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ABSTRACT

Various procedures are given for writing explicit difference ap-
proximations to the one-dimensional Lagrangian hydrodynamics equations.
Computational comparisons are made among systems of equations with tim-
ing modifications. These comparisons lead to experimentally superior
differencing forms. Stability analyses of these difference forms show
the reasons for the superiority of one form over another. Of greater
importance, the stability criteria obtained show the function of an ar-
tificially introduced diffusion term required in the treatment here
given to shocks. The stability criterion in each case involves the
familiar Courant condition and a term which corresponds to the stability
criterion of the diffusion equation. Upper limits to the magnitude of
the coefficient of the diffusion term are established as a function of
Courant number. While lower limits are also indicated, they require
modification when shocks are involved.

Alternate differencing schemes are considered in which the pre-
viously-used total energy calculation is replaced by an internal energy
calculation. It is shown that care must be taken that the kinetic and
internal energies are expressible in terms of local quantities. That
is, in addition to the equations being conservative in a gross sense,
they must also be locally conservative. This is necessary in order that
the energy condition of the Rankine-Hugoniot equations be satisfied
when shocks arise.

Finally discussion is given to errors resulting from the replace=-
ment of shocks by a shock layer, that is, errors connected with the ar-
tificially inserted diffusion term. These errors are manifested in
distortions of profiles at material discontinuities through which shocks
have passed and in rarefactions associated with such occurrences. The
errors in turn effect stability in the vicinity of the material
discontinuities.
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CHAPTER I

INTRODUCTION TO THE DIFFERENCING PROCEDURES

The Differential Equations

The difference approximations discussed on the following pages are
based upon the lagrangian hydrodynamic equations written in conservative
form] with t, the time, and m, the mass, as independent variables. The

mass, momentum, and energy equations, respectively, are:

o _du

t "om-°
ou P _ 0
3t tom T
6E+8(Pu)_0
ot T Tom

The dependent variables characterizing the fluid are:

p = density
u = velocity
P = pressure
E = specific energy



The necessary additional equation is the equation of state.
The coordinate, x, of an element of fluid in the laboratory frame is
a function of m and t. In terms of it the velocity is defined by

_ ox
UE St

and through the mass equation it follows that

1 ox
o om

Some discussion will be given to the energy equation written in
terms of the specific internal energy. This equation with mass and time

as independent variables is

%% + P gﬁ =0
where
u2
I=E - =

Differencing Procedures

To solve the initial-condition boundary-value problem, we replace
the differential equations by a set of finite-difference approximations
whereby solution proceeds by a set of purely algebraic operations. To
accomplish this we represent the continuum of fluid by a set of
"finite elements" of mass my, where j = 1, 2, 3 ... j, number the cen-

ters of mass of the elements or '"cells." These elements are shown in

the following diagram.
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The lagrangian equations relate the field variables at points mov-
ing with the fluid, so that points of information in the mesh of cells,
whether they are centers of mass of the elements, eee j =1, J, J + 1 oo,
or cell boundaries, ... J - 3/2, j - 1/2, § + 1/2 +4s, will include be-
tween them increments of mass which remain constant in time. In the
following discussion we will refer to the centers of mass of the cells
simply as cell centers. It should be noted that this does not in gen-
eral correspond to the spacial cell center,

There is some arbitrariness in regard to the points where the
field variables should be defined. Some must be defined both at cell
centers and at cell boundaries. We describe a procedure in which points
of information and the sequence of calculations are as follows:

1. Compute velocity changes at cell boundaries with the momentum
equation.

2. Compute density changes at cell centers with the mass equation.

3. Compute energy changes at cell centers with the energy equation.

4, Compute cell center pressures with the equation of state.
In the process of differencing where the values of the field variables
are required and are not given by the above, we use interpolation for-
mulas.

We tentatively make a direct correspondence between the differen-

tial and the difference equations, that is, let

-0w




du oP Y-t T Y52 i Pfil-1

t - — 2= -7 (1
ot dm 1 2(m,j n m,j-1) )
> MR

X j=% sl
3t - ¢ — 2At Jo2 _ ug_% (2)
1 ox n+1 mj

o Sm pj = "o+l n+1 (3)

3z -3
n+1 n n n

OE _ o(Pu EJ' -E (Pu), 1 = (Pu), 1
&__m_l___, Atjz- J"'zmj J=2 (%)

The superscripts n are used to designate time steps. Thus, for example,
u® represents u(nat), ot represents u[(n+1)At], etc. |

To see more clearly what we have done in making the above corres-
pondences of the differential and difference equations, assume a know-
ledge of the boundary velocity, u?_é, and the boundary pressure, P?_ % ,
at time n. Then the other quantities in the momentum equation in terms

of Taylor expansions are

n 2 2 \B
unHl = 1+ At<8u> + At 8_11_ +
A
m n m2 o \"
n_ oo Tgel <6P> NS g_g>
P,j--l Pj-% —2"" 3;]1‘ j-% 2 'j-% + eee
2 n
P = Pn + Zj- 6P>n + m‘j 92—1? +
jg Tt TTT O/, 1 T8\ 2 oo
° 3~z -3

The pressure difference as it appears in the momentum equation is then




or a first order approximation to the derivative is
n n
P - P
( > - (5)
m + m
220-1 J

Similarly a first order approximation to the time derivative of the ve-

locity is given by
n

@, - S

Replacing the differential equation by these approximations at the point
j-%,n leads to

n+l n Pj 1T P?
=u, 1 + T+ At 6
32~ 9z Hmy T+ my (6)

which is just the momentum equation (1) given above.
Note now that if we add the pressures P? and P§_1 in the above ex-
pansions and replace the mass derivative of the pressure as specified by

(5), then we have
n n
m -m P - P
n n n J=1 J J=1 J O( 2>
P, + P, = 2P, + + OlAm
SN EY J-2 2 Hw,  +m)

Thus a first order approximation to the boundary pressure is

S N J=1 _J (7)

This equation provides one of the necessary interpolation formulas since
the cell boundary pressures are required in equation (4).

