by a detailed
calculation of the UV radiation flow in this region. We assume that the
distribution is smooth, as it is in Stage C I, and that therefore the

thickness of the 'warm layer" in gm/cm? is directly proportional to the

TO




required mean free path of visible light at the radiating temperature

(also in gm/cm?) which in turn determines T, itself.

We take the initial conditions from Brode,8 using his curves at a

time when the inside pressure is 4.l bars, this being closest to P, =5

bars of all the curves he has published. This corresponds to a scaled

(1-megaton) time t = 0.325 sec. At this time, important physical quan-
o q

tities are as given in Table VIIT (dimensions scaled to 1 megaton). The

last colum of the table is not given by Brode but will be explained in

Sec. 6¢c. In the table, we have defined a quantity proportional to the

mass,

-1 2
m = pg fp(R)R dR

0

(6.1)

where R is measured in hundreds of meters. It is interesting that the mass

of the warm layer is much (6.6 times) larger than that of the isothermal

sphere. Its volume is about 2.4 times larger in Brode's calculations.

Table VIII. Conditions When Cooling Wave Reaches Isothermal
Sphere, According to Brode

Outer radius, meters
Average density/pO
"Mass" m defined in (6.1)

Mean temperature T’

Isothermal Warm Layer
Sphere Brode Sec. bc
385 >TT 438
0.79 X 1072 2.20 X 1072 11 X 1072
0.150 0.99 0.99
3.0 - ‘ 0.70
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b. OShrinkage of Isothermal Sphere

We denote the "mass” of the isothermal sphere, as defined by (6.1),

by ml. Then this mass will decrease, due to the progress of the cooling

wave inward, according to
— —"—R (6.2)

Note the Py in the denominator and the absence of the factor U4x, both
due to the definition (6.1). The density of the isothermal sphere is
nearly uniform and will be denoted by pis' Initial values at time ta

will be denoted by a subscript a. The isothermal sphere expands adia-

batically, hence

1/7
= D
Pig = Py (Pa> (6.3)
and therefore at any time t
R, 3 a \ (@ 1/y
B = i-n— 2 (6.11-)
a a P
The speed of the cooling wave is given by (5.10), thus
u = m—- (605)

where JO has been set equal to zero because there is no appreciable flow
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of radiation inside the sphere. HO is the enthalpy inside the sphere,

which decreases adiabatically

(y-1)/7
R - H, (g-) (6.6)
a

Hl is the enthalpy at the radiating surface. It will be shown in Sec. 6¢

that the temperature T. is nearly constant with time, so that in good

1
approximation H'.L and Jl in (6.5) are constent. We shall also meke the

poorer approximation that Hj << Hye Then (6.5) and (6.6) give

D )(7-1)/7
u=u (—E (6.7)

P

Inserting (6.4) and (6.7) into (6.2) and making the equation dimen-

sionless,
2 2
a_ () . ted (ﬁ) w
d(t7t ) m, poma Ra ua
wt, (m 1-1/3y
= - 5 g2 v (6'8)
p R m
aa a
We define
x =2
t
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P
= 2
f(x) 5
uata
A= o R (6.9)

and obtain the simple differential equation

- - ag(x)11/3 (6.10)

353

which yields, together with the boundary conditions,

X
y=1- AJf(x')l'l'/37 ax' (6.11)
1

The constant A can be determined from Sec. 5e. The condition there

is

dr
u=

2 -p a? (6.12)

where p 1s the density outside the cooling wave. According to (5.1k)

o e 6.13)
— I e— ( ‘15
Py Hl

Then using (5.43)
ek (y -0.9)0' -1) % (6.11)
Pa Hl 9 7 ta

Th




Using Tz; = 3.6, Tl' = 0.98, H~ T5/5, we find Ha/Hl = 8.7. Using further
y' =1.18, A in (6.9) becomes

A = 8.7 X % X Q‘i%%-g:gg = 0.166 (6.15)

which is a pure number, and small: The calculation could be improved by

not neglecting Hl

According to (6.11) the fireball is used up at the time x defined

compared with Ha.

by

X
f ()37 gt 2 $=6 (6.16)
1

This relation is valid (granted the approximations we have made) what-
ever the relation between pressure and time, f(x). This generality is
useful for sea level explosions, where P, is only 5 times ambient pressure:
The relation between p and t can then be taken from a machine calculation
(or observation).
: . S _ 1/3