A similar treatment of the mass equation leads to an interpolation

-11-




formula for cell center velocities, namely,

e I ) - (8)

Although the necessity for such an interpolation formula is not indicated
in the above, we shall need to evaluate the material pressure as a func-

tion of internal energy, which in turn is obtained by

In the examples here discussed the polytropic gas equation of state

is used, i.e.,

P = (y - Dol (9)

The subscript m is used to distinguish the material pressure obtained
through the equation of state from the total pressure P which includes

a quantity q called the "psuedo-viscous pressure;"2 that is

P=P +q (10)

The term q is introduced into the equations to spread shock fronts
and "smooth" computational results. The spread of shock fronts to a
thickness on the order of the mesh spacing avoids the necessity for spe-
cial treatment of shocks in the difference approximation. The effect of

q must be such that shock speed and jump in the field variables across
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the front are correct. This is not in general difficult to achieve.
The Rankine-Hugoniot jump condition equations are merely statements of
"local" conservation of mass, energy, and momentum, that is, they are
statements of the conservation laws across the shock. Hence, if the sys-
tem of difference equations is "locally" conservative, then the Rankine-
Hugoniot conditions are satisfied and the treatment will be correct ex-
cept for the spread of the shock front. Some further discussion of this
will be given later in connection with computational experiments.
Smoothing of fluctuations through the use of q has bearing upon the
stability of the difference equations. Considerable discussion of this
will be given in Chapter III. In those cases where the system of equa-
tions is unconditionally unstable, the addition of q can make the sys-
tem conditionally stable. If the system is conditionally stable without

q, the smoothing effect is still desirable.

The form of q here considered is5
n n .n{n n n n
.= ANp.C.{u, 1 -u > ifu, ;1 -u,1>0
4 Ps “a \3-% = Yol 35 7 Ui+
- =0 if u Wwi<o ()
J SECRE L g

C is the material sound speed and A is a constant, the magnitude of
which is discussed in detail in Chapter III. Note that q is set to
zero if the material is in a process of expanding. The desirability of
this will be discussed further in Chapter V in connection with effects

upon rarefactions.




Tentative to the discussion in Chapter III, the Courant condition

O
— <
c = 1

will be used as a measure of stability. That is, we will require

C
(&-) Ot <
max

In places where this measure of stability is used to control the time in-
crement, violations of the true stability conditions may occur, but these

will be localized and temporary.
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CHAPTER IIX

COMPUTATIONAL TESTS OF DIFFERENCING FORMS INVOLVING
EVALUATION OF TOTAL ENERGY*

Prior to testing by computation any particular form of differencing,
it is always important to examine the character of the error terms aris-
ing in the differencing procedure. Usually it is desirable that the
error terms vanish for infinitesimal space and time increments. The
types of differencing considered here all come under this category pro-
vided that certain stability criteria are satisfied. [Note: For dis-
cussion of a method of accuracy analysis the reader is referred to Re-
ference 4 by Harlow p. 11 ff].

In establishing what, in the form of computational results, char-
acterizes a good differencing scheme, it is helpful to have an analytic
solution of some simplified problem for comparison. If no such solution

is known, an alternative basis for comparison is a result obtained with

*
This is in contrast to difference forms in which the internal energy
is evaluated, and the total energy is treated as an auxiliary quan-
tity. Such forms will be discussed in Chapter IV.
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a highly refined mesh, that is, a solution common to all differencing
forms under consideration. If the difference approximation represents
well some of the more important functionals, then more stringent cri-
teria may be applied. Practical considerations require that we have as
much accuracy as possible in a coarse mesh. These considerations are:
(1) The use of a minimum number of space mesh points to reduce storage
requirements and thus also reduce calculation time per cycle. (2) The

use of a minimum number of time cycles to reduce the over-all calcula-

tion time. Hence a loss of accuracy in a coarse mesh may be used as a
device to eliminate some differencing forms.

A final computational criterion that may be used is a comparison
in smoothness of results, that is, a comparison of the rate at which
fluctuations damp. If a smoothing mechanism is involved, as in the pre-
sent discussion, it must be the same for those difference forms to be
compared. In using this criterion we are basically looking for a system
of difference equations which possesses error terms that contribute to
smoothness without affecting the accuracy of the over-all result.

The physical situation considered in the following tests is that of
two materials; the material on the left, the energy source, is isother-
mal and its temperature or internal energy is specified. Energy flows
from this material into an initially cold, heavier material. A shock
wave moves into the initially cold material and a rarefaction moves into

the isothermal material.

-16-




First Test

We begin with the system of difference equations developed in Chap-

ter T and concentrate on modifications of equation (2). Equation (2)

again is

n n
b'd = X, + u, At
=2~ 7937 T9-3 (12)
We compare it with
un + n+1
R j=% uj-l At (13)
=2~ Ti-3 2 3
and
SRR L RS (14)
J=2 J=2 J=2

The system of difference forms as a whole with the above modifica-
tions is relatively poor; our present objective 1s only to demonstrate
which of (12), (13) and (14) is the best. The results of comparisons
clearly showed that (14) was superior on the basis of the discussed con-
siderations. This was first evident in calculations where the size of
At was controlled by the Courant condition, that is, where the time step
size was adjusted to satisfy C/Axmax Nt < 1. If for any time step this
condition was violated, At was reduced by half and the calculation was

repeated. On the other hand, if we everywhere had C/Ax Ot < %, then At

-17=



was doubled on the following time step. The order of largest to smallest
time step assumed in the three calculations was (14), (13) and (12).

Thus in (12) and (13) there was a greater tendency toward fluctuations
which in turn resulted in more violations of the Courant condition.

The more coarse time mesh possible with (14) indicated that it was the

more desirable form.

Further confidence was obtained in this conclusion by comparing the
three forms at the same fixed At. Typical velocity profiles along with
the theoretical curve are shown in Figure 1. Details of initial condi-
tions are given in Table 1. The plot of the rarefaction to the left of
cell 1 is rather poorly represented in terms of Lagrangian mesh points
but was of no interest since it was the same in all cases. The relative
magnitudes of the fluctuations in the region of the initially cold mater-
ial through which the shock has passed (cell 1 and to the right) clearly
indicate that form (14) has the least fluctuation.

Note that (12) is a truncation of the Taylor expansion
R < At 9 X> At5>
J=2 J=2

and (14) is a truncation of
n+
2 2
n+l _ .n Y L . %) 3>
Xj_% = xj"‘é‘ + At (&) N -3 \T3 + O 4t
J-2 t 1

-18-~




Note also that

implies a velocity at some time between n and n + 1. If terms of second

order in At are omitted,

1
n+ = n n+1
8%> 2 u +u

By a Taylor expansion about n + %,

2 n+s
n+1 nvd Ot < nt3 , Ot 2 o( >
X, 1=X. 9+ —_— N
SR ) t2 N
J=3
n n+s At (Ox nz At
X. = X, - = T (= 3
3-% XJ-; 2 \ot/. , (3 > - o(at)
J-5 -1

hence (13) is a truncation of

n+2
xg.“i = x L At< + o(at?)
=2

We note that the lowest order error terms in (12) and (14) are second
order, whereas in the case of (13) the lowest order error is of third
order. From this point of view we conclude that form (13) should have
given the best results. The fact that (14) gave the best results can be
explained by the second order error having added a contribution to the
smoothing of the results. A more satisfactory point of view, however, is

one involving a relabeling of the equations such that the time index on
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u is everywhere reduced by 1/2. This requires a revision of the initial

conditions on u and we specify u 2 = 0. In revised form the equations

(1), (14), and (4) become

n+s n-+ j-1
= A 1

uj-g uj-g ¥ 2 mj_] + m.j) ( 5)

n+1 n n+ ’

jok = xj_%g+uj_%_£¢ (16)

n n-3 n n-3
Pu 2):_1- (Pu 2,1

ORI gt ( &) d12 At (17)

J J m;

This revision in the time index on u now makes the magnitude of the lowest
order error in (12), (13), and (14) consistent with the computational re-
sults. Note also that the momentum equation (15) is now time-centered and
is correct to third order in At.

The density equation (3) has remained unchanged, but the revised
time index on u must be taken into account in the q equation (11) which

now becomes

1
1 1 Nes Ne
n n.n n-= n-= - >0
= AN p.C (?. -u, ;> if <§'_i u §>
%5 PR3’ J-g J+i J=2 *2
1 1 (18)
n _ (W2 - u™g)<o0
a; =0 : < J-g J+z

Compensation could be made for the time shift in initial conditions

on u, but this is not necessary since the effect is negligible,
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Second Test
Our basic equations for further experimentation are now those with
the revised time index on u, and we proceed by considering modifications

of equation (17). We compare it with

nn nn
n+1 n (Fu )j_l - (P'u J_,_L
E, =E, + 2 2 At (19)
J J m,
and n n+t n n+t
n+1 n (Pru 2)3_; - (Pu 2)-+;
E, =E, + 2 12 At (20)
J J mj
where u” is now defined by
1 1
n+s n-=

In all of these cases we consider I? and I§+1 as
1

n n-2
n n (u.)
I =E.__sl____
J J 2
n+=
n+1 n+1 (u?) :
7 = BV e
J J 2

The same initial conditions of the first test were again used,
and the Courant condition was used to control the At.

Figure 2 is a plot of the velocity of the interface between the
two materials. Note the continued oscillations in the case of equation
(17) even at late times. Equations (19) and (20) show rapid damping of

initial fluctuations, the velocity becoming the analytical value in a short

21



number of time cycles.[For details of the calculation refer to Table 2].

On the basis of the results as demonstrated by Figure 2, equation
(17) was eliminated. To contrast (19) and (20) more precisely, Figure 3
is included. This is a typical late-time density profile taken from the
same calculations. For the present we ignore the error in the cells near
the material boundary and note that the fluctuations that are present
with form (19) tend to average about the profile of form (20). The great-
er smoothness of (20) hence indicates that it is the more desirable form
to use.

To summarize, consider the following chart in which the time in-
dices on u are used to specify the types of variations of differencing
forms which we hafe studied. The indices refer, respectively, to the

first and second tests.

1 1 1 1 1
n-z, N=3 n, n-3 n+z, nN=7
n-s, n n, n n+s, n

1 1 1 1 1
n-s, n+§ n, n+2 n+2, n+2

The first test was the upper row and the second test the right hand
column. Our conclusions were that the combination n + %, n + % was the
best form, that being the form where the position equation and the
energy equation both used the most advanced time on the velocity.

Four of the nine variations in differencing listed above were not
tried to this point. To double-check our conclusions the n, n and

n, n+ % forms were applied to the same problem. These forms both

-20-




proved to be poorer than both the n + 3, n and the n + 3, n + 3 forms.
This indicated that there probably was no need to check the remaining

two forms, and analysis of the next chapter confirms this.
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CHAPTER III

STABILITY ANALYSIS

We are interested in performing stability analyses of the difference
forms discussed in Chapter II. To include all these forms we incorporate
a coefficient n + @ on u in the position equation, and a coefficient n + @
on u in the energy equation, where @ and $ may take on values -%, 0, and %.
For simplicity we consider one material of equal cell masses. The system

of equations under consideration then becomes

1 1
n+s -
WL, <P31_1 - Pr.1> (22)
3-2 3~z J
n+i n+Q
X , = xn , tu, ; ot ’ (23)
J=z J=3 J=2
pf]} = (24)
X - X,
5T 793
I?+1 _ In + ot [(Pn n+B) . - (Pnun+6). ;]
J «j-2 J+3 (25)
12 1 1.2
n+s n+ n-= N-=
) [(u.j-g " uj*% - (ua-% tug g J
8 3
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1 1
n n/ n-= n-=
. = N, C. <§ 2 . 2 26
43 373 3-3 " ;> (26)

For simplicity in the first analysis we are not restricting q as in (11).