For higher altitude, let us say h > 10 km, p_ = 5(pl/po) is

sufficiently above the ambient pressure, pl/po, so that the shock is

still strong and we may use
£(x) = x-2 - (6.17)

Then (6.11) becomes
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2.2-0.L/y
X =1 (6.18)

y=1l-A =517

From y = 1.18,

1.86
_ 12.211-:.:; (6.19)

and the isothermal sphere disappears for

X, = 12.21/1‘86 = 3.84 (6.20)

For these higher altitudes, then, the time when the isothermal sphere
disappears is a fixed multiple of the time when it is first reached by
the cooling wave. This multiple depends only on 7, and on the ratio
Hc/Hl of internal to external enthalpy at time ta. The pressure at the

time x2 is

1
S R ! & (6.21)
p2 - pax2 - 4 bg .

For sea level, f(x) increases more slowly (the pressure decreases
more slowly) with time; hence it takes somewhat longer to use up the iso-
thermal sphere. Conversely, the pressure at the time t2 = ta?a will have
decreased by a smaller factor from pa.

For the simple case of higher altitude, we can use (6.19) to calcu-

late the fraction of the mass y5 which will still be in the isothermal
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sphere, its radius Rl/Rc’ and other physical data. Some of these are
given in Table IX. It is seen from the table that the mass decreases,
first fairly wniformly and rapidly (as if it would go to zero at x = 2.8),
then more slowly (because it is proportional to y5), while the radius
first expands slightly, then shrinks slowly and at the end very rapidly.
The latter phenomenon, the rapid shrinking of the apparent fireball, may
not be observable because the bomb debris becomes visible and is likely
to be still opaque. But some shrinkage of the fireball should be open

to observation.

Table IX. Development of Isothermal Sphere and Warm Layer
due to Cooling Wave

X = t/ta 1.0 1.2 1.5 2.0 2.5 3.0 3.5 3.8
1 0.964 0.899 0.766 0.599 0.k02 0.188 0
ml/ma=y3 1 0.8%5 0.726 0.450 0.215 0.065 0.0066 O
Rl/Ra 1 1.029 1.031 0.970 0.818 0.58% 0.287 0
R2/Ra 1.137  1.19%  1.248 1.296 1.326 1.362 1.426  1.483
L' 0.137 0.129 0.126 0.129 0.150 0.180 0.21%  0.247

The last two lines of Table IX will be explained in Sec. 6c.

ce. The Warm Layer

We want to assume that the outer edge of the warm layer, the 4000°
temperature level, stays fixed in the material (Sec. 6a). We wish to

calculate the thickness of the warm layer in gm/cme,

T




L =J o(R) 4R (6.22)~

where R2 is the outer edge of the layer. The original mass of the warm

layer mw is much larger than that of the isothermal sphere

mw/ma =B = 6.6 (6.23)

At a later time, the mass of the warm layer is then

my=m (B +1 - ) (6.2L)

’

It does not change much.

The temperature in the warm layer goes from 10,000 to 1000°. For
simplicity we assume that the density corresponds to the average temper-
ature of 70000. Then, at the initial pressure used in Table VIII, p, =

4.1 bars, the density of the warm layer is p, =11 X 10'2 P = lhpa.

0
This is much higher than in Brode's calculations, Table VIII: In his
calculations, the cooling wave has not reached the isothermal sphere;
with our assumptions it has. The difference is due to the different

opacities assumed; it has the consequence that our warm layer is geo-
metrically much thinner than his (Table VIII, last colum). Subsequently

the density decreases with pressure, not adiabatically but isothermally;

in accord with Gilmore's formula (3.13), we assume
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l.11 1.11
Pp = Py (IPJ:) = paC (gt) ' (6.25)

with C = 1k.
On this basis we calculate the outer radius R2 of the warm layer
and find
R) =R + R ?Llc—yi- [£(x)120/9 (6.26)

Using (6.17) we can then calculate Re/Ra' We give this quantity in the
second last line of Table IX. In the last line, we have given the mate-

rial thickness of the warm layer, in relative umits,
L' = = -S——= (6.27)

It is seen from the table that R2 increases only slowly; the main

o " Rl at later times is therefore due to the decrease of Rl.