Assume all quantities vary slightly from steady state values; that

is, let
uy = uo(1 + gj) t << 1
oy = ool + ej) € << 1 (27)
Ij = 10(1 + 53) B << 1

Then through the equation of state we have for first variations of C and

[V
o/}
o
~—r

cg =/y(y=1) I? = co(1 +
(Pm)z = (y - 1)pOIO (1 + e? + 89)

The first variation of q is given by

n-2
-t S

n n-
Q. = MpC.u <?
3 0-0%0\’;. et

noj= o=

The cell mass remains constant; hence

m= pdx = p08x0

We also define the Courant number

CO ot
Sxo

e
n
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Then the first variations of the momentum, mass, and energy equations,

respectively, become

37 P
(28)
N- 1 1

+'Au§2_n"§_<n'§_ n-EJ

(2 SR ORI
<%n+1 eé) _ 59 (?n«x Cn«x (29)
5 7)oy MOk R ?

u

(%3*‘ - 6§> =(r-1) 5% u(ﬁgfz - 8 (30)

We now assume that the solution of these equations can be written
in terms of a Fourier series. If this is true, then each term of the
series is also a solution, and we may examine a typical one to note what

the conditions are that would make it a solution. Assume that

(% = ¢ tRIP
J
=€ elk‘]rn (31)
J
8? =0 eikJrn

Substitution of (31) into equations (28), (29), and (30) leads re-

spectively, to the equations

-26-




C C
OB ginE)e, L 2&] ( “ou £> _
(?i % 5 sin 2> € + - [(r - 1) + 4 Ap sin 5 t + |2i 5 7 sinz )% =0

0
Yo« k
(r -1) e+ <?i TR sin 5) t =0 (32)
0
Yo B k
[21(7 - i) g M T sin 5] t+(r-1)d8=0
0]

Then (31) is a solution provided that

c
o1 59 B sin % L (r=1)+4 M sin2 % 2i 59 B sin g
07 Jr o’
u
D = (r - 1) 2i 59 b sin g Y =0
0o
(33)
u
0 21(7-1)59-urﬁsin5 (r-1)
2
0
or
(r = 1) [(r -1) + b M sin2 %J
k
2 ., 2= 1 1
+ B;E_E%E——g [fa+2 + (y - 1) r6+2] =0 (34)

For stability it is necessary that the typical component solution

(31) not grow without bound. We therefore require that

x| <1 (35)

-27-



We further require that (35) be satisfied in the extreme case of
sin2 k/2 = 13 this geometrically implies, for example, that if k = =
the wave length of the typical component solution under consideration
is just twice the cell size. Under these conditions it is possible for
this component of each of the field variables to attain extreme maximum
and minimum values in alternate cells, and the largest possible gra-
dients can exist.

With these considerations we wish to solve for r the equation

b u? [k B+
(r-1) [(r=1)+ b4 Au]+ - [r 24 (y=-1)r 2] =0 (36)

We shall confine our attention to those values of & and f which lead

to a quadratic equation in r. These cases are the ones which appear at

the corners of the chart on Page 22. They are

1
a=B=-§

1 1
a=-3 B=13
1 1
=3 p==-3
1
a=6=§

In all of these cases the equation reduces to a form

(r - 1)2 + bpoa(r - 1) + hue =0 (36a)

where a is a function of A and . The forms of a for the four cases

under consideration are:
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R
]
w
i
]
nj-
R
1]
[N
-

1 1 1
a==-35p=3 a=p=3

a =%4—2;§—lu a=AN+H

Solved for r, equation (36a) becomes
r=1-24 [a * Va2 - 1] (37)

Now if a < 1, r is imaginary and

|r| =~1 - su(a - u)

Thus the condition |r| < 1 requires WU < a.
If a =1, then |r| < 1 requires O < B < 1. Here the lower limit is
always satisfied while the upper limit is included for a < 1.

For a > 1 we must examine both the plus and minus sign in the equa-

tion

r=1 - 2U4a % a;VaE « (38)

If the plus sign satisfies r < 1, then the minus sign will also. With

the plus sign, r < 1 requires that

for p > 0. Note that this is always satisfied, since a is real.
If the minus sign in (38) satisfies r > - 1, then the plus sign will

also. Then r > - 1 requires that

-29-



u<% + Vgé—:_;>:§ Te

This may also be written as a dual condition,

2 ap - u2 <1 and p <1

To summarize then, the conditions for stability are

For a <1, H<a

2
For a>1 and p<1, 2a p = <1

(39)

Plots of the regions of stabil-

ity are given for the cases consid-
3;7 3;r

ered. Note that the forms of
differencing that were experimentally
- » superior are those for which the re-

gion of stability is shifted to the

y=5/3

N A lowest values of A, Qualitatively

Waks s the inference is that the magnitude

of q, and hence the degree of en-

a<|

tropy increase introduced, must com-

a<!

C B pensate for certain of the error

I3 K terms that are inherent in a given
a=B=-12 a=12, B=-12
asi u:x+$
[PTIRPIN Mpstps ) system of difference equations. If
|

A>land g<t , 2hu-pPst M &>t and pel , 2hu= TR uR<0

the error terms are of the type that




cause an entropy decrease, they lead
to fluctuations and hence require
more compensation in the form of the
dissipative mechanism q. [For fur-
ther discussion of the relation be- yeors
tween the entropy of a region and /o
fluctuations the reader is referred

to the Appendix.]

It is interesting to note that

the introduction of q into the system D AR | |

of equations is equivalent to adding as-lr2. Brve a-B-w2
a=a Gy a=h+u
ML;'—',.LSI./.Lsﬁ Atpsl, (A20)
g diffusion term to the momentum Lot 8 et 20usZ2u 51 Avpsland p<d . 2autiPs

equation. That is,

g% = - gg + g% (ApC &m %&)

where ApCdm is the diffusion coefficient. The stability criterion for the

diffusion equation with this coefficient is

B
om

ApCOm %

which reduces to

2z <1

Thus it is seen that the stability conditions given above, relating to

the upper limit on A, all contain two terms, one connected with the
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hydrodynamic equations, the other with the added diffusion. Only in the
case O = B = % are the equations conditionally stable without any added
diffusion, i.e., A = O, It will be noted that in this case the hydrody-
namic term alone is Jjust the Courant condition.

In the above analysis we did not consider the dissipative mechanism

in the sense specified in Chapter II. That is,

Ne
- u,
J+

Q- =0 for u?-

<0
J J=- -

N P~
WV

To extend the analysis to this restricted q, we consider a typical cell
interface velocity and assume that the most extreme fluctuations in

this velocity arise from the existence of a viscous pressure to the left
at one time cycle, and a viscous pressure to the right on the next time

cycle. Let r, refer to the times for which the viscous pressure is from

the left, and r, to the times for which the viscous pressure is from the

right. Then stability at time n requires that

- n/2 r2n/2

<
1 <1

or

Ir] r2| <1 | (40)

The equations of first variation of dq for the cases T and r, become,

respectively,
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The trial solution leads, respectively, to

8 L L Yo Jik(5-3) r (75 - 1)
PoP%y 9T 0 Nr
U, .o¢. 1y D0
N LR
0°%o 0 Jr

Then 8q is the same for r, and r2, and the stability criteria

]rl <1

again applies but now with A replaced by A 2. Thus the stability condi-

tions for the four forms of differencing discussed above become:

a=p=-3 a=3%B=-3
A AU
a—§ a—2+7
a:-%,B:% a:ﬁ:%
=Dzl a2
2 7 2

with the conditions (39) on a. The graphical results also hold with
the ordinate replaced by A/2.

These stability conditions have been verified computationally, and
it has been shown that the stability of the systems is very sensitive

to these conditions.



When shocks are involved the above conditions must be satisfied, but
also A must be large enough to prevent cell boundaries from crossing.
Thus far no analysis is known in this connection and we must rely upon
experimentation. In Chapter V where some additional adjustments in the
stability criterion are considered, an example indicating the character

of the required lower limit on A will be given.
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CHAPTER IV

DIFFERENCING PROCEDURES INVOLVING THE INTERNAL ENERGY CALCULATION

In practical applications of the Lagrangian difference equations,
there has been some interest in the use of the energy equation in the
form which gives the internal energy directly. The reason is the economy
of calculations that results. Rather than evaluating both total and
kinetic energies to obtain the internal energy, it is obtained directly.
An additional advantage is that in some formulations the interpolations
need not be carried out in the calculation procedure. Thus a worthwhile
reduction in the number of mathematical manipulations is realized.

We proceed with a test of the system of equations (15), (16), and
(3), with the energy equation (17) replaced by an internal energy calcu-

lation. The differential equation and a first possible difference form

are
In+1 In u un
I du T R N e
- FPXx > AT T F; m

Solved for the internal energy at the advanced time, this is

n n
n+1 n n Yi.i T Yl
R U g -SRI k-3 (41)
dJd J mj
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where again

un+% - uBtE

. g 5

Ir}+1 = j[r.1 + P2 A=5 __J¥3 At (42)
J J J mj

From the conclusions reached in the preceding chapters regarding
the time index on u, we exclude the case n =~ %.

For computational comparisons of these two forms of the energy equa-
tion, the same initial conditions were again used. [For details of the
calculation refer to Table 2].* Typical profiles of the internal energy
in the initially-cold material are given in Figure 4, The analytic re-
sult is included for comparison. Form (42) gave results which are ser-
iously in error, whereas form (41) matched the analytic solution except

for fluctuations. Examination of the other field variables likewise

*It will be noted upon examination of the character of equations
(41) and (42) that if a cell j is initially cold, it will remain so
indefinitely with the form of q of equation (18). To perform tests of
these equations it was necessary to modify q to permit starting condi-
tions. This was done here by replacing Cg in q by

C? + u? -u
J J

2

where u. is the velocity ahead of the shock layer. This modification
does nog affect the qualitative feature of the results in terms of the
discussion here given. The predominant effects of this modified q are
that starting conditions are provided or augmented, and additional
demping of shock-produced fluctuations is realized.

O -
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showed correct results with (41) and incorrect results with (42). 1In
particular it is evident in late time plots that the shock speed in the
case of (42) is lower than the theoretical value.

The reason for the poor behavior of (42) may best be understood by
an examination of the corresponding total and kinetic energy expressions.
It can be shown that form (h]), which gave correct results, is derlvable
from the energy equation (19) with the momentum equation (15) and inter-
polation formula (7). It is required, however, that the cell specific

kinetic energy be defined by

2 2 L2

?15 =T = (43)

rather than through the interpolation formula (8); that is, the cell
center velocity is defined through an average of the cell boundary ki-
netic energies rather than an average of the boundary velocities. Of
importance, however, is that the kinetic energy of the cell depends
only upon the cell boundary velocities at the particular time in ques-
tion. By contrast an analogous derivation of equation (42) is possible
using equations (20), (15), and (7), but in this case the required de-

fining formula for the kinetic energy is

1 1 1,1l
2 2 2 s n (2, 2 1\n t2 S4B n'k nd ont-
< g‘2 _ N\ i) P T VA Sl S 1P S
2 > 2 5 5
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where the index 1/2 on the first term on the right is a time index. Note
that this definition of the cell kinetic energy is in terms of the cell
boundary velocities but involves all prior times to the time of interest.
To analyze the significance of the difference in the above required
definitions of the kinetic energy, we diverge briefly to consider the
meaning of conservation in a finite difference scheme. Since we are con-
sidering a net of points of information, the idea of conservation may be
resolved to the requirement that the value of flux of momentum and
energy remain the same whether observed in connection with the cell to
the left or the cell to the right. Likewise the value of a given con-
servative variable specified at half-integer times must remain the same
whether observed in connection with time earlier or later than the spe-
cified time. That is, conservation is equivalent to the require-
ment that single-valuedness of the variables exist at all points of the
mesh. In our present discussion the temporal criterion is satisfied in
regard to the kinetic energy, since it is uniquely defined at the net
point j,n + & by equation (44). The problem, however, is that when
shocks are involved, the Rankine-Hugoniot equations must be satisfied
for the jump in the field variables at the shock. The Rankine~Hugoniot
equations are statements of conservation of mass, momentum, and energy
across the shock front. Since the shock is a local variation, these
equations require local conservation. Local conservation of energy re-
quires definitions of kinetic and internal energies in terms of local

quantities. Thus in equation (44) the summed terms should not be




present. We note that the difference in the kinetic energies at two ad-

Jacent times is given by

1 1 1
n+§ n-§ n+§ 1 1
§u2> gue? (ue . uej) G BF med el
i _ N2 i R B - S - 2 -
2 2 2 2

Hence in a local sense the kinetic energy as observed from time n - 1 at

time n - 3 is given by

i s
(@FF (e, .2
i N2 Ul

2 2

and as observed from time n is given by

Thus it is seen that locally the kinetic energy is not single-valued
(that local conservation does not exist), and hence the Rankine-Hugoniot
equations are not satisfied.