The material thickness L' first decreases very slightly; this continues

change in R

about as long as R, increases, and is due to the fact that about the same

1

mass of warm material gets distributed over a larger area. Later on, L'

increases while Rl decreases. Until x = 2.5 the change of L' remains
less than 10%, and after x = 2.5 the calculation is probably meaningless
because the bomb debris comes into view. Therefore, we may assume L'

constant, and thus the optical mass absorption coefficient (in cme/gm)

at the radiating layer will also be constant. In contrast with this
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result of the three-dimensional considerations, the one-dimensional for-
mula (5.35) yields a decrease of p/p as £t

Using (5.35), a constant mass absorption coefficient requires

n! ~pol/3n L p1/20 (6.28)

Thus in three dimensions, the temperature continues to increase slowly

after the cooling wave reaches the isothermal sphere. If we assume that
times up to x = 2.5 in Table IX are significant, the pressure decreases
by about a factor of 3 in Stage C II, and the temperature of the radiating
layer increases by sbout 5% according to (6.28). The radiated pover,
being proportional to Ri Tih, may increase by about 10% up to x = 2,
and then decreases due to the shrinkage of the radiating surface.

One prediction of this theory is that the temperature,as well as
the radiated power, has a rather flat second maximum while the isothermal
sphere radiates away its energy. The slow variation of T Justifies the

1

treatment of Jl as constant in Sec. 6b.

T. TRANSPARENT FIREBALL (Stage D)
After the isothermal sphere has been eliminated by the cooling wave,
the fireball is transparent if we neglect the effect of the bomb debris.

At this time the pressure is given by (6.21), the average temperature of

the "warm" region is about 7000°, and the corresponding density is about
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P P 0.57
b _ 2.3 x 1072 (_1) (7.1)
Po Po

If we assume that the radius Ra of the isothermal sphere scales with

p£1/5 (vhich may be wrong) the radius of the warm sphere is now

/3
P
R, = 570 (Y sf- meters (7.2)

where Y is in megatons. Therefore, along a radius, the amount of warm

material is about
_ 1/3 2
ppR, = 1.7 Y7 gm/cm (7.3)

almost independent of ambient air density.
-2 . -1
Taking pb/po = 10 (which corresponds to pl/pO A 1077) and an

average temperature of 70000, Meyerott's tables give for the visible:
o 2

so that the radius represents 0.7 optical mean free path at 1 megaton.
This is nearly transparent, and the fireball becomes rapidly more trans-
parent as it cools down by further emission of radiation. The emission
of radiation is then proportional to the opacity; for each material

element,
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dE _ L
aft- = - LKaT (7°5)

where a is the Stefan-Boltzmann constant and K the opacity in cm?/gm,
i.e., the absorption coefficient averaged over a Planck spectrum (dis-
regarding spectral regions which are still black). Since K increases
rapidly with temperature, the hottest region near the center will cool
fastest, so that the temperature tends to become more uniform.

For the same reason, the radiative cooling will effectively stop at
a temperature of about 50000. At this temperature and p = 0.0lpo, it
takes about 5 seconds to cool the fireball by 10%. At hOOOO, this takes
about 200 seconds. Gilmore25’has calculated curves of cooling times for
transparent bodies at various densities as a function of the final temper-
ature.

Depending on the ambient density, the pressure may or may not have
decreased to ambient pressure when the temperature has decreased to 50000.
Even if it has not, the subsequent adiabatic expansion will not lower the
temperature much further. (Our theory is not applicable to very low
ambient densities because there the isolation of isothermal sphere from
the outside never takes place. Probably the limit of applicability is
about pl/po = 10-2. Therefore, and because of the small value of y - 1,
expansion cannot be large.) Therefore, after both radiation and hydro-
dynamics have effectively stopped, the fireball is left at a temperature

not much below 5000°.

Any further cooling can only be achieved by the rise of the fireball
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due to its bouyancy, and the turbulent mixing associated with this rise.
This is a slow process, taking tens of seconds.

Since the emission is now proportional to the absorption coefficient,
the molecular bands will now appear in emission while in earlier stages
they appear in absorption. This has been observed.

The debris, at the center of the fireball, contains metals and
therefore is likely to be opaque at lower temperatures. Therefore the
debris may well be opaque after all the air has become transparent. The
debris usually has a ragged shape due‘to Taylor instability. Recently,
Longmire26 has given a tentative, quantitative theory of this instability
in debris expansion. Because of its higher opacity, the debris may cool

to a lower temperature than the surrounding air.
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