From this discussion we see that it is important that the form of
the finite difference expressions be founded upon local definitions of
those quantities which must be conserved. This can be achieved in the
present discussion by beginning with a system of difference equations
which involves a total energy calculation. In such a case an explicit
definition of the kinetic energy must be made, and hence the require-

ment of local definition may be imposed. ©Such a system of equations may
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then be used in deriving short-cut procedures.

Although no problems of the type discussed above arose in the pre-
sent formulation of the momentum equation, the same considerations apply
to it in general.

We now wish to examine some examples of internal energy calculations
based upon the total energy equations given in the foregoing discussion.
There are a number of possibilities, but we will consider only four of
them. These four differ in the time index on u and in the kinetic energy
interpolation used. We may tabulate these cases with n or n + % specify-
ing the time index on u in the total energy equation, and (8) or (43)

specifying the kinetic energy interpolation formula. Thus we designate

(a) o, (8)
(b) mn, (43)
(¢) n+3 (8
(@) n+3, (43)

Tn all cases the boundary-pressure interpolation formula is equation (n,
and the time index n + 3 on u is used in the position computation.

The derived internal energy equations are

n+1 nn R < Vel _ ph >]
() 13" = 1ye E; [(P Wy - (P g ua(?a-% ok

n+l
(b)' IJ J "o, Pn(«j B J+2>

"
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n+1 n A n n+s n n+: q( n n ;)]
c I, I, +— [ P 2). - (P 2y, - P - P
(c) J st [P )J-% (Fu )J+% S\a-E T ol

J
2
1 1 2 2
(@) 1o - 1% 4 BE P2 L BT lKar} ;> * (an i> ] ot
J N IANSES J+3

The index n on u wherever it appears again means

1 1
n+s n-s
Gy 24+u °

In (d) the acceleration ag 1 is given by
-3

n
Pia - Py

n =
J-% %(m._] + m37

. 3

a

[

We have introduced only one new difference form, (d). (a) and (c)
were discussed in Chapter II where they appeared as equations (19) and
(20), respectively. (b) is equation (41) repeated here for comparison.

Note that the new form (d) without the last term is Jjust equation
(42). The second order term in At added to (42) resulted from our de-
finition of the kinetic energy in terms of local quantities (equation
43).

Of passing interest we note that (a) and (c) are difference approxi-

mations to

Ho- g

They differ only in the time index on u in the work flux at the cell

boundaries. In Chapter II we concluded that (c) was a superior form to

=41



use in that it led to smoother profiles for a given q and At (refer to
Figure 3). Likewise, while the stability conditions for (a) were not
given in Chapter III, the trend indicated that the most advanced time
required the least compensation of errors in terms of the magnitude of q.
The stability conditions for (c) and (d) are the same and are the

Q = B =-1/2 case discussed in Chapter III. (a) and (b) correspond to

o =1/2, B = 0 in the notation there used. Differences in the form of
the kinetic energy interpolation formula vanish when the equations are
linearized, thus leading to identical stability conditions through the
type of analysis of Chapter III.

To further check the assumption that the more advanced time on u
gives superior results, forms (b) and (d) were compared using the same
initial conditions of previous tests. [For details of this test refer
to Table 2]. For this comparison typical density profiles are given in
Figure 5 along with the analytic result. Again we ignore the error in
the cells near the energy source material and make the comparison on re-
lative smoothness of the profiles. We note that (d) tends to take on
mean values of (b) and is therefore considered to be superior.

To take further advantage of the advanced time on u, it might be
suggested that u? in form (c) be replaced by u§+%. This, however, leads
back to the problem of the kinetic energy being defined in terms of non-
local quantities.

A comparison of (c) and (d) is of some interest. Although these

forms are the same in terms of first variations, they differ in second

4o




order. Form (c) differs from (d) in that the kinetic energy is always

less by a factor

(uj-% - ua'+%>2
8

This reduction in kinetic energy goes into internal energy and hence re-

sults in an entropy increase. This term has most significance where the
velocity gradients are large and thus acts as an auxiliary viscosity in
shock regions; as would be expected, it helps to prevent cell boundaries
from crossing as a result of shocks.

It will be noted that in an adiabatic rarefaction the term will
cause an entropy increase since it will remain positive. Although this
effect may be small, it is still undesirable. It is therefore recommended
that if the characteristics of form (c) are otherwise desirable, the
above term should be taken into account only in cells for which
uj_% - uj+% > 0, as has been specified for q. This is equivalent to
using form (d) normally, but replacing it by form (c) in compressive re-
giong. The merits of form (c) may perhaps more easily be realized by
modifying q as suggested by Landshoff,3 that is, by adding a term to g

involving (ﬁsufa Doing this will provide the same effect in isothermal

regions as well.
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CHAPTER V

DISCUSSION OF ERRORS

Whereas the difference methods presented in the previous chapters
give satisfactory results in most problem situations, there are errors
evident in all cases which stem from the artificially introduced diffu-
sion term, i.e., from the use of the mechanism q. We will first note the
form these errors take in some sample results.

In Figure 6 a density profile of differencing form (c) is given.
Reference to Table 3 shows that this test was made with equal mass zones.
That is, the light isothermal material had large cells, while the ini-
tially cold, heavy material had relatively small cells. The tests were
made in this way to minimize the truncation error in the mass defivatives
at the material interface. In contrast, a corresponding test (c-k) was
made in which cell sizes were more of the same order [refer to Table 4].
The density profile of this test is also given in Figure 6.

The phenomenon of interest is the low density relative to the theo-

retical value that occurs in the first few cells of the shocked material.

In the case of the cells of equal mass, the effect is spread over several




cells, while in the case of cells more equal in physical size, the effect
is more severe but confined to the first two cells.

In Figure 7 the internal energy profiles of the shocked material are
given for the same tests. Note that the effect under consideration is
here manifested in an excess of internal energy in the first cells.

In Figure 8 velocity profiles in the rarefaction region of the iso-
thermal material are presented along with the theoretical curve. [Refer
to Table 5 for details of this test]. The solid-line curve corresponds
to tests of difference form (c) with q restricted to compressed cells,
while the dashed curve is a result in which q was unrestricted, i.e., q
took on both positive and negative values. We first note that both ex-
perimental curves lag behind the theoretical curve. This, however, is
of no concern since the lag is related to starting conditions and does
not grow in time. We note, however, that the unrestricted q causes an
unrealistic spread in the rarefaction front. This incidentally is the
reason that the restricted q is generally used. Further, it is noted
that while the restricted q curve has the correct velocity gradient in
the rarefaction fan, there is a rise in the velocity immediately behind
the rarefaction. This is not a consequence of q in the vicinity of the
rarefaction fan; in fact, q is instrumental in reducing a larger rise in
velocity in this region that would be present without the viscosity.

We must therefore relate this effect with errors that occurred at the
origin of the disturbance.

Finally, Figure 9 shows a density profile of the differencing types
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(c¢) and (d) of Chapter IV applied to a shock moving into a material dis-
continuity where the material on the left is more dense by a factor of
25 [refer to Table 6 for details of this test]. When the shock strikes
the material discontinuity, a shock moves into the light material on the
right and a rarefaction moves into the more dense material on the left.
The errors that are here evident, relative to the theoretical curve, may
be correlated to the effects pointed out above., Again the density in
the first cells of the shocked material is low. The excessive velocity
behind the rarefaction fan is manifested as a region of lower density
than the theoretical value. The high peak in the density at the mater-
ial interface in the rarefied material is merely a consequence of the
oversized cells to the right.

From the above examples and discussion it is apparent that the major
errors may be correlated with effects occurring at material discontinuities.
The low density and high internal energy occurring in the first cells of
the shocked material is discussed briefly by Landshoff.5 This effect is
attributed to an overproduction of entropy in the affected cells, result-
ing in excessive heating and a consequent expansion of these cells. It is
therefore related to the character of the dissipative mechanism q. Since
the peculiarities connected with rarefactions were traced back to where
the rarefaction originated, then these errors likewise are assumed to be
a consequence of the action of q at material discontinuities.

Although an artificial viscosity is essential to the type of treat-

ment here given to shocks, its secondary effects can become of some
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concern., Basically, q was manufactured to effect a replacement of a
steady state shock by a shock layer of thickness on the order of a cell
size. The process of development or modification of this layer is not
provided for in the character of q. The errors evident in Figures 6
and 7 are correlated with the development of the shock layer from ini-
tial conditions while in Figure 9 the shock layer required modification
at the material interface.

Experiments in which the viscosity coefficient A was changed show
that a larger A increases the entropy production at material discontinui-
ties and hence increases the errors. Modification of A alone, however,
is not sufficiently effective to eliminate the errors. A balance must
be achieved in the size of A, in which the further considerations of
fluctuations and crossing of boundaries must be considered.

In Chapter III it was pointed out that the stability conditions of
the equations required modification when shocks were involved; A must
be sufficiently large to prevent boundaries from crossing. An additional
modification is required because of the secondary effects of q discussed
above.

In Figure 10 experimental points are plotted for difference form
(a) with the initial conditions of Table 7. These points are superim-
posed upon the previously discussed plot of the region of stability for
difference forms a = B = 1/2, in which q is the restricted form. The
results must be taken only in a qualitative sense, since boundary cross-

ing is strongly dependent upon initial conditions. The points of
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instability resulting from shocks are classified into two groups. Boun-
dary crossings occurred after only a few time steps and involved the
interface between the isothermal material and the initially cold material.
Instabilities arising from the overproduction of entropy occurred at re-
latively late times and were effective in the region directly following
the cells in which the low density errors occurred. This latter type of
instability depends upon the relative cell sizes of the two materials of
the interface. If the cells of the isothermal material were larger, this
type of instability would be less likely to arise because the low density
errors would be less severe [refer to Figures 6 and 7]. Note that for
the type of instability considered, improvement with reduced A is small.
The present point of view is that the secondary effects of q are such

as to modify the condition

du
5; ot <1

or
b < s
Z5u76x56x

which certainly must be satisfied for compressed cells,

In Chapter III it was noted that a shift in the region of stability
to lower values of A was a qualitative indication that the difference
form was superior. The question might be raised, why then use a re-
stricted q which shifts the region of stability to A's of twice the
value of the unrestricted q? If a technique could be devised to prevent
the appearance of q in rarefactions, but still retain it in unrestricted

form in all other regions, then an improvement could be realized.
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TABLE 1

INITIAL CONDITIONS FOR CALCULATIONS SHOWN IN FIG. 1

Ot fixed at 0.0625

Material No. 1 (isothermal) 2
Y 5/3 5/3
' ] 1
3
. 0.1 1
P
I, 0.246 0]
J
A /7y /7
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VELOCITY

Fig. 1:

0.1l
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PUMIEIPUSITUIN: (12)
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—————— x" e M At (14)
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=3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 1l 12

CELL NUMBERS

First test of Chapter II. Cell velocity profile at time t = 15,
Cells 0, -1, -2, etc., are larger than cells to right by a fac-
tor of 10, [Refer to Table 1].
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TABLE 2

INITIAL CONDITIONS FOR CALCULATIONS SHOWN IN FIGS. 2, 3, 4, and 5*

Ot adjusted to satisfy <§§> Ot <1
max

Material No. 1 (isothermal) 2
y 5/3 5/3
mJ 1 1
pJ 0.1 1
I 3 0.246 0
A /7 V/y

*
Refer to footnote Page 36 in connection with Figs. 4 and 5.
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function of time.
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Fig. 3: Second test of Chapter II. Density profile of material 2 at
time t = 15. [Refer to Table 2].
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Chapter IV test. Internal energy profile of material 2 at time

t = 15.

[Refer to Table 2].
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Chapter IV test.
[Refer to Table 2].
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TABLE 3

INTTIAL CONDITIONS FOR CALCULATION (c) SHOWN IN FIGS. 6 AND 7

Material No. 1 (isothermal) 2
y 5/3 5/3
mj 1 1

.
p,j 0] 1
I. 0.246 0
J
A 1y /7
TABLE 4

INTTIAL CONDITIONS FOR CAICULATION (c-4) SHOWN IN FIGS. 6 AND 7

Mt adjusted to satisfy V6 (f;{-> ot <1
max

Ot adjusted to satisfy V6 (§> At <1
max

Material No. 1 (isothermal) 2

7 5/3 5/3
my 0.14 1

. .
pJ 0] 1

. 0.246
IJ 0
A 1y Tey
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Fig. 6: Chapter V error illustration. Density profiles of material 2
taken for different initial cell sizes in material 1 (t = 15).

[Refer to Tables 3 and 4].
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Fig. 7: Chapter V error illustration. Internal energy profiles of

material 2 taken for different initial cell sizes in

material 1 (t = 15). [Refer to Tables 3 and 4].
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TABLE 5

INITIAL CONDITIONS FOR CALCULATIONS SHOWN IN FIG. 8

At adjusted to satisfy V6 (Z%) At <1
max

Material No. 1 (isothermal) 2
Y 5/3 5/3
) 0.2 1
mJ 5
0.1 1
P
0.246 0
13
A 1/y /7
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Fig. 8: Chapter V error illustration. Velocity profiles in material 1
comparing two forms of q in the rarefaction & = 15). [Refer to
Table 5].
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TABLE 6

INITIAL CONDITIONS FOR CAICULATIONS SHOWN IN FIG. 9*

Ot adjusted to satisfy N Q—&) Ot <1
max

Material No. 1 (isothermal) 2 >
% 5/3 5/3 5/3
mj 0.25 1 0.2
pj 0.1 1 .Oh4
Ij 0.246 0 0
A 1/ 1/ /7

*
The form of q described in the footnote of page 36 was
used here. It should be noted, however, that neither
form (c¢) nor (d) require starting conditions.
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DENSITY

0.5

Fig. 9:

(c)

——— (d)

CELL NUMBERS

Chapter V error illustration. Density profiles at time

t=1t

material interface.

0]

+ 15.9, where t

0]

is time shock passed the second

[Refer to Table 6].
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TABIE 7

INITIAL CONDITIONS FOR CALCULATIONS USED IN CONNECTION WITH FIG. 10

A and p (fixed At) as indicated on Fig. 10

Material No. 1 (isothermal) 2
7 5/3 5/3
m 0.25 1
pj 0.1 1
I 0.246 0
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Fig. 10: Chapter V. Example of experimental points of stability and

nonstability when shocks are involved. [Refer to Table T].
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APPENDIX

ENTROPY OF A REGION OF FLUID

Consider a one-dimensional region of a fluid which is subject to
variations, the variations in turn being subject to the constraints of

fixed mass, fixed momentum, and fixed energy. That is,

b
m = [4 p dx = constant

constant (A-1)

b b —
M= [, pudx = [y M(p,u)ax

b b —
E = [q p[I(p,P) + % u2] ax = [, E(p,P,u)dx = constant

where M and E are momentum and energy densities, respectively.

Now also let §(p,P) be the entropy density of the fluid region

such that the total entropy is given by
b -
s=/, 8 ax (a-2)

We are interested in examining the character of extremal values of
S in terms of variations of p, P, and u which are arbitrary except for

the specified conservative constraints. The condition for an extremal

value of S is
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as = f FS" §§5P dx = 0 (A-3)

The constraints in terms of variations of p, u, and P are

b
ja Op dx = O
f F5p+ B—&u dx = 0 (A-k)

‘jr 5— 8p + Bﬁ du + gg 8P /dx = O

Multiplying these constraints successively by the Lagrangian multipliers

f, g, and h and adding to the equation 48 = 0, we have

b
(g eeg g

[53 hé-_l50+[g-a—6+h§a:] ax =

(A-5)

Since all the specified constraints are now included, the variations
dp, P, and Bu are arbitrary (i.e. independent); hence the coefficients

of these variations must vanish individually. We thus have

%% + f+g %M + h %E
g% + h g% =0 (a-6)
OE
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Through specification of material equations of state and the above
definitions, S, M, and E become known functions of p, P, and u. Hence
the equations (A-6) reduce to a set of algebraic equations in the three

unknowns p, P, and u with solutions

p = constant
P = constant
u = constant

With the specified constraints governing the behavior of the region of
fluid under consideration, we thus conclude that the entropy will have
an extremal value characterized by a flat profile in all variables.

Since we have established what characterizes this extremal value of
S, the examination of any other condition will tell us if the extremal
is a maximum or a minimum.

Consider a small space variation in internal energy only, that is,

I=1I+ e(x)
p=r, (A-7)
u =y
Then the fixed energy constraint becomes
b b
1.2 1.2
\/; QO[IO + e(x) + 3 uo] dx = QO[IO + 3 uo]\/; e(x) dx = O
or
b
f e(x) dax = 0 (A-8)

a

-68-




-

The remaining two constraints are automatically satisfied since
(A-7) specifies no variation in p and u. Also for this special case

S = S(I) only, and
g-&‘—, +€() -§§> +£i(_39.i2_§_> +
= %0 ¥\, T2 (612
0]

With equation (A-8) taken into account, the change in entropy of

the region becomes
b 2=\ P
ds=f(s-§)dxzl Qf’-)_/ e(x)? ax
a 0 2 120 a

Note now that the established extremum of S is a maximum if

(6257312) is negative definite. With the density constant the second

law of thermodynamics states that

&), -+
ﬁp T

Hence D
)2 @
2, 2 \OI
Now

(%)p >0

is a fundamental property of actual media, and therefore

G,
1%/,
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Thus we have shown that a flat profile of the variables character-
izing the fluid implies an entropy maximum if the conservation laws hold.

Conversely, if we consider a true solution to the hydrodynamic equa-
tions characterized by some value of entropy and compare with it a finite
difference approximation solution, then the degree of fluctuation in the
approximation may be correlated with error terms contributing to a de-
crease in entropy. This is assuming that the difference approximation

is conservative in the above specified quantities.
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